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Fighting the Duplicates in Hashing: Conflict Detection-aware
Vectorization of Linear Probing
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Abstract: Hash tables are a core data structure in database systems, because they are fundamental for
many database operators like hash-based join and aggregation. In recent years, the efficient vectorized
implementation using SIMD (Single Instruction Multiple Data) instructions has attracted a lot of
attention. Generally, all hash table implementations need to address what happens when collisions
occur. In order to do that, the collisions have to be detected first. There are two types of collisions: (i)
key duplicates and (ii) hash value duplicates. The second type is more complicated than the first type. In
this paper, we investigate linear probing as a heavily applied hash table implementation and we present
an extension of the state-of-the-art vectorized implementation with a hardware-supported duplicate or
collision detection. For that, we use novel SIMD instructions which have been introduced with Intel’s
SIMD instruction set extension AVX-512. As we are going to show, our approach outperforms the
state-of-the-art vectorized version for the key handling, but introduces novel challenges for the value
handling. We conclude the paper with some ideas how to tackle that challenge.

Keywords: Hashing; Linear Probing; Vectorization; Conflict Detection

1 Introduction

The key objective of database systems is to reliably manage data, where high query throughput
and low query latency are still core challenges [Ab16, BFT16, Do13, Oul7]. To satisfy
these requirements, database systems constantly adapt to novel hardware features [BKMOS].
In the recent past, we have seen numerous hardware advances, in particular with respect
to memory, processing elements, and interconnects having a huge impact on the design of
database systems [Lel7, LUH18, OL18]. For example, with growing capacities of main
memory, efficient analytical in-memory data processing becomes viable and is now state-
of-the-art [BKMOS, Fal7] on the one hand. On the other hand, vectorization is a common
approach to improve the processing performance of CPUs by parallelizing computations
over vector registers. This vectorization is done using SIMD extensions (SIMD stands for
Single Instruction Multiple Data) such as Intel’s SSE (Streaming SIMD Extensions) or AVX
(Advanced Vector Extensions) and have been available in modern processors for several years.
SIMD instructions apply one operation to multiple elements of so-called vector registers
at once. Thus, the efficient vectorized implementation of database operations using SIMD
instructions has attracted a lot of attention in recent years [Lal6, LB15, PRR15, ZR02].
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In the past years, hardware vendors have regularly introduced new SIMD instruction
set extensions operating on ever wider registers. For instance, Intel’s Advanced Vector
Extensions (AVX) operates on vector registers of size 256 bits, while Intel’s newest extension
set AVX-512 uses now 512-bit vector registers. The wider the vector registers, the more data
elements can be stored and processed in one vector. For example, Intel’s SSE 128-bit vector
register can store four 32-bit data elements, AVX 256-bit vector can store eight (2x), and
AVX-512 512-bit vector can store 16 (4x) of such data elements. Consequently, the SIMD
instructions operating on these wider vector registers can also process 2x respectively 4x the
number of data elements in one instruction, which promises significant speedups. In [Ha18],
we investigated the influence of the wider vector registers on data compression. As we have
shown, the achieved speedups of wider vector registers are sub-optimal in most cases, since
the algorithms quickly become memory-bound when computations are accelerated through
wider vector registers processing more data elements at once. Thus, an open challenge in
this domain is the development of appropriate approaches which exploit the capabilities of
newer SIMD extensions to the maximum extent.

To tackle that challenge for lightweight data compression algorithms, we presented a novel
hardware-oriented approach in [Unl18]. The starting point of this novel approach was,
that in addition to an increased vector width of 512-bit, AVX-512 also offers a variety of
new instructions. One of the new instruction feature sets is called Conflict Detection
(AVX-512CD) which allows the vectorization of loops with possible address conflicts. Some
key features of AVX-512CD are (i) the generation of conflict free subsets, i.e. subsets which
contain no equal elements, and (ii) the count of leading zero bits of the elements in a vector.
In [Un18], we described the application of these CD instructions for run-length encoding.
In particular, we have clearly shown that the CD-based implementation is up to 3.2 times
faster for sequences of integers with short run lengths.

