
Managing Multiple Real and Simulation

Business Scenarios by Means of a Multiversion
Data Warehouse

Bartosz Bȩbel, Zbyszko Królikowski, and Robert Wrembel

Poznań University of Technology, Institute of Computing Science
Poznań, Poland

{bbebel,zkrolikowski,rwrembel}@cs.put.poznan.pl

Abstract. This paper addresses problems of the evolution of data ware-
house schema and dimensions. In order to handle the evolution, we ap-
ply a multiversion data warehouse (MVDW). In this paper we discuss
real world cases illustrating a DW evolution and show how to apply the
MVDW in order to handle the cases.

1 Introduction

A data warehouse (DW) is a large database that integrates data from various
external data sources (EDSs). Data integrated in a DW are analyzed by the
so called On-Line Analytical Processing (OLAP) applications for the purpose
of: discovering trends, patterns of behavior and anomalies as well as finding
hidden dependencies between data. The process of decision making often requires
forecasting future business behavior, based on present and past data as well as
on assumptions made by decision makers. This kind of data processing is called a
’what-if’ analysis. In this analysis, a decision maker simulates in a DW changes
in the real world, creates virtual alternative business scenarios, and explores
them with OLAP queries.

Existing DW technologies offer functionalities for managing data warehouses
of static (time invariant) structures. In practice, however, changes to a DW
structure are frequent. They are typically caused by changes in the structure of
EDSs, new user requirements, changes in environments (legislation, administra-
tive structure) where a business is run, needs to simulate alternative business
scenarios. As a consequence, a DW structure evolves. Existing solutions in this
field focus on schema and data evolution, simulation, temporal techniques, and
versioning. Schema evolution approaches (e.g. [6]) maintain only one (current)
DW state. The simulation approaches (e.g. [5]) simulate or screen the evolution
by means of various tools and data structures. Temporal techniques (e.g. [9,
18, 14]) use timestamps on modified data in order to create temporal versions.
In versioning approaches (e.g. [7, 16]), a DW evolution is managed partially by
means of schema versions and partially by data versions. These approaches allow
to manage a DW evolution partially since they do not offer a clear separation

MANAGING MULTIPLE REAL AND SIMULATION BUSINESS SCENARIOS... 103

between different DW states. Moreover, they do not offer tools for modeling
alternative business scenarios.

In our approach, we apply a multiversion data warehouse (MVDW) to the
management of data warehouses that evolve in time. In the MVDW a schema and
dimension evolution is represented by the sequence of persistent DW versions. A
DW version corresponds either to the real world state or to a simulation scenario.
The MVDW supports a correct representation of a DW evolution, the ’what-if’
analysis, and the separation of different DW states.

In this paper we discuss real world cases of a DW evolution and show how
to handle the cases by means of the MVDW. The work is based on our previous
achievements in designing and implementing the MVDW [4, 25].

Section 2 outlines basic definitions used in this paper. Section 3 presents real
cases of a DW evolution. Section 4 overviews our approach to handling a DW
evolution and Section 5 shows how our approach can handle real cases. Section
6 discusses related work and Section 7 summarizes the paper.

2 Basic Definitions

The organization of data being analyzed conforms to the multidimensional data
model [17] with facts representing elementary information being analyzed. A
fact contains numerical features, called measures, e.g. quantity, income, turnover,
price that quantify the fact and allow to compare different facts. Values of mea-
sures depend on a context set up by dimensions, e.g. Time, Location, Product.
Dimensions usually form hierarchies, composed of levels. Values in every level
are called level instances. Hierarchically assigned instances of levels in dimension
Di, where the hierarchy of level instances is set up by the hierarchy of levels, set
up the dimension instance of Di.

An example of a hierarchical dimension is Geography (cf. Figure 1a), with
level Countries at the top, intermediate level Regions, and bottom level Cities.
An example instance of dimension Geography is shown in Figure 1b.

