Towards Tool Support for
Configurative Reference Modeling -
Experiences from a Meta Modeling Teaching Case

Patrick Delfmann, Christian Janiesch, Ralf Knackstedt, Tobias Ricke, Stefan Seidel

European Research Center for Information Systems (ERCIS)
University of Miinster
Leonardo-Campus 3
48149 Miinster, Germany
{delfmann | janiesch | knackstedt | ricke | seidel } @ercis.de

Abstract: The adaptation of conceptual information models to specific require-
ments has been discussed for several years. Especially, different approaches to in-
formation model configuration have reached certain popularity. Nevertheless, up to
now, model configuration is not supported sufficiently by recent modeling tools. In
this paper, we present the implementation of a meta model based model configura-
tion approach in order to close this gap. The results of the implementation are two
modeling tool add-ons that enable model configuration based on the modeling
tools ARIS and H2. The implementation was conducted in the course of a teaching
seminar at the University of Miinster. Besides the configuration approach as well
as architectures and functionalities of the developed tools, we discuss teaching ex-
periences.

1 Introduction

Reference models are conceptual models that are constructed with the intent to be reused
for the design of specific models [Sc98, Ro03]. Using reference models as templates for
deriving application context-specific models leads to time and cost reduction [Sc98].
However, in order to realize these time and cost effects, reference models have to fit to
the characteristics and requirements of the company respectively the user group. Other-
wise, the reference model would be either far to general to offer a real utilization possi-
bility or it is not applicable to the company characteristics and requirements due to an
overwhelming amount of non-relevant details. In order to attain a broader customer
clientele while keeping the economic utilization, model configuration has been discussed
in different approaches [Be02, SDG03, RA05]. Model configuration allows for deriving
specific views from the reference model. Such views can be determined by characteris-
tics of the company [Wi03] (e.g. the business type, number of employees, or business
transactions) and/or user specific perspectives [DS96, RG00] (e.g. business reengineer-
ing, risk management, or software engineering).

61



Both company characteristics and perspectives represent parameters that can determine a
certain model configuration. Therefore, we subsume company characteristics and per-
spectives in so-called configuration parameters. Considering configuration parameters
that furthermore allow combinations of perspectives and company characteristics, con-
figuration parameter structures are necessary. Cf. figure 1 for a conceptual specification
as Entity-Relationship Model (ERM [Ch76]).

) . Company
Configuration D,T 0N haracteristic
Parameter
Value

(1,n)

Configuratio o Complex Compan
Farameter L Configuration Perspaclive Charac?erlé‘tic
Structure Parameter

Figure 1: Configuration Parameter Structure

An integrated approach for configurative reference modeling has not been supported by
modeling tools, yet.' Hence, the research contribution of this paper is on the one hand to
present the feasibility of the — so far primarily theoretic — configuration concepts, devel-
oped by BECKER ET AL. [Be02, Kn06, De06]. The main challenge is to transform their
meta model based specification of configurative reference modeling languages into ap-
plicable tool implementations.

On the other hand, the research contribution of this paper is to present experiences from
a meta modeling teaching case. The configuration mechanisms that are able to modify
information models are defined with meta models, i.e. their specification is integrated
into the modeling language specifications. In order to be able to configure meta models
as well — this equals a configuration of the modeling languages themselves — some con-
figuration mechanisms had to be specified on a more abstract specification layer. This
has been realized with the help of a meta meta model. These theoretic configurative
reference modeling concepts based on meta modeling have been taught in lectures for
three years and were implemented within a student project seminar.

The paper is structured as follows: In section 2 we present basics of configurative refer-
ence modeling with a brief reference to related work. Section 2 also introduces the teach-
ing scenario. In section 3 we present the specification and implementation of the two
modeling tools. Moreover, we present the findings of our teaching case concerning is-
sues and decisions that led to the final result. A conclusion and outlook is given in sec-
tion 4.

In an empirical study that was performed in the course of a university seminar as well, several modeling
tools and meta modeling tools have been evaluated concerning their support for defining and maintaining
variants, especially by model configuration. No tool could be identified to support an integrated configura-
tion approach. The findings of this study are already submitted for publication and are currently being re-
viewed.

62



2  Foundations

2.1  Conceptual Framework of Configurative Reference Modeling

Our tool implementations are based on the configurative reference modeling approach of
BECKER ET AL. [Be02] (alternative approaches have been developed, e.g. by ROSEMANN
and VAN DER AALST as well as SOFFER, GOLANY, and DORI, cf. [SDG03, RA05]). We
chose this approach first, due to its greatest comprehension and second, due to the fact
that it was developed “in-house” which allowed an in-depth pre-understanding of the
approach.

Within this approach, a configurative reference model is defined as an integrated total
model that contains specific information for all perspectives and company characteristics
that shall be supported. In this way, redundancies are avoided that could otherwise arise
if each perspective or business characteristic would be provided with an own model. The
specific models are provided by creating views on the integrated total model. The step of
creating views on the integrated model is called configuration and is performed by hid-
ing all information which is not relevant for the specific perspective or company charac-
teristic. Hiding non-relevant information is provided by so-called model projections that
reduce the total model to relevant model elements.

Conceptually, model projections are performed by modifying the modeling languages
and models dynamically. For this purpose, we use a framework that consists of different
modeling layers: the model layer, the meta model layer and the meta meta model layer:

e On model layer, the reference models that shall be configured are situated. Depend-
ing on which configuration parameter instance is valid at the moment, they contain
different information.

e On meta model layer [St96], the modeling languages, which are used for configura-
tive reference modeling (here: Event-Driven Process Chains (EPCs) [Sc00], ERMs,
Organigrams, Function Trees, MetaMIS [HoOl1] etc.), are specified. Just like the
models on model layer, they contain different information depending on which con-
figuration parameter instance is valid at the moment. This means that the modeling
languages can have a different expressive power depending on the configuration pa-
rameter.

o On meta meta model layer the modeling language of the meta models is specified.
L.e., it is specified that there exist model element types on meta model layer that are
interrelated. Furthermore, the meta meta model layer serves as configuration envi-
ronment. L.e., the meta meta model layer is used to specify whether model element
types or particular model elements are relevant for different configuration parameter
instances. This is why configuration parameters are specified on meta meta model
layer as well.

