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Abstract: The Discriminative Generalized Hough Transform (DGHT) is a general
method for the localization of arbitrary objects with well-defined shape, which has
been successfully applied in medical image processing. In this contribution, the frame-
work is used for eye localization in the public PUT face database. The DGHT com-
bines the Generalized Hough Transform (GHT) with a discriminative training proce-
dure to generate GHT shape models with individual positive and negative model point
weights. Based on a set of training images with annotated target points, the individual
votes of model points in the Hough space are combined in a maximum-entropy prob-
ability distribution and the free parameters are optimized with respect to the training
error rate. The estimated model point specific weights reflect the important model
structures to distinguish the target object from other confusable image parts. Addi-
tionally, the point weights allow for a determination of irrelevant parts in the model,
which can be eliminated to make space for new model point candidates from training
images with high localization error. The iterative training procedure of weight esti-
mation, point elimination, testing on training images, and incorporation of new model
point candidates is repeated until a stopping criterion is reached. Furthermore, the
DGHT framework incorporates a multi-level approach, in which the searched region
is reduced in 6 zooming steps, using individually trained shape models. In order to fur-
ther enhance the robustness of the method, the DGHT framework is, for the first time,
extended by a linear model interpolation for the trained left and right eye model. An
evaluation on the PUT face database has shown a success rate of 99% for iris detection
in frontal-view images and 97% if the test set contains a large head pose variability.

1 Introduction

The eyes are two important and clearly visible features of the human face, whose position

can be used to deduce further relevant information like the head pose or size. Many face

related applications rely on an exact and reliable eye localization, making this field an

important research area with many different approaches.
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Interestingly, most state-of-the-art systems combine an existing method for face localiza-

tion with specialized techniques to determine the exact eye position in the given face. In

addition, many systems make extensive use of prior knowledge about the shape and ap-

pearance of the eyes and their distance and can therefore not be easily generalized to other

object detection tasks.

The most popular face detector, used by many eye detection frameworks, is the method

developed by Viola and Jones [VJ04], which applies a combination of Haar-like features in

a boosted cascade of classifiers to provide a face bounding box. Additionally, many tech-

niques make use of a-priori knowledge about the localization task. This can, for example,

be achieved by restricting the search space to certain areas of the previously localized face

([KHM08, KS10]) or by using a-priori constraints between facial landmarks, mostly both

eyes like in [KS10]. Only in a few approaches, those constraints are learned from training

data, like in [CCS04], where 15 facial features are combined to enhance the robustness

of the localization procedure. Other approaches use a-priori knowledge about the typical

shape and appearance of an eye, e.g. by searching for dark circular objects. In [TB11] a

vector field of image gradients is analyzed to identify the center of circular structures in a

previously localized face. An additional weighting of the gradients, depending on the gray

values of the hypothesized target center, supports the detection of particularly dark circles

like the pupil. An alternative to this approach is the application of the Hough Transform

for the localization of circular objects, like in [DLCD04].

An extension of the Hough Transform, which can be applied to arbitrary shapes, is the

Generalized Hough Transform (GHT) [Bal81]. This technique, which has already been

applied to eye localization [Sch00], measures the match between a shape model and a

feature image by using a simple voting procedure. The method is general but heavily

relies on the quality of a given point model for the target shape.

The GHT is a well-known and widely applied approach for object localization, which

is why many extensions have been developed. Some of the extensions produce a scale

or rotational invariant GHT to reduce the necessary transformations. An overview about

some of these extension can be found in [KTT99]. Other approaches (such as [GL09,

Oka09, LLS08]) split the target object into parts and combine them in a discriminative

manner in order to ease the localization of objects with a high variability.

