
Model-Integrating Software Components

Mahdi Derakhshanmanesh1, Jürgen Ebert1, Thomas Iguchi1, and Gregor Engels2

1University of Koblenz-Landau, Institute for Software Technology, Germany

{manesh,ebert,tiguchi}@uni-koblenz.de
2University of Paderborn, Department of Computer Science, Germany

engels@uni-paderborn.de

Abstract: In a model-driven development process the problem arises that over time
model and code may be not aligned. Thus, in order to avoid this steadily increasing
distance between models and code, we propose the integration of (executable) mod-
els and code at the component level. Redundancy – the source of inconsistencies –
is reduced by interpreting models directly. Moreover, variability and adaptivity can
be achieved by querying and transforming the embedded models. As the basis for
such Model-Integrating Components (MoCos), we introduce a component realization
concept that is compatible with existing component technologies.

Overview

In Model-Driven Development (MDD) [BCW12, SV06] models are used to describe views

of a system. At some point in the development process, code is generated from these

models. Despite all efforts (e.g., round-trip engineering), this generation step is often a

source of inconsistencies between model and code artifacts as they evolve. Currently,

models and code artifacts are kept separately and are – at most – connected by links, e.g.,

to maintain traceability or a “causal connection” at runtime. Thus, understanding and

reusing associated parts of models and code may become tedious.

Modularization concepts proposed in Component-Based Development (CBD) are well-

established to manage the development of complex software and to achieve reuse [SGM02].

Yet, component concepts for realizing software architectures have been traditionally tar-

geted at the programming language level. Carrying executable models as first-class con-

stituents of components has not been in their focus. Even if models are executed, they are

usually not software components.

In this presentation, a realization concept for combining models and code in the form

of Model-Integrating Components (MoCos) is introduced. A MoCo is a non-redundant,

reusable and executable combination of logically related models and code in an integrated

form where both parts are stored together in one component. MoCos enable the interplay

of code with (i) design-time models of software (e.g., feature models, documentation),

(ii) reflective models@run.time [BBF09] as well as (iii) stand-alone, non-reflective and

possibly executable models. A sketch of the core idea is given in Figure 1.

55



F
u
n
c
t
io
n

Model

IRequire

IProvide

Code

Figure 1: High level sketch of a MoCo

The code part of a MoCo allows better performance than model execution for performance-

critical functionality. Moreover, it supports the use of existing software libraries and

enables the connection to third-party middleware. The model part of a MoCo supports

flexibility and comprehensibility of the component as all models can be queried and trans-

formed (using dedicated languages) and may be directly executed by model interpreters.

This supports software engineers when evolving components, and system administrators

when observing and managing a running system.

The component realization concept proposed here supports the modular development of

software systems where users of components cannot differentiate between MoCos or other,

more traditional, components. Code and models are both first-class entities with equal

rights inside the component. We present this realization concept in the form of an ab-

stract template that is compatible with existing technologies. In addition, we provide a

reference implementation using (i) Java for programming, (ii) OSGi for components and

(iii) TGraphs [ERW08] for modeling.

In order to study the feasibility of the introduced MoCo template and its reference imple-

mentation, we apply them in the fictional context of an insurance company that equips its

field staff with an assistive Insurance Sales App (ISA) for the AndroidTM mobile platform.

Acknowledgements. This ongoing work is supported by the Deutsche Forschungsge-

meinschaft (DFG) under grants EB 119/11-1 and EN 184/6-1.

References

[BBF09] Gordon Blair, Nelly Bencomo, and Robert B. France. Models@run.time. Computer,
42(10):22–27, 2009.

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineer-
ing in Practice. Morgan & Claypool, 2012.

[ERW08] Jürgen Ebert, Volker Riediger, and Andreas Winter. Graph Technology in Reverse En-
gineering, The TGraph Approach. In Rainer Gimnich, Uwe Kaiser, Jochen Quante, and
Andreas Winter, editors, 10th Workshop Software Reengineering (WSR 2008), volume
126, pages 67–81, Bonn, 2008. GI.

[SGM02] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Software - Beyond
Object-Oriented Programming. Addison-Wesley, second edition edition, 2002.

[SV06] Thomas Stahl and Markus Völter. Model-Driven Software Development. Wiley, 2006.

56


