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Deep Sparse Feature Selection and Fusion for Textured
Contact Lens Detection
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Abstract: Distinguishing between images of irises wearing textured lenses versus those wearing
transparent lenses or no lenses is a challenging problem due to the subtle and fine-grained visual
differences. Our approach builds upon existing hand-crafted image features and neural network ar-
chitectures by optimally selecting and combining the most useful set of features into a single model.
We build multiple, parallel sub-networks corresponding to the various feature descriptors and learn
the best subset of features through group sparsity. We avoid overfitting such a wide and deep model
through a selective transfer learning technique and a novel group Dropout regularization strategy.
This model achieves roughly a four times increase in performance over the state-of-the-art on three
benchmark textured lens datasets and equals the near-perfect state-of-the-art accuracy on two others.
Furthermore, the generic nature of the architecture allows it to be extended to other image features,
forms of spoofing attacks, or problem domains.

Keywords: feature selection, feature fusion, group sparsity, iris liveness detection, textured contact
lens detection

1 Introduction

Textured contact lenses, also known as cosmetic lenses, obscure the physiological iris tex-
ture during image acquisition for biometric recognition. Wearing textured lenses has been
shown to degrade the performance of iris recognition algorithms from 99% verification
accuracy to nearly 20% [Ko13] due to the overwhelming occlusion caused by the lenses.
This is analogous to performing facial recognition on subjects wearing masks. While ro-
bustness to spoofs like textured contact lenses remains a significant challenge, a more
tractable problem is the detection of textured lenses. Even if an iris cannot be correctly
identified, in the event a textured lens is detected, then a more appropriate biometric appli-
cation decision can be made, such as sending individuals from checkpoints to secondary
screening.

Textured lens detection is considered a liveness detection problem. Liveness detection is
the binary classification of a given biometric sample as either live (genuine) or spoof (non-
genuine / concealed / non-conformant). Figure 1 is a side-by-side comparison of the same
subject with and without a textured lens. Irises concealed by textured lenses are spoofing

' Lane Department of Computer Science and Electrical Engineering, 395 Evansdale Dr, Morgantown, WV
26506, dposter @mix.wvu.edu

2 Lane Department of Computer Science and Electrical Engineering, 395 Evansdale Dr, Morgantown, WV
26506, nasser.nasrabadi @mail.wvu.edu

3 US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, benjamin.s.riggan.civ@mail.mil



2 Domenick Poster, Nasser Nasrabadi, and Benjamin Riggan

Fig. 1: An example of an iris without (left) and with (right) a textured (cosmetic) lens taken from the
IIITD dataset.

attacks designed to defeat iris recognition systems. The ability to reliably detect these
attacks will help mitigate reductions in security.

While many viable approaches have been developed, textured lens detection remains a
challenge [CB18]. No single approach has been shown to be definitively superior. In a
comparative liveness detection study, [Gr15] concludes “although designing better de-
scriptors is certainly of interest, it is very likely that more significant improvements come
from a sensible decision level fusion of existing ones.”

The primary motivation of this paper is an optimal feature selection and fusion strategy
for robust detection of textured contact lenses. Our hypothesis is that a combination of
good features performs better than any single feature. Similarly, it stands to reason some
features ought to be excluded as they may be redundant or misinformative. The decision
of which features to select and how to fuse them is nontrivial. Our proposed method solves
both the problems of feature selection and fusion simultaneously.

The main contribution of this paper is the development of an integrated feature selection
and fusion model. The architecture is comprised of an eight-layer convolutional neural
network (CNN) and several parallel multi-layer perceptrons (MLPs). We propose a {1 »
group sparsity loss term to sparsify feature-specific sub-networks. In addition, we develop
a set of techniques to train such a large network under the constraints of limited iris datasets
while encouraging unbiased selection of heterogeneous image features.

The contents of the paper are structured as follows. Section 2 frames our approach in the
context of related works. Section 3 discusses the model architecture and feature selection.
Section 4 presents experiment details and results. Closing remarks are made in Section 5.

2 Related Works

The majority of existing research in this field has been focused on the development and
utilization of feature descriptors. [Gr15] benchmarks a plethora of local feature descriptors
against iris, fingerprint, and face liveness detection datasets. Our experiments draw upon
BSIF, LBP, CoA-LBP, HoG, DAISY, and SID features [KR12, OPMO02, NOF11, DT0S,
TLF10,Gr14]
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The use of neural networks for iris liveness detection is becoming increasingly popu-
lar. [Mel5] lead early experimentation in this area with 2-3 layer *SpoofNet” CNNs. [Sil15]
applies the SpoofNet-style architecture to classify clear soft contacts, textured contacts,
and no contacts. In the LivDet 2017 challenge [Yal7b], one entry is a 7-layer CNN based
on the GoogLeNet/Inception architecture. [PB17] train a 5-layer CNN with 3-tuples of
live and spoof images based on the triplet loss. Unlike [Yal7a] and [PB17], we consider
transfer learning from pre-trained state-of-the-art (SotA) deep CNNs (DCNNs). Transfer
learning has also been explored in [CR18] for iris spoof detection, however our approach
differs in that we use only a portion of a larger pre-trained network. In this paper, we per-
form transfer learning with a subset of parameters from the VGG-16 network pre-trained
on the ImageNet dataset to a smaller 8-layer CNN, allowing for a deeper yet still robust
architecture despite the limited training data.

