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Let’s Revoke! Mitigating Revocation Equivocation by
re-purposing the Certificate Transparency Log

Tobias Mueller1, Marius Stübs2, Hannes Federrath3

Abstract: Distributing cryptographic keys and asserting their validity is a challenge for any system
relying on such keys, for example the World Wide Web with HTTPS or OpenPGP encrypted email.
When keys get stolen or compromised, it is desirable to shorten the time during which an attacker can
decrypt or sign messages. This is usually achieved by revoking the affected certificates.

We investigate the security requirements for distributing key revocations in the context of asynchronous
decentralised messaging and analyse the status quo with respect to these requirements. We show
that equivocation, integrity protection, and non-repudiation pose a challenge in today’s revocation
distribution infrastructure. We find that a publicly verifiable append-only data structure serves our
purpose and notice that operating such an infrastructure is expensive.

We propose a revocation distribution scheme that fulfils our requirements. Our scheme uses the already
existing Certificate Transparency (CT) logs of the WebPKI as a publicly verifiable append-only data
structure for storing revocations through specially crafted TLS certificates. The security of our system
largely stems from the properties of these CT logs. Additionally, we analyse the computational and
bandwidth requirements of our scheme and show limitations of the protocol we propose.

Keywords: key revocation; asynchronous decentralised messaging; email; PKI; trust; OpenPGP

1 Introduction

Email is one form of asynchronous messaging and several approaches to protecting the
messages exist. Among them are S/MIME [TR10], OpenPGP [DCS07], and MLS [Ba18].
In all of these cases, clients wishing to communicate with one another, need to obtain the
public key of the recipient. Eventually, that key can be compromised and marked as revoked.
The clients encrypting a message or verifying a signature then need to check whether a
given key has been marked as revoked. In case of a centralised PKI, the party revoking
their key can ask the issuer to publish the certificate as being revoked. In a decentralised
messaging architecture, however, no such central party exists.

Even if such a central party existed, it remains a challenge to hold it accountable for the
answers it provides. That includes the scenario of the server responding with either old or
1 Universität Hamburg, SVS, Vogt-Kölln-Str 30, 22527 Hamburg, mueller@informatik.uni-hamburg.de
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Fig. 1: Attack by a rogue key server delivering one version of the revocation information to one
particular client while serving other information to other clients.

wrong information. The server could simply lie about the revocation status and make the
requesting party believe that a given key has not yet been revoked.

Consider the following example depicted in Fig. 1: Alice wants to send a message to Bob.
She has already obtained the relevant cryptographic key. Bob realises that his key has been
compromised and uploads a revocation. Alice then asks the key server for the revocation
status and gets a wrong answer. Either the key server itself or a network-based attacker strips
the revocation information which in turn makes Alice believe that the key has not yet been
revoked.

To make matters worse, Alice has no proof that the key server has given her inaccurate
information and even if she finds out later that she had been sent wrong information, she
could not prove it to the world.

2 Background

In this section we present mechanisms used for revocations in decentralised asynchronous
messaging and compare them to what is used in the WebPKI. Finally, we briefly introduce
Certificate Transparency as we will use this mechanism for storing revocation information.
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0000 88 78 frame
0002 04 version
0003 20 sigtype
0004 16 pk_algo
0005 08 hash_algo
0006 00 20 hashed_area_len
0008 16 21 04 cd 6f 2d 93 e8 hashed_area
0010 87 0d 61 17 6a d5 c7 89 b4 a0 07 47 a2 88 70 05
0020 02 5b dd 82 a9 02 1d 00
0028 00 0a unhashed_area_len
002a 09 10 89 b4 a0 07 unhashed_area
0030 47 a2 88 70
0034 06 hash_prefix1
0035 f9 hash_prefix2
0036 01 00 mpi_len
0038 97 61 89 af 42 3d f5 e2 eddsa_signature_r
0040 eb 95 9a 50 d2 c4 20 ce fc 2a f7 f9 1b 72 27 33
0050 0e 5a 4b 7a 2f 27 73 2a
0058 01 00 mpi_len
005a 9d 3b 4a 71 c2 2f eddsa_signature_s
0060 1e 2b 65 f4 24 20 11 3d 45 29 ee 16 fc 61 ef 3f
0070 fd 98 16 f7 98 e1 33 48 1e 07

