
Workshop on general 

considerations on real-time 

programming 

Chairman: Prof. Dr R. LAUBER 
Stuttgart, W. Germany 

The discussion included realistic assessments of 
the gains from using high-level languages, and 
the overhead penalties they carry. The benefits 
of standardisation were overshadowed by the 
practical difficulties of achieving it. 

Comparisons of high level and low level programming 

S. We should recognise that even when the goal is 
to program in a high-level language, some 
fraction of the programming will be in low-level. 
In my experience (an operating system for an 
automated radar system), the proportion of high­
level to low-level programming is about 80: 20. 
This is not simply to achieve efficiency - high­
level programs can be tuned up. A second look at 
high-level programs often produces a highly 
efficient object code, although the initial version 
may have been poor. In one case the high-level 
language version had 50% less code than the 
original assembly language version (perhaps 
because the compiler-writer himself coded it!). 

L. In a real-time data gathering system we found 
that 85% of the code could be written in Real-time 
FORTRAN, supported by an operating system 
written in assembler language. Coding in assembly 
language may be necessary to reduce the size of a 
program. We had a 12 K FORTRAN program, of 
which 2.5 K words were data, and converted it into 
assembler. This brought the size down to 8 K 
still including the 2. 5 K words of data, so indicates 
a reduction of code itself to 60% of the high-level 
version. 

P. At the Royal Radar Establishment we 
developed programs for a computer controlled 
radar in assembly language. Later when a compi­
ler became available the same problem was 
reprogrammed in CORAL 66. The expansion in 
code resulting from the use of high-level language 
was 20%. The total program length was l0K and 
less than 10% of this was written as code inserts 
to optimise speed at critical points. 

34 

K. TPLl at Essex has been used to program a 
stored program controlled telephone exchange. 
lt had substantial overheads: 90% on space in 
main store, and 35% on running time. lt has been 
studied fo find the reasons for the inefficiencies, 
and a second language TPL2 has been designed to 
remove them. This iteration of language design 
is very necessary but elapsed time must exist to 
permit it. 

H. CONTRAN has been used on a process control 
application (cement kilns) in England. Unfortuna­
tely, it introduced considerable overheads in 
additional storage requirements and execution 
time. This suggests the question whether applica­
tion demands still make it necessary to squeeze 
the best performance possible from current hard­
ware. There still appears to be no spare power 
or capacity in computers to tolerate the reduction 
in efficiency introduced by a programming in a 
high-level language. 

Standardisation 

S. lt is desirable that we have a generally 
accepted real-time language. However, this is 
unlikely to happen until it is promoted and 
supported by one or more large computer manu­
facturers. In addition it must not be too specific 
to a particular computer. What is needed is a 
virtual processor whose primitives are generally 
agreed and can be realized on most hardware. 
PL/1 is too close to SYSTEM/360. 

D. ANSI committee X3Jl.4 is working on PL/1 
Standardisation, and has admitted some important 
principles: 

1. lt starts from the user's point of view, not 
the manufacturer's. 

2. You cannot standardise what is not 
developed. 

3. You must not neglect the Europeans .. 

Y. Is standardisation by ANSI more successful 
than by a major manufacturer? 



D. ANSI cooperate with E CMA, so it should be 
helpful for both sides. 

y, There are plenty of languages all competing 
for use. A sort of natural selection applies 
between them. 

R. ALGOL 60 did not come into existence in this 
way. 

F. A standard language would gradually lead to a 
standard operating system and then to a standard 
computer. This is not allowed! 

Y. CORAL 66 was defined by users, and has been 
used for many applications, including an operating 
system. 

P. CORAL 66 compilers are available on a num­
ber of machines in the UK now. These compilers 
conform to the definition of the language published 
by the Stationery Office. They have been imple­
mented in some cases by the computer manufactur­
ing firm and in other cases by the RRE. The 
compiler typically needs a simple machine with 
16 K of store. lt is planned in the future to allow 
modular extensions to the facilities of CORAL 66 
so that where more space is available a more 
powerful compiler can be used. 

General comments 

T. There is a converse effect of machine archi­
tecture on programming languages. For example: 

1. The Burroughs B6700 is an ALGOL 
machine and there is no assembler 

language for it: extended ALGOL is the 
lowest language that can be used. Because 
of the addressing structure which has to be 
implemented, there are extra core memory 
accesses, which make it a slower machine 
than the equivalent 360. 

