
BiDAl: Big Data Analyzer for Cluster Traces

Alkida Balliu, Dennis Olivetti, Ozalp Babaoglu, Moreno Marzolla, Alina Sı̂rbu

Department of Computer Science and Engineering, University of Bologna

Mura Anteo Zamboni 7, 40126 Bologna, Italy

{alkida.balliu, dennis.olivetti}@studio.unibo.it

{ozalp.babaoglu, moreno.marzolla, alina.sirbu}@unibo.it

Abstract: Modern data centers that provide Internet-scale services are stadium-size
structures housing tens of thousands of heterogeneous devices (server clusters, net-
working equipment, power and cooling infrastructures) that must operate continuously
and reliably. As part of their operation, these devices produce large amounts of data
in the form of event and error logs that are essential not only for identifying problems
but also for improving data center efficiency and management. These activities em-
ploy data analytics and often exploit hidden statistical patterns and correlations among
different factors present in the data. Uncovering these patterns and correlations is chal-
lenging due to the sheer volume of data to be analyzed. This paper presents BiDAl,
a prototype “log-data analysis framework” that incorporates various Big Data tech-
nologies to simplify the analysis of data traces from large clusters. BiDAl is written
in Java with a modular and extensible architecture so that different storage backends
(currently, HDFS and SQLite are supported), as well as different analysis languages
(current implementation supports SQL, R and Hadoop MapReduce) can be easily se-
lected as appropriate. We present the design of BiDAl and describe our experience
using it to analyze several public traces of Google data clusters for building a simula-
tion model capable of reproducing observed behavior.

1 Introduction

Modern Internet-based services such as cloud computing, social networks, online stor-

age, media-sharing, etc., produce enormous amounts of data, not only in terms of user-

generated content, but also in the form of usage activity and error logs produced by the

devices implementing them. Data centers providing these services contain tens of thou-

sands of computers and other components (e.g., networking equipment, power distribution,

air conditioning) that may interact in subtle and unintended ways, making management of

the global infrastructure far from straightforward. At the same time, services provided by

these huge infrastructures have become vital not only to industry but to society in general,

making failures extremely costly both for data center operators and their customers. In this

light, monitoring and administering data centers become critical tasks. Some aspects of

management, like job scheduling, can be highly automated while others, such as recovery

from failures, remain highly dependent on human intervention. The “holy grail” of sys-

tem management is to render data centers autonomous, self-managing and self-healing;

ideally, the system should be capable of analyzing its state and use this information to

1781

identify performance or reliability problems and correct them or alert system managers

directing them to the root causes of the problem. Even better, the system should be capa-

ble of anticipating situations that may lead to performance problems or failures, allowing

for proactive countermeasures to steer the system back towards desired operational states.

Needless to say, these are very challenging goals [SLM10].

Given the size of modern data centers, the amount of log data they produce is growing

steadily, making log management itself technically challenging. For instance, a 2010

Facebook study reports 60 Terabytes of log data being produced by its data centers each

day [TSA+10]. For live monitoring of its systems and analyzing their log data, Facebook

has developed a dedicated software called Scuba [AAB13] that uses a large in-memory

database running on hundreds of servers with 144 GB of RAM each. This infrastructure

needs to be upgraded every few weeks to keep up with the increasing computational power

and storage requirements that Scuba generates. Log analysis falls within the class of Big

Data applications: the data sets are so large that conventional storage and analysis tech-

niques are not appropriate to process them. There is a real need to develop novel tools

and techniques for analyzing logs, possibly incorporating data analytics to uncover hidden

patterns and correlations that can help system administrators avoid critical states, or to

identify the root cause of failures or performance problems.

Numerous studies have analyzed trace data from a variety of sources for different purposes,

but typically without relying on an integrated software framework developed specifically

for log analysis [CAK12, LC12, RTG+12a]. This is partially due to the sensitive na-

ture of commercial log trace data prohibiting their publication, which in turn leads to

fragmentation of analysis frameworks and difficulty in porting them to traces from other

sources. One isolated example of an analysis framework is the Failure Trace Archive

Toolkit [JKIE13], limited however to failure traces. Lack of a more general framework for

log data analysis results in time being wasted by researchers in developing software for

parsing, interpreting and analysing the data, repeatedly for each new trace [JKIE13].

In this paper we describe the Big Data Analyzer (BiDAl), a prototype software tool imple-

menting a general framework, designed for statistical analysis of very large trace data sets.