63



In the following, we show how configuration specifications on meta meta model layer
can be used to perform model projections that affect model element types on the one
hand and particular model elements on the other hand.

Model projections can be distinguished in two different types: On the one hand, it can be
necessary to hide all model elements that belong to a particular model element #ype (e.g.
organizational units that represent execution responsibility of activities in process mod-
els). Here, it is appropriate to modify the modeling language by removing the specifica-
tion of the according model element type, e.g. organizational unit. This happens on meta
model layer. Hence, this model projection type is called meta model projection. Meta
model projections are dependent on configuration parameters, i.e. the meta model looks
different dependent on the configuration parameter instance that is valid at the moment.
Hence, a specification area is needed in which configuration parameters can be assigned
to model element types. This is done on meta meta model layer, whereas instances of
meta meta model elements appear as meta model elements.

Meta Meta Model (Section) Configured Process Model for Perspective “YY*
Meta Model CP-MME- Configuration
Element Assignment Parameter
Receipts arrived

CP
Function All Sort receipts
Event All manually
Org. Unit SXX

Receipts are to
be booked

U

Configured Process Meta Model for Perspective “YY*

(Section)
Receipt Book receipts
X Process Model
Element
Receipts booked

Figure 2: Specification of Meta Model Projection on Meta Meta Model Layer and its Influences on
Lower Model Layers [Be02]

A

Resource —— < DP Entity Type

As specification language, we use ERMs on meta meta model layer as well as on meta
model layer. Hence, the meta meta model layer has to contain the specification on the
meta modeling language — the ERM language itself. In our examples, we use a simpli-
fied version of the meta meta model, in which all element types of the ERM are sub-
sumed within the Entity Type Meta Model Element. Instances of the entity type Meta
Model Element can be selected by assigning them to the Configuration Parameter. A
configuration is performed by selecting a configuration parameter. Each element type
that is not assigned to this configuration parameter (e.g. organizational unit) is hidden on
meta model layer. As a consequence, every model element on model layer that belongs
to this element type, is hidden as well (cf. figure 2; organizational units that can be anno-

64



tated to functions in EPCs are hidden. This is achieved by hiding their definition on meta
model layer. This, in turn, is provided by choosing a perspective “YY” which is not
assigned to the organizational unit on meta-meta model layer).

On the other hand, model projections allow for hiding distinct model elements on model
layer (e.g. distinct, non-relevant process branches in EPCs; cf. figure 3).

For model projections, a simple assignment of configuration parameters to model ele-
ment types is not suitable, since this always affects all model elements of an element
type. In order to perform a configuration of distinct model elements (e.g., a single activ-
ity within a process model), a mechanism is needed that is able to act on instances of
model element types. Since a configuration means hiding of model elements, it is appro-
priate to introduce a mechanism that restricts the set of instances of model element types
to those that are regarded as relevant for a specific configuration parameter instance.
Consequently, Constraints are introduced on meta meta model layer, which are assigned
to Configuration Parameters and Meta Model Elements. Depending on a specific per-
spective or company characteristic, a constraint can be assigned to an element type on
meta model layer that restricts the set of element type instances to be displayed. Each
instance that does not belong to the selected set is hidden on model layer (e.g. those
elements that belong to a process branch, which is regarded as non-relevant for the cur-
rent perspective). The constraints operate depending on attributes that characterize a
model element as belonging to a specific configuration parameter.

Meta Meta Madel (Secticn) Coenfigured Process Model for Perspective “Y*
MME-Attr.- (0.n) Allribute
Assignment
(1.n)
Meta Madlel (0.n) CP-MME- @n)| Cenfiguration
Element Assignment Parameter
Function
Function X B ©n) )
Function Y A — Constraint
Event Y A

iE Receipt

Configured Process Meta Model for Perspective “Y" (Section)

: AN
E\mere N

| Manual=FALSE

Process Model

Elerent Function

Constraint A

Figure 3: Specification of Model Projection on Meta Meta Model Layer and its Influences on
Lower Model Layers [Be02]

D,P Event

65



Cf. exemplarily figure 3: activities within a process branch, which are performed manu-
ally, are hidden. This is achieved by hiding their instances through the application of a
constraint on meta model layer on Functions and Events. In this example, not only func-
tions but also events are marked as manual or non-manual in order to show that they
belong to a process branch that is performed manually or not. This restricts the set of
elements to be shown to those that belong to a process branch performed not exclusively
manually. This, in turn, is provided by choosing a perspective “Y”” on meta-meta model
layer that results in the annotation of the constraint “A” to the element types Function
and Event.

Note that each model projection is preceded by a meta model projection, i.e. the meta
model projection that controls the assignment of constraints to meta model elements.

Within the configurative reference modeling framework of BECKER ET AL., the following
configuration mechanisms are distinguished which each are based upon meta model
projection or model projection:

o Model Type Selection allows for providing only those modeling languages and their
according model types to users that are relevant for them. E.g., employees who use
process models as guidelines for their everyday work, do not need to be provided with
data models describing database structures. Model Type Selection is based upon meta
model projection.

o FElement Type Selection considers the necessity to provide modeling language variants
with different expressive power for different user groups. E.g., practitioners prefer
process models that are easy-to-read. This can be achieved by e.g. fading out resource
types that are annotated to process functions. As well as Model Type Selection, Ele-
ment Type Selection is based upon meta model projection (cf. figure 2).

o FElement Selection operates on particular parts of a model. Term-based Element Selec-
tion and Attribute-based Element Selection are distinguished. Term-based Element
Selection assigns logical terms to model elements that connect them directly to con-
figuration parameters, whereupon Attribute-based Element Selection assigns charac-
teristics to model elements that mark them as relevant or non-relevant for different
configuration parameters. Element Selection is based upon model projection (cf. fig-
ure 3).

o In different parts of a company different naming conventions may have been estab-
lished (synonyms); i.e. different names have the same meaning (e.g., procurement
employees call a supplier invoice just “invoice®, whereas distribution employees use
the naming “supplier invoice®). In order to consider these conventions in line with in-
formation modeling, the configuration mechanism of Synonym Management allows
for perspective-specific exchanging of model element namings. Synonym Manage-
ment is based upon meta model projection since a name exchange is always per-
formed for each element of an according type.

o Through Representation Variation, the representational aspect of modeling languages
can be changed depending on the current perspective. I.e., symbols of model elements
can be exchanged. Representation Variation is realized by meta model projection.