To this end, we developed the Discriminative Generalized Hough Transform (DGHT)

[RLS+11], which automatically learns discriminative shape models with individual posi-

tive and negative model point weights for usage in a standard GHT voting procedure. The

technique has been successfully applied to various object detection tasks in medical image

analysis and has recently been ported to the problem of eye detection [HRB+12]. In this

work, the robustness of the DGHT framework is further improved by (1) utilizing a joint

detection of both eyes with individual GHT models and (2) incorporating prior knowledge

about the vector between the eyes, which has been obtained from training data.

This paper is organized as follows. In Section 2 we describe the used method, including

the GHT (2.1), the discriminative training (2.2), a zooming strategy to improve the robust-

ness and processing time (2.3), and the new extension of linear model interpolation (2.4).

Section 3 contains a description of the used database and Section 4 describes the experi-
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mental setup. The results are presented in Section 5, followed by a discussion in Section

6. Section 7 concludes our contribution.

2 Method

2.1 GHT

The GHT, introduced by Ballard in 1981 [Bal81], is a general and well-known approach

for object localization, which belongs to the category of template-matching techniques. It

uses a point model M to represent the structure of the searched-for object in relation to a

reference point, which is the target point for the localization task.

The GHT transforms a feature image into a parameter space, called Hough space, utilizing

a simple voting procedure. The Hough space consists of accumulator cells (Hough cells),

representing possible target point locations and, potentially, shape model transformations.

The number of votes per accumulator cell reflects the degree of matching between the

(transformed) model and the feature image.

Since each additional parameter in a model transformation leads to an additional dimen-

sion in the Hough space, no model transformation, apart from translation, is considered in

this work. Instead, moderate object variability with respect to shape, size, and rotation is

learned into the model. Although in general arbitrary features could be used in the GHT,

our framework applies the standard Canny edge detector [Can86] to extract simple edge

features.

The voting procedure which transforms a feature image Xn into the Hough space H by

using the shape model M can be described by

H(x) =
∑

∀ei∈Xn

∑

∀mj∈M

{
1, if x = ei −mj and arccos(< ei,mj >) ≤ ϑϕ

0, otherwise.
(1)

The combination of an edge point ei with a model point mj increments the appropriate

accumulator cell at position x if the scalar product of ei and mj is below a given threshold

ϑϕ.

2.2 Discriminative Training of GHT Models

The usage of a representative and discriminative shape model in the GHT is crucial for a

good localization result. Therefore, the discriminative training procedure, applied by our

DGHT framework, aims at optimizing the model with respect to the error rate on training

images. This includes the estimation of individual model point weights as well as the

addition of relevant new structures to the model or the removal of unimportant points. The

latter takes place during an iterative training procedure which is explained in Section 2.2.2.
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2.2.1 Estimation of Model Point Weights

It is quite evident that the model points of a given shape model are of different importance

for the localization problem. While points that allow for a good discrimination between

the target object and other confusable structures are particularly useful, others may even

mislead the detection procedure by fitting to wrong image parts. Therefore, the application

of a model point specific discriminative weighting scheme appears to be a reasonable

measure when using the GHT.

The estimation of the individual weights for the J points, contained in a given shape model,

is achieved by (1) separating the Hough space votes coming from every single model

point, (2) recombining those contributions in a weighted manner, and (3) optimizing the

introduced weights with respect to an error measure.

The theory is based on describing the GHT as a probabilistic framework, in which the

Hough space is interpreted as a posterior probability distribution p(ci|Xn). This distribu-

tion can be estimated, for example, from the relative frequencies of votes in each Hough

cell ci. The GHT-based localization task, which searches for the cell with the highest

number of votes, can now be formulated as the Bayes classifier ĉ = argmaxci p(ci|Xn).

In order to identify the individual importance of each single model point, it is necessary

to split the Hough cell votes into model point specific parts. To this end, the characteristic

function

fj(ci, Xn) = vi,j (2)

is introduced, which denotes the number of votes vi,j from model point mj in Hough cell

ci for a given feature image Xn.