Our Contribution: Based on these experiences, we introduce our approach for the
application of the Conflict Detection instruction to hashing, which is completely different
from the data compression domain, in this paper. Generally, hashing is a core primitive
for many database operators such as hash-based joins and aggregations [PRR15, RAD15].
The main task of hashing is to distribute entries (key/values) across an array of buckets
(hash table). Given a key, the algorithm computes a bucket that suggests where the entry
can be found. All hash table implementations need to address what happens when collisions
occur. In order to do that, the collisions have to be detected, which sounds like a perfect
match to Conflict Detection. In particular, we evaluate linear probing as a heavily applied
hash table implementation [PRR15, RAD15]. Based on that, our main findings can be
summarized as follows:

1. Conflict Detection can be used to speedup linear probing, whereby the specific
SIMD instructions can be utilized at different positions within the hashing implemen-
tation. On the one hand, duplicate keys within one vector register can be detected to
reduce unnecessary work. On the other hand, duplicate hash values are extractable
within one vector register to reduce expensive Gather and Scatter operations.
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2. However, the application of Conflict Detection to hashing comes at a price of
difficulty and 1O-costly value handling approaches. We will elaborate that aspect in
our evaluation in more detail.

Outline of the Paper: The remainder of this paper is organized as follows: In Section 2, we
present all essential background information starting by a short description of linear probing
followed by a detailed explanation of the state-of-the-art vectorized implementation. This
section closes with a short description of new and non-standard vector instructions which
have been introduced with AVX-512. Based on that, we introduce our novel vectorized linear
probing implementation in Section 3. Then, we present selective results of our exhaustive
evaluation on two different hardware systems in Section 4. Finally, we close with related
work in Section 5 and a summary including future work in Section 6.

2 Background

Basically, hash tables are a core and a heavily-used data structure in in-memory database
systems, because they are required to efficiently execute join and aggregation opera-
tions [PRR15]. For example, in a hash join, a hash table of the smaller input relation is
built, in which the hash table entries consist of the join attribute as key and the rest as
payload [PRR15]. Once the hash table is built, the larger input relation is scanned and join
partners are looked up using the hash table. The first phase in this hash join is usually called
build phase, while the second is called probe phase.

In these hash tables, hash functions play an important role [PRR15, RAD15]. Specifically, a
hash function is used to map keys to hash table positions allowing to quickly locate the keys
in constant time. However, the domain of a hash function (the set of possible keys) is larger
than its range (the number of hash table buckets), and so it will map several keys to the
same bucket which could result in collisions. That means, all hash table implementations
need to address what happens when collisions occur. A common collision strategy is open
addressing, which allows keys to leak out from their preferred bucket and spill over into
another bucket [Bel8, RADI15].

Based on that, this background section is organized as follows: In Section 2.1, we briefly
describe the general idea of linear probing. Then, we introduce the state-of-the-vectorized
implementation of linear probing as introduced in [PRR15] in Section 2.2. We close this
background section with a description of new and non-standard vector instructions which
have been introduced with Intel’s latest SIMD extension AVX-512 in Section 2.3.

2.1 Linear Probing

Linear Probing (LP) is the simplest strategy for collision handling in open-addressing.
Generally, the hash table structure for open addressing is an array 7 whose bucket 7'[i] stores
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Fig. 1: Illustration of Linear Probing with Collision Example.

a single key as depicted in Fig. 1. Then, an arbitrary hash function 4 is used to map each key
into a bucket of 7" where the key should be stored. A hash collision occurs when the hash
function maps a key into a bucket that is already occupied by a different key. LP resolves
this collision by placing the new key into the closest following empty bucket. That means,
for a given key x, the buckets of T are examined, beginning with the bucket at position 4(x)
(where 4 is the hash function) and continuing to the adjacent buckets A(x)+1, A(x)+2, ...,
until finding either an empty bucket or a bucket whose stored key equals x. An example is
given in Fig. 1. Here, key 44 shall be inserted in array bucket 3 leading to a collision. From
this bucket, the next free bucket will be used to store the key 44 in linear probing. In our
example, the next free bucket would be 4, which is then the storage bucket for this key. This
linear scan procedure (probe) is always executed for lookup as well as insertion.

