A simple matching algorithm for fingerprint minutiae
datasets in accordance with DIN V 66400

Lisa Thalheim
thalheim @informatik.hu-berlin.de

Abstract: This paper describes a simple matching algorithm for two sets of fingerprint
minutiae given in a format as described in [1], along with a description of the devel-
opment process, pseudocode, and considerations on possible flaws of the algorithm.

1 Introduction

The goal of this work was to develop a matching algorithm for sets of fingerprint minu-
tiae. The sets were given in a format as specified in [1] . Such a dataset according to [1]
contains - besides some header information - a serialized set of minutia descriptions, each
consisting of the minutia’s type, cartesian x- and y-coordinates and its angle.

The task was to find an algorithm which solves the following problem in reasonable time:
Do two given minutiae sets stem from the same finger?

In this work, the problem was treated as a mere decision problem; the algorithm was only
required to output either "true’ or *false’. In this work, two minutiae sets are considered to
stem from the same finger if there are at least 12 matching minutiae.”

The scenario for that algorithm to be used in is one of a biometric fingerprint verification
system. A user would place her finger on a sensor; the system would then decide by a
previously recorded sample whether or not the fingerprint matches the originally recorded
one.

Additionally, the background was a system that combines chipcard and fingerprint verifica-
tion using on-card-matching. This introduces the aspect that a single matching algorithm
has to handle the characteristics and peculiarities of many sensors which are unknown
during the development of the algorithm. Most fingerprint verification systems come as
a bundle of sensor device and software, which enables the developers of that system to
optimize their algorithm for that specific sensor device. This was not possible for the al-
gorithm described here; it was known beforehand that the algorithm might be used with
just any sensor which emits datasets according to [1].

The rest of this document is divided into four sections. Section 2 informally develops the
algorithm, section 3 describes it in pseudocode. Section 4 analyzes some characteristics
of the algorithm. Section 5 gives a summary and objections for possible future work.

!For information on how a minutia’s type, x/y-coordinates and angle are defined here, see Section 5, "Minutia
description”in [1].

2This number is controversial, however it is recommended as the valid minimum number of matching minu-
tiae in [1] and will be used in this paper. Consider this under appropriate reserve.

23

2 Development of the algorithm

In this section, the development process of the algorithm will be described. Why is that?
Because there is still a need for public fingerprint matching algorithms. I am sure there
are excellent algorithms for that purpose - unfortunately, they are part of the most valuable
property of biometric systems’ manufacturers. Thus, the need for such algorithms lies in
the need for non-proprietary, open biometric systems (which are easier to evaluate and
hence potentially more trustworthy) and in the need for means to compare and evaluate
proprietary biometric systems. This section is intended to give other developers ideas for
where to start when trying to develop another, better fingerprint matching algorithm.
Besides, the information contained in this section is helpful for understanding how the
algorithm works und why it works the way it does.

Inherent to the nature of the given problem is that such an algorithm would not necessarily
need to be correct: Since no input to the sensor is exactly the same as any previous one
(with the exception of inputs during a latent fingerprint attack or replay attack), we are
confronted with fuzziness.

The first step in the development process was to analyze the data the algorithm was meant
to operate on. Since there was no database of catalogized fingerprint-images accessible
to the developers , the first step was to systematically generate 124 fingerprint-images
using my own fingers. Three different sensors were used, one of which used a capacitive
approach, the other two an optical one. The fingerimages were of different characteristics:
“normal”(means: in a manner the manufacturers probably meant the user to put her finger
on the sensor), rotated about 30 ° versus “normal”, rotated about -30 ° versus “normal”,
using greater pressure, shifted downwards, shifted left. 3

The next step was to mark the minutiae in the finger-images, which had to be done by
hand, since there was no software handy for that at the time of development. It would have
been too much work to manually process all of the 124 fingerimages, so in the first hand
some images were selected which were considered characteristic.