Since the feature functions only consider the contributions of single model points they

must be recombined in order to preserve the constraints from the GHT voting procedure

for the entire model. In the DGHT framework this is achieved by using the maximum

entropy distribution [Jay57], which assures maximum objectivity and introduces model

point specific weights λj .

pΛ(ci|Xn) =
exp

(∑
j λj · fj(ci, Xn)

)

∑
k exp

(∑
j λj · fj(ck, Xn)

) (3)

The estimation of the free parameters Λ = {λ1, λ2, ..., λJ} from the side conditions (2)

leads to an optimal approximation of the training data distribution but not necessarily to a

minimal error rate. Therefore, the parameter optimization in the DGHT follows a minimal

classification error (MCE) training approach [JK92], first applied in the field of automatic

speech recognition [Bey98]. This technique minimizes a smoothed error measure over a

set of N training images and I Hough cells.

E(Λ) =
N∑

n=1

I∑

i=1

ε(ci, c̃n) ·
pΛ(ci|Xn)

η

∑
k pΛ(ck|Xn)η

(4)

Here, η controls the influence of alternative location hypotheses on the error measure
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Figure 1: Illustration of the iterative training procedure.

and ε(ci, c̃n) denotes the error between the Hough cell ci and the target cell c̃n which

is determined by the Euclidean distance ‖ci, c̃n‖2.

The optimization of the model point weights Λ over the error measure E(Λ) is achieved

by applying the method of steepest descent. Although this technique does not guarantee

to reach a global minimum, recent experiments [RLS+11, HRB+12] clearly demonstrate

significant improvements over other state-of-the-art weighting strategies.

The estimated model point weights are directly incorporated into a standard GHT voting

procedure by incrementing the value of a Hough cell ci by λj · fj(ci, Xn) for each model

point mj .

HΛ(ci|Xn) =
J∑

j=1

λj · fj(ci, Xn) (5)

The localization result ĉ is then given by ĉ = argmaxci HΛ(ci|Xn). This leads to the

same results as applying the log-linear feature combination (3), used for the training, since

neither the normalization term in the denominator nor the exponential function has an

influence on the result of the arg max function.

2.2.2 Iterative Training

Assigning optimized weights to a given static shape model can substantially improve the

localization performance as shown in [RLS+11]. Since the assigned weights are directly

incorporated into the GHT weighting scheme, it is furthermore obvious that the elimina-

tion of model points with a small absolute weight does not have a significant influence on

the final localization result. Consequently, an initially given shape model can be substan-

tially reduced, keeping only a small amount of the most relevant positively and negatively

weighted structures. In an iterative procedure, illustrated in Figure 1, this technique can

be applied in order to repeatedly expand the model with the shapes of unrecognized target

objects and, for negative weighting, the most important confusing structures contained in

the training corpus.

The framework of the training is described in more detail in the following. In the first step

of the iterative training, a small subset of training images is randomly selected, and an

initial shape model is created by overlaying edge points from a predefined region around

the annotated target point. This model is subsequently used with equal point weights

in a standard GHT procedure to localize the target points in all training images. The

features fj(ci, Xn) and error measures ε(ci, c̃n) are extracted from the resulting Hough

spaces and utilized to compute the updated weights. In the next step, model points with a

low absolute weight are removed from the model, which is afterwards tested on the whole

training dataset. Since the estimation of this first shape model is based on very few images,
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Figure 2: Image extracts with different resolutions in the multi-level approach.

it can most likely not cover the whole variability contained in the training data. Therefore,

in our framework, the model is expanded by additional structures taken from images with

high localization error. To this end, edge points from a region around the target object and

the most confusable object are added to the model for the next iteration. The integration

of structures from confusable objects into our shape model allows for the identification

of anti-shapes since our weighting scheme is capable of assigning negative weights to

those model parts, thus increasing the discrimination capabilities. In the next iteration the

expanded model is again applied for target point localization on the training corpus, and

new weights are estimated using the described method. The iterative training procedure

stops when the localization error on all training images is below a given threshold or if all

training images have been used for model generation.