BiDAl integrates several built-in storage types and processing frameworks and can be eas-

ily extended to support others. The BiDAl prototype is publicly available through a GNU

General Public License (GPL) [BOB+14]. We illustrate the actual use of BiDAl for ana-

lyzing publicly-available Google cluster trace data [Wil11] in order to extract parameters

for a cluster simulator which we have implemented.

The contributions of this work are several fold. We first present the novel architecture of

BiDAl resulting in extensibility and ease of use. BiDAl incorporates several advanced Big

Data technologies to facilitate efficient processing of large datasets for data analytics. We

then describe our experience with BiDAl when used to extract workload parameters from

Google compute cluster traces. Finally, we describe a simulation model of the Google

cluster that, when instantiated with the parameters obtained through BiDAl, is able to

reproduce a set of behaviors very similar to those observed in the traces.

The rest of the paper is organized as follows. We provide a high level overview of the

framework followed by a detailed description of its components in Section 2. The frame-

1782

work is applied to characterize machines and workloads in a public Google cluster trace,

and used in the development of a cluster simulator in Section 3. We discuss related work

in Section 4 and conclude with new directions for future work in Section 5.

2 The Big Data Analyzer (BiDAl) prototype

2.1 General overview

BiDAl can import raw data in CSV format (Comma Separated Values, the typical format

of trace data), and store it in different backends according to the user’s preference. In the

current prototype two backends are supported: SQLite and Hadoop File System (HDFS),

the latter being particularly well suited for handling large amount of data using the Hadoop

framework. Other backends can easily be supported, since BiDAl is based on a modular

architecture that will be described in the next section. BiDAl uses a subset of the SQL

language to handle the data (e.g., to create new tables or to apply simple filters to existing

data). SQL queries are automatically translated into the query language supported by the

underlying storage system (RSQLite or RHadoop).

BiDAl also has the ability to perform statistical data analysis using both R [R D08] and

Hadoop MapReduce [SKRC10, DG10] commands. R commands are typically applied to

the SQLite storage, while MapReduce to the Hadoop storage. However, the system allows

mixed execution of both types of commands regardless of the storage used, being able to

switch between backends (by exporting data) transparently to the user. For instance, after

a MapReduce operation, it is possible to analyze the outcome using R; in this case, the

software automatically exports the result obtained from the MapReduce step, and imports

it to the SQLite storage where the analysis can continue using R commands. This is

particularly useful for handling large datasets, since the volume of data can be reduced by

applying a first processing step with Hadoop/MapReduce, and then using R to complete

the analysis on the resulting (smaller) dataset.

2.2 Design

BiDAl is a modular application designed for extensibility and ease of use. It is written

in Java, to facilitate portability across different Operating Systems, and uses a Graphical

User Interface (GUI) based on the standard Model View Controller (MVC) architectural

pattern. The View provides a Swing GUI, the Model manages different types of storage

backends, and the Controller handles the interaction between the two. Figure 1 outlines

the architecture using the UML class diagram.

The Controller class connects the GUI with the other components of the software. The

Controller implements the Singleton pattern, with the one instance accessible from any

part of the code. The interface to the different storage backends is given by the Gener-

icStorage class, that has to be further specialized by any concrete backend developed. In

1783

Figure 1: UML diagram of BiDAl classes.

our case, the two existing concrete storage backends are represented by the SqliteStorage

class to support SQLite, and the HadoopStorage class, to support HDFS. Neither the Con-

troller nor the GUI elements communicate directly with the concrete storage backends,

but only with the abstract class GenericStorage. This simplifies the implementation of

new backends without the need to change the Controller or GUI implementations.

The user can inspect and modify the data storage using a subset of SQL; the SqliteStorage

and HadoopStorage classes use the open source SQL parser Akiban to convert the queries

inserted by users into SQL trees that are further mapped to the native language (RSQLite

or RHadoop) using the Visitor pattern. The HadoopStorage uses also a Bashexecuter that

allows to load files on the HDFS using bash shell commands. A new storage class can be

implemented by providing a suitable specialization of the GenericStorage class, including

the mapping of the SQL tree to specific commands understood by the backend. Although

the SQL parser supports the full SQL language, the developer must define a mapping of

the SQL tree into the language supported by the underlying storage; this often limits the

number of SQL statements that can be supported due to the difficulty of realizing such a

mapping.