Cities

Regions

Countries

G
e
o

g
ra

p
h

y

Edinbourgh Glasgow Cardiff Swansea Brest Rennes

Scotland Wales Bretagne

Great Britain France

a) the schema of
dimension Geography

b) the instance of dimension Geography

Fig. 1. An example dimension schema and its instance

The multidimensional data model can be implemented either in MOLAP
(multidimensional OLAP) servers or in ROLAP (relational OLAP) servers. In

104 BUSINESS INFORMATION SYSTEMS - BIS 2006

the first case, data are stored in n-dimensional arrays. In the second case, data
are stored relational tables. Basic ROLAP schemas are organized as star or
snowflake structures [10]. Based on these basic schemas, one can build their
variations, namely a fact constellation schema or a star-flake schema.

prod_id
city_id

REGIONS

reg_id
reg_nametime_id

quantity

SALE
CITIES

city_id
city_name

PRODUCTS

prod_id
prod_name
cat_id

CATEGORIES

cat_id
cat_name
cat_tax

Dimension PRODUCTS

Dimension TIME

Dimension LOCATION

reg_id nb_inhabitants

TIME

time_id
day_name
month_name
quarter
year
day_no_inyear
month_no

Fig. 2. An example ROLAP schema

An example star-flake DW schema is shown in Figure 2. It is used for ana-
lyzing sales of products by locations in various periods of time. It is composed
of three following dimensions: TIME - with a denormalized level table Time,
LOCATION - with normalized level tables Cities and Regions, PRODUCTS -
with normalized level tables Products and Categories.

Without any loss of generality, in the reminder of this paper we will focus
our discussion on the ROLAP implementation.

3 Motivating Examples

In this section we present real world examples illustrating the need of changes
to a DW schema and structures of dimension instances.

3.1 Example 1: Schema Changes

This example comes from gambling machines business [12]. Let us assume that
until time t1 tax from gambling machines has been collected per every single
machine. A simplified schema of a DW used for income analysis from this busi-
ness is shown in Figure 3a. Since time t2 tax has been collected per location,
regardless the number of machines installed there. A simplified schema of a DW
for the new scenario, valid from t2, is shown in Figure 3b.

As we can observe in this example, the way of collecting taxes has impact
on the schema of a DW. Until t1 measures (turnover and tax) are analyzed in
the context of time and machines, whereas from t2 measures are analyzed in the
context of time and locations.

MANAGING MULTIPLE REAL AND SIMULATION BUSINESS SCENARIOS... 105

mach_id
MACHINES

mach_id
mach_type

time_id
turnover

TURNOVERTIME

time_id
day_no

loc_id

LOCATIONS

loc_id
loc_name

Dimension TIME
Dimension LOCATION

month_no
year tax

a) DW schema valid until time t1

loc_id
time_id

turnover

TURNOVERTIME

time_id
day_no

Dimension TIME
Dimension LOCATION

month_no
year tax

b) DW schema valid from time t2

STATES

state_id
state_name

LOCATIONS

loc_id
loc_name
state_id

Fig. 3. Example schemas of a DW for gambling machines business

3.2 Example 2: Dimension Instance Structural Changes

The two examples presented here come from Poland and both illustrate cases
where the structure of dimension instances changed. The first case concerns
changing administrative division of a country. The second one concerns reclassi-
fication of building materials from one tax category to another one.

Changing administrative division of a country.
The administrative division of Poland until 1998 included 49 regions. In 1999, the
number of regions was reduced to 19. Some regions retained their old names, but
their borders where substantially changed. Let us now assume a data warehouse
allowing to analyze monthly product sales per product category, per region, as
shown in Figure 2.

Example instances of the Location dimension before and after 1999 are shown
in Figure 4. Ri and NRi denote a region name before 1999 and after 1999,
respectively. Ci denotes a city name. Note that some regions (e.g. R1 and R2)
retained their old names after this administrative division change, but since 1999
they include more cities than in 1998.

If we compared the yearly gross sales of bathroom equipment products (the
Categories level) per region, we would observe sales increase in regions R1 and
R2 in 1999 as compared to 1998. This increase would be caused by the changes
in the structure of the Location dimension instances rather than by a real sales
increase.

