Towards an Architectural Style
for Multi-tenant Software Applications

Heiko Koziolek

ABB Corporate Research
Industrial Software Systems
Wallstadter Str. 59, 68526 Ladenburg, Germany
heiko.koziolek @de.abb.com

Abstract: Multi-tenant software applications serve different organizations from a sin-
gle instance and help to save development, maintenance, and administration costs. The
architectural concepts of these applications and their relation to emerging platform-as-
a-service (PaaS) environments are still not well understood, so that it is hard for many
developers to design and implement such an application. Existing attempts at a struc-
tured documentation of the underlying concepts are either technology-specific or re-
stricted to certain details. We propose documenting the concepts as a new architectural
style. This paper initially describes the architectural properties, elements, views, and
constraints of this style. We illustrate how the architectural elements are implemented
in current PaaS environments, such as Force.com, Windows Azure, and Google App
Engine.

1 Introduction

A multi-tenant software application is a special type of hosted software that individually
serves different tenants (i.e., organisations, such as companies or non-profit groups) from
a single instance [CCO06a]. Here, a single instance means that the software runs on the
same infrastructure, is implemented from the same code base, and can be updated cen-
trally. Currently, several platform-as-a-service (PaaS) environments, such as Force.com,
Windows Azure, and Google App Engine, are emerging [AFGT09]. They are able to host
multi-tenant software in large data centers and shall save software vendors costs for setting
up and maintaining a hardware/software infrastructure.

Following the success of Salesforce [WB09], multi-tenant architectures have been iden-
tified as a potentially critical competitive advantage over classical single-tenant architec-
tures in certain domains [CC06a]. However, in spite of the appearing platforms, it is
still hard for software developers to design and implement efficient multi-tenant architec-
tures [WGG™08]. Due to the missing documentation and formalisation of the underlying
architectural concepts, many developers do not possess a clear view on the necessary de-
sign decisions and architectural trade-offs of a multi-tenant application.

Existing attempts on providing a structured documentation of the architectural concept

81



underlying a multi-tenant software architectures either depend on specific technologies
(e.g., [CCO6b]) or focus on restricted aspects, such as the database layer (e.g., [AGIT08]).
Descriptions of existing multi-tenant software architectures (e.g., [WB09]) help to achieve
an initial comprehension but are difficult to transfer to other applications. A more abstract
and technology-agnostic perspective is needed to understand the involved design decisions
and architectural trade-offs.

We propose documenting the concepts and constraints underlying a multi-tenant software
architecture as a new architectural style (the so-called SPOSAD style: Shared, Polymor-
phic, Scalable Application and Data). Classical styles, such as client/server or pipe-and-
filter, have been documented decades ago and are still being used to structure new software
applications [TMDO09]. Recent architectural styles, such as REST (REpresentational State
Transfer) for the WWW [FT02] and SPIAR (Single Page Internet Application aRchitec-
tural style) for AJAX application [MvDO8] help clarifying the architectural features of web
applications. In this paper, we propose documenting the features of multi-tenant software
architectures as an extension of the n-tier architectural style. The described concepts shall
be reusable and guide the development of new multi-tenant software applications.

The contribution of this paper is an initial description of the architectural elements and
properties of a multi-tenant software architecture. We set the architectural concepts in
context to the capabilities of current PaaS environments. We also provide an initial de-
scription of the design decisions to be made in the application tier and in the database tier.
Ultimately, our description shall be evolved to a formal documentation of a new architec-
tural style for multi-tenant software applications.

This paper is organized as follows: Section 2 describes three commercial PaaS environ-
ments, which are built according to multi-tenant software architectures. Section 3 then
briefly recalls concepts about architectural styles that are relevant in the context of this
paper. Section 4 provides an initial description of the SPOSAD style and lists architectural
properties, elements, views, and constraints. Section 5 discusses the style, before Section 6
reviews related work, and Section 7 concludes the paper.

2 Multi-tenant Architectures in PaaS Environments

Several Paa$S environments are currently being developed [AFGT09]. These environments
are built on top of large data centers and shall help software developers to develop cloud-
based applications. In the following, we will briefly summarize the most important archi-
tectural elements of three PaaS environments, before we derive an architectural style from
their commonalities in later sections.