66



In order to build a configurative modeling tool, our goal was to implement these con-
figuration mechanisms within a modeling environment. The implementation activities
were performed by students in the course of a seminar at the University of Miinster.

2.2 Teaching Scenario

For the course of this teaching case’s seminar, called “Configurative Information Model-
ing (COIN)”, the assignment was to implement the previously introduced mechanisms
for model configuration. To border the seminar’s topic certain constraints were imposed
on the students.

In order to provide a mature modeling environment and to concentrate only on configu-
ration issues, we decided not to develop an own modeling tool but to use existing model-
ing tools and to build configurative add-ons. First, two software tools were selected to
provide the basis for the implementation. Second, the programming language was de-
cided upon. And third, the range of configuration mechanisms was specified.

The decision was made to implement the configuration mechanisms as introduced above
for two tools with distinct characteristics. Since configuration mechanisms already have
been introduced for operational [De06] and planning purposes [Kn06], it was decided
that both should be covered in the seminar. To cover most of the other characteristics,
tools for each purpose were selected that had only few commonalities concerning the
morphological box shown in table 1.

operational
supported levels of modeling
modeling

modeling languages EPC Organigram
available

code access only import and
export
conceptual specifi-
cation

maturity of product mature software

Legend:
Tool 1: ARIS [l Tool 2: H2

Table 1: Morphological Box for Tool Selection

For the modeling of information systems for operational purposes the ARIS Business
Architect 7.0 of the IDS Scheer AG was selected. The former ARIS Toolset was ranked
as one of the pioneers in process modeling [Ga05] and is mature software. ARIS is not a
meta modeling tool and changes to the languages available are not intended. However,
he ARIS framework provides languages for all major areas of information systems de-
sign, in particular EPCs, ERMs, and Organigrams. Prototypical tests with prior versions
concerning the Application Programming Interface (API) were promising. However, for
the purpose of comprehensive model configuration, the current version did only allow
import and export of models and no configuration via an APIL. Despite these restrictions

67



(and since some of this was only found out in the course of the seminar), ARIS was
chosen as basic modeling tool in order to be able to provide the implemented configura-
tion concepts to a preferably wide user group. The option to use a meta modeling tool —
such as MetaEdit+, Metis, Cubetto, or ConceptBase — was either discarded due to not
providing an own comprehensive language, due to a lack of usability, and due to the fact
that these tools are neither well-known nor wide-spread so that a later broad usage could
not be expected. Despite the fact that the meta modeling environments of these tools
were promising concerning the specification of configuration mechanisms, the effort that
had to be spent on the implementation of user-friendly configuration mechanisms turned
out not to be significantly less than using a proprietary modeling tool without any meta
modeling environment.

For the modeling of information systems for planning purposes the H2 Toolset was se-
lected. H2 is a meta modeling toolset developed by the European Research Center for
Information Systems (ERCIS) and maintained by the Prof. Becker GmbH [Be05]. Al-
though being a meta modeling tool, the original purpose of the toolset was to provide
modeling support for management information systems. Hence, most of the modeling
languages designed for H2 deal with information systems for planning purposes, such as
MetaMIS. MetaMIS is a modeling language for specifying management views on infor-
mation systems [Ho03]. It was used as a reference language to test the implemented
configuration mechanisms. H2 is a specialized meta modeling software that focuses on
modeling hierarchical structures and utilizes an own meta modeling language. The
source code of the software, which at that time was in a stable but somewhat prototypical
state, was freely available to the students.

3 Tool Prototypes for Configurative Reference Modeling

3.1 adapt(x)
Conceptual Specification

Since the conceptual specification of configurative reference modeling as proposed by
BECKER ET AL. [Be02] was already designed according to the ARIS concept and tool,
further conceptual specifications were not necessary (for basic conceptual specifications,
cf. Section 2.1).

adapt(x) Architecture

In ARIS, no meta modeling environment is available. Consequently, each configuration
specification had to be programmed by hand. Furthermore, model manipulations operat-
ing on the database ARIS uses to store its models was not possible, since the database
structure of ARIS is not provided by IDS Scheer in an open document. An own recon-
struction of the data model of the data base was impossible due to the cryptic denotation

2 These facts were found within the empirical study already mentioned in footnote 1.

68



of its tables. Since ARIS 7.0 provides a script language (ARIS Script) that is able to
modify models, this script language was selected as configuration environment in a first
step. Due to a lack of functionality and speed, this option was discarded after a few tests.
Finally, the decision was made to use the XML import and export interface of ARIS in
order to perform model configurations in an external configuration add-on called
adapt(x). Nevertheless, ARIS Script had to be used to be able to add configuration rules
such as configuration attribute instances (cf. Section 2.1) to ARIS models within its
modeling environment. This was necessary because model access through an application
programming interface (API) is not supported sufficiently by ARIS. Since both the mod-
els administrated by ARIS and the configuration mechanisms of adapt(x) make use of
configuration parameters, it was decided to store them in a data base accessible by ARIS
Script and adapt(x) concurrently. Furthermore, ARIS Script was used to start adapt(x)
out of ARIS via a macro. Thus, the basic architecture of adapt(x) was designed as pre-
sented in figure 4:

adapt(x

()
GUI - Swing

<Consistency Assurance

%I Import
%del Export

Configuration
Rules

&

Configuration Rule
Processor

Editor

Administration

< Configuration Rule

w W W

& 4

Figure 4: adapt(x) Architecture in Detail

Within the modeling environment — in this case ARIS — possibilities have to be estab-
lished to make information models configurable; i.e. configuration terms as well as con-
figuration attributes have to be specifiable. Here, ARIS Script is used in order to assign
configuration terms or configuration attributes to models or model elements in an easy-
to-use configuration rule specification environment. In order to guarantee a consistent
use of configuration parameters resp. valid configuration attribute instances, these are

69



balanced with those used by the adapt(x) configuration environment via a MySQL data-
base that serves as mediator. ARIS Script accesses the database via a JDBC interface.

