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Fingerprint Pre-Alignment based on Deep Learning
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Abstract: Robust fingerprint pre-alignment is vital for identification systems and biometric cryp-
tosystems based on fingerprint minutiae, where computation of a relative alignment by comparison
of the fingerprints is inefficient or intractable, respectively. The pre-alignment is achieved through
an absolute alignment, i. e. an alignment computed for each fingerprint independently, which can be
applied for fingerprint registration to compensate for variations in the placement (translation) and
rotation of the fingerprints prior to their comparison.

In this work, a deep learning approach for absolute pre-alignment of fingerprints is presented. The
proposed algorithm employs a siamese network (with CNNs as subnetworks) which is trained on
synthetically generated fingerprints using horizontal/vertical translation and rotation as three re-
gression coefficients. Evaluations are conducted on the FVC2000 DB2a and the MCYT fingerprint
database. Compared to other published fingerprint pre-alignment methods, the presented scheme
achieves higher accuracy w. r. t. rotation estimation and overall robustness. In addition, the proposed
pre-alignment is applied as a pre-processing step in a Fuzzy Vault scheme.

Keywords: Fingerprint Registration, Deep Learning, Fingerprint Pre-Alignment, Biometric Tem-
plate Protection

1 Introduction

In recent years, the application of deep learning, in particular Convolutional Neural Net-
works (CNNs), has achieved remarkable success in the field of biometric recognition
[SW18]. For different biometric characteristics deep learning approaches have been pro-
posed for various modules in the biometric processing chain. For fingerprint recognition,
deep learning solutions have been presented for various tasks, e. g. fingerprint type classifi-
cation [Pe18], orientation field estimation [CJ15], distortion rectification [Da18] or feature
extraction [Ta17, DR17]. More recently, Schuch et al. [SMB18] proposed an algorithm for
compensating fingerprint rotations based on deep learning; their approach was to interpret
the task as a classification problem using the integer degrees (−90◦, . . . ,90◦) of the rota-
tion as the target classes. The authors showed that their approach outperforms other meth-
ods in terms of rotation estimation accuracy. However, the algorithm was only trained and
evaluated on rotated pairs of the same imprint, while, in real-world applications, it is nec-
essary to compensate the rotation between different imprints of a finger. Furthermore, their
algorithm does not allow for translation estimation.

Apart from the aforementioned deep learning-based approach, several handcrafted meth-
ods for fingerprint pre-alignment have been published. Most of these schemes are designed
to reliably detect reference points based on which an absolute alignment (pre-alignment)
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can be determined. The most prominent reference points are the singular points of the
orientation field, i. e. core and delta points. Diverse algorithms have been proposed for sin-
gular point detection, e. g. [TK99, NB03]. Since fingerprints of type arch do not have any
singular points the estimation of more generalized singular points, e. g., highest curvature
points, has been suggested, e. g. [Ig06, WBS12]. An alternative approach is the estima-
tion of a so-called focal point, e. g. [GZY16, BA09]. However, many of these universal
methods do not output a direction which could be used to compensate different rotations
of the fingerprints. Another approach to determine directed reference points referred to as
Tented Arch Reference Point (TARP) was presented in [Ta13] and [TMM15]. In [Me17]
different improvements have been applied to TARP resulting in an Extended Tented Arch
Reference Point (xTARP) algorithm; while xTARP is one of the most accurate reference
point detection methods, its computational costs are quite high.

In this publication, we present an algorithm for absolute rotation and translation estimation
for fingerprint pre-alignment based on deep learning. A siamese network with CNNs as
subnetworks is trained with synthetic fingerprints to output a relative alignment between
two imprints of a finger. Subsequently, the output of a single subnetwork which consists
of vertical / horizontal translation and rotation is deployed for fingerprint pre-alignment.
The introduced algorithm is shown to outperform published approaches in terms of ro-
tation estimation and overall robustness on the widely used FVC2000 DB2a fingerprint
database. Additional benchmarks are presented on the MCYT database, based on which
the proposed pre-alignment approach is applied in a biometric cryptosystem, i. e. the Fuzzy
Vault scheme. To the best of our knowledge, this is the first deep learning-based approach
for fingerprint pre-alignment.