Force.com: With the force.com platform developers may build applications on top of the
salesforce.com infrastructure. On a high abstraction level, the platform is built according
to an n-tier architecture [WB09] comprising a presentation tier (using web browsers), an
application tier, and a data tier.

Clients access the application tier of force.com according to the REST style. Each tenant is
served by application instances originating from the same code base. Salesforce manages

82



updates of this code base centrally. Tenants can customize the application user interface
(forms), business logic (workflows), and data (customized tables) by specifying meta-
data stored in the so-called Universal Data Dictionary (UDD). A runtime engine generates
tenant-specific application code from this meta-data. Thus, the application is considered
’polymorphic’, as it appears and behaves differently for the clients of each tenant.

Through the application tier, all tenants access the same logical database in the data tier.
All tenant data is stored in a single table, which can be partitioned among multiple ma-
chines. Besides a tenant id column, the table contains 500 customizable columns (varchar
datatype) for storing arbitrary data (i.e., a universal table layout [AGJT08]). Information
about tenant-specific entities is stored in an additional ’objects’ meta-data table, while
information about tenant-specific fields is stored in an additional ’fields’ meta-data table.

Windows Azure: The Windows Azure platform by Microsoft allows deploying and run-
ning ASPNET and WCEF application in Microsoft data centers [Cha09]. The data centers
run the Windows Azure Hypervisor and modified versions of Windows Server 2008 on a
large number of virtual machines. The platform follows a three-tier structure.

Clients, such as browsers or web services, access the application tier using REST or SOAP.
In the application tier, applications with a Ul are implemented as so-called *web-roles’,
while background application are implemented as so-called *worker-roles’. Web-roles and
worker-roles may interact asynchronously using queues. They are ideally stateless and
may be run in a configurable number of instances. Load balancers can distribute requests
among those instances. Tenants can implement UI customizations using MS Silverlight
and business logic customizations using Windows Workflows as demonstrated in [Cum09].

Web/Worker-roles can either access the non-relational, horizontal scalable Windows Azure
storage or slightly customized versions of the MS SQL server (SQL Azure). The Windows
Azure storage features blobs, non-relational tables, and queues for data persistency. Blobs
are binary large objects up to 50 GB large, while the tables can hold a hierarchical structure
of key/values pairs. Queues handle interaction between web- and worker roles by storing
data portions. Tenant-specific data can either be stored in the Windows Azure storage
using tenant IDs for delimination or in SQL Azure with each tenant accessing its own
database instance.

Google App Engine: Google’s App Engine (GAE) [Goo09] enables developers to run
Java or Python applications in Google’s data centers. Several web frameworks, such as
Django, Cherrypy, or pylons run on GAE and assist developers in implementing their
applications.

Clients access the application tier of GAE using REST. Besides responding to web re-
quests, GAE also allows to run so-called ’scheduled tasks’ as possibly periodic back-
ground tasks. Web applications and background tasks might interact asynchronously using
queues. Developers using GAE do not gain control on the VMs running their software,
which shall relieve them from the administration tasks. GAE features built-in auto-scaling,
load balancing, and fail-over mechanisms between identical implementation instances in
the application tier.

Applications may store data in a non-relational structure called Google Big Table, which
shall be able to handle large-scale applications and store petabytes of data. The GAE

83



storage features a proprietary query engine with the Google Query Language that allows
transactions. The Big Table does not have a schema, the structure of the contained data
entities must be provided and enforced by the application code.

3 Architectural Styles

To describe the architectural concepts in this paper, we use the terminology of Perry and
Wolf [PWO92]. They define an architecture as a configuration of architectural elements -
processing (i.e., components), connectors, and data - constrained in their relationships in
order to achieve a desired set of architectural properties.

According to Fielding [FT02], an architectural style is a coordinated set of architectural
constraints that restricts the roles of the architectural elements and the allowed relation-
ships among those elements within any architecture that conforms to that style. Basic
architectural styles are for example client/server, n-tier, pipe-and-filter, and code on de-
mand. More complex styles, which build on and extend the basic styles are model-view-
controller [KP88] for GUIs, REST for the WWW [FT02], and SPIAR for AJAX applica-
tions [MvDOS].