In order to configure a model that is enriched with configuration rules, it has to be ex-
ported as XML file. Here, the built-in XML export interface of ARIS is used. The model
export is easily started through the configuration rule specification environment based on
ARIS Script. The XML files are provided in a proprietary XML format of IDS Scheer
AG, the so-called ARIS Markup Language (AML). Due to the aim of making the
adapt(x) configuration environment reusable for further different modeling tools, the
decision was made to develop a generic XML format that is suitable for storing configu-
rative model information. As a result, AML export files are transformed into so called
COIN-ML (CML) files via an XSLT transformer. COIN-ML is generic in the sense that
it abstracts from the modeling language the stored models are based on. The relevant
information for configurative models is restricted to model elements, model element
relations, models, and configuration rules stored in attributes. Syntax information of the
used modeling languages have to be provided by the tools that use the CML files (here:
adapt(x)). Proprietary information is stored in an extra section of the CML file that can
be restored once the CML file is transformed back into a proprietary format such as
AML.

The adapt(x) configuration environment consists of a three-layer-architecture that com-
prises the components presentation, configuration logic, and database access. The con-
figuration logic layer uses Xalan as XSLT transformer that is able to translate different
XML formats into CML (in our prototype, only AML transformation is implemented).
Since the configuration logic layer uses Java, we make use of JAXB, a Java-XML-object
mapper that creates objects out of the CML data that can be manipulated in Java. This
way, the configuration environment accesses the model data. In order to perform model
configurations, different components are necessary within the configuration logic layer:

e  The administration component comprises user administration as well as model ad-
ministration. Within user administration, user authorizations can be specified. User
logins and passwords of adapt(x) that correspond with those of ARIS make an extra
login dispensable when adapt(x) is started out of ARIS, since login and password
are adopted automatically. Model administration allows for loading model data
through import and saving model data via export. Model imports are executed either
manually or automatically when adapt(x) is started out of ARIS. In turn, model ex-
ports trigger an automatic import in ARIS.

e  Within the configuration rule editor, the user is able to define configuration adjust-
ments that can comprise sets of configuration mechanism instances. E.g., the con-
figuration rule No Data comprises the instances No Data Model of Model Type Se-
lection and No Entity Types in Process Models of Element Type Selection. Another
example is the configuration rule No Manual Activities that comprises the configura-
tion mechanism instance Hide Functions and Events in Process Models that are As-
signed with the Attribute Instance Manual=TRUE of Attribute-based Element Selec-
tion.

70



e The configuration rule processor assigns configuration rules to configuration pa-
rameters. E.g. the perspective Organizational Design is assigned to the configura-
tion rule No Data. The result of a configuration according to Organizational Design
will be the elimination of all data models as well as of all entity types in process
models in a model system to be configured.

e  With the configuration component, configuration parameter sets can be defined on
whose basis the configuration shall be performed, e.g. Perspective: Organizational
Design AND Business Type: Warehousing. Furthermore, the configuration process
itself is performed by the configuration component. The result of a configuration is
stored in a CML file via JAXB, transformed to AML and re-imported in ARIS.

e In the course of configuration, inconsistencies can occur in information models that
consist e.g. of gaps that are results of model element hidings. The consistency com-
ponent provides algorithms that are able to restore the configured models in order to
guarantee their syntactical correctness [De06, pp. 129-147].

Exemplary Configuration Process

4 adapt(x) - Configuration Rules - Element Selection

Element Selection

Please choose element types of a model type and add them to the list on the right side.
These element types will be considered during element selection.
Furthermore, please define a constraint in arder to identify the elements to be hidden.

EPC v|
COT Attribute % Function
Knowledge Event

Technical Function

Technical Function Type

ERD Attribute —
Technical Term

Functional Cluster
Group

Hardware Component Type

Infarmation Container v

"degree_of_automation™ = "manual” OR

Constraint: “trivial” = "true”

Name: [Hiding trivial or autematic model elements |

’ %" Enter H Cancel H I@Help]

Figure 5: Specifying Cnfiguration Rules in adapt(x)

In order to perform a configuration, first, within adapt(x), company characteristics and
perspectives to be supported have to be specified with the configuration component.
Second, within the configuration rule editor, configuration rules are specified that base
on configuration mechanisms (cf. figure 5). Third, configuration rules are assigned to

71



perspectives and company characteristics with the configuration rule processor (cf. fig-
ure 6).

¥ adapt(X) - acaptive information modeling

File Edit Configuration Optiens Halp
= = Br @ o il

Please assign figuration rules to

guration par 1
| Company Characteristics & Perspectves
14| ASSOriment |~ | Role
1= | Tvpe of Business

~-@& DataBase Developer
i User

Programmer

Prolect Manager

# Warehousing
-@ 1hird Party eal
~# Cenlial Selllement

= Trade Level = Misc
% Wholesale % Depariment: DISIrItion
% Relail =~ | Puipose

| lierarchy -evel Aggregaticn |Representation Varistion|| Syronym Managenert | Configuralion Rules
{Moce ype Seleciion|| Model Selectior |Bemenl Type Sdeu.iwi Eemrel Se eclion

Hcing ef Trivizl Precssses
Helng of Prosess Cealls

i Girrp ificd ion of Mzrual Proczszes
|[ Hielimg o Fiula Prosasess

| Hidding ot Praeess Natails

N
EZX

|VS=M: i ][_‘ﬂHelp]

Rele-ence Vindel: Rela |-H-Mcdel Jser: CCIN, eain

Figure 6: Assigning Configuration Rules to Configuration Parameters in adapt(x)

Fourth, in ARIS, the reference model is constructed. Configuration attributes or terms
are assigned to model elements that shall be configured. Since configuration parameters
and valid attribute instances have been specified in the course of configuration rule

specification in adapt(x), these are now available consistently in ARIS via the MySQL
database interface (cf. figure 7).