2.3 Multi-Level Approach

A high performance detection of very small structures, like the pupil, can only be achieved

in high resolution images. However, a clear drawback of using the highest available res-

olution level lies in a large processing time and memory demand, which hampers the

utilization of the method in a practical application. Additionally, the feature extraction in

high resolution images will produce many noisy details which may mislead the localiza-

tion procedure. Therefore, a reasonable tradeoff between the level of detail, required for a

reliable localization, and the necessary suppression of irrelevant structures is required. To

this end, the DGHT framework uses a coarse-to-fine strategy based on a Gaussian image

pyramid as described in [RKL+11].

The procedure begins with a low resolution image, which assures fast processing times and

provides the most relevant structures for a coarse orientation with an appropriately trained

GHT model. Since a reliable localization with high accuracy is not possible on this level,

an image extract is cut around the detected point and is further processed on an increased

resolution (see Figure 2). The refined search region has half of the size of the original

image and twice of the resolution such that the number of pixels stays approximately

the same. The procedure can be repeated several times, each time using a level-specific

model for the object localization, cutting an image extract of half of the previous size, and

doubling the resolution. Due to the gradual increase of the resolution, the method can be

viewed as a zooming procedure.
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2.4 Linear Model Interpolation

To further increase the robustness of the localization framework, different landmark de-

tectors, e.g., for the right and left eye, can be combined with prior knowledge about their

expected distance vector within the face. A straightforward technique for combining dif-

ferent knowledge sources into a single distribution, which has, for example, been used in

the field of natural language modeling [KS93], is the linear model interpolation

pΩ(ci|Xn) =
K∑

k=0

ωk · pk(ci|Xn). (6)

Here, a parameter ωk from the set Ω = {ω0, ω1, ..., ωK} can be interpreted as the proba-

bility that the model k produces the observation ci, whereas 0 ≤ ωk ≤ 1 and
∑

k ωk = 1.

Alternative combination schemes, like the log-linear interpolation [Kla98], may also be

used for this purpose but will not be considered in this contribution. Note that the different

probability models pk(ci|Xn) address the same task, e.g., right eye detection, but may be

obtained in different ways. They can for example be trained on different datasets or by

using varying parameterizations. Another interesting way of obtaining alternative models,

investigated in this contribution, is to (1) train detectors for other landmarks in the face lk
for k > 0 and (2) to employ prior knowledge about their distance to the target point ci.

Note that l0 is used to denote the target landmark. To this end we assume for model k

pk(ci|Xn) =
I∑

j=1

p(ci, c
k
j |Xn) =

I∑

j=1

p(ci|c
k
j , Xn) · p(c

k
j |Xn), ∀k > 0, (7)

where ckj denotes a potential position cj of landmark k in the Hough space. The distri-

bution p(ckj |Xn) is obtained by applying a GHT with a model, specifically trained for

landmark lk. The second distribution, p(ci|c
k
j , Xn), is assumed to be independent of the

feature image Xn and therefore results in the prior probability p(ci|c
k
j ) of the target point

ci, given the position of landmark lk. This model can be obtained from the annotated

landmark positions in the training dataset and has been estimated by p(ci−c
k
j ) in order to

compensate for different face positions. Here, c denotes the vector to the center of cell c.

For a first test of this approach, the detection of one eye l0 is combined with a detector for

the other eye l1, resulting in the following simplified distribution.

pΩ(ci|Xn) = ω0 · p0(ci|Xn) + ω1 · p1(ci|Xn)

= ω0 · p0(ci|Xn) + ω1 ·

I∑

j=1

p(ci − c
1
j ) · p(c

1
j |Xn) (8)

For example, if l0 denotes the right eye, p0(ci|Xn) is obtained by using the standard

DGHT model for right eye detection, while p(c1j |Xn) is a distribution obtained from a

DGHT-based left eye detection procedure. Note that the free parameters Ω in Equation (8)

should ideally be optimized on training data but have been set to equal values in this first

attempt.
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Figure 3: Illustration of the large head pose variability contained in the PUT database.