In the end, there were 42 datasets of minutiae available in a suitable format.

The next step was to analyze the data visually: A program was written to visualize the
sets of minutiae by displaying their x/y-position, type and angle graphically. The program
allows to load up to 9 minutiae datasets and display them. Besides, it allows to manipulate
one dataset at a time: shift it around pixelwise, rotate it, shrink and stretch it.

Having constructed this tool, it was possible to ’play around”with the data the algorithm
was targeted on. The basic idea was then to imitate the human approach to matching two
minutiae sets. Note that matching two datasets given in the above (very abstract) form
is usually also not an easy task for a human. Nevertheless, while experimenting with
different datasets and the tool, one soon develops some kind of methodics to match two
datasets. * Figure 1 shows the output of the program with two datasets loaded. Dataset 1 is
depicted with white circles, dataset 2 with grey ones. The circle’s tails depict the minutia’s
orientation.

30ne of the optical sensors turned out to deliver images that were turned by 180 ° compared to the other
images. They could have “corrected”by hand, but they were used the way they were as a nice challenge.

“In this case, the human user was supported in developing this methodics by the original images, which where
still available, so one could always have a look at it and “cheat”a bit.

24

- @
, o | g ®-
o R X 2
i 3] .
N [@@
X ® ® % a9
@ @ ®-
‘° © e ®-
. -®
@ . - ® e ,
[N .® o) o ®) ®
) =z
B
- ©
. & o

Figure 1: Two rather characteristic minutiae formations

Enclosed in the black boxes, you see two quite characteristic constellations of minutiae.
They seem to be correspondences in the two datasets. The intuitive thing to do now: bring
these “twins”to match each other. In our example, this is achieved by turning one dataset
by about 180 ° and some additional shifting and stretching. Figure 2 shows the result:
The black box contains the characteristic formations from Figure 2.

It turns out that there is a procedure which allows a human to systematically analyze two
visually presented minutiae datasets:

e Find characteristic formations of minutiae which are present in both datasets.
e Bring these to match.
o See whether there are sufficient accordances visible between the datasets.

o If not: Continue if possible.

The above given pattern can be formalized and transformed into an algorithm.

Note that it will be frustrating for a human to check two datasets for accordances which
do not stem from the same finger because her pattern matching abilites will not allow any
clear answer as the datasets get larger than just a few minutiae. A human has to operate
much like a computer here. So why not let the computer do it?

3 The algorithm itself

This section formalizes and implements the thoughts from the previous section, thus build-
ing the actual algorithm.

25

. o3
@ e D&
5 °
0] 1oy B0 @
L £
o ;
‘® - g
@
CHE . & ®
@
B
G)

Figure 2: The two datasets, brought into accordance

3.1 Pseudocode and explanation

For the sake of clarity, the pseudocode is divided into the main routine and various helper
routines.

The rough functionality should become clear from the main routine, MATCH-SETS; the
helper functions are only presented here to clarify the juicy details.

function MATCH-SETS(source-minutiae-list, target-minutiae-list)
returns success or failure
input:
source-minutiae-list, a list of minutiae
target-minutiae-Iist, a list of minutiae
source-pairs < GENERATE-PAIRS (source-minutiae-list)
target-pairs < GENERATE-PAIRS(target-minutiae-list)
SORT(source-pairs) ; sort by distance ascending
SORT(target-pairs) ;
next-source-pair:
for each x € source-pairs
next-target-pair:
if exists y € target-pairs and SIMILAR-PAIRS(x,y)
if tparams «— EXTRACT-TRANSFORMATION-PARAMS(x,y) succeeds
DO-ROTATION-ON-SOURCE-DATA(tparams.rotation)
DO-TRANSLATION-ON-SOURCE-DATA (tparams.translation)
if EXIST-SUFFICIENT-MATCHES (source-minutiae-list, target-minutiae-list)
return(success)
else
RESTORE-ORIGINAL-SOURCE-DATA()
goto next-target-pair

26

else
goto next-target-pair
else
goto next -source-pair
return failure

The following are the helper functions, GENERATE-PAIRS, SIMILAR-PAIRS, EXTRACT-
TRANSFORMATION-PARAMS, DO-ROTATION-ON-SOURCE-DATA, DO-TRANSLATION-
ON-SOURCE-DATA and EXIST-SUFFICIENT-MATCHES.