REST and SPIAR are architectural styles related to multi-tenant architectures. REST in-
duces a constrained client/server architecture with focus on the communicated data el-
ements. The style prescribes the use of resources (i.e., the target of hyperlinks), re-
source identifiers (e.g., URLSs), representations (e.g., HTML documents, JPEG images),
and meta-data. Two constraints for the architecture are a synchronous request/response
communication between client and server as well as stateless and context-free interaction
for scalability.

SPIAR targets client / server architectures with rich user interfaces and was deduced from
AJAX applications. The style constraints the architecture by prescribing asynchronous
interaction between client and server, delta-communication (i.e., only state-changes are
transferred to reduce network traffic), and component-based user interface for more inter-
activity.

Both the REST and SPIAR style (if stateless) might be used in a multi-tenant architecture.
However, they are not sufficient to describe such architectures. Multi-tenancy puts addi-

tional constraints on the code to be used at the application tier and the data elements held
in the data tier as described in the next section.

4 The SPOSAD Style

In this section, we first describe the essential architectural properties of multi-tenant ap-
plications (Section 4.1). Then, Section 4.2 focusses on the architectural elements of the
SPOSAD style, before Section 4.3 illustrate the style with architectural views. Finally,
Section 4.4 lists the architectural constraints induced by the SPOSAD style.

84



4.1 Architectural Properties

First, we discuss the architectural properties that relate to the goals of multi-tenant soft-
ware. They mainly focus on extra-functional properties to be achieved by the style. These
properties can also be viewed as requirements for a multi-tenant architecture.

Resource Sharing: the main motivation for an multi-tenant architecture is to save de-
velopment and administration costs for hosted software by serving multiple tenants from
the same code base and shared data repositories. The term ’resource’ is used here in a
broader sense. The software instance shall share hardware and software resources, such
as hardware infrastructure, virtual machines, operating systems, databases, and code. On
the other hand the software shall share development and maintainance resources by using
a single code base for multiple tenants.

Scalability: because multiple tenants with potentially thousands of clients shall be served,
scalability is an important architectural property for a multi-tenant architecture. Scalability
refers to the ability of a system to either handle growing amounts of work in a graceful
manner or to be readily enlarged. For example, this means that the response time of an
application remains stable if the workload (i.e., the number of users concurrently using
the system) is increased. Due to the inherent limits of scaling up (i.e., adding resources
to a single node), the ability to seamlessly scale out (i.e., adding more nodes) is a typical
architectural property of a multi-tenant system.

Maintainability: while many hosted, single-tenant application rely on different code
bases for tenant customizations, a multi-tenant architecture relies on a shared code basis
for several tenants. This feature helps to decrease the maintenance effort for the software,
because bugs only need to be fixed once and updates can be installed centrally. The multi-
tenant design with a shared database also reduces costs for database administration and
maintenance, which does not have to be executed for each tenant.

Customizability: the ability to incorporate tenant-specific customizations is another im-
portant property of a multi-tenant architecture. Because of the shared application code base
and shared database it is not trivial to allow tenants to adapt the application’s business logic
and data to the requirements of their clients. A well-designed multi-tenant architecture is
able to find a good trade-off between resource sharing and user customizability.

Usability: besides changing the business logic and the data of an application, also the user
interface shall be configurable through tenant-specific customizations. It allows different
tenants to create their own branding for an application.

4.2 Architectural Elements

The architectural elements described in the following are structured according to the cat-
egories by Perry and Wolf [PW92], processing elements, connecting elements, and data
elements. A processing view of the style is depicted in Fig. 1 and will be explained in
Section 4.3.

85



4.2.1 Processing Elements (Components)

Components process the data elements of the system and communicate via connectors.
The following components are most relevant for the SPOSAD style.

On the client tier, users interact with the system using a client application, which can be a
web browser for displaying HTML documents and images or a rich client for more sophis-
ticated user interfaces. The client application accepts user inputs and handles the whole
user interaction. It is not different from client applications in typical n-tier architectures.