There is limited research on feature selection and fusion for liveness detection tasks.
[Gal2] selects from and fuses 25 image quality features from iris images via Sequen-
tial Floating Feature Selection (SFFS) to classify print-based iris spoofing attacks. The
winner of the LivDet-Iris 2013 [Yal4] competition used a combination of 14 features de-
rived from the Gray-Level Co-occurence Matrix selected with SFFS [Sel6]. [Ko16] fuse
Zernike moments and LBPV features via an MLP. Our approach employs group sparsity
- a regularization technique shown to have a variety of applications to neural networks
including feature selection [Sc17, Wel6].

3 Methodology

Our model is composed of two main components: 1) the set of feature networks and 2) the
fusion network. Each feature considered in our model is assigned as input to its correspond-
ing feature network. The feature networks in our model are six MLPs (corresponding to
the six features: BSIF, LBP, CoA-LBP, HoG, DAISY, and SID) and one CNN (the 8-layer
VGG-based network). The output of each feature network is a feature embedding vector.
The feature embeddings are concatenated to form the input into the fusion network. See
Figure 2 for a high-level view of the architecture. The network is trained in two main
phases: 1) pre-training and co-adaptation and 2) feature selection.

3.1 Pre-training and Co-adaptation

In order to ameliorate the burden of learning a large amount of parameters simultane-
ously, the feature networks are first independently pre-trained on the liveness detection
task. Fully-connected layers with softmax classifiers are used to pre-train the feature net-
works. The softmax layers are removed once the feature networks have been pre-trained.

The architecture of the CNN used in our model mirrors the first seven layers of the VGG-
16 network plus a 500-neuron fully-connected layer. This allows us to transplant the
corresponding VGG-16 weights trained on ImageNet into our model. Our 8-layer CNN
is henceforth referred to as VGG-8. The powerful, generic low-level feature extractors
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Fig. 2: High-level Architecture

adapted from VGG-16 aid in faster, more stable training as compared with a randomly ini-
tialized version of the same network, allowing us to achieve a deeper, more discriminative
CNN.

After the feature networks have been pre-trained, the entire model is trained end-to-end
solely on classification loss. The objective of this co-adaptation phase is to train the net-
work to utilize all of the features as best as possible prior to inducing feature competition
so that feature selection is not overly biased. In practice, however, we found the proposed
network quickly achieves zero loss on the training data through attunement to only one
feature - often the best performing feature. When this occurs, the network ceases to learn,
despite the fact that incorporating additional features may increase performance on the test
data. The parameters related to the other features are left prematurely developed and there-
fore at an undue disadvantage when feature selection begins. Potentially viable features,
such as the VGG-8 representation, may require more time to train and co-adapt than is
given, ultimately resulting in the potential deselection of a good feature.

To address this issue, we develop a novel variation of Dropout [Sr14]. Whereas Dropout
operates individually on neurons within a layer, group Dropout affects the output of a
feature network as whole. Each output feature embedding has a 50% chance to become
the zero vector. As a result, the model not only learns to utilize each feature, but also
learns to handle the inevitable absence of feature groups arising from the upcoming feature
selection process.

3.2 Feature Selection through Group Sparsity

Let the first layer of the fusion network be denoted as the function 2(W,e) € R" where
e € R™ is the concatenated feature embeddings and W € R™*" is the layer’s weight matrix.
Given G feature networks, W, € RI€*" {(g le,|) 1 1 < g < G,1 < |eg| < m}, are the
feature group weights pertaining to feature embedding e, € RI€|. The notation |eg| refers
to the size of the g-th embedding as each may vary in length. HWg Hz is the group ¢, norm.
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The group sparsity regularization is defined as
g1
RW) = Zm“ngz' (1)
g=11"8

Given the classification loss Ep and with A as a hyperparameter for controlling the amount
of group sparsity regularization, the total loss is

L=Ep+AR(W). )

The minimization of the group sparsity regularization forces feature group weights to zero
(in essence deselecting the feature), while the cross-entropy classification loss Ep man-
dates the network retain some capability to correctly classify images. The interplay be-
tween the two loss functions is the mechanism by which a set of best-performing features
is selected.