Reclassification of product to categories.
This real scenario took place in Poland after joining the EU in May 2004. Before
joining the EU, building materials were sold with 7% VAT. After joining the
EU, VAT was increased to 22%. The changes made to the Products dimension
instances are schematically shown in Figure 5.

Let us assume that in our DW (cf. Figure 2) we compute and compare a gross
sales of pine boards in consecutive months of 2004. In the results, we observe

106 BUSINESS INFORMATION SYSTEMS - BIS 2006

C1

R1

a) until 1998

C2 C3 C4

R2

C5 C6

R3

C7 C8 C98

R49

C99

.............

C1

R1

b) since 1999

C2 C3 C4

R2

C5C6

NR1

C7 C8 C98

NR17

C99

.............

C16 C19 C97C96C25 C29 C48

Fig. 4. A schematic view on changes to the structure of the Location dimension in-
stances

a remarkable increase in gross sales between April and May. In practice, this
increase is mainly caused by VAT increase rather that by higher sales.

pine board

vat 7%

a) from past to 30 Apr, 2004

plaster nail pine board

vat 22%

b) from 1 May, 2004 to present

plaster nail

Fig. 5. A schematic view on changes to the structure of the Products dimension in-
stances

3.3 Example 3: the What-if Analysis

In order to lower taxes, companies apply depreciation of their fixed assets. In
Poland there are two different types of the depreciation, namely a linear one
and a nonlinear one. A chosen depreciation type yields certain depreciation rate
resulting in higher or lower taxes paid in a given year. In order to chose the
depreciation type that most suits a company, multiple business simulation sce-
narios have to be created, one scenario for one depreciation type. Then in every
scenario, appropriate depreciation type is applied and the results are compared.

This kind of simulation functionality was highly required by an existing Polish
company, as part of its data warehouse system.

4 Multiversion Data Warehouse

The multiversion data warehouse is composed of the sequence of persistent
versions [4]. A DW version is in turn composed of a schema version and an
instance version. A schema version describes the structure of a DW within

MANAGING MULTIPLE REAL AND SIMULATION BUSINESS SCENARIOS... 107

a given time period, whereas an instance version represents the set of data
described by its schema version.

We distinguish two types of DW versions, namely real and alternative ones.
Real versions are created in order to keep up with changes in a real business
environment. Real versions are linearly ordered by the time they are valid within.
Alternative versions are created for simulation purposes, as part of the ’what-
if’ analysis. Such versions represent virtual business scenarios. All DW versions
are connected by version derivation relationships, forming a version derivation
graph. The root of this tree is the first real version. Every DW version (a real
and an alternative one) is valid within certain period of time represented by
two timestamps, i.e. begin validity time and end validity time, that are used in
queries.

time

t1

A2.1

t2

R1

t4 t6

R2 R3

A2.2

R4

A4.1

past present

version derivation relationshipLegend:
version validity period

t3 t5 t7

Fig. 6. A schematic view on a multiversion data warehouse, composed of real and
alternative versions

Figure 6 schematically shows real and alternative versions. R1 is an initial
real version of a DW. Based on R1, new real version R2 was created. Similarly,
R3 was derived from R2, etc. A2.1 and A2.2 are alternative versions derived
from R2; A4.1 is an alternative version derived from R4. R1 is valid from time
t1 (begin validity time) until t2 (end validity time). Versions R2, A2.1, and A2.2
are valid from t3 until t4, etc.

5 Applying the MVDW to Real World Cases

In this section we demonstrate how the MVDW can be applied to real world
cases discussed in Section 3. We illustrate the cases with our prototype system.
It is written in Java and Oracle PL/SQL languages, whereas data and metadata
are stored in an Oracle9i/10g database.

5.1 Schema Changes

The new way of collecting taxes from the gambling business, discussed in Section
3.1, is handled by the MVDW. Each way of collecting taxes is represented by a

108 BUSINESS INFORMATION SYSTEMS - BIS 2006

separate DW version. Thus, the MVDW is composed of two following versions:
RV1 (tax-machine) and RV2 (tax-location). The first one is valid from past to
time t1 and stores taxes collected in an old way. The second one is valid from
time t2 until present and stores taxes collected in a new way. In such MVDW, a
user can address in a query either the first or the second DW version and then
he/she can compare the query results.