Fig. 2: A 120 bytes long OpenPGP revocation signature packet of a ed25519 key

OpenPGP Key Revocation Packet OpenPGP is a message syntax for asynchronous
messaging and tries to avoid centralised infrastructure. It describes how to serialise
cryptographic keys and messages. OpenPGP defines revocations as a special type of self-
signature [DCS07, §5.2.1]. Once a key has such a revocation signature, it cannot be healed
and is considered to be invalid. The format is packet based and the packets can be appended
in any order. In particular, an OpenPGP revocation signature is composed of the following
fields (cf. Fig. 2): version, signature type, public-key algorithm, and hash algorithm, each of
which take up one byte. In addition, the OpenPGP specification allows for additional data of
variable length to be signed. Finally, the actual signature is calculated over all these fields
and is serialised in a variable length field. In the case of RSA, the signature is about the
size of the modulus, i.e. the bit length of the key. Other signature schemes, such as EdDSA,
produce considerably shorter signatures.

In case a key is known to be compromised, such a revocation signature packet is appended
to the other packets making up an OpenPGP key. Note that the list of packets is not
authenticated which in turn allows attackers to alter it, e.g. remove packets from the key.

OpenPGP Keyserver An established way of checking for revocations is contacting
a so-called key server. Such a key server commonly serves requests via a HTTP-based
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protocol [Sh03]. In order to reduce the amount of trust placed in any single key server, many
operators run an instance of the dominating solution for distributing OpenPGP keys over
the Internet: SKS Synchronising Keyserver [Mi02]. Those servers generally gossip the keys
among each other so that the servers can provide data which was not uploaded directly to
them, but rather to a peer they gossip with [MTZ03]. No mechanism for ensuring integrity
of the keys during transit exists. That is, a malicious key server can gossip modified keys,
e.g. with a truncated revocation signature.

We identify three cases for which a key server is used today:

1. initial key discovery,

2. retrieving key updates,

3. and checking for revocations.

The first case refers to the problem of finding a certificate for a given email address, the
second refers to extending already known certificates with new packets, and the last refers to
the validity of a key in case of a compromise. While the revocation case can be considered a
specialisation of the update case, we argue that the semantics differ enough to view them as
separate operations. We base our observation on the fact that certain updates to keys can be
transient, such as temporarily adding new user IDs or sub-keys, while a revocation cannot
be healed. In other words, certain updates can overrule others, while a revocation, once set,
cannot be undone.

In this paper we concentrate on the revocation use case. We exploit the fact that revocations
cannot be healed by using a publicly verifiable append-only data structure.

Certificate Revocation List In the Web context, revocations can be distributed as part
of Certificate Revocation Lists (CRLs). A CRL is a complete list of revoked certificates
signed by the issuing CA. Clients wishing to learn about revoked certificates download the
CRL and check whether the certificate is contained in the list. This list can grow too big for
clients to handle efficiently.

The Online Certificate Status Protocol (OCSP) addresses this shortcoming by providing
a live response to a request for a certificates validity. With that schema, clients contact
the CA of the certificate and ask about the status of the certificate at hand. That approach
requires an additional connection to the CA, or rather the designated OCSP server, which
is considered to be too expensive. It also leads to the situation in which the client cannot
establish a separate connection, e.g. because the attacker blocks connection attempts.

An extension is to make the server the client is contacting prove that its certificate is still
valid. To that end, the server itself contacts the OCSP server and obtains a proof which it
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hands back to the client. This again, is considered to be too fragile, because those additional
connections add to the latency and can fail.