On the application tier, multiple identical application threads execute the business logic
of the application. Multiple threads or processes allow the application to scale out. It is
possible to distribute the threads or processes to multiple physical processing nodes and
to distribute the user requests among them. The threads can be considered polymorphic,
because they may appear and behave differently for different tenants based on the meta-
data they access. However, the code of the application threads comes from a single code
base, which bears no tenant-specific extensions.

A meta-data manager handles the customization of the application threads with tenant-
specific meta-data. This data may for example relate to tenant-specific input forms, UI
brandings, business logic, workflows, and access privileges. There are different possi-
bilities to implement such an application customization mechanism. For example, the
meta-data manager might generate tenant-specific application code from a common code
base on-the-fly. Or the meta-data manager might simply be responsible for retrieving
tenant-specific meta-data and the application adapts itself to this data.

To ensure horizontal scalability, multiple application threads are running concurrently. A
load balancer distributes client requests to these threads. Many load balancing strategies
with different benefits and drawbacks are known. As the application threads shall be state-
less, the load balancer can distribute subsequent requests by the same client to different
application threads. The load balancer can also be responsible for auto-scaling, i.e. start-
ing new threads upon increasing workload and stopping running threads upon decreasing
workload (also known as elasticity).

On the application tier, the components processing the user requests are arranged accord-
ing to a pipe-and-filter style. Therefore, additional components, such as caches or proxies,
might process the user requests. However, these components can be considered optional
in the SPOSAD style.

The database tier contains a multi-tenant data resource and a meta-data resource. For
maximal resource sharing, a single database application should serve all tenants to save
processing overheads, memory footprint, and administration costs. Different options for
the data and schema layout for multi-tenant applications are discussed in the section about
data elements. Hosting a large amount of tenants in the same database results in the need
to partition the database and to store the data onto multiple physical nodes.

In addition to the components described so far, other optional components might be present
in a multi-tenant architecture. For example, multiple tenants on the same resource require
measures for user authentication and authorization and security measures (e.g., encryp-
tion). If the application shall be licensed according to a pay-per-use scheme, components

86



for metering application usage and billing users are required.

4.2.2 Connecting Elements (Connectors)

All components in the SPOSAD style are connected by procedure calls. The communi-
cation can for example follow the REST style with synchronous calls. Clients requests
service from the server, the application threads carry out the service based on the data
in the database and send responses back to the clients. Following the SPIAR style that is
used in AJAX applications, the communication might also be asynchronous with the client
requesting additional service upon state changes.

The connections might involve additional resolvers (e.g., DNS lookup) or tunnels (SOCKS,
SSL after HTTP) as additional, optional connectors. Because the component topology fol-
lows the pipe-and-filter style, the communication can be flexibly extended.

The communication between the application tier and the database tier might be synchronous
(e.g., for simple, short queries) or asynchronous (for long running queries). Asynchronous
communication might result in more efficient resource utilization as the application threads
do not have to wait for the database to respond and already serve further user requests.

4.2.3 Data Elements

The data elements in the system are the messages exchanged by the components as well
as the data stored in the database tier. The messages sent by the components might be
RESTful. Each client request at least has to include a tenant id, so that the client only sees
tenant-specific data and gets a tenant-specific application.

The data stored in the database at least consists of fenant-specific application data and
meta-data. When designing the data storage, the goal of the SPOSAD style is to share an
adequate amount of resources.

Chong et al. [CCO6b] discuss the benefits and drawbacks of different data architectures.
Using a separate database per tenant is easy to implement and beneficial for security pur-
poses, but it there is limited resource sharing and thus high costs for hardware, database
administration, and backup procedures. Using a shared database, but per-tenant schemas
reduces hardware costs and maintenance effort, but raises security issues and complicates
backup procedures. Even more efficient is using a single schema for all tenants. Such
an approach has the lowest memory overhead and low administration costs, but requires
special measures for arranging the data and ensuring security. In general, the more tenants
need to be served by the multi-tenant application, the better is a shared schema approach,
because it reduces the memory and maintenance overheads and allows exploiting eco-
nomics of scale.