Fig. 7. An example of handling schema changes for the gambling business by the
MVDW

An example window of our prototype system that manages these two DW
versions is shown in Figure 7. A user interface is composed of two main panels.
The left hand side panel - an object navigator allows browsing through versions of
the MVDW. The schema (tables and their attributes, dimensions, hierarchies) of
every DW version can be explored there. The left hand side panel - a visualizer
is used for visualizing a schema of a selected DW version and for visualizing
query results.

5.2 Dimension Instance Structural Changes

The changes in the structure of dimension instances, discussed in Section 3.2
are handled in separate versions. In the example describing the reclassification

MANAGING MULTIPLE REAL AND SIMULATION BUSINESS SCENARIOS... 109

of products to categories, sales records until the 1st of May 2004 are stored in
DW version RV4 (April), whereas sales records collected from the 1st of May
2004 are stored in RV5 (May), as shown in Figure 8.

Fig. 8. An example of handling changes in the structure of dimension instances

A user can query both DW versions at once by means of a multiversion
query language that we have developed (cf. [25]). Such a query will be parsed
into two partial queries - one for version RV4 (April) and one for version RV5
(May). The partial queries are executed in their proper DW versions and their
results are presented to a user. Additionally, the results are annotated with meta-
information describing changes that were made to the queried DW versions. In
our example from Figure 8, the meta-information describes changes made to
the instance of the Product dimension. Thus, an analyst can easily recognize
that in RV5 (May) the structure of instances of dimension Products changed as
compared to RV4 (April). Moreover, he/she can figure out what kinds of changes
were applied and whether they may have impact on the results of this analysis.

5.3 The What-if Analysis

The requirement of multiple simulation business scenarios discussed in Section
3.3 can be fulfilled in our prototype by applying alternative DW versions.

110 BUSINESS INFORMATION SYSTEMS - BIS 2006

In this scenario, every alternative version is derived from the same origi-
nal real version leaving original data intact. An alternative version stores data
being computed by a selected depreciation model and it stores the results of
this computation. Thus, a user can apply different depreciation models to differ-
ent alternative versions, and then he/she can compare their results. It is worth
noticing that original data remain unchanged in a real version. The alternative
versions may be persistent or transient.

Fig. 9. An example of handling alternative business scenarios for the ’what-if’ analysis

A simple setting for the discussed scenario in our MVDW is shown in Figure
9. The MVDW is composed of one real version named RV1 (tax-deprec 2005).
Three different alternative versions were derived from RV1 (tax-deprec 2005),
namely AV1-1 (linear deprec) storing data for linear depreciation, AV1-2 (non-
linear1 deprec) and AV1-3 (nonlinear2 deprec) storing data for two different
nonlinear depreciation models.

6 Related Work

The support of schema and data evolution turned up to be required mainly in
the applications of object-oriented databases to CAD and CASE systems. Vari-

MANAGING MULTIPLE REAL AND SIMULATION BUSINESS SCENARIOS... 111

ous approaches and prototypes have been developed in this area, e.g. [1, 2, 8, 15,
21]. These and many other approaches have been proposed for versioning com-
plex objects stored in a database of moderate size and they are inappropriate
for managing the evolution in data warehouses. DWs have different data charac-
teristics and processing characteristics. They store simple data (several tables)
but data volumes are huge.

The solutions to handling changes/evolution in DWs can be categorized as
follows: (1) schema and data evolution [6, 20, 18, 19], (2) simulation [3, 5], (3)
temporal extensions [9, 13, 14, 23, 27, 22, 26, 24], and (4) versioning extensions [7,
16].

Schema evolution approaches maintain one DW schema and the set of data
that evolve in time. Schema modifications (e.g. dropping an attribute, changing
the length or domain of an attribute) require data conversions and, as a conse-
quence, historical DW states are lost. Modifications of the structure of dimension
instances is implemented by simple updates of attribute values. This also causes
that old values are lost.