Certificate Transparency Log Certificate Transparency (CT) attempts to solve a slightly
different problem than publishing and distributing revocations, namely reducing the time it
takes to detect falsely issued certificates [LKL13]. It provides infrastructure and a protocol
for a publicly verifiable append-only data structure in which issued certificates ought to be
stored. The nature of the data structure makes the issuance of a certificate transparent to the
public. With CT a CA submits the certificate to be generated to a CT log server which in
turn includes the certificate in the log and produces a signature as a proof and promise of
inclusion. While the main idea of CT is that site operators can check who issued certificates
for their DNS names, it can also be used by clients to convince themselves of seeing the
same certificates as everybody else. To that end, the server hands the certificate with its
proof of inclusion to the client, which in turn can ask the log server for the presence of said
certificate. This scheme makes it expensive for the server and the log operator to equivocate
and to deny presence of a certificate in the log, because it would need to maintain the
separate Merkle trees and prevent clients from exchanging the Merkle tree heads they are
seeing.

We will exploit these properties for storing revocation signatures of OpenPGP certificates.

3 Requirements for Revocation Distribution Schemes

We identify the following four main requirements for a revocation distribution and querying
scheme.

1. Integrity-Preserving: The distributor of revocations must not be able to modify the
packets.

2. Equivocation-Resistance: The distributor must not be able to give two requesting
parties other versions of the same information, i.e. the revocation.

3. Non-Repudiation: The information a client retrieves needs to be authenticated such
that misbehaviour can be proven to a third party.

4. Privacy-Preserving: The distributor must not learn who the client wishes to commu-
nicate with, i.e. for which entity the revocation information is being requested.

The current scheme of key servers fails to fulfil these requirements, because an attacker
can manipulate the information in transit and thus, e.g. invalidate the revocation signature
(Integrity). The attacker can also serve two parties separate versions of the key, e.g.
discriminate the receiver of the information and hand out a stale key rather than the
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most recent one (Equivocation). The client has no way of detecting whether it has been
discriminated by the server, i.e. that the server has provided information dedicated to
the requesting client and that is not made available for other parties. Once a client has
received information from a server, the server can deny having sent it (Non-Repudiation).
In the current scheme, the client asks the key server about a specific key. By means of that
request, the client needs to inform the server about the party they want to communicate
with (Privacy).

4 Equivocation-Resistant Key Revocation Protocol

In this section we first describe an intuitive approach for distributing certificate revocations
which has led to what is being used for the WebPKI today. We then describe our proposed
protocol of using the existing CT log for storing the revocation information of OpenPGP
keys.

Intuitively, a relatively simple list of revoked certificates fulfils the requirements. That list
needs to be signed, fetched, and distributed by a trusted party. In fact, Google and Mozilla
use this scheme to fetch revocations from CAs and distribute to their customers as part of the
browser’s update mechanism (OneCRL, CRLSet). Note that if the user was made to contact
the CRL server of a CA directly, that server could easily equivocate in a non-repudiable
manner. For the Web, the users are arguably placing trust in the vendor to produce and
distribute secure software. It seems reasonable to further assume that trusted party does
not violate any of the requirements mentioned before. For a decentralised use case like
messaging, such a centralised vendor does not exist let alone a central instance being able to
invalidate a certificate and distribute such a list.

A publicly verifiable append-only data structure can be used to store revocation information.
However, such a data structure tends to be difficult and expensive to maintain, largely
because of the cost of the required infrastructure. However, if such an infrastructure already
existed it seems worthwhile to investigate how to use it for our purpose. Fortunately, the CT
log possesses the desired properties and is already being operated and maintained for the
WebPKI. As of the time of writing Google’s Chrome browser requires certain certificates to
be present in the CT log before establishing TLS connections.

If we place certificates with specially formed names in the CT log then the mere presence of
such a TLS certificate signals the revocation of an OpenPGP key. Without loss of generality,
we introduce a new centralised, but untrusted entity: The Revocation Service. Its only job is
to generate certificates with a well known name which will then be stored in the CT log in
order to enable clients to find both the certificate and proof.