2.3 Functionality

The typical BiDAl workflow consists of three steps: instantiation of a storage backend (or

opening an existing one), data selection and aggregation and data analysis. For storage

creation, BiDAl is designed to import CSV files into an SQLite database or to a HDFS file

system, depending on the type selected. Except for the CSV format, no other restrictions

on the data type exist, so the platform can be easily used for data from various sources, as

long as they can be viewed as CSV tables. Even though the storages currently implemented

are based on the the concept of tables (stored in a relational database by SQLite and CSV

files by Hadoop), in the future, other storage types can be supported by BiDAl. Indeed,

Hadoop supports HBase, a non-relational database that works with <key, value> pairs.

1784

Since Hadoop is already supported by BiDAl, a new storage that works on this type of

non-relational databases can be easily added.

Figure 2: Screenshot of the BiDAl analysis console displaying R commands.

Selection and aggregation can be performed using queries expressed using a subset of

SQL. At the moment, the supported statements are SELECT, FROM, WHERE and GROUP

BY. For the SQLite storage, queries are executed through the RSQLite library of the R

package (R is used quite extensively inside BiDAl, and executing SQLite queries through

R simplified the internal structure of BiDAl as we could reuse some internal software

components). For the Hadoop backend, GROUP BY queries are mapped to MapReduce

operations. The Map function implements the GROUP BY part of the query, while the

Reduce function deals with the WHERE and SELECT clauses. We used RHadoop as a

wrapper so that we can access the Hadoop framework through R commands. This allows

the implementation of Map and Reduce functions in R rather than Java code.

Data analysis can be performed by selecting different commands in the specific language

of the storage and applying them to the selected dataset. There is a common set of op-

erations provided by every storage. However it is possible to concatenate operations on

different storage backends since BiDAl can automatically export data from one backend

and import it on another. Therefore it is possible to use a MapReduce function on an

SQLite table, or execute a R command on a HDFS store. This requires that the same data

is duplicated into different storage types so, depending on the size of the dataset, additional

storage space will be consumed. However, this operation does not generate consistency

issues, since log data does not change once it is recorded.

1785

R command Description

get column Selects a column.

apply 1Col Applies the desired function to each element of a column.

aggregate Takes as input a column to group by; among all rows selects the

ones that satisfies the specified condition; the result obtained is

specified from the function given to the third parameter.

difference between rows Calculates the differences between consecutive rows.

filter Filters the data after the specified condition.

exponential distribution Plots the fit of the exponential distribution to the data.

lognormal distribution Plots the fit of the lognormal distribution to the data.

polynomial regression Plots the fit of the n-grade polynomial regression to the data in

the specified column.

ecdf Plots the cumulative distribution function of the data in the spec-

ified column.

spline Divides the data in the specified column in n intervals and for

each range plots spline functions. Also allows to show a part of

the plot or all of it.

Table 1: List of some R commands implemented by BiDAl.

Using R within BiDAl BiDAl provides a list of pre-defined operations, implemented in

R, that can be selected by the user from a graphical interface (see Figure 2 for a screenshot

and Table 1 for a full list of available commands). When an operation is selected, an input

box appears asking the user to provide the parameters needed by that specific operation.

Additionally, a text box (bottom left of Figure 2) allows the user to modify on the fly the

R commands to be executed.

All operations are defined in an external text file, according to the following BNF gram-

mar:

<file> ::= <command name> <newline> <number of parameters> <newline>

<list of parameters> <newline> <command code>

<list of parameters> ::= <parameter description> <newline>

<list of parameters> | <empty>

<command code> ::= <text> | <command code> <parameter>

<command code> | <empty>

<parameter> ::= ’$PAR’ <number of the parameter> ’$’

New operations can therefore be added quite easily by simply adding them to the file.

Using Hadoop/MapReduce with BiDAl BiDAl provides also a list of Hadoop/MapReduce

commands that allow to distribute computation across several machines. Usually, the

Mapper and Reducer functions are implemented in Java, generating files that need to be

compiled and then executed. However, BiDAl abstracts from this approach by using the

RHadoop library which handles MapReduce job submission and permits to interact with

1786

R command Parameter type Parameter value

get column column number 2

filter condition t[[1]]<11000.

log histogram column number, log step, log axis 1, 0.06, xy

Table 2: Commands used to generate Figure 3b.

