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Introduction

Tropical geometry studies balanced polyhedral com-
plexes which arise in numerous areas of mathematics
and beyond. In SINGULAR [4] we are naturally inter-
ested in its application in algebraic geometry.

Given a polynomial ideal IEK[x] = K[x1, . . . , xn]
over a field K with possibly trivial valuation ν : K →
R, we would like to determine its tropical variety

Tropν(I) := {w ∈ Rn | inν,w(I) monomial free},

as it inherently carries information about the affine alge-
braic variety X := V (I) ⊆ kn cut out by I (see [11] for
details). Tropical geometers sometimes refer to them as
combinatorial shadows of their algebraic counterparts.

For example, enumerative geometers have been
studying tropical varieties to count algebraic curves with
carefully chosen characteristics (see Figure 1). While
counting, it is important to recognize if multiple objects
are casted to the same shadow and, if needs be, deter-
mine that number of objects. The theorem that proved
this to be possible is referred to as Mikhalkin’s Corre-
spondence Theorem.

While studying tropical varieties, sometimes it is
helpful to compute concrete examples. Up until now,
the only software that has been able to do so was GFAN
[6] by A. N. Jensen, whose algorithms were developed
in a collaboration with Bogart, Speyer, Sturmfels and
Thomas [1]. However GFAN is restricted to the rational
numbers K = Q and the valuation ν = 0 being trivial,
i.e. p-adic valuations νp are excluded. Nonetheless, it is
also possible to compute over the field of rational Lau-
rent series K = Q((t)) with its natural valuation thanks
to the trick of homogenization and dehomogenization.

The difficulty of non-trivial valuations comes from
the fact that the classical Gröbner basis theory does not
take any valuations on its ground field into account, as
it relies solely on a chosen ordering on the monomials.
This makes it unsuited for the problem at hand.
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Figure 1: tropical curves of degree 3 and genus 0
through 8 points in general position

Progress to date
Ever since version 3-1-6, SINGULAR has been support-
ing convex geometry thanks to two interfaces [7, 9] to
GFANLIB [6] and POLYMAKE [5] respectively. And, in
version 4-0-2, we have successfully implemented algo-
rithms for computing tropical varieties over Q with re-
spect to both trivial and p-adic valuations.

The algorithms for the trivial valuation were taken
from the existing work [1], while for p-adic valuations
we have developed new techniques that allow us to fall
back to the trivial valuation [10]. We are effectively trac-
ing any tropical variety over Q under a p-adic valuation
to a tropical variety over Z under the trivial valuation.
However, the new ideals over Z are of more general
form than the old ideals over Q for which all existing al-
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gorithms were designed, so that new computational ap-
proaches had to be developed. During this, we are heav-
ily relying on SINGULAR’s native standard basis engine
for coefficient rings in arbitrary orderings.

In a way, this new technique can be seen as a gener-
alization of the homogenization and dehomogenization
strategy to compute over Q((t)):
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Figure 2: tropical varieties with p-adic valuation over
Q and trivial valuation over Z respectively

During implementation, we paid special attention to
unify our new algorithms for tropical varieties over Z
and the existing algorithms for tropical varieties over Q
in a common framework. All algorithms were imple-
mented as part of the GFANLIB interface and are pub-
licly available as part of the official SINGULAR distribu-
tion.

To compute tropical varieties, load gfanlib.so
and use the command tropicalVariety. The com-
mand takes an ideal as first argument and has an op-
tional second argument depending on which valuation
you want to compute with:

SINGULAR / Version
A CAS for Polynomial Computations / 4.0.2

0<
Decker, Greuel, Pfister, Schoenemann \ March
FB Mathematik der TU Kaiserslautern \ 2015

> LIB "gfanlib.so";
> ring r = 0,(x,y,z,w),dp;
> ideal I = x+2y-3z, 3y-4z+5w;
> tropicalVariety(I,number(2)); // 2-adic val.
RAYS
-2 -1 1 -1 1 # 0
-1 1 -1 1 -1 # 1
0 -3 1 1 1 # 2
0 1 -3 1 1 # 3
0 1 1 -3 1 # 4
0 1 1 1 -3 # 5
LINEALITY_SPACE
0 -1 -1 -1 -1 # 0
MAXIMAL_CONES
{0 1} # Dimension 3
{0 2}
{0 4}
{1 3}
{1 5}
> tropicalVariety(I,number(3)); // 3-adic val.
> tropicalVariety(I,number(5)); // 5-adic val.
> tropicalVariety(I,number(7)); // 7-adic val.
> tropicalVariety(I,number(11)); // 11-adic val.
> tropicalVariety(I); // trivial valuation

Figure 3: computing tropical varieties of the same
ideal with respect to multiple valuations on Q

As sketched in Figure 2, for p-adic valuations the
output is a polyhedral fan whose intersection with the
affine hyperplane on which the first coordinate is −1
yields the wanted tropical variety. This is akin to how
POLYMAKE represents polyhedra and polyhedral com-
plexes. The tropical varieties are combinatorially of the
form:
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Figure 4: tropical varieties of the same ideal with
respect to multiple valuations on Q

The intersection of the affine hyperplane with the
two highlighted rays in Figure 3 yield two distinct ver-
tices in Tropν2(I) of Figure 4, whereas the intersection
with the highlighted maximal cone yields the bounded
edge connecting them. The remaining rays represent
points at infinity, which is why the remaining maximal
cones represent unbounded edges. The tropical vari-
ety has a lineality space generated by the weight vector
(1, 1, 1, 1), which is due to the homogeneity of our input
ideal.

Note how the tropical varieties dance around for the
2-, 3- and 5-adic valuation before settling to what is ob-
tained with respect to the trivial valuation. This suggests
that 2, 3 and 5 are so called bad primes for the modular
techniques involving our ideal [2], which is no surprise
as they appear as coefficients of our generators.

15



Current and Future work
One major bottleneck in our computation are stan-
dard bases computations over Z in arbitrary orderings.
Thanks to the theory of Gröbner walks, it is only nec-
essary once at the very beginning. There is currently a
group of SINGULAR developers actively working on it,
including Christian Eder, Anne Frübis-Krüger, Gerhard
Pfister and Adrian Popescu, and any improvement will
greatly benefit our performance for p-adic valuations.
However, it may also be worthwhile to consider algo-
rithms tailored to our ideals which exploit some of the
common structure that they share [8].

Moreover, starting with the next version SINGULAR
will support modified standard bases algorithms. One
promising candidate for tropical computations is the so
called saturating standard bases algorithm, in which
each new basis element is checked for divisibility by the
variables. Because we assume our ideal to be saturated
with respect to all variables to begin with, we may use
it indiscriminately without altering our ideal. This tech-
nique was originally applied in the monomial tests dur-
ing the study of GIT-fans to great success [3], and we
hope that it will do equally well in the massive amount
of monomial tests in our tropical algorithms.

Feature-wise, the biggest priorities are the computa-
tion of multiplicities and the ability to exploit symme-
tries in our computations.
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