Fifth, the models to be configured are exported via XML. Sixth, within adapt(x), which
starts automatically, the perspectives and company characteristics for which the model
shall be configured are chosen in the configuration component. Seventh, the configura-

tion itself is performed. Eighth, the configured model data are exported and imported in
ARIS. The configuration is completed.

72



Formar Layeit Anatyze WIndow Help

TG-S ePil e FEER SR T in~ 8

Mudiw = = Cesgner
bt g o

—
Esplaer G20 [

Fo g wanmen

T kbt

invaice Auditing * | Imwice Ruditing Extended ¥ '

fieratizn Tarms ' Dslsty

Lo N -
{ bushess &
grd padzeen

i
Jrvaize cazy
\ arrluad

Supplier IDverified
Cistomer K reglstered anduerifad

&

S=rip Cilfa-

Configuradion ATrribite Definition

o
@é} Existing Configuralivn Altribules of Sclecled Mosdel Elcmenls
Goods receipt and IMaice are assighed comacty
Adiviszfior Tuzurity_Pe wvanze-igh

Name Instance
Ahisute 1: = uisl Cewer: =f-fre =]
Atrlatte 2 - =]
e =1-] ]
Allrinbe . sk []
Ablatas: =1-| |

| rise-stia

B -

Enter || Debte ||

Close

Figure 7: Assigning Configuration Rules to Model Elements in ARIS

3.2 H2configurative (H2c)
Previous Work on H2

During a research project, an approach has been developed to conceptually specify in-
formation needs [Be03]. It comprises a conceptual language that facilitates the commu-
nication between management and IT analysts. Its main concept is the use of hierarchies.
Hierarchies represent an inherent concept of abstraction and have been found to be intui-
tively understandable for users. A hierarchy is understood as a transitive, irreflexive, and
asymmetric relationship of entities. It is represented as a connected directed acyclic
graph with a designated initial (root-)node forming a tree structure. Existing general
purpose meta case tools such as MetaEdit+, Metis, Cubetto, or ConceptBase were not
found to be suitable since the modeling of extensive hierarchies requires built-in model
navigation and management features to efficiently access the models.

Therefore, a repository was designed to support the (meta) modeling of hierarchical
structures. The repository contains both language specifications and the actual models to

73



allow a careful adaptation of the meta models even while modeling. Consequently, the
repository consists of two parts. The first part represents a container to create the lan-
guage specifications (i.e. meta models) and, therefore, serves as a meta meta model re-
lated to the real world [St96]. The second part represents the actual models that are in-
stances of a certain language which, in turn, are models related to the real world. An
excerpt of the repository can be conferred in figure 8.

(1,1) (0,m)
Ohject ObjectType
Definiticn (1,m) (0.m) Definiticn
(0m) (0m)

(1.1) (0,m)
Chject Context
courenc (1.1) 1,1 Rule
0,m) (0,m)

(
(1.1) (0,m)
Contextinstance 01 ) Context

Contextinstance | (0,m) (0,m) Language

Group Definition

Figure 8: Excerpt from the Repository’s Schema

A language consists of several elements i.e. ObjectTypeDefinitions. These Ob-
jectTypeDefinitions represent real world constructs. Between ObjectTypeDefinitions
respectively their instances there are relationships. These are represented by Contex-
tRules. Several ContextRules set up a so called Context. A LanguageDefinition consists
of several Contexts. Therefore, this part of the repository’s schema can be seen as a
language based meta meta model that describes the conceptual part of meta modeling
languages used to define models of actual modeling languages. These models of model-
ing languages are meta models related to the real world.

Based on a LanguageDefinition ObjectTypeDefinitions are instantiated and ObjectDefi-
nitions are created. Relationships between two Objects are represented by ObjectOccur-
rences. Any ObjectOccurrence is based on a certain ContextRule and is part of a Con-
text-Instance. Hence, the same ObjectTypeDefinition can have several relationships.
Consequently, on instance level ObjectDefinitions can be part of several ContextIn-
stances. Thus, different views on the same element can be expressed. As a constraint, an
ObjectDefinition can only occur in a certain ContextInstance once. It is possible to de-
fine rules concerning a Context’s structure. These rules can either be related to the Con-
text in general or to a ContextinstanceGroup that is a set of ContextInstances. ContextIn-
stanceGroups have to be defined during the modeling of the instances. Properties for the
groups can be defined.

H2 is an implementation of this repository. It allows the definition of various modeling
languages as well as the actual modeling and management of models. The toolset con-

74



sists of a meta modeling editor, the so called language editor to define modeling lan-
guages, an attribute editor to define attributes and attribute groups independently of the
modeling constructs used, a so called hierarchy level editor to define hierarchy levels
that can be used to structure the trees created, and a model editor to create the actual
models in a particular language.

Software Architecture

The software architecture of H2 and consequently of H2¢ features several specific com-
ponents. Figure 9 gives an overview. Some components had to be adapted in order to
comply with the requirements imposed by the conceptual specification. These compo-
nents are marked in bright gray while new components are marked in dark gray. In the
figure, layer spanning support components have been arranged vertically while the other
components are ordered in their respective layers horizontally. Apart from the H2c¢ spe-
cific layers, a couple of external components exist: in particular the .Net Framework 2.0
and any database management system (DBMS).

H2gonfigurative (Net 2.0)

onfiguration Customizer j
" Termeditor 5
kG
[ =]
il - B
{:t‘; ( H2 Modeling Layer ) E
D =
.E 5 3
( Catabase Mapping Layer (DML) ) =]
( Database Access Layer (DAL) ) .
N
Database Connector (ODBC)
O new component
Configuration Model
O changed component Repository Repository
- J

Figure 9: Architecture of H2¢

On top of the chosen DBMS, a database connector layer enables the communication of
all subsequent layers with the databases via ODBC. The database layer includes methods
to access the databases, encapsulate their content in object-oriented structures, and map
them to internal objects. The XML interface was revamped and user administration was
updated to comply with the additional requirements. The H2 modeling layer comprises

75



the original business logic to create modeling languages and models and is extended
with add-ons that make configurative reference modeling possible: In particular, these
are a term editor and a configuration customizer that enable the assignment of configura-
tion terms to model or meta model objects. Both comprise the core functionality imple-
mented by the project seminar. They are covered in more detail in the following.