Simulation approaches use virtual data structures to simulate or to screen
DW evolution. In the approach proposed in [5] virtual DW structure, called
scenario, is constructed for hypothetical queries, for the purpose of the ’what-if’
analysis. Then, the system using substitution and query rewriting techniques
transforms a hypothetical query into an equivalent query that is run on a real
DW. As this technique computes new values of data for every hypothetical query
based on virtual structures, performance problems will appear for large DWs.
The approach proposed in [3] simulates changes in a DW schema by means of
views. The approach supports only simple changes in source tables (add, drop,
modify an attribute) and it does not deal either with typical multidimensional
schemas or the evolution of facts or dimensions.

Temporal extensions use timestamps on modified data in order to create tem-
poral versions [9, 23, 26, 24]. Some of the approaches focus mainly on handling
changes in the structure of dimension instances, reclassifying a lower level in-
stance to a new upper level one, merging or splitting level instances [13, 14, 27,
22]. The concept presented in [13, 14] supports transformations of fact instance
as a consequence of dimension instances’ changes. To this end, system conversion
methods are applied. The methods are expressed as matrices defining recalcula-
tions of facts. In [27], a time-stamped history of changes to dimension instances
is stored in an additional data structure. The paper by [22] additionally pro-
poses consistency criteria that every evolving dimension has to fulfill. It gives
an overview how the criteria can be applied to a temporal DW only. All the
discussed approaches from this category are suitable for representing historical
versions of data, but not versions of a schema.

In versioning extensions, a DW evolution is managed partially by means
of schema versions and partially by data versions. The versioning mechanism
presented in [7] supports explicit, time-stamped persistent versions of data. This
mechanism uses one central fact table for storing all versions of data. As a
consequence, only changes to dimensions’ structures and dimensions’ instances

112 BUSINESS INFORMATION SYSTEMS - BIS 2006

structures are supported. In [16] an explicit DW schema versioning mechanism
is presented. A new persistent schema version is created for handling schema
changes. The approach supports only four basic schema modification operators,
namely adding/deleting an attribute as well as adding/deleting a functional
dependency. A persistent schema version requires a population with data, but
this issue is not addressed in the paper. The approaches from this category solve
the DW evolution problem partially. Firstly, they do not offer a clear separation
between different DW states. Secondly, the approaches do not support modeling
alternative, hypothetical DW states required for the ’what-if’ analysis.

Commercial DW systems existing on the market (e.g. Oracle9i/10g, Oracle
Express Server, IBM DB2 UDB, SybaseIQ, Computer Associates CleverPath
OLAP, NCR Teradata, Hyperion Essbase OLAP Server, SAP Business Ware-
house, MS SQL Server2000) do not offer mechanisms for managing multiple DW
states.

7 Summary

Managing the evolution of DWs has been recognized as one of the most important
research and technological issues in the field of data warehousing. The evolution
concerns not only the structures of dimensions and dimension instances but also
a DW schema. The evolution results among others from changes to external data
sources, new user requirements, and simulation requirements.

In this paper we presented real cases illustrating the need of a DW evolution.
Then we discussed our solution to this problem. The solution is based on the
Multiversion Data Warehouse approach that consists in representing a schema
and dimension evolution by the sequence of persistent DW versions [4]. A DW
version corresponds either to the real world state (representing the content of
EDSs within a given time period) or to a simulation scenario applied to the
’what-if’ analysis. The MVDW approach provides a correct representation of a
DW evolution and separates different DW states. It also supports modeling and
managing alternative business scenarios. At the end of the paper we showed how
our approach can be applied for handling real cases discussed in Section 3.

Current work focuses on developing index structures for multiversion data
and on experimentally evaluating these structures. Future work will concen-
trate on extending the MVDW approach to handling changes in the Extraction-
Translation-Loading processes.

