
Patterns for Semi-automatic Evolution and Refactoring of
RDF Knowledge Bases

Christoph Rieß

c.riess.dev@googlemail.com

1 Introduction

With the emerging semantic web, RDF/OWL knowledge bases of all sizes came into
existence and use. While applications are evolving, ontology concepts should change
with them, but ontology refactoring was left behind for missing tool support or
overcharging complexity of operations. To overcome this gap between the poorly
structured data and the thoroughly engineered applications, a semi-automatic way of
evolution on knowledge bases is presented here. Our approach will use evolution
patterns and a processing system for them to restructure and assure data quality on
modern semantic web data sources. Because of the nature of this problem not being
completely new, there was knowledge from schema evolution on present-day relational
database systems and software code refactorings in object-oriented programming used in
background, as well as user’s experience with RDF graph evolution at their domains.
This work is structured mainly into 5 sections, where in Section 2 the conception and
correspondence to underlying semantic web technologies is explained. Section 3 gives
an overview over how patterns for our approach were acquired with methods of statistics
and classified into three main classes. In the next section, Section 4, the integration of
such a system with the OntoWiki framework, with a real-world example, is presented. A
short overview of related concepts, not only in the field of ontology evolution, is given
then (Section 5). Finally in the last Section 6 a conclusion and outlook to possible future
work is given.

2 Concept and Technology

To ensure effective evolution of knowledge bases, patterns, like defined in this work, are
trying to correspond as close as possible with the RDF data model. Patterns are executed
by a pattern engine on an underlying triple store. Generally a pattern is basic (atomic) or
compound, in the compound case, it consists of one or more (basic or compound)
patterns. A base pattern is a triple with a set of variables V , a SPARQL query template
S, and multiple update patterns U. The compound pattern is a sequence of n base or other
compound patterns. An evolution process for a basic pattern is split into multiple steps.
First there must be all variables bound, in second step the SPARQL query template is
filled with bindings for V . It is executed and the result from the query is stored. In the
third step changes get generated by evaluation of all update patterns U. The process for
compound patterns isn’t differing much from the one for base patterns, except that all
sub patterns are executed in a well-defined sequence.

989



3 Core Pattern Library

A comprehensive library of patterns was created by analyzing related concepts in
software refactoring and database system domain. There were also interviews with
domain experts of in-use ontologies conducted to collect use cases for the evolution of
ontologies, from which the most common patterns were extracted. A three level
classification was developed, in regard to operations on the level of description logic as
highest level, the level of instances for maintaining data quality, or even the lowest level
of single entities, containing URI, language or data type’s changes. A vocabulary for
pattern exchange and increased reusability is also1 provided.

4 Implementation

OntoWiki2 is a collaborative semantic data wiki. Since version 0.9 it has a flexible
extension system, which perfectly meets the requirements for front- and backend
integration of the presented evolution pattern engine. As central element the pattern
processing engine is developed as an OntoWiki component. This software offers, besides
user interfaces for pattern execution, pattern management functions, too. It’s also
integrated with the backend, which means function support for SPARQL querying the
triple store and adding or deleting statements when patterns get executed. Loading and
storing patterns in the respective RDF Format is implemented, too.

5 Related Work

A very short overview for existing work is listed here. A quite similar composition and
description of patterns is given in [DA10]. The classification in levels is an extended
idea from [AP09]. In [FMK+08] the general classification for ontology operations is
evaluated for different papers. The differences and extended requirements for ontology
against database schema evolution are discussed in [NK04]. Some patterns were
transferred from the book [Fow04] for source code refactorings.

1 Pattern serialization scheme available under http://ns.ontowiki.net/SysOnt/EvolutionPattern/namespace
2 Project page: http://code.google.com/p/ontowiki

990



6 Conclusion and Future Work

With the theory and practice a functional alternative for bulk editing multiple statements
at once, converting ontology schemes, or maintaining data quality on RDF knowledge
bases is given by our pattern system. The core pattern library has a starting set for most
common use-cases and could be easily extended. Real-world implementation integrated
with an existing collaborative semantic wiki enables the user to evolve their ontologies
in a descriptive way, a lot like the querying of knowledge bases with SPARQL, but
extended with various operations. Further investigations which cover the field of pattern
management extensions and automatic recognition and execution have to be done.

References

[AP09] Muhammad Javed 0002, Yalemisew M. Abgaz, and Claus Pahl. A Pattern-Based
Framework of Change Operators for Ontology Evolution. In Robert Meersman, Pilar
Herrero, and Tharam S. Dillon, editors, OTM Workshops, volume 5872 of Lecture
Notes in Computer Science, pages 544–553. Springer, 2009.

[DA10] Rim Djedidi and Marie-Aude Aufaure. NTO-EVO an Ontology Evolution Approach
Guided by Pattern Modeling and Quality Evaluation. In Sebastian Link and Henri Prade,
editors, FoIKS, volume 5956 of Lecture Notes in Computer Science, pages 286-305.
Springer, 2010.

[FMK+08] Giorgos Flouris, Dimitris Manakanatas, Haridimos Kondylakis, Dimitris Plexousakis,
and Grigoris Antoniou. Ontology change: classification and survey. Knowledge Eng.
Review, 23(2):117–152, 2008.

[Fow04] Martin Fowler. Refactoring - improving the design of existing code. Addison-Wesley,
13. print. edition, 2004.

[NK04] Natalya Fridman Noy and Michel C. A. Klein. Ontology Evolution: Not the Same as
Schema Evolution. Knowl. Inf. Syst., 6(4):428–440, 2004.

991