LP has two excellent advantages: (i) low code complexity based on the simplicity of the
approach and (ii) very good cache efficiency due to the linear scan [RAD15]. Based on that,
we decided to use LP for our case study on applying Conflict Detection to hashing.

2.2 State-of-the-Art Vectorized Implementation of Linear Probing

To speed up the overall performance of hash tables, vectorized hash tables use a SIMD
register of width n to process multiple keys k; at once. Based on that idea, Polychroniou
et al. [PRR15] presented a vectorized version of LP. We will denote this SIMD LP
implementation as basic or state-of-the-art variant, respectively, thereby this approach
consists of several phases as illustrated in Fig. 2. The phases are repeated multiple times
until all keys are finally processed. The phases are:

Load Phase: In this phase several keys k; are loaded into a SIMD register v in each iteration.
We will denote these keys as active keys. In the first iteration, n keys are transferred
from memory to the vector register, whereby 7 is the size of the vector register. In
the next iterations, keys that were successfully inserted into the hash table of the
previous iterations are replaced by new keys using a selective load. This selective load
exchanges vector lanes by loading contiguous keys from unaligned memory based on
a k-bit mask.
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Fig. 2: Control Flow of State-of-the-Art Vectorized Implementation of Linear Probing.

Hash Phase: For each active key k; within the SIMD register, the hash table bucket is
computed using a hash function / and an offset (initial state equals zero). This requires
two vector operations.

Lookup Phase: The determined buckets of the keys are used in a Gather operation to load
the current content of the hash table. The loaded keys are stored in a second SIMD
register and compared with the active keys, whereby three results are possible:

(1) Bucket is empty (loaded key is zero): There is currently no key in the hash table
bucket stored. Thus, the new key can be stored at that bucket (Store Phase) as
well as invalidated (Carry Handling Phase) and the corresponding value has to
be stored.

(2) Bucket contains the same key (Match): The key is already in the corresponding
bucket of the hash table. That means, the key can be invalidated (Carry Handling
Phase) and only the corresponding value has to be stored.

(3) Bucket contains different key (Mismatch): The hash table contains already a dif-
ferent key at that bucket. Thus, the new key can neither be stored nor invalidated
and has to remain in the vector register (Carry Handling Phase).

Store Phase: Active keys with an identified empty bucket have to be stored using a Scatter
operation. However, different keys in the vector register can have equal hash values
which would lead to a conflict. If different vector lanes are stored to the same hash
table bucket, the lane with the highest lane index remains at the specific bucket. To
detect that, the stored active keys at the buckets are gathered again and compared with
the active keys. If the gathered key equals the scattered key, the key can be invalidated
and the value has to be stored (key successfully inserted into the hash table). If the
gathered key is not equal to the scattered key, the key has to remain in the vector
register (Carry Handling Phase).
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Fig. 3: Example for the _mm512_conflict_epi32 intrinsic.

Carry Handling Phase: Successfully inserted keys which are marked as invalidated during
the whole process can be exchanged in the next iteration. Additionally, the corre-
sponding offsets are set to zero. Lanes which could not be scattered successfully
remain in the vector register and corresponding offsets are incremented one by one
for the next iteration.

This state-of-the-art vectorization uses standard and well-known SIMD operations like
Scatter, Gather, and compare functions.

2.3 Novel SIMD Instructions

The newest version of Intel’s instruction set extension for vectorization is AVX-512. In
this extension, the width of vector registers is 512-bit. That means for the state-of-the-art
vectorized LP implemention, that 16 keys (each key has a width of 32-bit) can be processed
at once in each iteration. Aside from an increased vector width, AVX-512 also offers
a variety of new instructions. One of the new instruction feature sets is called Conflict
Detection (AVX-512CD) allowing the vectorization of loops with possible address conflicts.
This instruction feature set is currently supported by Intel Xeon Phi Knights Landing (KNL)
as well as on current Xeon processors.