Hadoop’s file system HDFS using R functions. Once the dataset of interest has been cho-

sen, the user can execute the Map and Reduce functions already implemented in RHadoop

or create new ones. Again, the MapReduce functions are saved in an external text files,

using the same format described above, so the creation of new commands does not require

any modification of BiDAl. At the moment, one Map function is implemented in BiDAl,

which groups the data by the values of a column. The Reduce function counts the elements

of each group. Other functions can be added by the user, similar to R commands.

3 Case study

The development of BiDAl was initially motivated by the need to process large data traces

of compute clusters, such as those publicly released by Google [Wil11]. The ultimate goal

was to extract workload parameters from the traces in order to instantiate a simulation

model of the compute cluster capable of reproducing the most important features observed

in the real data. The simulation model, then, can be used to perform “what-if analyses” by

exploring different scenarios where the workload parameters are different, or several types

of faults are injected into the system. In this section we first describe the use of BiDAl

for analyzing the Google traces, and then present the structure of the simulation model

instantiated with the parameters obtained from the analysis phase.

3.1 Workload Characterization of the Google Cluster

To build a good simulation model of the Google cluster, we needed to extract some in-

formation from the traces. The data consist of a large amount of CSV files containing

records about job and task events, resources used by tasks, task constraints, etc. There

are more than 2000 files describing the workload and machine attributes for over 12000

cluster nodes, reaching a total compressed size of about 40 GB. In total, over 1.3 billion

records are available. We used BiDAl to extract the arrival time distribution of each job,

the distribution of the number of tasks per job, and the distributions of execution times

of different types of tasks (e.g., jobs that successfully completed execution, jobs that are

killed by the users, and so on). These distributions are used by the Job Arrival entity of

the simulation model to generate jobs into the system. Additionally, we analyzed the dis-

tribution of machines downtime and of the time instants when servers are added / removed

from the pool.

1787

(a) RAM requested by tasks. Values are normal-

ized by the maximum RAM available on a single

node in the Google cluster.

(b) Number of tasks per job

Figure 3: Examples of distributions obtained with BiDAl.

Some of the results obtained with BiDAl are shown in the following (we are showing the

actual plots that are produced by our software). Figure 3a shows the the amount of RAM

requested by tasks, while Figure 3b shows the distribution of number of tasks per job.

To generate the graph in Figure 3b, we first extracted the relevant information from the

trace files. Job and task IDs were required, therefore we generated a new table, called

job task id, from the task events.csv files released by Google [Wil11]. The query genera-

tion is automated by BiDAl which allows for simple selection of columns using the GUI.

Since the DISTINCT clause is not yet implemented in BiDAl, we added it manually in the

generated query. The final query used was:

SELECT DISTINCT V3 AS V1,V4 AS V2 FROM task_events

where V3 is the job id column while V4 represents the task id.On the resulting job task id

table, we execute another query to estimate how many tasks each job has, generating a new

table called tasks per job:

SELECT V1 AS V1, COUNT(V2) AS V2 FROM job_task_id GROUP BY V1

Three R commands were used on the tasks per job table to generate the graph. The first

extracts the second column (job id), the second filters out some uninteresting data and the

third plots the result. The BiDAl commands used are shown in Table 2.

The analysis was performed on a computer with 16 GB of RAM, a 2.7 GHz i7 quad

core processor and a hard drive with simultaneous read/write speed of 60 MB/s. For

the example above, importing the data was the most time consuming step, requiring 11

minutes to load 17 GB of data into the SQLite storage (which may be influenced by the disk

speed). However, this step is required only once. The first SQL query took about 4 minutes

to complete, while the second query and the R commands were almost instantaneous.

1788

Figure 4: Machine update events, fitted with an exponential distribution. The left panels

show the density and cumulative distribution functions, with the lines representing the

exponential fitting and the bars/circles showing real data. The right panels show goodness

of fit in Q-Q and P-P plots (straight lines show perfect fit).

In Figure 4 we tried to fit the time between consecutive machine update events (i.e., events

that indicate that a machine has changed its list of resources) with an exponential distribu-

tion; the four standard plots for the goodness of fit show that the observed data is in good

agreement with the fitted distribution.

