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The discussion included realistic assessments of 
the gains from using high-level languages, and 
the overhead penalties they carry. The benefits 
of standardisation were overshadowed by the 
practical difficulties of achieving it. 

Comparisons of high level and low level programming 

S. We should recognise that even when the goal is 
to program in a high-level language, some 
fraction of the programming will be in low-level. 
In my experience (an operating system for an 
automated radar system), the proportion of high­
level to low-level programming is about 80: 20. 
This is not simply to achieve efficiency - high­
level programs can be tuned up. A second look at 
high-level programs often produces a highly 
efficient object code, although the initial version 
may have been poor. In one case the high-level 
language version had 50% less code than the 
original assembly language version (perhaps 
because the compiler-writer himself coded it!). 

L. In a real-time data gathering system we found 
that 85% of the code could be written in Real-time 
FORTRAN, supported by an operating system 
written in assembler language. Coding in assembly 
language may be necessary to reduce the size of a 
program. We had a 12 K FORTRAN program, of 
which 2.5 K words were data, and converted it into 
assembler. This brought the size down to 8 K 
still including the 2. 5 K words of data, so indicates 
a reduction of code itself to 60% of the high-level 
version. 

P. At the Royal Radar Establishment we 
developed programs for a computer controlled 
radar in assembly language. Later when a compi­
ler became available the same problem was 
reprogrammed in CORAL 66. The expansion in 
code resulting from the use of high-level language 
was 20%. The total program length was l0K and 
less than 10% of this was written as code inserts 
to optimise speed at critical points. 
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K. TPLl at Essex has been used to program a 
stored program controlled telephone exchange. 
lt had substantial overheads: 90% on space in 
main store, and 35% on running time. lt has been 
studied fo find the reasons for the inefficiencies, 
and a second language TPL2 has been designed to 
remove them. This iteration of language design 
is very necessary but elapsed time must exist to 
permit it. 

H. CONTRAN has been used on a process control 
application (cement kilns) in England. Unfortuna­
tely, it introduced considerable overheads in 
additional storage requirements and execution 
time. This suggests the question whether applica­
tion demands still make it necessary to squeeze 
the best performance possible from current hard­
ware. There still appears to be no spare power 
or capacity in computers to tolerate the reduction 
in efficiency introduced by a programming in a 
high-level language. 

Standardisation 

S. lt is desirable that we have a generally 
accepted real-time language. However, this is 
unlikely to happen until it is promoted and 
supported by one or more large computer manu­
facturers. In addition it must not be too specific 
to a particular computer. What is needed is a 
virtual processor whose primitives are generally 
agreed and can be realized on most hardware. 
PL/1 is too close to SYSTEM/360. 

D. ANSI committee X3Jl.4 is working on PL/1 
Standardisation, and has admitted some important 
principles: 

1. lt starts from the user's point of view, not 
the manufacturer's. 

2. You cannot standardise what is not 
developed. 

3. You must not neglect the Europeans .. 

Y. Is standardisation by ANSI more successful 
than by a major manufacturer? 



D. ANSI cooperate with E CMA, so it should be 
helpful for both sides. 

y, There are plenty of languages all competing 
for use. A sort of natural selection applies 
between them. 

R. ALGOL 60 did not come into existence in this 
way. 

F. A standard language would gradually lead to a 
standard operating system and then to a standard 
computer. This is not allowed! 

Y. CORAL 66 was defined by users, and has been 
used for many applications, including an operating 
system. 

P. CORAL 66 compilers are available on a num­
ber of machines in the UK now. These compilers 
conform to the definition of the language published 
by the Stationery Office. They have been imple­
mented in some cases by the computer manufactur­
ing firm and in other cases by the RRE. The 
compiler typically needs a simple machine with 
16 K of store. lt is planned in the future to allow 
modular extensions to the facilities of CORAL 66 
so that where more space is available a more 
powerful compiler can be used. 

General comments 

T. There is a converse effect of machine archi­
tecture on programming languages. For example: 

1. The Burroughs B6700 is an ALGOL 
machine and there is no assembler 

language for it: extended ALGOL is the 
lowest language that can be used. Because 
of the addressing structure which has to be 
implemented, there are extra core memory 
accesses, which make it a slower machine 
than the equivalent 360. 

2. The DEC system 10 (formerly the PDP-10) 
has two pairs of protection /relocation 
(base /limit) registers in addition to its 
index registers. This means that the code 
and data can be addressed using different 
base registers, and so one can easily 
product re-entrant code. Making use of 
this facility, it is possible to produce a 
real-time system in which the applications 
programs are re-entrant, even though 
written in COBOL! 

C. Concerning high-level languages and standard 
software packages, both are needed in different 
circumstances. 

We should distinguish at least two stages of 
evolution: 

In stage 1, the engineer has just a rough idea 
what the process control computer has to do, and 
he is experimenting to determine the appropriate 
algorithm. For this stage he needs a flexible 
general-purpose high-level language. 

In stage 2, problems are well settled, and 
satisfactory algorithms known. Software packages 
containing these algorithms can be provided for 
the user. 

J. The level of language is not important if you 
have good people, but it is when your staff are not 
so good. They will meet deadlines, but the quality 
of the programs cannot be guaranteed. 
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