As already presented in [Un18], some core features of AVX-512CD are (i) the generation
of conflict free subsets, i.e. subsets which contain no equal elements (no duplicates), and
(ii) the count of leading zeros of the elements in a vector. For example, the intrinsic
_mm512_conflict_epi32 creates a vector register containing a conflict free subset of a given
source register. An example for this is shown in Fig. 3. In other words and as illustrated in
this figure, this intrinsic transforms a vector register with 16 32-bit elements (illustrated by
A, B and C) into a new vector register with 16 bitmasks (each represented by 32-bit values).
Each bitmask encodes the positions of equal previous elements in the vector. The bitmasks
for the first three elements A, B, and C are zero in our example, because there are no equal
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Fig. 4: Example for the _mm512_maskz_compress_epi32 intrinsic.

previous elements. The A element at the third position in the input register is in conflict
(equal to) with the element at position O in the input register. Thus, the least significant bit
of the corresponding bitmask is set to 1, the rest of the bitmask is filled with zeros. The
element A at position 4 is in conflict with the previous elements at positions 3 and 0 (equal
to previous elements). Therefore, the corresponding bits in the bitmask are set to 1, all
other bits are zero. A second interesting CD-feature is the intrinsic _mm512_lzcnt_epi32,
which counts leading zeros. Given a vector of 16 values, this intrinsic counts the number of
leading zeros for all values at once and writes the results in a vector register with 16 values.

Another newly introduced functionality is a set of compress instructions, e.g.
_mm512_maskz_compress_epi32. They are part of the foundation instruction set of AVX512
(AVX-512F). The input of these compress instructions is a vector and a bitmask. Then, the
elements in the input vector, which are marked by the bitmask, are stored contiguously in
the output vector as depicted in Fig. 4. Using this compress instruction, the result vector
contains no reserved space of the unmarked elements in the input register.

3 CD-aware Vectorized Implementation of Linear Probing

The above presented state-of-the-art vectorized implementation of linear probing is well-
engineered, but the implementation has a major shortcoming. This shortcoming is related to
ever increasing widths of vector registers. On the one hand, with wider vector registers, more
keys can be processed simultaneously. For instance, with 128-bit wide vector registers only
4 keys, but now with 512-bit wide vector registers 16 keys are processable simultaneously.
On the other hand, with more keys in parallel, the probability of collisions within one vector
register increases for two reasons:

1. With more keys in parallel, the probability of duplicate keys within one vector register
increases the risk of collisions at the end.

2. With more keys in parallel, the probability that different keys are mapped to a single
bucket within one vector register increases the risk of collisions at the end.

Fundamentally, when more hash collisions occur in each iteration, more iterations are
needed to process all input data, because more keys have to be moved to the next iteration.
At the same time, more iterations also mean that more Gather and Scatter operations are
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Fig. 5: Control Flow of state-of-the-art Vectorized Linear Probing using Conflict Detection.

performed leading to decreasing performance, finally. Nevertheless, this is a perfect setting
for the Conflict Detection capability as described next.

3.1 CD-aware Hash Table Data Structures

Before we introduce our Conflict Detection-aware (CD-aware) vectorized implementation
of linear probing in detail, we describe our underlying data structure. The hash table usually
has to hold a set of key/value pairs. The keys are inserted into a so-called key-store as
illustrated in Fig. 2 consisting of a fixed size number of buckets realized by an array. The
corresponding values are stored within a separate memory location (value-store). Since a
single key can exist multiple times within the given input dataset, the value-store has to
hold every value for the corresponding key. Through the assumption that the total number
of occurrences of a single key is unknown in advance, the value-store is realized as a fixed
sized array of dynamic containers.

3.2 Handling of Bucket Duplicates

To overcome the mentioned shortcoming, we add two Conflict Detection instructions to
the Hash Phase as illustrated in Fig. 5. With these instructions, the number of non-sequential
memory accesses through Gather and Scatter operations in the subsequent phases are
minimized.