Cumulative distribution functions (CDFs) have also been obtained from the data and fitted

with sequences of splines, in those cases where the density functions were too noisy to

be fitted with a known distribution. For instance, Figure 5a shows the distribution of

CPU required by tasks while Figure 5b shows machine downtime, both generated with

BiDAl. Several other distributions were generated, similar to CPU requirements, to enable

simulation of the Google cluster: RAM required by tasks; Tasks priority; Duration of tasks

that end normally; Duration of killed tasks; Tasks per job; Job inter-arrival time; Machine

failure inter-arrival time; Machine CPU and RAM.

1789

(a) CPU task requirements (b) Machine downtime

Figure 5: Examples of CDFs fitted by sequences of splines, obtained with BiDAl. The

circles represent the data, while the lines show the fitted splines.

3.2 Cluster Simulator

We built a discrete-event simulation model of the Google compute cluster corresponding

to that from which the traces were obtained, using C++ and Omnet++. According to the

information available, the Google cluster is basically a large batch system where compu-

tational tasks of different types are submitted and executed on a large server pool. Each

job may describe constraints for its execution (e.g., a minimum amount of available RAM

on the execution host); a scheduler is responsible for extracting jobs from the waiting

queue, and dispatching them to a suitable execution host. As can be expected on a large

infrastructure, jobs may fail and be resubmitted; moreover, execution hosts may fail and be

temporarily removed from the pool, or new hosts can be added. The Google trace contains

a list of timestamped events such as job arrival, job completion, activation of a new host

and so on; additional (anonymized) information on job requirements is also provided.

The simulation model, shown in Figure 6, consists of several active and passive interacting

entities. The passive entities (i.e., those that do exchange any message with other entities)

are Jobs and Tasks. A task represents a process in execution, or ready to be executed;

each task has an unique ID and the amount of resources required; a Job is a set of (likely

dependent) tasks. Jobs can terminate either because all their tasks complete execution, or

because they are aborted by the submitting user.

The active entities in the simulation are those that send and receive messages: Machine,

Machine Arrival, Job Arrival, Scheduler and Network. The Machine entity represents an

execution node in the compute cluster. Machine Arrival and Job Arrival generate events

related to new execution nodes being added to the cluster, and new jobs being submit-

ted, respectively. These arrival processes (as they are called in queueing theory) can be

driven by the real trace logs, or by synthetic data generated from user-defined probability

1790

Figure 6: Architecture of simulation model.

distributions that can be identified using BiDAl. The Scheduler implements a simple job

scheduling mechanism. Every time a job is created by the JobArrival entity, the scheduler

inserts its tasks in the waiting queue. For each task, the scheduler examines which exe-

cution nodes (if any) match the task constraints; the task is eventually sent to a suitable

execution node. Note that the scheduling policies implemented by the Google cluster allow

a task with higher priority to evict an already running task with lower priority; this eviction

priority mechanism is also implemented in our simulator. Finally, the Network entity is

responsible for simulating the message exchanges between the other active entities.

3.3 Trace-Driven Simulation of the Google Cluster

We used the parameters extracted from the traces to instantiate and run the simulation

model. From the the traces, it appeared that the average memory usage of the Google

machines is more or less constant at 50%. According to Google, the remaining memory

on each server is reserved to internal processes. Therefore, in the simulation we also set the

maximum available memory on each server at half the actual amount of installed RAM.

The purpose of the simulation run was to validate the model by comparing the real traces

with simulator results. Four metrics were considered: number of running tasks (Figure 7a),

completed tasks (Figure 7b), waiting tasks (ready queue size, Figure 7c) and evicted tasks

(Figure 7d). All plots show the time series extracted from the trace data (green lines) and

those produced by our simulator (red lines), with the additional application of exponen-

tial smoothing to reduce transient fluctuations. The figures show a very good agreement

between the simulation results and the actual data from the traces.

1791

(a) Number of running tasks. (b) Number of tasks completed.

(c) Number of tasks waiting. (d) Number of tasks evicted.

Figure 7: Simulation and real data for four different metrics.

4 Related work

With the public availability of the two Google cluster traces [Wil11], numerous analyses

of different aspects of the data have been reported. These provide general statistics about

the workload and node state for such clusters [LC12, RTG+12a, RTG+12b] and identify

high levels of heterogeneity and dynamicity of the system, especially in comparison to

grid workloads [DKC12]. However, no unified tool for studying the different traces were

introduced. BiDAl is one of the first such tools facilitating Big Data analysis of trace data,

which underlines similar properties of the public Google traces as the previous studies.