3 Data

For training as well as evaluation, the publicly available PUT face database [KFS08] is

used, which provides 9971 images from 100 subjects, a sufficiently large amount of data

for the experiments. The high image resolution of 2048 × 1524 pixels unveils various

fine structures and therefore enables the modeling of minute details. The images were

taken in front of a uniform background and under controlled illumination conditions in

five different series with various head poses to provide a large variability (see Figure 3).

Furthermore, an additional frontal view subset with 22 images per subject is also provided.

The database contains 30 landmarks amongst other both eyes, nose, mouth or lips, but

these are only set if the corresponding landmark is visible. Consequently, only images

with annotations for the left and right eye center were used in the described experiments.

The training was performed on a dataset of 600 images, which were randomly chosen by

selecting 10 images from 60 subjects. The evaluation was performed on the images of

the remaining 40 subjects. The whole evaluation corpus comprises 3830 images and the

frontal view subset 869 images.

4 Experimental Setup

4.1 Baseline System

For the work presented here, a 64 bit system with Intel Xeon W3520 with 2.66 GHz and

24 GB Ram was used. For our experiments, we use the DGHT-Framework with a multi-

level approach (see Section 2.3) with 6 zoom levels and the iterative training procedure

described in Section 2.2.2. For each zoom level a constant image resolution of 64 × 48
pixels is used, from which feature images are generated by applying the Canny edge de-

tection [Can86]. The localization of the left and right eye was performed by independently

using two specifically trained GHT models [HRB+12]. The error measure used in the ex-

periments takes the worse localization result of both eyes and normalizes it with respect

to the eye distance as proposed by [JKF01]. Therefore, an error of less than 0.1 / 0.25

corresponds approximately to a location within the iris / eye.
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Table 1: Experimental results for eye localization on the evaluation corpus comparing the baseline
system with the model interpolation framework. Results are provided for different data sets and fault
tolerances.

Setup Test Set e < 0.1 e < 0.15 e < 0.2 e < 0.25

Baseline

system

frontal view subset 99.1% 99.1% 99.3% 99.4%

large head pose variation 95.0% 95.4% 96.0% 96.5%

Model

interpolation

frontal view subset 99.2% 99.2% 99.4% 99.5%

large head pose variation 96.6% 97.1% 97.6% 98.1%

4.2 Model Interpolation

For a further improvement of the system performance, localization results of a right and

left eye detector are combined by applying Equation 8. To this end, the required distribu-

tion over the distance vectors p(ci − c
1
j ) was estimated from the annotated eye positions

in the training corpus. In order to restrict the processing time, the model combination was

performed only for a number of highest peaks in p0(ci|Xn) and p1(ci|Xn). Furthermore,

no combination is done at zoom level 3 and higher since in these image extracts only a

single eye and very few confusing structures are visible (see Figure 2). Consequently,

approaches to increase the robustness have the highest influence in the first zoom levels.

5 Results

The results of our experiments are listed in Table 1. It can be seen that a comparably high

iris localization accuracy of 95% was already achieved with the baseline system, which

worked without additional a-priori knowledge or model interpolation. It is, however, no-

ticeable that in 61% of an incorrect localization in the baseline the same eye was found

by the left and right eye localization model. Such errors can be easily prevented by the

integration of knowledge about the distance vector between both eyes, which is why we

extended the baseline system with the linear model interpolation, described in Section 2.4.

This measure significantly improved the iris localization accuracy to 96.6% for the cor-

pus containing a large head pose variation. For further illustration of our results, Figure 4

presents an example from the test set with all zoom levels, applied models, feature images

and the resulting Hough spaces.