The first Conflict Detection instruction CD(k,) is placed directly after the Load Phase
as highlighted in Fig. 5. If the vector register of an iteration contains duplicate keys, we
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already know that only one lane has to be used for the further steps. Lanes containing
duplicate keys can be automatically invalidated. Since same keys can result in different
buckets through offset addition and only the left most lane remain valid, it is feasible to use
the compress intrinsic provided by AVX-512F to arrange valid lanes in a contiguous manner.
The associated values of duplicate keys have to be preserved until the key can be written to
memory. Because the total number of occurrences of a key within a given dataset is not
known without further investigations, the values are stored within a temporal dynamic sized
buffer. As a consequence, the buffer has to be resized when duplicate keys are detected.
When the key is successfully stored into the key-store, the values from the corresponding
buffer are appended to the corresponding value-store entry.

After this first Conflict Detection instruction, we are sure that the vector register contains
only unique keys, whereby already some lanes could be invalidated which limits the
exploitation of parallelization in this iteration. However, different keys in the vector register
can result in the same buckets within the key-store after the hash phase. There are two
possible reasons (i) through a pure hash collision or (ii) through the addition of the offset.
This situation also has to be detected and solved. For this detection, we use the second
Conflict Detection instruction CD(h(k,)) as shown in Fig. 5. Based on that, we know
the vector lanes with a conflicting position. But the conflicting lanes cannot be invalidated
immediately, because each of these different keys could already be in the key-store. Thus,
these keys are used in the next Lookup Phase. If an empty bucket is found, the key and its
assigned value corresponding to the first occurrence (as a result of Conflict Detection)
of the specific bucket is transferred into the hash table and the lane is invalidated. The
remaining lanes containing conflicting buckets reside in the vector register and are treated
in the Carry Handling phase.

Based on our procedure, the Store Phase can be simplified as depicted in Fig. 5. In this
Store Phase, we do not have to load the buckets again to detect conflicts, because these
conflicts are now determined during the Hash Phase. In conclusion, the amount of random
access [O0-operations can be reduced by using the conflict detection intrinsic. Also duplicate
keys are substituted within the next iteration resulting in a higher degree of vector lane
utilization. Still non-valid lanes are present within a single iteration step which leads to
non-optimal data parallelism.

3.3 Handling of Key Duplicates

To address the non-optimal vector lane utilization through conflicting keys mentioned in
section 3.2, the Load phase has to be adapted as depicted in Fig. 6. Instead of executing one
load operation per iteration, contiguous keys are transferred to a vector register (v) until the
vector contains only distinct elements. We call this approach FetchD. To avoid selective and
non-cache friendly loads in our FetchD approach, a second full buffer vector register (vj)
is loaded at once. Then, distinct keys are identified using a conflict detection. This buffer
is then used to fill up invalidated lanes from the register containing the keys for further
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Fig. 6: Control Flow of the CD-aware Vectorized Implementation of Linear Probing.

processing. This is done using _mm512_maskz_compress_epi32 to organize distinct keys of
vector v, in a contiguous manner. In a second step, invalidated lanes of vq are substituted
with elements from the v using _mm512_mask_expand_epi32. These two steps are repeated
until vy contains only distinct elements or all elements are processed. In regard to the values,
a similar approach as described in the section above is used. Nevertheless, the buffer vector
register needs its own temporal value buffer which is merged with the value buffer from vy
corresponding to the replaced key lanes. This leads to additional 10-operations during the
Load Phase.

In summary, the discussed concepts can be used to utilize vector registers with the maximum
amount of parallel computation on the one hand. On the other hand, organizing the values
require scalar IO-operations which can be considered to be expensive in comparison to
vectorized operations.

4 Experimental Evaluation

Before we summarize the core results of our exhaustive evaluation in Sections 4.1 and 4.2,
we briefly describe our overall evaluation setup. Basically, we used two different hardware
platforms as depicted in Tab. 1. The first platform is a Xeon Phi™ 7250 Knights Landing
(KNL), while the second is a Xeon® Gold 6130 (SKL). Both platforms provide the AVX-512
vector register extension as well as the special instruction set AVX-512CD. The cache sizes
of the KNL and SKL are the same for L1 and L2. While every core of the SKL has access
to a 22 MB dimensioned L3-Cache, the KNL has no L3-Cache. Instead, a high bandwidth
memory which is located on the chip can be used in the KNL.
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Name Xeon Phi™ Xeon® Gold
Prozessor Model 7250 6130

Base Clock Frequency 1.4 GHz 2.1 GHz
Nodes x Cores x Threads 4x17x4 4x16x2

L1 Size 32 KB 32 KB

L2 Size 1 MB 1 MB

L3 Size - 22 MB
AVX-512 F, PF, ER, CD | F, DQ, CD, BW, VL

Tab. 1: Hardware Platform Specifications.