Conceptual Specification

To enable the toolset to comply with the requirements of configurative reference model-
ing, modeling languages and their models have to be assigned to a higher instance than
LanguageDefinition. Therefore, the entity type ReferenceModel is introduced. It encap-
sulates LanguageDefinitions and serves as the root node in the database explorer of the
model editor. All ConfigurationParameterDefinitions, Rules, and Terms are assigned to
one and only one ReferenceModel. Languages, rules and terms can be exported and
reused in any other reference model but they are unique within each of them. Cf. figure
10 for an ERM of the core extensions in relation to the former root node LanguageDefi-
nition.

Configuration

Parameter
Definition
(1.1
(0.n)
Rule .1 ©on Reference ©.n) (1,1) Language
Model Definition
(0.n)
(1.1
Term

Figure 10: Components of a Reference Model

The configuration process is as follows: In the course of modeling, models have to be
annotated with information that allows for an automated configuration of models accord-
ing to the specific requirements of an enterprise. The annotated information are configu-
ration parameters and belong to a configuration parameter definition. Not all general
configuration parameters may be necessary for the adaptation of the reference model,
thus a pre-selection of configuration parameters can take place to shorten and simplify
the process. The annotation itself is conducted with terms that declare the applicability of
model elements according to certain configuration parameters.

76



Configuration parameters are core to all configuration mechanisms of H2¢. They are of
three kinds: company characteristic, perspective, and combined configuration parameters
(cf. figure 1). Each of these groups is of the following structure: A group (e.g. perspec-
tive) contains dimensions (e.g. role), each dimension comprises dimension occurrences
(e.g. manager). Combined configuration parameters are different and do not fit into this
structure. Even though they are of similar nature as dimensions, they are more similar to
their occurrences. They are necessary e.g. to represent intersections of dimension occur-
rences (sets) with configuration parameters.

The entry and maintenance of configuration parameters is realized analogously to the
creation and maintenance of modeling languages with a hierarchical editor. Configura-
tion parameters can be entered, altered, and assigned at any time during modeling. Reus-
ing the common modeling component also entails that the structure of configuration
parameters, i.e. their meta model, is editable as well.

Configuration parameters can have relations with each other. The selection of one con-
figuration parameter can entail either that another parameter is selected as well (inclu-
sion) or that another configuration may not be selected any more (exclusion). The soft-
ware supports the user with ontologies that comprise this information. Ontologies are
stored as rules.

Implementation

An overview of the necessary data structures for the implementation of configuration
mechanisms gives figure 11. The entity types and relationship types shaded in gray are
additional ones to those displayed in figure 10.

Term (1,n) (2,2) Rule (1,1)
Cenfiguration
1, 0,
Reference Model O an Parameter on
©.n) (.n) Type

(1,1)

()] Configuration

Parameater
0,1
SEUD Definiticn oD
Object (0.1)
Definition
(0,1) (0,1)
(0.n)
Object (0,1) (1,1 | Configuration
QOccurence Parameter

Figure 11: Configuration Parameter

77



The entity types ObjectOccurence und ObjectDefinition are essentially the same as those
that are used for models. Since configuration parameters are handled like regular models,
this is the logical consequence. Accordingly, ConfigurationParameterDefinition is the
equivalent to ObjectDefinition and ConfigurationParameter is the equivalent to Ob-
ject-Occurence. This applies similarly for their relationship type. A Rule or respectively
an ontology defines the relation between two ConfigurationParameterDefinitions. Its
relationship to ConfigurationParameterType specifies whether it is an inclusion or an
exclusion rule. The attribute isSelected assigns ConfigurationParameterDefinitions to a
specific Reference Model. These pre-selected ConfigurationParameters can be utilized
by Terms and can be assigned to users of the reference model. Any parameter that is not
pre-selected cannot be used in the configuration.

As mentioned above the meta model of configuration parameters can be adapted. Its
original form should, however, only be changed by modeling experts. The canonical
form of the configuration language in H2 notation is the following:

=1 ¢ Configuration Language
i%% Enterprize Characteristics
=1- 5 Enterprise Characteristic
f Enterprise Charactenstic W alue

é’ﬁ Perzpective Dimenzion
& Perspective

@B Combined Configuration Parameter
- -£ Combined Configuration Pararmeter
o Enterprise Charactenstic ¥ alue
&b Perspective
F Enterprise Characteristic W alue
& Perspective

B & Condition [aspmmetric]
7 Enterprise Charactenistic Value
& Perspective
-@ Combined Configuration Pararmeter

-1-.55 Enclusion
@B Combined Configuration Parameter
iar Enterprise Charactenistic W alue
& Perspective

Figure 12: Meta Model of the Canonical Configuration Parameters and Rules

The core configuration process in H2¢ is roughly the following:

1. Specify configuration parameters: According to the above meta model, configura-
tion parameters are specified (cf. figure 13).

78



i) Conliguralion;Paramelers

HlL #5422 F WA S [Coions jssmmericl |

E—— Scles _hannel lype ol Serviie T
I=—— Gereratec by "T22 managaTert reoort rodallng”
a [M=zager: CEQ

d Mg G50
A Ao it g

Cunrart Mods: ~op manzgenant reporl modellng

| Configuration Parameters |T“E”§|
!E | |LE=-| LE' o A |F5 = s iLoTbnad _onhg.iratior Harameters ;]

B Top waragamert raaort mads ling
& M leyer ; CEQ
& Peport modalling

Figure 13: Specification of Configuration Parameters

2. Pre-select configuration parameters: From these configuration parameters the ones
required for this configuration project are selected beforehand (cf. figure 14).