GENERATE-PAIRS takes a list of minutiae and creates a list of pairs. The result is a
list which contains all possible pairs of minutiae from the list which have a distance less
than the threshold MAX-PAIR-DISTANCE.

function GENERATE-PAIRS(minutiae-list) returns list of pairs
input:
minutiae-list, a list of minutiae
for i < 1 to size of minutiae-list
for j < i+ 1 to size of minutiae-list
if EUCLIDIAN-DISTANCE(minutiae-list[i], minutiae-list[j]) <
MAX-PAIR-DISTANCE
add pair (minutiae-list[i], minutiae-list[j]) to pair-list
return pair-list

SIMILAR-PAIRS takes two minutiae pairs and returns true if the pairs are similar (as
determined by the parameter TOLERANCE-FOR-SIMILARITY) and false if not.

function SIMILAR-PAIRS(minutiae-pair-1, minutiae-pair-2) returns true or false
input:
minutae-pair-1, a minutiae pair
minutae-pair-2, a minutiae pair
if EUCLIDIAN-DISTANCE(minutiae-pair-1) €
] EUCLIDIAN-DISTANCE(minutiae-pair-2) —
TOLERANCE-FOR-SIMILARITY,
EUCLIDIAN-DISTANCE(minutiae-pair-2) +
TOLERANCE-FOR-SIMILARITY [
return true
else
return false

27

EXTRACT-TRANSFORMATION-PARAMS extracts the parameters necessary for the
translation and rotation of the source set from the two given pairs. It returns a failure
if this was not possible.

function EXTRACT-TRANSFORMATION-PARAMS(minutiae-pair-1, minutiae-pair-2)
returns params or failure
input:
minutiae-pair-1, a minutiae pair
minutiac-pair-2, a minutiae pair
angle-diff-1 <« minutiae-pair-1.minutia-a.angle —
minutiae-pair-2.minutia-a.angle
angle-diff-2 < minutiae-pair-1.minutia-b.angle —
minutiae-pair-2.minutia-b.angle
if SIMILAR-ANGLES (angle-diff-1, angle-diftf-2)
params.rotation < ((NORMALIZED(angle-diff-1) +
NORMALIZED(angle-diff-2) / 2)
else
angle-diff-1 < minutiae-pair-1.minutia-b.angle —
minutiae-pair-2.minutia-a.angle
angle-diff-2 < minutiae-pair-1.minutia-a.angle —
minutiae-pair-2.minutia-b.angle
if SIMILAR-ANGLES (angle-diff-1, angle-diff-2)
params.rotation < (NORMALIZED(angle-diff-1) +
NORMALIZED(angle-diff-2)) / 2
else
return failure
x-diff-1 < minutiae-pair-1.minutia-a.x — minutiae-pair-2.minutia-a.x
x-diff-2 «— minutiae-pair-1.minutia-b.x — minutiae-pair-2.minutia-b.x
y-diff-1 < minutiae-pair-1.minutia-a.x — minutiae-pair-2.minutia-a.x
y-diff-2 < minutiae-pair-1.minutia-b.x — minutiae-pair-2.minutia-b.x
if SIMILAR-DIFFS(x-diff-1, x-diff-2) and SIMILAR-DIFFS(y-diff-1, y-diff-2)
params.translation.x «— (x-diff-1 + x-diff-2) /2
params.translation.y < (y-diff-1 + y-diff-2) /2
else
x-diff-1 « minutiae-pair-1.minutia-b.x — minutiae-pair-2.minutia-a.x
x-diff-2 <« minutiae-pair-1.minutia-a.x — minutiae-pair-2.minutia-b.x
y-diff-1 «— minutiae-pair-1.minutia-b.x — minutiae-pair-2.minutia-a.x
y-diff-2 < minutiae-pair-1.minutia-a.x — minutiae-pair-2.minutia-b.x
if SIMILAR-DIFFS(x-diff-1, x-diff-2) and SIMILAR-DIFFS(y-diff-1, y-diff-2)
params.translation.x «— (x-diff-1 + x-diff-2) /2
params.translation.y < (y-diff-1 + y-diff-2) /2
else
return failure
return params