Furthermore, all vectorized implementations of linear probing were done in C/C++ by
ourselves, thereby we distinguish between the following implementations:

Basic: State-of-the-art vectorized implementation of linear probing as introduced
in [PRR15] (see also Section 2.2).

CDHashProbe: This is our first proposed CD-aware vectorized implementation with two
CD instructions in the Hash Phase and only a Scatter operation in the Store Phase
(see Fig. 5).

FetchD: This is our second proposed CD-aware vectorized implementation with the FetchD
approach in the Load Phase and a single CD instruction in the Hash Phase (see
Fig. 6).

FetchD-Basic: This is an enhanced state-of-the-art vectorized implementation using our
FetchD instead of a selective load in the Load Phase including a Scatter and Gather
operation in the Store Phase.

In all implementations and experiments, we used the vectorized version of Mumur3 as our
main hash function. Since in our work we focus on pushing the achieved data parallelism
for the hash build phase through vectorization to a maximum extent, we ran all experiments
single threaded. For this, we compiled all implementations with gcc (KNL: version 7.0.1,
SKL: version 7.2.0) with the optimization flags -0fast -mavx512f -mavx512cd. We also
evaluated the novel Compress instruction of AVX-512. Unfortunately, the impact was very
marginal and therefore, we do not include this aspect in our evaluation.

4.1 Evaluation Result for Hashing without Value Handling

In our first series of experiments, we investigated linear probing without value handling
which can be used for aggregation, anti-join and exists operators in in-memory database
systems. As clearly mentioned previously, there are two possible types of collisions: (i)
bucket duplicates and (ii) key duplicates. In the following, we separately evaluate both types.
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Fig. 7: Runtime Results and Speedups for a Key-Store with 1024KB Size and Input Data Consisting
of Unique Keys.

4.1.1 Bucket Duplicates

To evaluate the influence of bucket duplicates on the runtime behaviour of the different
linear probing implementation, we generated various data sets containing different numbers
of unique keys and varied the load factor of the key store from 0.5 to 0.9 in increments of
0.1. With unique keys, we explicitly restrict ourselves to bucket duplicates and we would
expect, that our first CD-aware implementation CDHashProbe (see Fig. 5) outperforms
Basic, while our second CD-aware implementation FetchD offers too much overhead in
this case. Generally, with higher load factors of the key-store (hashmap), the number of
bucket duplicates increases leading to higer runtimes. Fig. 7(a) and (c) show runtimes for
KNL as well as SKL on a data set size consisting of unique keys and a key-store size of
1024KB, so that the key-store fits in the L.2-cache on both hardware platforms. As we can
see, the runtimes for each implementation increases with increasing load factors and SKL
is faster than KNL as expected. Fig. 7(b) and (d) depict the speedups of our approaches
compared to the Basic implementation. On KNL, our CDHashProbe approach is slightly
faster than Basic in all cases. In contrast to that, our CDHashProbe only outperforms the
Basic approach on SKL for high load factors. The reason for that is that the CD instruction is
an expensive operation and this is only beneficial when the effort is less than the additional
Gather operation in Basic. Moreover, FetchD and FetchD-Basic are slower than the Basic
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Fig. 8: Runtime Results and Speedups for a Key-Store with 16MB Size and Input Data Consisting of
Unique Keys.

implementation in all cases. Of course, since we do not have key duplicates, the treatment
of this introduces additional overhead.

Fig. 8 shows the results for data sets with unique keys, a key-store size of 16MB and varying
load factors. As we can see, the same observations are also visible for higher amount of data
as well. From this set of experiments, we can conclude that our CD-aware implementation
for bucket duplicates CDHashProbe slightly outperforms the Basic approach.