Storing the OpenPGP revocation signatures The Revocation Service’s purpose is to
accept the revocation signatures for a key, e.g. via e-mail or a Web interface, and then to
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existed it seems worthwhile to investigate how to use it for our purpose. Fortunately, the CT
log possesses the desired properties and is already being operated and maintained for the
WebPKI. As of the time of writing Google’s Chrome browser requires certain certificates to
be present in the CT log before establishing TLS connections.

If we place certificates with specially formed names in the CT log then the mere presence of
such a TLS certificate signals the revocation of an OpenPGP key. Without loss of generality,
we introduce a new centralised, but untrusted entity: The Revocation Service. Its only job is
to generate certificates with a well known name which will then be stored in the CT log in
order to enable clients to find both the certificate and proof.

Storing the OpenPGP revocation signatures The Revocation Service’s purpose is to
accept the revocation signatures for a key, e.g. via e-mail or a Web interface, and then to
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Fig. 3: Revocation Publishing Protocol

generate a specially formed TLS certificate with a well-known suffix, i.e. domain name. The
name for which the certificate is valid includes the actual bytes of the revocation signature.
revocationbytes.revocation-service.org. This certificate is then placed in the CT log,
such that the public can detect its presence. These three steps, sending the revocation bytes,
generating the specially crafted TLS certificate, and placing it in the existing CT logs, form
the publishing protocol shown in Fig. 3.

Note that we do not define how exactly the Revocation Service gets hold of the revocation
bytes. One of many ways is to send an e-mail or upload via a Web interface. Notice that
the name for which the certificate is valid includes the key id. This is an optimisation for
speeding up clients searching for revocations and is not necessary to fulfil our security
requirements. While we do not specify how the certificate should be generated, we envision
the use of the ACME [Yl16] protocol to automatically generate the certificates. Once the
certificate has been generated, it is placed in the CT log. Note that this is done by the CA
signing the certificate. We also note that the number of such revocation services is not
limited to one. In fact, the sole reason for a centralised service is to provide a well-known
suffix which makes querying for the information much more feasible. It is conceivable that
clients wishing to ask for revocations have multiple well-known suffixes to search for and
that clients revoking their certificate contact multiple services. Also, because of the querying
protocol shown below, clients do not need to trust the contents of the revocationbytes, so
the server does not need to defend against wrong or fraudulent submissions.

Querying the revocation service When a messaging client wishes to learn whether a
given certificate has been revoked it investigates the CT logs and checks for the presence of
certificates including bytes of a revocation signature for the certificate. We assume that the
client verifies the CT log for authenticity and integrity as per the regular CT protocol.

Fig. 4 shows the querying protocol. Note that we do not specify how exactly the client
obtains the CT log in order to check for the presence of a certificate with a certain host
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Fig. 4: Revocation Querying Protocol

name. We refer to the mechanisms CT provides for what is called a “monitor” [LKL13,
§5.3]. One trivial option is to use the HTTP interfaces of the CT log servers to obtain all
Merkle trees and all X509 certificates contained therein. The client can then iterate over all
X509 certificates for host names with the well known suffix keyid.rvc-svc.org.

Verifying the Revocation Signature If the presence of such a certificate is detected in
the log, the client trivially extracts the revocationbytes from the host name found in the
X.509 certificate and appends them to the OpenPGP certificate the client already knows. If
the revocationbytes make a valid OpenPGP packet with a valid signature under the public
key of the certificate it has been appended to, the client will mark the certificate as revoked.

5 Discussion

In this section we discuss the properties of our presented protocol for publishing and
querying revocations.

Privacy The proposed protocol is private under the assumption that the client either crawls
the CT logs itself or queries a trusted monitor service (as per the CT standard [LKL13]) for
the presence of certificates in the log. If the monitor is not trusted, this query may present
a privacy risk, because it lets the monitor know who the client wishes to communicate
with. We note that Web clients, e.g. browsers, are exposed to a similar but slightly different
problem. In the Web context, the client obtains the certificate to check whereas in our
context we do not have such a certificate up front.