The remainder of this paper is organized as follows: the fingerprint data used in this work is
summarized in Sect. 2. In Sect. 3, the proposed system is described in detail. Experiments
are presented in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Fingerprint data selection

The definition and selection of suitable data is an essential step for machine learning ap-
proaches. Especially, deep learning requires a very high amount of training data. To obtain
a sufficient number of fingerprints, we generate synthetic data with the Synthetic Finger-
print Generator (SFinGe) from the University of Bologna [CMM04]. The fingerprints are
generated with the default parameter profile, which is pre-configured to create a fingerprint
database that contains a realistic feature distribution. As the only changes, the parameters
limiting the translation and rotation were set to their maximum. Also the distribution of
finger classes is intentionally set to uniform, so that each class occurs equally often. The
output image dimension is 256×400 pixel by a resolution of 500 DPI.

The experimental evaluation of the proposed method is performed on the public FVC 2000
DB2a [Ma00] and MCYT [OGFAS03] fingerprint databases. Example fingerprints of these
data sets are depicted in Fig. 1. From the MCYT database, only fingerprints of fingers
with an index of zero (index fingers) are used. The resulting number of fingerprint images
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(a) FVC2000 DB2a (b) MCYT

Fig. 1: Examples of pairs of fingerprints from a single finger of both databases used for testing.

Database Train Test Fingers Fingerprints
Synthetic Fingerprints X 100,000 400,000

FVC2000 DB2a X 100 800
MCYT X 330 3,960

Tab. 1: Fingerprint databases used for training and testing.
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(c) SFinGe

Fig. 2: Target rotation and translation values for all used databases.

employed for training and testing is summarized in Tab. 1. Note that these databases were
acquired using different sensor types and image dimensions, i. e. an optical sensor for
MCYT (256×400 pixel) and a low-cost capacitive sensor for FVC2000 DBa (256×364
pixel).

The alignment for a fingerprint can be defined as a triple of x, y and θ , where x and y
indicate the horizontal/vertical translation and θ represents the rotation. However, there is
no generally applicable definition of an absolute alignment, i. e. published works often use
the position and direction of a method-specific reference point [BA09, Me17, GZY16]. A
method-independent ground-truth can only be defined as relative alignments (δx,δy,δθ )
between pairs of fingerprints of the same finger. Those ground-truth values had been
collected by hand for fingerprints of the MCYT database [Me17] and FVC2000 DB2a
[GZY16].

The distribution of those target (ground-truth) values (δ GT
x ,δ GT

y ,δ GT
θ

) for all databases
are plotted in Fig. 2. These plots clearly show that the translation and rotation between
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pairs of (matching) fingerprints vary for each database: In particular, FVC2000 DB2a ex-
hibits higher translaton and rotation values than the MCYT database, albeit the variance
of rotations is generally rather small in both data sets. The maximum absolute values are
δ GT

x = 150,δ GT
y = 254 and δ GT

θ
= 19. In order to cover various translation and rotation

values during the training of the neural network, the synthetic fingerprints are generated to
exhibit a larger variation of target values compared to the other databases used for testing.
The application of a uniformly random translation and rotation to a synthetic fingerprint is
intended to enhance the generalization of the network.

3 Proposed system

It is not feasible to train a single CNN directly since method-independent absolute fin-
gerprint alignments cannot be clearly defined (see Sect. 2). Instead, we train a siamese
network consisting of two identical CNNs computing absolute alignments, combine their
outputs to a relative alignment and compute the error function from the deviation of this
relative alignment from the ground truth data. Precisely, each CNN receives as input the
orientation field of a different imprint of the same finger, and predicts three regressive val-
ues (x,y,θ) which represent an absolute alignment. From these two outputs, the relative
alignment (δx,δy,δθ ) representing the horizontal/vertical translation and rotation between
the input fingerprints is computed and compared to the ground-truth data (δ GT

x ,δ GT
y ,δ GT

θ
).

The computation of the relative alignment from the outputs of the CNNs is not learned
but implemented by a fixed function. After the training of the siamese network, a single
CNN has learned to predict values for an absolute alignment. These core processing steps
of the proposed system are illustrated in Fig. 3. The neural network is implemented with
Tensorflow [Ab16]. The following sections describe the extraction of the orientation fields,
which are used as input data, the architecture of the basis CNN and the training and testing
phases in detail.

3.1 Feature extraction

To minimize the influence of properties from different databases, e. g. compression level or
image resolution, only the orientation fields are used as input data. For half of the synthetic
fingerprints from Tab. 1, SFinGe is configured to store the generated orientation fields,
which are referred to as ground truth orientation fields. With all other synthetic and real
fingerprints, more realistic input data is created by a modified version of the open source
minutiae extractor FingerJetFX [Di11]. For both SFinGe and FingerJetFX the orientation
fields are down scaled on a factor 4, resulting on a dimension of 64×100 pixel for synthetic
fingerprints and the MCYT database. The height of the images obtained from FVC2000
DB2a is smaller, so that these fingerprints are equally padded with empty background
pixels on top and bottom. A single orientation field consists of angle values in the range
[−90,90) degrees. Since the orientation fields are undirected and angle values are cyclic,
the sinus and cosinus values of each orientation are used as inputs to the CNNs.
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Fig. 3: Overview of the usage of a siamese network for relative fingerprint pre-alignment during
training and the execution of one CNN subnetwork for absolute fingerprint pre-alignment.