4.1.2 Key Duplicates

In order to evaluate the influence of key duplicates on the runtime behaviour of the different
linear probing implementation, we generated various data sets containing different numbers
of repeating keys in sequence. Furthermore, we also varied the load factor of the key-store
from 0.5 to 0.9 in increments of 0.1. With repeating keys, we explicitly investigate the
influence of key duplicates in a best case scenario and we would expect, that our second
CD-aware implementation FetchD (see Fig. 6) outperforms the other implementations.
While Fig. 9 shows the results for KNL, Fig. 10 depicts the results for SKL. In both cases, we
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Fig. 9: KNL-Results for Key-Store of Size 1024KB and Varying Number of Repeating Keys.

illustrate the runtimes for load factors of 0.6, 0.7, and 0.9 as well as the speedups compared
to the Basic implementation.

As we can see, the presented implementation improvements benefit from a higher amount of
duplicates within the processed data, while FetchD has the highest impact on the performance.
With increasing load factors, the speedup of our CD-aware implementations also increases
compared to the Basic implementation. For example, we can improve the performance for
data with a high number of repetitive keys up to a factor of 18 (load factor 0.9; repetition
sequence length of 100) on the KNL and up to factor a factor of 10 on the SKL. Moreover,
we observed better runtimes of all investigated scenarios (data size, number of duplicate
key, load factors) when the underlying key-store is quite small, so it can fit into small levels
of cache, but this is already well-known.

4.1.3 Intermin Conclusion

As already shown by [PRR15], the load factor should not exceed 0.6 with regard to memory
consumption and total execution time. In our previous presented evaluation results, we
always included this specific load factor for a key-store size of 1MB in our considerations,
so that the key-store perfectly fits in the L2-Cache of our hardware platforms. From these
evaluations, we are able to conclude the following two aspects:

1. If the input data only consists of unique keys, our first CD-aware implementation
CDHashProbe performs slightly better than the Basic implementation.

2. However, already with a small amount of duplicate keys in the input data, our second
CD-aware improvement pays more off.
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Fig. 10: SKL-Results for Key-Store of Size 1024KB and Varying Number of Repeating Keys.

Thus, our experiments show that using new instructions like Conflict Detection instead
of random access 10 operations can improve the total performance if actual conflicts
occur. Furthermore, the presented approach FetchD which needs additional instructions
and branches amortizes as soon as duplicate keys are within the range of a vector register
through a cache friendly access pattern and a high degree of data parallelism.

To conclude, the presented CD-aware optimization’s for linear probing can improve the
total performance if the processed data contains duplicate keys or duplicate buckets. The
influence of Conflict Detection as well as FetchD grows with higher load factors and the
amount of duplicates. This arises from the fact that without value handling, repeating keys
within vector registers are redundant and can be discarded. However if values have to be
treated, the values of repetitive keys have to be handled.

4.2 Evaluation Results for Hashing with Value Handling

To precisely evaluate our proposed value handling approach for the CD-aware implementa-
tions, we repeated all our previously introduced experiments with enabled value handling.
In particular, the value handling is important in order to execute hash joins. Fig. 11 shows
the results on the KNL as well as on the SKL hardware platform. In the depicted experiment,
we used a key-store of size IMB, thereby we only compare the Basic with the FetchD
implementation. Through the need of dynamic temporal buffers, a growing amount of
memory re-allocations and copying for all our CD-aware implementations for value handling,
the performance of our FerchD is lower then the Basic one. As we can see, the negative
impact on the performance gets slightly better with a growing number of duplicates and a
higher load factor. Nevertheless, a more sophisticated value handling approach for FetchD
has to be found to be competitive or even better than the Basic implementation.
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Fig. 11: Value Handling Evaluation Results with a Key-Store of Size IMB.

5 Related Work

Fundamentally, related work in this domain is manifold, because the efficient utilization of
SIMD (Single Instruction Multiple Data) instructions in database systems is a very active
research field [Hal8, Lal6, LB15, PRR15, SWL11, Unl8, ZR02].