[ Pre-Select Configuration Parameters

~Confiquretic “eraret=rs @ —Onlelogess ———————————————————— 5

A& Zriecprise Characteiistic A -ulz |
= E-'E;'*I"E'f'iﬁ nNin=-enn Laadhon [Manage: Lk - ‘equres | op managsmenl 1eport mads lng)
=] Fnr
& b anaye . CEC
& Fanage: Mechasing
& Wanage: Sae: -
&2 Cortiolicr
F & Acccuntat
E& Wanage: Haman resoace: Cimdirieal nf €
Eg ::’::gt:i s | i e Iiotp mana;:mcfnl 1cport rodeling
o ik " Mznage: LEJ U Hoke
"B Vanane: Inurinic 4% Reper. wodeling: L1 Purpoze
E& F3. Puckasing E AR SR
E& ) Invsicing
= W Micose |

— Chitclogn Rule Yiolsions 8

[ Fiude [ Dessaitin |

Sava | Hanl l M et l rese l

Figure 14: Pre-selection of Configuration Parameters

79



3. Define configuration rules: With configuration customizer and term editor these
configuration parameters are assigned to model and meta model elements and their
applicability is defined. The configuration itself is checkbox-based (cf. figure 15).

T Configuration Q@g|
S

Conliguration Parameters % Daloges:

O # Erterpriss Charactoristic 5 Mus |

= OfF "wee of ausines: Exclusior [Stare, Mon Storg)
M wWarstoums bushess
M whwlesalen et
[ Cenlrd adninistration
i Pramevien hissness

= Qe Frocuremenl markst
Mg Intematioeal Combinec cf: %
O Hational

= Ode "voe of subsiciay
M Stoe
O HonGioe

= s Reporl cucle

Mis vea

O Quater

i Morth w
Ontolcge RuleVidlalions: §
Fiuil= | Descriatan |

| He: I = Eut I

Figure 15: Model Configuration

33 Lessons learned

Summarizing, the format of the project seminar provides an ideal playground for proto-
typical implementations such as adapt(x) and H2c. As presented, even complex topics
such as meta modeling or rather meta meta modeling and their implementation can be
conducted by students self dependently. This is only possible since the seminar is con-
ducted during a later stage of the studies and is open only to graduate students. Further-
more, students were prepared to perform a meta modeling seminar by lectures in the
early graduate studies that deal with meta modeling in high detail. Other seminars on
meta modeling have shown that such a detailed preparation is highly eligible due to the
high complexity and abstraction of this topic. Exchange students from other universities
that were not provided with such a preparation turned out to be overstrained in becoming
acquainted with that topic in a short time.

In meta modeling seminars, it is important to give the students free room to operate.
Only if the students feel responsible for “their” project, they identify with the topic and
the assignment and produce superior results. It is, however, important to provide them
with a flying start as it has been done with the workshops since the timeframe is limited
and has to be divided between conceptual and implementation work. The preparation of
the seminar papers leads to student “experts” for the topics prepared. These specialists
are first contact persons for discussing topic-related concepts and problems. Presenta-

80



tions of the seminar papers within the initial workshop provide first insights for the
whole group about the conceptual background of the implementation project. Therefore,
careful assignment of important seminar topics to potentially superior students can have
significant impact on the overall performance.

It has proven to be beneficial to let the students organize the course of the projects them-
selves (i.e. the project plan) with the exception of milestones which should be provided
and monitored by the supervisors. In this way, the students are motivated to reach the
objectives with their implementation plan and, thus, prove their procedure.

Three issues have been found to be of major importance when monitoring the project.
First of all a clear statement concerning the milestones is important. At first, the topic
and the assignment is very diffuse for the students and it only clarifies if the ultimate
goal of the project is clearly specified. Otherwise, “something” is produced as a project
result, but it most certainly does not meet the expectation of any party. Second, the time
gap between major milestones has to be bridged with minor issues as topics for the
weekly briefings. Otherwise an ongoing effort is hard to uphold, since work is only done
when it is due. Third, the designation of contact persons (i.e. a single point of contact) is
important to evade competence and responsibility issues. This choice should be taken by
the students, but has to be approved by the supervisors. Prior experience shows that this
choice is a crucial point for the performance of the complete team.

As regards the teaching of meta modeling in specific, it could be observed that oneself is
the best teacher. Through unattended engagement in practicing meta modeling the stu-
dents are forced to solve their problems through intensive discussions with other fellow
students. In this way, they can much better appreciate the power of modeling language
design and adaptation. As a matter of course, this requires tool support since paper-based
or Visio-based assignments do not enable comparable understanding. Since meta model-
ing appears very complex at first, a step-by-step procedure is essential.

A feasible teaching procedure is to provide an example language with which the students
can model to understand the constraints imposed in the meta model. Then, through care-
ful adaptation of the meta model, they can value the impact of change towards the mod-
els. Finally the design of own modeling languages tops off the meta modeling experi-
ence. It has been proven beneficial to have a WYSIWYG language editor that basically
utilizes the same constructs as the modeling editor in the same toolset. Due to the H2
Toolset’s specificity to hierarchical languages, the scope of modeling was limited and
ultimately made the learning process easier. It was mentioned as an advantage of hierar-
chically ordered models that they always appear properly arranged.

Concerning external software, it has shown that prior knowledge of the status of the
software to work with is very important. While H2 was freely available, the implementa-
tion with ARIS proved to be problematic at best.

This leads to the final lesson learned: Always have a fallback plan in mind in case you
work with an external partner. Nothing is more time consuming and frustrating than
trying to work around problems or even sheer walls put up by others that you cannot by-

81



pass. This was not particularly the case during this seminar, but it showed that working
with an external partner always involves a certain amount of uncertainty.

4 Conclusions and Outlook

While several approaches exist that provide conceptual specifications on how to config-
ure and adapt models, no comprehensive implementation has been accomplished up to
now. In an ambitious teaching case, the implementation of configuration mechanisms for
two modeling tools has been conducted as a proof of concept. The implementation has
been done by a group of self organized students while the academic supervision was
conducted by research assistants. The resulting prototypes were the result of an intense
effort by the students and consequently reached the high goals set at the beginning of the
project seminar. Several obstacles had to be worked around but in the end two compre-
hensive implementations could be presented.