28

DO-ROTATION-ON-SOURCE-DATA rotates the source minutiae by the degrees given in
params.

function DO-ROTATION-ON-SOURCE-DATA (params) returns nothing
input:
params, datastructure containing parameters for rotation
for each x € source-minutiae-list
ROTATE(x, params)
return

DO-TRANSLATION-ON-SOURCE-DATA translates the source minutiae by (x,y)-values
as given in params.

function DO-TRANSLATION-ON-SOURCE-DATA (params) returns nothing
input:
params, datastructure containing parameters for translation
for each x € source-minutiae-list
TRANSLATE(x, params)
return

EXIST-SUFFICIENT-MATCHES determines whether there are enough matches between
the target minutiae and the modified source minutiae.

function EXIST-SUFFICIENT-MATCHES (source-minutiae-list, target-minutiae-list)
returns true or false
input:
source-minutiae-list, a minutiae list
target-minutiae-list, a minutiae list
matched-minutiae < 0
for each x € source-minutiae-list
for each y € target-minutiae-list
if MATCHES(x,y))
matched-minutiae < matched-minutiae + 1
if matched-minutiae > 12
return true
return false

29

MATCHES takes two minutiae and returns true if they match (as determined by diverse
parameters to the algorithms) and false if they don’t.

function MATCHES (minutia- 1, mintuia-2) returns true or false
input:
minutia-a, a minutia
minutia-b, a minutia
if ABS(minutia-a.x — minutia-b.x) < X-TOLERANCE and
if ABS(minutia-a.y — minutia-b.y) < Y-TOLERANCE and
if ABS(NORMALIZE(minutia-a.angle) — NORMALIZE(minutia-b.angle)) <
ANGLE-TOLERANCE and
if COMPATIBLE-TYPES(minutia-a, minutia-b)
return true
else
return false

3.2 Parameters

All names in the pseudocode denoted in uppercase italic font are parameters. These pa-
rameters influence greatly the behaviour and performance of the algorithm.
One might assign the following values for acceptable results:

MAX-PAIR-DISTANCE := 1.5 (mm)
TOLERANCE-FOR-SIMILARITY := 0.3 (mm)
X-TOLERANCE := 0.7 (mm)

Y-TOLERANCE := 0.7 (mm)
ANGLE-TOLERANCE := 10 (degrees)

4 Characteristics of the algorithm

The straight-forward approach to matching two sets of minutiae occurs in this algorithm
in the sub-function FIND-MATCHES. So actually, this algorithm is just a refinement of
this straight-forward method: compare each minutia from one set to each minutia from
the other set. The main advantage is that the algorithm is very robust, compared to the
ordinary method: It is quite tolerant towards any rotation or shifting of the two datasets
against each other, as long as they contain enough corresponding minutiae. This meets the
requirements of being interoperable with any sensor device that might come along.

30

4.1 Complexity

It is obvious that the algorithm’s has no optimal time complexity>. Anyway, this will usu-
ally not have a great effect, since the size of minutiae datasets has a recommended upper
bound of 60, and will probably be even smaller in practice.