For example, SIMD instructions are frequently applied in lightweight data compression
algorithms [Dal7, LB15]. In this specific domain, null suppression (NS) is the most studied
lightweight compression approach, whereby the basic idea is the omission of leading zeros in
the bit representation of integers [LB15, SGL10]. There are different techniques addressing
the efficient implementation using SIMD instructions [Dal7, LB15, SGL10]. However,
most of the vectorized implementations of lightweight data compression algorithms have
been developed for a fixed vector width of 128 bits (corresponding to Intel’s SIMD extension
SSE). In [Hal8], we systematically investigated the impact of different SIMD instruction
set extensions with vector sizes of 128-, 256-, and 512-bits on the behavior of lightweight
data compression algorithms. To obtain implementations for wider vector sizes (AVX2
and AVX-512), the 128-bit implementation can be used as foundation. In a straightforward
transformation, the 128-bit SIMD operations can be substituted by the corresponding
operations for 256 or 512-bit vectors. As we have shown, this is possible in almost all
cases, since many instructions offered by SSE are also offered by AVX2 and AVX-512 on
wider vectors. Fundamentally, two effects are observable: (i) NS algorithms working on
wider vector registers are more vulnerable to outliers in the data, which can affect both,
the compression ratio as well as the performance negatively and (ii) the speed ups are
generally sub-optimal in most cases, since the algorithms quickly become memory-bound
when the computations are accelerated through wider vector registers processing more
data elements at once. To overcome that, novel approaches are necessary. In [Un18], we
presented a novel approach for RLE encoding using Conflict Detection. Aside from our
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work, [Lal8] introduced efficient refill algorithms for vector registers by using the latest
SIMD instruction set, AVX-512. On the other hand, SIMD instructions are also used in other
database operations like scans [LP13], aggregations [ZR02], hashing [PRR15, RAD15]
or joins [Bal3]. To best of our knowledge, none of these approaches uses AVX-512 CD,
although the operations could benefit from CD.

From a hashing perspective, the papers [PRR15], [RAD15] and [Be18] are highly relevant.
The state-of-the-art vectorized implementation of linear probing is presented in [PRR15] as
described in Section 2. Richter et al. [RAD15] exhaustively studied a variety of common
hash table implementations—including linear probing—in a five-dimensional requirements
space: (i) data-distribution, (ii) load factor, (iii) dataset size, (iv) read/write-ratio, and (v)
un/successful-ratio. As they have shown, there exists no single best-performing hash table
implementation and each hash table implementation has its own application area. In [Bel8],
the authors translated the state-of-the-art vectorized implementation of linear probing to
OpenCL with the aim to reduce code complexity and to ensure portability. For that, they
realized essential primitives like Gather, Scatter, Selective Load and Selective Store in
OpenCL. It would be interesting to see how the translation of the Conflict Detection
would look like.

6 Conclusion and Future Work

Hash tables are a core data structure in in-memory database systems, because they are
fundamental for many database operators like hash-based join and aggregation. In recent
years, the efficient vectorized implementation using SIMD (Single Instruction Multiple
Data) instructions has attracted a lot of attention. Generally, all hash table implementations
need to address what happens when collisions occur. In order to do that, the collisions have
to be detected first. There are two types of collisions: (i) key duplicates and (ii) hash value
duplicates (hash collisions). The second type is more complicated than the first type. In this
paper, we investigated linear probing as a heavily applied hash table implementation and we
presented an extension of the state-of-the-art vectorized implementation with a hardware-
supported duplicate or collision detection. For that, we use novel SIMD instructions which
have been introduced with Intel’s SIMD instruction set extension AVX-512. As we have
shown, our approach outperforms the state-of-the-art vectorized version for the key handling,
but introduces novel challenges for the value handling.

Further research should investigate different methods of value handling. The usage of
dynamic sized buffers should be replaced through a fixed sized buffer. Based on that, costly
memory reallocations and copy operations can be reduced as well as handling the values
could be done using SIMD scatter instructions. One opportunity for that would be to process
the given dataset twice, collecting statistics for the dataset within the first run. Then, this
information can be used in a further step to allocate a constant sized value store which can
hold up all values having to be inserted. As a side effect of this approach, the result of the
first run can be used further e.g., for database operators like aggregation.
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