4 Experiments

4.1 Datasets and Preprocessing

Our experiments employ the Clarkson Livdet 2013 [Yal4], the Notre Dame 1 and 2
[DBF13], and the Cogent and Vista IIITD Contact Lens [Ko16] datasets. In all cases,
we follow the same steps for generating training and testing splits as established by the
datasets’ authors. See Table 1 for a breakdown of the datasets’ statistics.

Train Test
Dataset | Live | Spoof | Live | Spoof
Clarkson | 270 | 400 246 | 440
Cogent* | 1148 | 592 1158 | 610
Vista* 990 | 505 1020 | 560
ND1 2000 | 1000 800 | 400
ND2 400 200 200 100

Tab. 1: Number of images per dataset. *Based on a representative randomly generated fold.

We follow [Gr15]’s vector-quantization protocol for BSIF, LBP, CoA-LBP, SID, and DAISY
descriptors. The HoG descriptor is reduced to a 200 dimensional vector via a PCA pro-
jection learned from a sample of the training data. The inputs into the six feature net-
work MLPs are mean and variance centered from the training data. Images are resized to
224x224 and randomly horizontally flipped during training. Scikit-image is used to extract
the HoG, LBP, and DAISY feature descriptors [Wal4].
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4.2 TImplementation Details

The feature and fusion networks are two-layer MLPs with layer sizes of [100, 50] and
[500, 250] respectively. The VGG-8 network is the first 7 layers of the VGG-16 network
followed by a 500-neuron fully-connected layer. Batch norm with decay = 0.9 is used
for the VGG-8 layers. The activation function is ReLU. We use Adam optimizer with a
learning rate = 0.001, betal = 0.9, beta2 = 0.999, epsilon = 1e-8. The group sparsity A =
0.001. Input mini-batches are generated with a balanced ratio of live and spoof samples for
training. The network is implemented with the Tensorflow framework [Ab15]. Scikit-learn
is utilized to perform vector quantization [Pel1]. The authors’ code is made available at
www.github.com/vonclites/livdet_fusion.

4.3 Results

As per ISO/IEC SC37 metrics, the Average Classification Error (ACE) is the average of
the Attack Presentation Classification Error Rate and Bonafide Presentation Classification
Error Rate. Table 2 compares the ACE of our model to the SotA as well as to the individual
MLP feature networks after pretraining. Our model demonstrates superior performance
versus the best known results obtained on each of the tested datasets. The Zernike+LBPV
model and SotA for the Clarkson dataset represent the prior fusion-based approaches to
textured lens detection.

Model Clarkson Cogent Vista ND1 ND2
BSIF MLP 21.19 26.87 19.27 - -
CoA-LBPMLP | 19.72 1591 9.72 - -
HoG MLP 26.26 25.42 7.04 2.25 10.75
LBP MLP 16.86 19.51 6.61 3.94 4.5
DAISY MLP 9.79 3.77 1.25 2.25 1.0
SID MLP 7.53 2.95 3.03 1.0 2.5
VGG_8 CNN 24.71 6.155 1.65 1.19 0.0
Zernike+LBPV | 20.41 [Kol6] - - - -

SotA 18.17 [Yal4] 5.5[PB17] 0.7 [PB17] 0.1[Grl5] 0.0 [Grl5]
Ours 3.25 1.57 0.22 0.1 0.0

Tab. 2: Average Classification Error for our networks and SotA.

Figure 3 depicts the performance of our model alongside the gradual decline of the ¢
norms (scaled by A) of the feature group weights during training. As the network sparsi-
fies and eliminates features, the average accuracy (1 — ’%) increases up until the point
when key features are deselected. The influence of any given feature at various steps can
be analyzed by re-running the model with the target feature embedding set to zero. For ex-
ample, the change in accuracy at peak performance (step 10,000) from removing the LBP
feature is zero. For BSIF or HOG, it is less than 0.001. Therefore, it can be concluded

these features have been effectively deselected.
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Fig. 3: Feature group weight ¢, norms (top) and average accuracy (bottom) during training on a
representative fold of the Cogent dataset. Co-adaptation training period not shown.

5 Conclusion

The abundance of strong features available for iris liveness detection allow for the as-
semblage of very powerful feature combinations. We have shown our integrated model
achieves the goal of convenient, simultaneous feature fusion and selection while produc-
ing state-of-the-art results. Our generic framework is capable of incorporating new features
and network architectures as they become available.

Yet, generalization to unseen datasets and types of spoofing attacks remains an unsolved
problem. However, as additional data becomes available, neural network-based architec-
tures become increasingly attractive. Nevertheless, further experimentation on the gener-
alization capability of deep networks is a prudent avenue of future research in this field.
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