Other traces have been analyzed in the past [KTGN10, CGGK11, CAK12], but again

without a dedicated tool available for further study.

BiDAl can be very useful in generating synthetic trace data. In general synthesising traces

involves two phases: characterising the process by analyzing historical data and gener-

ation of new data. The aforementioned Google traces and log data from other sources

have been successfully used for workload characterisation. In terms of resource usage,

1792

classes of jobs and their prevalence can be used to characterize workloads and generate

new ones [MHCD10, WBMG11], or real usage patterns can be replaced by the average

utilization [ZHB11]. Placement constraints have also been synthesized using clustering

for characterisation [SCH+11]. Our tool enables workload and cloud structure character-

isation through fitting of distributions that can be further used for trace synthesis. The

analysis is not restricted to one particular aspect, but the flexibility of our tool allows the

the user to decide what phenomenon to characterize and then simulate.

Recently, the Failure Trace Archive (FTA) has published a toolkit for analysis of failure

trace data [JKIE13]. This toolkit is implemented in Matlab and enables analysis of traces

from the FTA repository, which consists of about 20 public traces. It is, to our knowledge,

the only other tool for large scale trace data analysis. However, the analysis is only possible

if traces are stored in the FTA format in a relational database, and is only available for

traces containing failure information. BiDAl on the other hand provides two different

storage options, including HDFS, with transfer among them transparent to the user, and is

available for any trace data, regardless of what process it describes. Additionally, usage of

FTA on new data requires publication of the data in their repository, while BiDAl can be

used also for sensitive data that cannot be made public.

Although public tools for analysis of general trace data are scarce, several large corpo-

rations have reported building in-house applications for analysis of logs. These are, in

general, used for live monitoring of the system, and analyze in real time large amounts

of data to provide visualisation that helps operators make administrative decisions. While

Facebook use Scuba [AAB13], mentioned before, Microsoft have developed the Autopilot

system [Isa07], which helps administer their clusters. This has a component (Cockpit) that

analyzes logs and provides real time statistics to operators. An example from Google is

CPI2 [ZTH+13] which monitors Cycles per Instruction for running tasks to determine job

performance interference. This helps in deciding task migration or throttling to maintain

high performance of production jobs. All these tools are, however, not open, apply only

to data of the corresponding company and sometimes require very large computational

resources (e.g. Scuba). Our aim in this paper is to provide an open research tool that can

be used also by smaller research groups that have more limited resources.

5 Conclusions

In this paper we presented BiDAl, a framework that facilitates use of Big Data tools and

techniques for analyzing large cluster traces. BiDAl is based on a modular architecture,

and currently supports two storage backends based on SQlite and Hadoop; other backends

can be easily added. BiDAl uses a subset of SQL as a common query language that is

automatically translated to the appropriate commands supported by each backend. Addi-

tionally, data analysis using R and Hadoop MapReduce is possible.

We have described a usage example of BiDAl that involved the analysis of Google trace

data to derive parameters to be used in a simulation model of the Google cluster. Dis-

tributions of relevant quantities were easily computed using our tool, showing how this

1793

facilitates Big Data analysis even to users less familiar with R or Hadoop. Using the

computed distributions, the simulator produces results that are in good agreement with

the observed data. Another possible usage of the platform is for application of machine

learning tools for predicting abnormal behavior from log data. At the moment, BiDAl can

be used for pre-processing and initial data exploration; however, in the future we plan to

add new commands to perform this type of analysis directly. Both usage examples could

provide new steps towards achieving self-* properties for large scale computing infrastruc-

tures in the spirit of Autonomic Computing. In its current implementation, BiDAl is useful

for batch analysis of historical log data, which is important for modeling and initial train-

ing of machine learning algorithms. However, live log data analysis is also of interest, so

we are investigating the addition of an interface to streaming data sources to our platform.

Future work also includes implementation of other storage systems, especially to include

non-relational models. Improvement of the GUI and general user experience will also be

pursued.

References

[AAB13] Lior Abraham, John Allen, and O Barykin. Scuba: diving into data at facebook. Pro-
ceedings of the VLDB Endowment, 6(11):1057–1067, 2013.

[BOB+14] Alkida Balliu, Dennis Olivetti, Ozalp Babaoglu, Moreno Marzolla, and Alina Sı̂rbu.
BiDAl source code, 2014. URL http://cs.unibo.it/˜sirbu/bidal.zip.