Nevertheless, if implemented in a real production environment, additional countermea-
sures would need to be taken in order to eliminate the possibility that the algorithm re-
ceives very large datasets, be it accidently or as part of some attack.

The meaning of “very large”depends heavily on the structure of the data and the computing
resources, which are usually very limited on a smartcard.

4.2 Optimization

One can take some simple measures to enhance the algorithms performance. This first one
is to make sure the smaller one of the two datasets is passed to the algorithm as the source
minutiae list, since the transformations are only applied to the source data.

Furthermore, it would be worth initially sorting the target minutiae list by x, y and an-
gle ascending and modify the function FIND-MATCHES to take advantage of this. This
would have the effect that the algorithm most often would not have to touch all elements
of the target minutiae list when trying to find a match for a particular minutia from the
source minutiae list.

4.3 Flaws and potential problems

This algorithm is not too sophisticated. Hence there are some potential problems. The pos-
sible problem of performance has already been addressed, but there are still some flaws
concerning the reliability and the fraud resistance.

The algorithm relies on the presence of characteristic minutiae constellations in both
datasets. Whether two minutiae form a characteristic constellation depends mainly on
their distance. A threshold is defined for the maximum distance two minutiae can have to
be considered for a characteristic constellation. Any minutiae pairs with a distance greater
than this threshold are not considered. Since one wants to keep the threshold low for
performance reasons, it is not unlikely that there will be datasets in which the algorithm
cannot recognize any characteristic constellations at all and this reject the datasets as not
matching”, even if only a simple matching test as executed in FIND-MATCHES would
have given a positive result.

The next issue is one of fraud resistance. The algorithm has no counter-measures whatso-
ever to prevent replay-attacks. If one leaves aside countermeasures which should be taken
externally anyway, this still leaves the fact, that the algorithm cannot even recognize if it

3 A rough estimation suggests a complexity not much better than O(n8 * m?), where n is the number of
minutiae in the source set and m the number of minutiae in the target set

31

is given the same dataset two times, as source minutiae list and as target minutiae list.
The last issue to be addressed here can be called 'minutiae flood’. The basic idea is to
artificially construct minutiae datasets with a very large number of minutiae. In the ex-
treme case, this would mean one minutia for each combination of x/y-coordinate, type and
angle. The algorithm as it is described above would happily match such a dataset to its
reference dataset ©. Since in this extreme case there would be multiple minutiae at one
x/y-coordinate, which is highly unlikely, this would be relatively easy to detect. Alas, it is
not done up to now. Besides that, the issue remains and necessitates some artificial upper
bound for the number of minutiae a dataset may contain, because one could still generate a
dataset with not more than one minutia per x/y-coordinate and a ridiculously large number
of minutiae, some of which will probably match.

5 Conclusion

This work described a simple matching algorithm for sets of fingerprint minutiae. The
purpose of this algorithm was a rather academic one: Provide a simple algorithm for com-
parison with and black-box analysis of other, typically commercial, undisclosed fingerprint
matching algorithms. Another objective was to take one more step towards fully disclosed,
public algorithms.

However, there are still some issues left for possible future work: It might be desirable to
have the algorithm output a degree of likeliness that the two given minutiae sets stem from
the same finger instead of just a plain positive/negative output, although the utility of this
functionality probably depends on the application. A smartcard-scenario as described in
the introduction could happily work with just a true/false-matching scheme.

Another point to be clarified is the number of required matching minutiae. Although in
the German law enforcement it is still common to require only 12 minutiae to match, this
practice is controversial, especially in the field of electronic biometrics.

6 Annotations

A reference implementation in C is available.
I would like to thank the ES22 of T-Systems Nova GmbH for supporting this work, fur-
thermore Jan Krissler, Frank Rieger and Susanne Schmidt for review and help with this

paper.

References

[1] DIN, Finger Minutiae Encoding Format and Parameters for On-Card Matching, Standard propo-
sition 66400, June, 2002

6...although this would take quite a while.

32