Integrity The revocationbytes are transported as part of a X509 certificate in a CT log
which in turn is integrity protected by the Merkle tree. A modification of the X509 certificate
would invalidate the Merkle tree and thus be detectable by a client. Additionally, the
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presented scheme is secure against the centralised Revocation Service becoming malicious
either intentionally or by being coerced into misbehaving. Because the client does not rely
on the mere existence of a TLS certificate in the CT log but rather verifies that the revocation
bytes do indeed verify under the public key it ought to revoke. The assumption is that the
client checking for the revocation already possesses the public key it wants to check and
that the service cannot produce a valid signature, e.g. it does not have access to an oracle or
the private key.

Equivocation-Resistance Because the Revocation Service itself does not respond to
queries about revoked keys but merely creates the certificates with a well known name, it
cannot equivocate in the first place. The scheme is thus as equivocation-resistant as the CT
log. That is, clients obtain signed responses in form of Signed Tree Heads (STH) from the
CT logs in order to check for integrity [LKL13]. The clients can then exchange those STHs
with their peers and compare whether they have received differing information. Additionally,
the server would need to maintain separate branches of the STHs of the Merkle tree and
remember which branch it provides to which client. So while the presented scheme does not
prevent equivocation it makes it expensive and detectable. Even if we assume an attacker
being capable of equivocating, it needs to prevent clients from exchanging the STHs they
received from the CT logs because these allow for uncovering equivocation hence leading
to a loss of reputation of the CT log.

Non-Repudiation Our proposed scheme achieves non-repudiation, because clients receive
signed responses as mentioned above. Clients can propagate the information they retrieve
and convince others of the authorship of the information. That is, the STHs will have a valid
signature which allows for attributing a potentially malicious Merkle tree.

Runtime In addition to the security requirement we discuss the computational and
bandwidth effort, a client has to make. Firstly, we note that a simpler protocol would have
the same security guarantees but worse computational characteristics. A simpler protocol
like this would not make the key id part of the host name and merely encode the revocation
bytes. The client would then have to verify all revocation bytes it sees in the CT log against
all the public keys it knows about. We include a hint, the key id, in the host name so that the
client can discard non relevant host names. A host name is deemed relevant if it matches the
key id of the certificate of which the client is querying the revocation status.

Secondly, it is possible to optimise the scheme further by placing a certificate for multiple
host names in the CT log. In particular, a certificate which has keyid.rvc-svc.org as well
as revocationbytes.keyid.rvc-svc.org as Subject Alternative Names (SANs) might be
more easily located by a client.
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Thirdly, we note that a simple implementation of our protocol incurs a download of the whole
CT log along with the corresponding certificates. Because we have not specified how exactly
to query for host names in the CT log, clients use the monitor infrastructure envisioned
by Certificate Transparency to check for host names with the desired known suffix. At the
time of writing, several such services exist. Our proposed protocol for querying allows for
anonymous queries so those services can be used through anonymisation networks.

Lastly, the Revocation Service could help the client locate the actual certificate by offering
resolvable names with a TLS server. The client would attempt to connect to the host name
on a well know port, e.g. 443, and receive the actual X509 certificate, e.g as part of a TLS
handshake. While this speeds the clients up and makes using a monitor service more private,
it makes operating the Revocation Service more expensive due to the requirement of an
online presence. So far, the Revocation Service merely provides the well known suffix for
placing certificates in the CT log. While this typically requires an online presence, it is only
needed for a short amount of time.

6 Challenges

This section describes problems with the approach of using the Certificate Transparency
system for our purpose of storing OpenPGP revocation information.

DNS label length TLS certificates are currently using X.509v3 syntax for the certificates.
While we are theoretically free to use any field in that notation, we need to have our certificate
signed by a CA. Those CAs tend to be overly cautious about signing X.509 structures. In
fact, they usually generate those themselves. The only fields we can certainly influence are
the public key and the host name. We investigate which of those fields are fit for our purpose.