3.2 Network architecture

The architecture and depth of the CNN subnetworks, as shown in Tab. 2, is inspired by
related works on fingerprint processing. Like other publications, e. g. [Da18, CJ15, Pe18],
the network architecture is composed of convolutional and fully connected layers. The
features of an orientation field are detected by four blocks each consisting of a Convolu-
tional Layer, Batch Normalization and MaxPooling. An absolute alignment is predicted
by the following three fully connected layers. The activation of all neurons is calculated
by the Exponential Logarithmic Unit (Elu) activation function [CUH15], which enables
the processing of negative values. Due to the time and resource consuming training oper-
ations, the hyperparameters are iteratively chosen and may offer opportunities for further
optimization.

3.3 Training and execution of the model

The application of the proposed deep learning model is divided into two stages: the train-
ing phases for the siamese network and the execution of a single subnetwork. In a first step,
the network learns the most important features of an orientation field, by fitting the random
initialized weights with the ground truth orientation fields from SFinGe. Subsequently, the
pre-trained network will be refined with real world orientation fields, which are created for
the remaining synthetic fingerprints by FingerJetFX. The loss function calculates the rela-
tive alignment errors for each fingerprint pair as sum of the rotation and translation error,
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Number Layer Output
0 Input (100×64×2)
1 Convolutional Layer (3×3, 32) (100×64×32)

Batch Normalization
Elu

2 MaxPooling (2×2) (50×32×32)
3 Convolutional Layer (3×3, 32) (50×32×32)

Batch Normalization
Elu

5 MaxPooling (2×2) (25×16×32)
6 Convolutional Layer (3×3, 64) (25×16×32)

Batch Normalization
Elu

7 MaxPooling (2×2) (12×16×64)
8 Convolutional Layer (3×3, 64) (12×16×64)

Batch Normalization
Elu

9 MaxPooling (2×2) (6×8×64)
10 Flatten (3072)
11 Dense (1024)

Elu
Dropout (0.5)

12 Dense (512)
Elu

Dropout (0.5)
13 Dense (256)

Elu
14 Output (3)

Tab. 2: Network architecture of CNN subnetworks.

where horizontal and vertical translation are combined as Euclidean distance. After the
siamese network learned the relative alignment between two samples of the same finger,
the output of one single network is used in the evaluation as absolute alignment values.

4 Evaluation

The predictions of one subnetwork can be used for the pre-alignment of fingerprints, as
shown in Fig. 4. Original recordings from the FVC2000 DB2a are pictured in Fig. 4(a)
and through the application of the predictions they are pre-aligned in Fig. 4(b). Note that
due to the lack of clear definition of a “correct” absolute alignment, the errors of the deep
learning-based method cannot be measured on its own. By combining absolute alignments
to obtain relative alignments of fingerpint pairs, we can measure the errors for each pair of
matching fingerprint as the derivation of the relative alignments (δx,δy,δθ ) derived from
the outputs of the CNN from the ground-truth alignment (δ GT

x ,δ GT
y ,δ GT

θ
). The distribu-

tions of the errors on the test databases are plotted in Fig. 5.

From Fig. 5 it can be observed that the proposed method achieves slightly higher accu-
racy on the MCYT database compared to the FVC2000 DB2a database. In order to com-
pare our algorithm with methods based on reference point detection, we apply the metric
used in [Me17]: For each finger, all fingerprints are relatively aligned to each other using
the ground-truth data (δ GT

x ,δ GT
y ,δ GT

θ
). Ideally, after this relative alignment, the outputs

(xi,yi,θi) of the CNN should be identical for all imprints i of a finger. Consequently, for
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(a) original fingerprints

(b) pre-aligned fingerprints

Fig. 4: Examples of pre-aligned fingerprints from the FVC2000 DB2a using deep learning.
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(b) Vertical translation δy
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Fig. 5: Cumulative statistics of the obtained translation and rotation errors.

each finger, the distance and rotation errors are then computed as the average Euclidean
distance and angle difference, respectively, between the (aligned) outputs for all finger-
prints i and their median (x̄, ȳ, θ̄). As shown in Tab. 3, the proposed deep learning-based
pre-alignment achieves competitive accuracy. It generally provides higher robustness, i. e.
large distance or rotation errors are reduced. Focusing on rotation errors, the proposed
deep learning-based method clearly outperforms existing approaches.