Since after the first zooming step only image extracts are considered (see Figure 2), severe

mislocalizations, which lead to a loss of the target point in the subsequent level, can not

be corrected by a later step. Therefore, it is interesting to study the distribution of those

errors over the different zooming levels, given in Table 2. It can been seen that the num-

ber of severe errors in the first three levels could be substantially reduced by the model

interpolation.
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Figure 4: An example over all six levels, showing the model, the localization result, the feature
image and the Hough space

Table 2: Number of image extracts with lost target points in each zoom level. Note that no errors
may occur in level 0 which contains the whole image.

Setup Zoom 0 Zoom 1 Zoom 2 Zoom 3 Zoom 4 Zoom 5

Baseline system - 3 26 101 21 60

Model interpolation - 0 14 54 21 59

6 Discussion

The experiments clearly show that in frontal view situations a high iris localization rate of

99% can be achieved by using the DGHT methodology. In case of facing the challenge

of a large head pose variability, the combination of two localization models significantly

improves the absolute accuracy by about 1.5% for all fault tolerances. This has been

achieved by reducing the amount of lost target points in the first three zoom levels, as

shown in Table 2). This table also demonstrates that zoom level 3 is the most error-prone

level since both eyes but hardly any global head contours, supporting the orientation, are

visible. The resulting confusion of both eyes could be substantially reduced by the applied

right and left eye model interpolation.

The high amount of lost target points at level 5 is related to slightly inaccurate annotations

(see figure. 5). Those inaccuracies naturally have the strongest impact on the smallest im-

age extracts and play an important role already during the training phase. Here, the slight

random character of the annotations prevents a good discrimination between important and

unimportant structures which is why an optimal model cannot be generated.

For comparison of our system with a state-of-the-art method we refer to [KS10], where

168



Figure 5: Illustration of image extracts and annotations in the last zooming step

the PUT face database has also been used for training and evaluation. Here, Haar-like

features are utilized in a boosted cascade of classifiers [VJ04] for face detection as well as

for the subsequent eye localization within the detected face region. This method reached

a localization precision of 94% for a large head pose variation and 99% in case of the

frontal-view subset. Especially for the images with a high variability of the head pose,

the method of interpolated DGHT models performs significantly better without exploiting

manually defined constraints and heuristics.

7 Conclusion

In this contribution, we propose the usage of the Discriminative Generalized Hough Trans-

form (DGHT) for eye localization. The DGHT is a general method for the detection of

arbitrary objects with well-defined shape, which was already successfully applied for med-

ical image analysis. Since the iterative training method simply requires a set of images

with annotated target points, the DGHT can be easily adapted to new localization tasks

without the need of utilizing task-specific constraints or expert knowledge.

Additionally, a further extension was presented here to efficiently incorporate several

specifically trained landmark detectors in a single DGHT framework by a robust linear

model interpolation. A first experiment, combining a left and right eye model, signifi-

cantly improved the localization rate and outperformed state-of-the-art experimental re-

sults, achieved by [KS10] on this dataset. Future work will focus on enhancing the robust-

ness of the proposed method by incorporating a larger number of landmark detectors as

well as on dealing with non-uniform backgrounds, which can be expected in real-world

conditions.

Acknowledgments. This work is partly funded by the Innovation Foundation Schleswig-

Holstein under the grant 2010-90H .

References

[Bal81] D.H. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pattern
Recognition, 13(2):111–122, 1981.

[Bey98] P. Beyerlein. Discriminative model combination. In International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 481–484, 1998.

[Can86] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679–698, 1986.

169



[CCS04] D. Cristinacce, T. Cootes, and I. Scott. A multi-stage approach to facial feature detec-
tion. In British Machine Vision Conference (BMVC), pages 277–286, 2004.

[DLCD04] T. D’Orazio, M. Leo, G. Cicirelli, and A. Distante. An algorithm for real time eye
detection in face images. In International Conference on Pattern Recognition (ICPR),
pages 278–281, 2004.

[GL09] J. Gall and V. Lempitsky. Class-specific hough forests for object detection. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 1022–1029, 2009.
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