In DNS, every host name can only be 253 octets long and every part, that is the name
between the dots, can be up to 63 octets long [Mo87],[Br89],[BE97]. RSA keys are still
very common in the OpenPGP ecosystem and these keys tend to produce relatively long
signatures. Assuming no other overhead in the host name, the actual revocation, and in the
padding of the resulting signature, we can encode a signature for a key of up to 253 octets
or 2024 bits. The recommendation for the length of RSA keys generated today is 3000 bits
or longer [Bu18].

CT logs may cease to exist In fact, Cloudflare and Google have set up CT logs which
only accept certificates expiring in a particular year. The Baseline Requirements [CA18]
demand PKIX CAs to only issue certificates with an expiry date not longer than two years in
the future. After the expiry date, the certificate is invalid, regardless of whether it had been
included in the CT logs. The idea, thus, is to not maintain one CT log indefinitely, but only
for as long as all certificates included in the log have expired. This presents a challenge for
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our use-case, because due to the packet-based structure of OpenPGP certificates it remains
unknown whether a key has expired as a packet which extends the lifetime of the key might
exist but has not yet been disseminated.

Operation of the Revocation Service While the presented scheme reuses existing CT
log infrastructure, it still requires an actual service to be run and maintained. In particular,
submission of revoked OpenPGP public keys as well as the generation of TLS certificates
need to be provided. We argue that the cost of running such a service is comparatively low,
but we appreciate that the cost is not zero. We also note that the amount of trust placed in
the newly introduced Revocation Service is lower than the existing key server infrastructure.
Instead of having to trust the service for not modifying the data in transit, we need to trust
it to actually generate the TLS certificates rather than denying to do it. We envision that
a promise of service can be given, similar to what CT does for the SCTs. However, the
proposed protocol is kept simple to ease its adoption.

7 Related Work

A large body of work in the area of distributed consensus, PKI, and secure messaging exist.
For brevity reasons, we only discuss the work that, according to our knowledge, is closest to
what we presented in this paper, namely the concept of Revocation Transparency.

Revocation Transparency [LK12] is a proposed concept to address verifiable revocations.
However, it assumes that revocations can be deleted. In the WebPKI this is true, because the
Baseline Requirements demand certain lifetimes of keys. For decentralised asynchronous
messaging, however, no such list of requirements has been established yet. It is conceivable
that this approach can be adapted by removing the ability to delete revocations, though. In
fact, such a system would indeed fulfil the requirement of a publicly verifiable append-only
data structure in which revocations can only be added and never removed while at the
same time making equivocation expensive. The biggest obstacle of using Revocation
Transparency is the lack of operators. Certificate Transparency enjoys the backing of major
Internet companies which have an interest in unveiling misbehaviour of CAs. Decentralised
asynchronous messaging does not enjoy the support of deep pocketed stake holders and
infrastructure is thus more scarce.

8 Conclusion

We identified distributing certificate revocation information as a challenge in systems
depending on public keys. We also identified requirements for the secure distribution of such
revocations in a decentralised asynchronous messaging context: Integrity, Equivocation,
Non-Repudiation, Privacy. We further proposed a protocol for publishing and querying
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revocation information for OpenPGP certificates based on a publicly verifiable append-only 
data structure. Such a data structure is usually difficult and expensive to operate. Our research 
has shown that it is possible to overcome this problem by reusing existing infrastructure in 
form of Certificate Transparency log.

In the proposed scheme, OpenPGP revocation signatures are translated into host names 
which in turn are encoded in X.509 certificates. This allows for storing them in the already 
existing and successfully operated Certificate Transparency log. We derive our security 
guarantees to a large degree from the append-only nature of the Certificate Transparency 
logs. This includes the resistance against equivocation which cannot be defended against in 
the current OpenPGP ecosystem.
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