Aulbach et al. [AGI*08] have compared different schema-mapping techniques for multi-
tenant databases. A private table layout provides a single table per tenant. In the presence
of many tenants, this can induce a memory overhead for storing the individual table struc-
tures. An extension table layout provides a single table for common tenant data, and an
additional table per tenant for schema extensions. If many tenants customize the schema,

87



this again results in a high number of required tables and additionally requires joins when
accessing the data.

An universal table layout provides a single table for storing data by all tenants. This layout
is for example used by the force.com architecture. It contains multiple columns without
fixed datatypes for storing tenant-specific data. This layout might be more efficient, be-
cause there is no need for expensive joins to reconstruct the logical schema. However, it
requires storing many null values and may require type convertions. In a pivot table layout
each table contains tenant and row ids and a single column for a specific data type. While
this layout reduces the need to store null values, it again requires joins to reconstruct the
logical schema.

The SPOSAD style requires the architect to use a data architecture where resources are
shared. For high scalability, the style also requires the architect to use a data partitioning
scheme to physical servers that best allows for scaling out large amounts of data. This can
for example involve tenant-specific partitions or local partitions for different user groups
of a single tenant.

4.3 Architectural Views

Different views can illustrate the interplay of the architectural elements described in Sec-
tion 4.2. Fig. 1 depicts a processing view of an architecture implemented according to the
SPOSAD style. The figure shows the noticeable relation of the SPOSAD style to the n-tier
architectural style, as it features a client, application, and database tier.

Client Tier Application Tier Database Tier
REST / SOAP

Web | —

Browser e

oy

resTha|  Cache - Load ¥| Application Data
SOARL¥|  (optional) Balancer & Threads > (Shared
pta transfer
Rich Client Table)

I A
REST / SOAP
customizes Relatestp
N

Meta-Data | _ -~
Manager = Datatranger | Meta-Data

~N

Figure 1: Processing View of the SPOSAD Style

Clients using web browsers or rich client applications interact with the application tier,
which in turn accesses the database tier. The polymorphic application threads are the
heart of the application tier. A load balancer directs user requests to them. The meta-data
manager ensures that tenant-specific customizations are included in the application. The
data tier differs from traditional n-tier architecture in the arrangement of the data, which is

88



stored in a multi-tenant database that allows maximal resource sharing.

The figure neglects many details of an architecture implemented according to the SPOSAD
style and focuses on the elements that differentiate multi-tenant architecture from n-tier ar-
chitectures. Additional components for authentication, authorization, connection pooling,
security handling etc. are required. Such an application typically runs on application
servers and may be hosted on virtual machines. The physical topology, i.e., the allocation
of the components to hardware nodes, is also not depicted here.

4.4 Architectural Constraints

The SPOSAD style induces the following architectural constraints, which restrict archi-
tects when designing such a system.

Single code base: The application is developed in a single code base. Tenant-specific
extension shall be made only via meta-data, but not by changing the code. This constraint
complicates implementing the application, because mechanisms for meta-data driven ten-
ant customizations have to be found. On the other hand this constraint enables sharing of
development efforts and allows for central bug fixes and updates.

Shared resources in the database tier: Architects may not use isolated, tenant specific
data layouts in the database tier as in typical n-tier applications. The style mandates sharing
resources to reduce costs for database administration and backup procedures as well as
hardware.

Customizable application: The application threads must allow for tenant-specific ex-
tensions using meta-data. While resource sharing is the most desirable property of the
SPOSAD style, tenant-specific customizations are a necessity from a business perspec-
tive, as tenants will not accept standard solutions in many cases.

Stateless application tier: Client specific state, such as transactional data or inputs of
users forms, may not be stored in the application tier. The application threads shall be
stateless to allow serving the same client with different threads in subsequent requests.
This constraint allows for efficient usage of the processing resources, as the application
threads do not have to wait for user inputs of a specific client, but can process requests by
other users in the mean time. Client specific state thus has to be stored at the client-side
(e.g., using cookies) or in the database tier.

5 Discussion

Architects have to make several decisions and trade-offs when developing multi-tenany
applications. They have to define the degree of customization that the application should
support. More customisability implies more complicated development and makes the use
of shared resources more difficult. Thus, highly customizable applications are not well
suited for a multi-tenant architecture.