H2configurative is a specialized meta modeling software that allows the modeling of
hierarchies and components thereof. H2c’s core construct is a reference model, which
contains as well the modeling languages as the actual models. Configuration mecha-
nisms allow the adaptation of H2¢’s modeling languages and models by means of con-
figuration parameters annotated with terms. The structure of the configuration parame-
ters can also be subject to change via meta modeling. Configuration parameter selection
is supported by ontologies that prevent illicit use. H2¢ has been successfully evaluated
configuring report definitions for the Retail-H, a retail reference model [BS04]. Fur-
thermore, the applicability of H2c¢ for the configuration of core components for UBL
[BMO06], OAGIS [Op06], and similar ontologies for business semantics is work in pro-
gress.

As a direct result of the “inaccessibility” of ARIS a general model configuration tool,
adapt(x) was developed, which provides the basis to modify basically any model from
any modeling environment that can be exported to XML. Further research on this gen-
eral applicability has to be conducted and test cases with other common (meta) modeling
tools have to be performed and evaluated. They are scheduled to take place later this
year in the course of a seminar on meta modeling languages.

Another logical next step — already mentioned above as a “second step” — is the inte-
grated configuration of models for operational and planning purposes. For this endeavor
a meta configuration concept has to be developed that allows the integrated configura-
tion of two or more modeling tools.

References

[Be02] Becker, J.; Delfmann, P.; Knackstedt, R.; Kuropka, D.: Konfigurative Referenzmodel-
lierung. In Wissensmanagement mit Referenzmodellen - Konzepte fiir die Organisa-
tions- und Anwendungssystemgestaltung (Becker, J.; Knackstedt, R., Eds.), Physica,
Heidelberg, 2002, S. 25-144.

82



[Be03]

[Be05]

[BMO6]
[BS04]
[Ch76]

[De06]

[DS96]
[Ga05]

[HoO1]

[Ho03]

[Kn06]

[0p06]

[RA05]

[RGOO]

[Ro03]

[Sc00]
[Sc98]
[SDGO3]

[St96]

[Wi03]

Becker, J.; Dreiling, A.; Holten, R.; Ribbert, M.: Specifying Information Systems for
Business Process Integration: A Management Perspective. Information Systems and e-
Business Management, 1 (3) 2003, S. 231-263.

Becker, J.; Janiesch, C.; Seidel, S.; Brelage, C.: Specifying Modeling Languages with
H2. In Proceedings of the 1st Workshop on Meta-Modelling and Corresponding Tools
(WoMM 2005) (Frank, U.; Jung, J.; Kirchner, L., Eds.), Essen, 2005, S. 9-11.

Bosak, J.; McGrath, T.: Universal Business Language 2.0 Public Review Draft, 2006.
http://docs.oasis-open.org/ubl/prd-UBL-2.0. 2006-02-22.

Becker, J.; Schiitte, R.: Handelsinformationssysteme. 2nd Edition. Redline Wirtschaft,
Frankfurt am Main, 2004.

Chen, P.P.-S.: The Entity-Relationship Model: Toward a Unified View of Data. ACM
Transactions on Database Systems, 1 (1) 1976, S. 9-36.

Delfmann, P.: Adaptive Referenzmodellierung: Methodische Konzepte zur Konstruk-
tion und Anwendung wieder verwendungsorientierter Informationsmodelle. Berlin
2006.

Darke, P.; Shanks, G.: Stakeholder Viewpoints in Requirements Definition. Require-
ments Engineering, 1 (1) 1996, S. 88-105.

Gartner, Inc.: Vendor Details for the 4Q04 Enterprise Architecture Tool Magic Quad-
rant, Berwyn 2005.

Holten, R.: The MetaMIS Approach for the Specification of Management Views on
Business Processes. Arbeitsberichte des Instituts fiir Wirtschaftsinformatik No. 55
(Becker, J.; Grob, H.L.; Klein, S.; Kuchen, H.; Miiller-Funk, U.; Vossen, G., Eds.),
Miinster, 2001.

Holten, R.: Specification of Management Views in Information Warehouse Projects.
Information Systems, 28 (7) 2003, S. 709-751.

Knackstedt, R.: Fachkonzeptionelle Referenzmodellierung einer Management-
Unterstlitzung mit quantitativen und qualitativen Daten: Methodische Konzepte zur
Konstruktion und Anwendung. Berlin 2006.

Open Applications Group, Inc. (OAGi): Open Applications Group Integration Speci-
fication (OAGIS) Release 9.0, 2006. http://www.openapplications.org/downloads/
oagidownloads.htm. 2006-02-22.

Rosemann, M.; van der Aalst, W.M.P.: A Configurable Reference Modelling Lan-
guage. Information Systems, In Press 2005.

Rosemann, M.; Green, P.: Integrating multi-perspective views into ontological analy-
sis. In Proceedings of the 21st International Conference on Information Systems,
Brisbane, 2000, S. 618-627.

Rosemann, M.: Application Reference Models and Building Blocks for Management
and Control. In Handbook of Enterprise Architecture (Bernus, P.; Nemes, L.; Schmidt,
G., Eds.), Springer, Berlin, 2003, S. 595-615.

Scheer, A.-W.: ARIS - Business Process Modeling. 3rd Edition. Springer, Berlin,
2000.

Schiitte, R.: Grundsétze ordnungsméBiger Referenzmodellierung. Konstruktion kon-
figurations- und anpassungsorientierter Modelle. Gabler, Wiesbaden, 1998.

Soffer, P.; Golany, B.; Dori, D.: ERP Modeling: A Comprehensive Approach. Infor-
mation Systems, 28 (9) 2003, S. 673-690.

Strahringer, S.: Metamodellierung als Instrument des Methodenvergleichs - Eine
Evaluierung am Beispiel objektorientierter Analysemethoden. Dissertation. Shaker
Verlag, Aachen, 1996.

Wigand, R.T.; Mertens, P.; Bodendorf, F.; Konig, W.; Picot, A.; Schumann, M.:
Introduction to Business Information Systems. Springer, Berlin, 2003.

83