2. The DEC system 10 (formerly the PDP-10) 
has two pairs of protection /relocation 
(base /limit) registers in addition to its 
index registers. This means that the code 
and data can be addressed using different 
base registers, and so one can easily 
product re-entrant code. Making use of 
this facility, it is possible to produce a 
real-time system in which the applications 
programs are re-entrant, even though 
written in COBOL! 

C. Concerning high-level languages and standard 
software packages, both are needed in different 
circumstances. 

We should distinguish at least two stages of 
evolution: 

In stage 1, the engineer has just a rough idea 
what the process control computer has to do, and 
he is experimenting to determine the appropriate 
algorithm. For this stage he needs a flexible 
general-purpose high-level language. 

In stage 2, problems are well settled, and 
satisfactory algorithms known. Software packages 
containing these algorithms can be provided for 
the user. 

J. The level of language is not important if you 
have good people, but it is when your staff are not 
so good. They will meet deadlines, but the quality 
of the programs cannot be guaranteed. 

35 


	Teil 1_erl
	doc03671820190521095123
	doc03671920190521095137
	doc03672020190521095151
	doc03672120190521095203
	doc03672220190521095218
	doc03672320190521095229
	doc03672420190521095247
	doc03672520190521095301
	doc03672620190521095317

	Teil 2_erl
	doc03672720190521095329
	doc03672820190521095352
	doc03672920190521095404
	doc03673020190521095422
	doc03673120190521095433
	doc03673220190521095449
	doc03673320190521095500
	doc03673420190521095525
	doc03673520190521095537
	doc03673620190521095555

	Teil 3_erl
	doc03673720190521095608
	doc03673820190521095634
	doc03673920190521095646
	doc03674020190521095711
	doc03674120190521095723
	doc03674220190521095742
	doc03674320190521095756
	doc03674420190521095813
	doc03674520190521095828
	doc03674620190521095846

	Teil 4_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 5_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 6_erl
	doc03675720190521100207
	doc03675820190521100234
	doc03675920190521100300
	doc03676020190521100318
	doc03676120190521100335
	doc03676220190521100355
	doc03676320190521100412
	doc03676420190521100430
	doc03676520190521100448
	doc03676620190521100506

	Teil 7_erl
	doc03676720190521100532
	doc03676820190521100549
	doc03676920190521100612
	doc03677020190521100629
	doc03677120190521100644
	doc03677220190521100701
	doc03677320190521100724
	doc03677420190521100740
	doc03677520190521100755
	doc03677620190521100811

	Teil 8_erl
	doc03677720190521100826
	doc03677820190521100845
	doc03677920190521100900
	doc03678020190521100916
	doc03678120190521100930
	doc03678220190521100947
	doc03678320190521101001
	doc03678420190521101030
	doc03678520190521101045
	doc03678620190521101109

	Teil 9_erl
	doc03678720190521101126
	doc03678820190521101149
	doc03678920190521101205
	doc03679020190521101221
	doc03679120190521101237
	doc03679220190521101255
	doc03679320190521101312
	doc03679420190521101329
	doc03679520190521101343
	doc03679620190521101404

	Teil 10_erl
	doc03679720190521101417
	doc03679820190521101435
	doc03679920190521101448
	doc03680020190521101506
	doc03680120190521101525
	doc03680220190521101544
	doc03680320190521101601
	doc03680420190521101636
	doc03680520190521101655
	doc03680620190521101714

	Teil 11_erl
	doc03680720190521101727
	doc03680820190521101744
	doc03680920190521101759
	doc03681020190521101817
	doc03681120190521101831
	doc03681220190521101848
	doc03681320190521101902
	doc03681420190521101920
	doc03681520190521101936
	doc03681620190521101954

	Teil 12_erl
	doc03681720190521102010
	doc03681820190521102028
	doc03681920190521102046
	doc03682020190521102100
	doc03682120190521102120
	doc03682220190521102136
	doc03682320190521102152
	doc03682420190521102210
	doc03682520190521102225
	doc03682620190521102247

	Teil 13_erl
	doc03682720190521102312
	doc03682820190521102330
	doc03682920190521102348
	doc03683020190521102408
	doc03683120190521102428
	doc03683220190521102448
	doc03683320190521102506
	doc03683420190521102526
	doc03683520190521102544
	doc03683620190521102603
	doc03683720190521102618
	doc03683820190521102635
	doc03683920190521102655
	doc03684020190521102712
	doc03684120190521102727
	doc03684220190521102748
	doc03684320190521102807
	doc03684420190521102828