89



Architects have to work out concepts to deal with security issues. Hosting business-critical
data of multiple tenants in the same infrastructure or even the same database table requires
special measures for keeping the data logically isolated (e.g., using encryption).

When multiple tenants are using the same infrastructure, it has to be ensured that the
application threads of one tenant do not interfere with application threads by other tenants
(e.g., by crashing the underlying VM or decreasing performance). Reliability measures
might include application thread replication and the isolation of performance-intensive
application tasks onto individual VMs. For example, Windows Azure replicates each web
and worker role (i.e., application threads) three times.

The PaaS environments described in Section 2 are already built according to the SPOSAD
style or at least support building multi-tenant application and therefore should be consid-
ered by architects when making build or buy decisions for a multi-tenant infrastructure.
Force.com includes a meta-data manager that generates the application thread code during
runtime from meta-data and manages all tenant data according to a universal table lay-
out. Azure uses web and worker roles as application threads and features a horizontally
scalable storage solution with the Windows Azure tables. GAE runs application threads
implemented in Java or Python code, but does not support meta-data management out-of-
the-box. Like in Azure, data storage is handled in a horizontally scalable, non-relational
table structure.

It is furthermore helpful to delimit multi-tenant architectures from single-tenant, n-tier
architectures to make their special features better comprehensible. For example, an appli-
cation such as Hotmail hosts the data of multiple tenants in the same infrastructure, but
does not allow for tenant-specific customizations using meta-data. The software as a ser-
vice solution by SAP for small companies called BusinessByDesign hosts the clients of
each tenant on a dedicated physical machine. Thus, it can be considered a single-tenant
solution.

6 Related Work

Due to the novelty of PaaS environments and cloud platforms, there is only limited scien-
tific research for multi-tenant architectures.

Chong and Carraro from Microsoft discuss the business rationale of SaaS applications and
describe their high level architectural concepts [CC06a]. Level 4 of their SaaS maturity
model (i.e., a scalable, configurable, multi-tenant efficient application) can be considered
conforming to the SPOSAD style sketched in this paper. The same authors have also
discussed the benefits and drawbacks of different database layouts for multi-tenancy ap-
plications [CCO6b]. However, they do not describe a reusable architectural style.

Weissman [WB09] provides an overview of the force.com architecture, which realises
many concepts for multi-tenancy. His description is tied to a specific platform and thus
not easily transferable to other multi-tenant architectures.

Aulbach et al. [AGJ*08] provide a database centric view on multi-tenant architectures.
They evaluate the performance properties of different flexible schemas for multi-tenant

90



applications and propose a new, more efficient schema. Their analysis lacks an evalua-
tion of the scalable storage solutions of current PaaS environments. Furthermore, they
completely neglect the application layer of multi-tenant applications.

Wang et al. [WGG™08] proposed a framework for implementing multi-tenant applications.
They describe patterns for security, performance, and administrations isolation in such
architectures and sketch customization concepts. Furthermore, they identify performance
bottlenecks and optimization approaches for such applications. However, they neglect the
application tier in their investigation.

Kwok et al. [KMO08] deal with capacity planning in multi-tenant applications and propose
a method for determining the optimal allocation of application threads to physical nodes.
Mietzner et al. [MLP08] extend the service component architecture (SCA) to be able to
describe multi-tenant applications.

In the area of architectural styles, Perry and Wolf [PW92] laid the foundation for describ-
ing reusable styles. Taylor et al. [TMDO09] provide an up-to-date description of the most
important documented architectural styles. Among them are REST [FT02] for the WWW
and SPIAR [MvDO08] for AJAX applications.

7 Conclusions

This paper has described the component, connectors, and data elements of a typical multi-
tenant software architecture and discusses various properties and constraints of such an
architecture. The description shall ultimately lead to the description of a new architectural
style for multi-tenancy applications. The paper has also put the described architectural
elements in context of three current PaaS environments.

The identification of a new architectural style helps developer in creating future multi-
tenant software applications. While the emerging PaaS environment are well-suited for
implementing such applications, there are still many design decisions at the application
tier and the database tier that have to be made for each application. An architectural style
can help developers in understanding the architectural trade-offs and the implications of
their decisions.