As an additional feature of a deep learning based pre-alignment method, the concurrent
processing of multiple fingerprints is supported by the implementation with tensorflow.
With an average execution time of less than 100ms for 256 fingerprints at once, the method
is expected to require negligible computational resources within the biometric processing
chain. The proposed method is significantly faster than [Me17] (1.5 seconds) but does not
reach the performance of [GZY16] (4.88 ms), where comparable methods only support
sequentially processing of images. It should be noted that with the graphics card Palit
GeForce GTX 1080 TI, stronger hardware was used than in previous works.
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Method DE < 5 DE < 10 DE < 20 RE < 5 RE < 11.25 RE < 22.5 Fail
Proposed 461 761 797 752 798 800 0
[Me17] 612 734 763 610 752 790 5

[TMM15] 624 739 761 607 754 782 13
[GZY16] 569 719 784 n.a. n.a. n.a. 0
[BA09] n.a. 668 769 n.a. 521 657 0
[AB08] 285 640 763 n.a. n.a. n.a. 1
[Ig06] n.a. 712 753 n.a. n.a. n.a. 0

[LZH06] n.a. 654 745 n.a. 690 737 9
[LJK05] n.a. 659 749 n.a. n.a. n.a. 13

Tab. 3: Cumulative statistics of the distance errors (DE), rotation errors (RE), and number of failures
of our method and other methods. An entry “n.a.” means that the corresponding value is not provided
in the reference or (in the case of RE) that the method does not compute any orientation.

Finally, we evaluate how our deep learning-based pre-alignment affects the performance
of a biometric cryptosystem. We used the minutiae-based fuzzy vault scheme of [Bu16],
which was also used in [Me17] to evaluate the xTARP pre-alignment algorithm. This
scheme protects the confidentiality of the minutiae data by applying a secret polynomial
which can be recovered with a sufficiently similar fingerprint and, in contrast to many
other biometric cryptosystems (e.g. see [SB07, Ta14, MT13]), it is immune to correllation
attacks, where an attacker combines the templates created in different enrolments of the
same user.2

We use the implementation from [Bu16] with the same parameters as in [Me17] and apply
different pre-alignment algorithms including our deep learning-based method. Tab. 4 lists
the resulting False Non-Match Rate (FNMR) for the relevant degrees k of the secret poly-
nomial. Note, that the False Match Rate (FMR) and the security of the of the protected
templates against recovery attacks do not depend on the pre-alignment method. The error
rates were estimated on the same test set as in [Me17], i. e. right index fingers of the first
100 subjects of the MCYT database. While the proposed pre-alignment outperforms the
original TARP method of [Ta13] for small values of k, it reveals inferior performance com-
pared to the xTARP method of [Me17]. In a fusion where translation is obtained from the
xTARP algorithm and the rotation from the proposed deep learning based pre-alignment,
respectively, further slight improvements can be observed.

5 Conclusion

In this work, we presented the first deep learning-based approach to absolute fingerprint
pre-alignment which has been shown to achieve competitive accuracy. Compared to other
published methods, the amount of large deviations from target values is significantly re-
duced, and with respect to the accuracy of the rotation estimation, our method clearly

2 A correlation attack against the scheme of [Bu16] was presented in [NKU16] but, for the parameters used in
our evaluation, it is not efficient.
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Method k = 5 k = 6 k = 7 k = 8

FNMR

Original TARP 6.0% 7.4% 9.6% 13.1%
xTARP (stateless) 0.5% 1.7% 3.8% 6.6%

Proposed 1.5% 3.9% 9.1% 16.0%
Proposed + xTARP 0.6% 1.5% 3.7% 6.3%

FMR all 1.9% 0.3% 0.04% 0%
Security (bits) all 16.5 20 24 27

Tab. 4: Error rates of the Fuzzy Vault construction of [Bu16] when using different variants of the
xTARP and TARP method and the proposed deep learning-based method for pre-alignment.

outperforms all other pre-alignment algorithms. This is essential to achieve practical bio-
metric performance in fingerprint-based cryptosystems as it has been demonstrated for the
fuzzy vault scheme.

However, with respect to translation estimation, there is still room for improvement. Pos-
sible approaches to improve our method could be to increase the penalty for translation
errors in the training, to train separate networks for translation and rotation estimation, to
cleverly combine it with other pre-alignment algorithms (e.g. from [Me17] or [GZY16]),
or to apply it iteratively multiple times (analogously to [DG08]).
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