References

1. Agrawal R., Buroff S., Gehani N., Shasha D.: Object Versioning in Ode. Proc. of
ICDE, 1991

2. Ahmed-Nacer M., Estublier J.: Schema Evolution in Software Engineering Data-
bases - A new Approach in ADELE environment. In Computers and Artificial
Intelligence, 19, pp. 183-203, 2000

MANAGING MULTIPLE REAL AND SIMULATION BUSINESS SCENARIOS... 113

3. Bellahsene, Z.: View Adaptation in Data Warehousing Systems. Proc. of DEXA,
1998

4. Bȩbel B., Eder J., Koncilia Ch., Morzy T., Wrembel R.: Creation and Management
of Versions in Multiversion Data Warehouse. Proc. of ACM SAC, 2004

5. Balmin, A., Papadimitriou, T., Papakonstanitnou, Y.: Hypothetical Queries in an
OLAP Environment. Proc. of VLDB, 2000

6. Blaschka M., Sapia C., Höfling G.: On Schema Evolution in Multidimensional
Databases. Proc. of DaWaK, 1999

7. Body, M., Miquel, M., Bédard, Y., Tchounikine A.: A Multidimensional and Mul-
tiversion Structure for OLAP Applications. Proc. of ACM DOLAP, 2002

8. Cellary W., Jomier G.: Consistency of Versions in Object-Oriented Databases.
Proc. of VLDB, 1990

9. Chamoni, P., Stock, S.: Temporal Structures in Data Warehousing. Proc. of
DaWaK, 1999

10. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
SIGMOD Record, 26, 1997

11. Cui Y., Widom J.: Lineage Tracing for General Data Warehouse Transformations.
Proc. of VLDB, 2001

12. Czejdo B., Messa K., Morzy T., Putonti C.: Design of Data Warehouses with
Dynamically Changing Data Sources. Proc. of the Southern Conference on Com-
puting, 2000

13. Eder, J., Koncilia, C.: Changes of Dimension Data in Temporal Data Warehouses.
Proc. of DaWaK, 2001

14. Eder, J., Koncilia, C., Morzy, T.: The COMET Metamodel for Temporal Data
Warehouses. Proc. of CAISE, 2002

15. Gançarski S., Jomier G.: A framework for programming multiversion databases.
Data Knowledge Engineering, 36(1), pp. 29-53, 2001

16. Golfarelli M., Lechtenbörger J., Rizzi S., Vossen G.: Schema Versioning in Data
Warehouses. Proc. of ER Workshops, 2004, LNCS 3289

17. Gyssens M., Lakshmanan L.V.S.: A Foundation for Multi-Dimensional Databases.
Proc. of VLDB, 1997

18. Hurtado, C.A., Mendelzon, A.O.: Vaisman, A.A.: Maintaining Data Cubes under
Dimension Updates. Proc. of ICDE, 1999

19. Hurtado, C.A., Mendelzon, A.O.: Vaisman, A.A.: Updating OLAP Dimensions.
Proc. of ACM DOLAP, 1999

20. Kaas Ch.K., Pedersen T.B., Rasmussen B.D.: Schema Evolution for Stars and
Snowflakes. Proc. of ICEIS, 2004

21. Kim W., Chou H.: Versions of Schema for Object-Oriented Databases. Proc. of
VLDB, 1988

22. Letz C., Henn E.T., Vossen G.: Consistency in Data Warehouse Dimensions. Proc.
of IDEAS, 2002

23. Mendelzon, A.O., Vaisman, A.A.: Temporal Queries in OLAP. Proc. of VLDB,
2000

24. Microsoft ImmortalDB. Retrieved November 25, 2005 from
http://research.microsoft.com/db/ImmortalDB/

25. Morzy T., Wrembel R.: On Querying Versions of Multiversion Data Warehouse.
Proc. of ACM DOLAP, 2004

26. Salzberg B., Jiang L., Lomet D., Barrena M., Shan J., Kanoulas E.: A Framework
for Access Methods for Versioned Data. Proc. of EDBT, 2004

27. Schlesinger L., Bauer A., Lehner W., Ediberidze G., Gutzman M.: Efficienlty Syn-
chronizing Multidimensional Schema Data. Proc. of ACM DOLAP, 2001