As future work, we plan to formalize the style description further. We will provide differ-
ent views of the style and describe further architectural constraints. Furthermore, we will
analyse more existing multi-tenant applications for their implementation of the SPOSAD
style concepts.

References

[AFGT09] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-
terson, A. Rabkin, I. Stoica, and M. Zaharia. Above the Clouds: A Berkeley View of
Cloud Computing. Technical Report 2009-28, UC Berkeley, 2009.

[AGJ*08] Stefan Aulbach, Torsten Grust, Dean Jacobs, Alfons Kemper, and Jan Rittinger. Multi-

91



[CCO6a]

[CCO6b]

[Cha(9]

[Cum09]
[FT02]
[Goo09]

[KMO8]

[KPS8S8]

[MLPO8]

[MvDO8]
[PW92]
[TMD09]

[WB09]

[WGG™08]

tenant databases for software as a service: schema-mapping techniques. In Proc. ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD’08), pages 1195-1206, New
York, NY, USA, 2008. ACM.

Frederick Chong and Gianpaolo Carraro. Architecture Strategies for Catching the
Long Tail. Technical report, Microsoft Corporation, http://msdn.microsoft.com/en-
us/library/aa479069.aspx, April 2006. Last visited 2009-10-09.

Frederick Chong and Gianpaolo Carraro. Multi-tenant Data Architecture. Technical re-
port, Microsoft Cooperation, http://msdn.microsoft.com/en-us/library/aa479086.aspx,
June 2006. Last visited 2009-10-09.

David Chappell. Introducing the Windows Azure Platform. Technical report,
DavidChappell & Associates, http://go.microsoft.com/fwlink/?LinkId=158011, Au-
gust 2009.

Cumulux. Project Riviera Website. http://code.msdn.microsoft.com/riviera, September
2009. Last visited 2009-10-09.

Roy T. Fielding and Richard N. Taylor. Principled design of the modern Web architec-
ture. ACM Trans. Internet Technol., 2(2):115-150, 2002.

Google. App Engine. http://appengine.google.com, October 2009. Last visited 2009-
10-09.

Thomas Kwok and Ajay Mohindra. Resource Calculations with Constraints, and Place-
ment of Tenants and Instances for Multi-tenant SaaS Applications. In ICSOC ’08: Pro-
ceedings of the 6th International Conference on Service-Oriented Computing, pages

633-648, Berlin, Heidelberg, 2008. Springer-Verlag.

Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view controller
user interface paradigm in Smalltalk-80. J. Object Oriented Program., 1(3):26-49,
1988.

Ralph Mietzner, Frank Leymann, and Mike P. Papazoglou. Defining Composite Con-
figurable SaaS Application Packages Using SCA, Variability Descriptors and Multi-
tenancy Patterns. In ICIW ’08: Proceedings of the 2008 Third International Confer-
ence on Internet and Web Applications and Services, pages 156—161, Washington, DC,
USA, 2008. IEEE Computer Society.

Ali Mesbah and Arie van Deursen. A component- and push-based architectural style
for AJAX applications. J. Syst. Softw., 81(12):2194-2209, 2008.

D.E. Perry and A.L. Wolf. Foundations for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes, 17(4):40-52, 1992.

R. N. Taylor, N. Medvidovic, and E. M. Dashoty. Software Architecture: Foundations,
Theory, and Practice. Wiley, 2009.

Craig D. Weissman and Steve Bobrowski. The Design of the Force.com Multitenant In-
ternet Application Development Platform. In Proc. 35th SIGMOD International Con-
ference on Management of Data (SIGMOD ’09), pages 889-896, New York, NY, USA,
2009. ACM.

Zhi Hu Wang, Chang Jie Guo, Bo Gao, Wei Sun, Zhen Zhang, and Wen Hao An.
A Study and Performance Evaluation of the Multi-Tenant Data Tier Design Patterns
for Service Oriented Computing. In Proc. Int. Conf. on E-Business Enigneering
(ICEBE’08), pages 94-101. IEEE, 2008.

92