[CAK12] Yanpei Chen, Sara Alspaugh, and Randy H Katz. Design Insights for MapReduce from
Diverse Production Workloads. Technical Report, University of California Berkeley,
UCB/EECS-2, 2012.

[CGGK11] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz. The Case for Eval-
uating MapReduce Performance Using Workload Suites. 2011 IEEE 19th Annual
International Symposium on Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems, pages 390–399, July 2011.

[DG10] Jeffrey Dean and Sanjay Ghemawat. MapReduce: A Flexible Data Processing Tool.
Communications of the ACM, 53(1):72–77, January 2010.

[DKC12] Sheng Di, Derrick Kondo, and Walfredo Cirne. Characterization and Comparison of
Google Cloud Load versus Grids. In International Conference on Cluster Computing
(IEEE CLUSTER), pages 230–238, 2012.

[Isa07] Michael Isard. Autopilot: automatic data center management. ACM SIGOPS Operat-
ing Systems Review, 41(2):60–67, 2007.

[JKIE13] Bahman Javadi, Derrick Kondo, Alexandru Iosup, and Dick Epema. The Failure Trace
Archive: Enabling the comparison of failure measurements and models of distributed
systems. Journal of Parallel and Distributed Computing, 73(8), 2013.

[KTGN10] Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. An Analysis of Traces
from a Production MapReduce Cluster. In 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing, number December, 2010.

1794

[LC12] Zitao Liu and Sangyeun Cho. Characterizing Machines and Workloads on a Google
Cluster. In 8th International Workshop on Scheduling and Resource Management for
Parallel and Distributed Systems (SRMPDS), 2012.

[MHCD10] Asit K Mishra, Joseph L Hellerstein, Walfredo Cirne, and Chita R. Das. Towards
Characterizing Cloud Backend Workloads : Insights from Google Compute Clusters.
Sigmetrics performance evaluation review, 37(4):34–41, 2010.

[R D08] R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2008.

[RTG+12a] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A
Kozuch. Heterogeneity and Dynamicity of Clouds at Scale : Google Trace Analysis.
In ACM Symposium on Cloud Computing (SoCC), 2012.

[RTG+12b] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A
Kozuch. Towards understanding heterogeneous clouds at scale : Google trace analysis.
Carnegie Mellon University Technical Reports, ISTC-CC-TR(12-101), 2012.

[SCH+11] Bikash Sharma, Victor Chudnovsky, Joseph L Hellerstein, Rasekh Rifaat, and Chita R.
Das. Modeling and Synthesizing Task Placement Constraints in Google Compute Clus-
ters. In 2nd ACM Symposium on Cloud Computing (SoCC), pages 3:1–3:14, 2011.

[SKRC10] K. Shvachko, Hairong Kuang, S. Radia, and R. Chansler. The Hadoop Distributed
File System. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on, pages 1–10, May 2010.

[SLM10] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure prediction
methods. ACM Computing Surveys (CSUR), 42(3):1–68, 2010.

[TSA+10] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain, Joydeep
Sen Sarma, Raghotham Murthy, and Hao Liu. Data warehousing and analytics infras-
tructure at facebook. Proceedings of the 2010 international conference on Management
of data - SIGMOD ’10, page 1013, 2010.

[WBMG11] Guanying Wang, Ali R Butt, Henry Monti, and Karan Gupta. Towards Synthesizing
Realistic Workload Traces for Studying the Hadoop Ecosystem. In 19th IEEE Annual
International Symposium on Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 400–408, 2011.

[Wil11] John Wilkes. More Google cluster data. Google research blog, Novem-
ber 2011. Posted at http://googleresearch.blogspot.com/2011/11/
more-google-cluster-data.html.

[ZHB11] Qi Zhang, Joseph L Hellerstein, and Raouf Boutaba. Characterizing Task Usage Shapes
in Google’s Compute Clusters. In Proceedings of the 5th International Workshop on
Large Scale Distributed Systems and Middleware, 2011.

[ZTH+13] Xiao Zhang, Eric Tune, Robers Hagmann, Rohit Jnagal, Vrigo Gokhale, and John
Wilkes. CPI 2 : CPU performance isolation for shared compute clusters. In Pro-
ceedings of the 8th ACM European Conference on Computer Systems, pages 379–391.
ACM, 2013.

1795

