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Abstract: Nowadays, a central topic in database science is the need of an 
integrated access to large amounts of data provided by various information sources 
whose contents are strictly related. Often information sources have been designed 
independently for autonomous applications, so they may present  several kinds of 
heterogeneity. Particularly hard to manage is the semantic heterogeneity, which is 
due to schema and value inconsistencies.  In this paper, we focus our attention 
mainly on the inconsistency which arises when conflicting instances related to the 
same concept and possibly coming from different sources are integrated. First, we 
introduce an operator, called Merge Operator, which allows us to combine data 
coming from different sources, preserving the information contained in each of 
them. Then, we present a variant of this operator, the Extended Merge Operator, 
which associates the integrated data with some information about the process by 
which they have been obtained. Finally, in order to manage conflicts among 
integrated data, we briefly present a technique for computing consistent answers 
over inconsistent databases. 

 
 
1. Introduction 
 
The problem of integrating heterogeneous sources has been deeply investigated in the 
fields of multidatabase systems [Br90], federated databases [Wi92] and, more recently, 
mediated systems [Wi92] and data warehousing [CD97,In97]. In this paper we deal with 
the problem of integrating heterogeneous sources using a mediator-based approach.  
Integrating data from multiple heterogeneous sources determines two main different 
kinds of inconsistency: schema conflicts, which occur when different sources use 
different schemas to model the same concept, and data conflicts, which arise when 
different sources record different values for the same object [Hu97,YO99]. In this paper, 
we focus our attention on the integration of conflicting instances [Ar95,ABC99,Du96] 
related to the same concept and possibly coming from different sources. Typically, 
databases  contain intentional knowledge expressed by means of integrity constraints, 
that give information on the form the data must have. Contraints (such as functional 
dependencies, inclusion dependencies, etc.) are mainly introduced to prevent incorrect 
database states. In the approach we propose, a mediator M integrates the information 
provided by a set of sources D1,,...,Dm preserving, as much as possible, the set of 
constraints defined on each source and on the global view furnished by the mediator. In 
particular, we define an operator, called Merge Operator, which allows us to complete 
data contained in each source preserving the integrity constraints defined on it. A variant 
of the merge operator, especially useful within the materialized view approach, is the 
Extended Merge Operator, which extends any integrated tuple by storing information 
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relative to the process by which it has been obtained. Value inconsistencies, i.e. 
violations of integrity constraints, may be present in the integrated view provided by a 
mediator. In this paper we just consider inconsistencies related to the violation of 
functional dependencies. In order to manage this kind of inconsistencies we employ a 
technique defined in [GZ00], where a general logic framework for computing repairs 
and consistent answers over inconsistent databases has been proposed. The technique, 
based on disjunctive programs and stable model semantics, can be used to produce 
consistent answers over inconsistent database, i.e. maximal set of atoms which do not 
violate the constraints. The rest of the paper is organized as follows. In Section 2 we 
present the system architecture used to perform integration process. Section 3 presents 
the Merge Operator, while the Extended Merge Operator is described in Section 4. 
Finally, in Section 5 we briefly illustrate the technique introduced in [GZ00], which we 
use to compute consistent answers over inconsistent mediator views. 
 
 
2. System Architecture  
 
In order to perform the integration of multiple heterogeneous sources, we use a common 
architecture based on mediators, shown in Figure 1. 

 
 

Mediator-based architectures  are characterized by the presence of two types of 
components: wrappers, which translate local languages, models and concepts of the data 
sources into the global ones, and  mediators, which  take in input information from one 
or more components below them and provide an integrated view of it [LRO96,Ga97]. 
Views, managed by mediators, may be virtual or materialized. When a mediator receives 
a query, it dispatches subqueries to components below it (wrappers and/or mediators), 
collects the results and merges them in order to construct the global answer. Mediators 
provide an integrated view of a set of information sources. Each of these sources may be 
a source database or a database view (virtual or materialized) furnished by another 
mediator. We denote the former kind of source by basic source and the latter one by 
derived source. Similarly, a relation provided by a basic source is said to be a basic 
relation otherwise it is said to be a derived relation. A mediator has its own schema, that 

76



we call mediator schema , and a set of integrity constraints whose satisfaction means that 
data are consistent. Integrity constraints, which can also be associated with a source 
schema, are first order formulas that must always be true. Although in this paper we only 
consider functional dependencies, our approach to manage inconsistent data is more 
general. The mediator schema represents, in an integrated way, some relevant concepts 
that may be modelled differently within the schemas of different sources. 
At each level of the integration system, the information provided by different sources 
and related to the same concept is combined. The necessity of completing the 
information regarding a concept is due to the fact that some information may not be 
available at a source because it is not modeled within the schema of the source or simply 
because some data instances contain undefined values for some attributes. A mediator 
integrates different sources trying to preserve the available constraints by using one of 
the merging operators defined in Sections 3 and 4, and manages conflicting values by 
applying the technique described in Section 5. 
 
 
3. Data Integration 
 
A mediator has to define the content of any global relation as an integrated view of the 
information provided by the relations it integrates. We assume that relations 
corresponding to the same concept and furnished by different sources of a mediator are 
homogenized with respect to a common ontology, so that attributes denoting the same 
property have the same name [YO99]. Once the logical conflicts due to the schema 
heterogeneity have been resolved, conflicts may arise, during the integration process, 
among instances provided by different sources. In particular, the same real-world object 
may correspond to many tuples, that may have the same value for the key attributes but 
different values for some non-key attribute. 
     Let us introduce some simple definitions in order to simplify the description of our 
approach. We adopt the relational model for referring to schemas and instances 
pertaining to the mediator and the sources it integrates.  
     Let  R be a relation name, then we denote by: attr(R)  the set of attributes of  R; key(R)  
the set of attributes in the primary key of R; inst(R)  the instance of R (set of tuples). 
Moreover, given a tuple t ∈ inst(R), key(t) denotes the values of the key attributes of t.  
The absence of information for an attribute is indicated by the symbol ⊥.  
 

Definition 1. A relation R is said to be full if each tuple t in  R  t(a) ≠ ⊥  ∀ a ∈ attr(R).  
 

We say that two homogenized relations R and S, associated to the same concept, are 
overlapping if key(R) = key(S). 
 

Definition 2 . Given two relations R and S s.t. att(R) ⊆ att(S)  and two tuples r ∈ R and 
s ∈ S, we say that r  s if for each attribute A in att(R), is r[A] = s[A] or 
r[A]=⊥. Moreover we say R  S if ∀t1 ∈ inst(R) ∃ t2 ∈ inst(S) s.t. t1  t2. 
 

Definition 3. Let R1,...,Rn be a set of overlapping relations. A relation R is a super 
relation of R1,...,Rn if the following conditions hold: 

− attr(R) = n
i 1=Υ  attr(Ri) 
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− Ri  R, 

− key(R) = key(Ri) ∀ i=1..n. 
 

Moreover, if R is a super relation of R1,,...,Rn , then we say that Ri is a sub-relation of R 
for i=1..n.  
 

A set of tuples with the same value for the key attributes is called c-tuple (cluster of 
tuples) [Ar95]. A relation may be seen as a set of c-tuples. An important feature of the 
integration process is related to the way conflicting tuples provided by overlapping 
relations are combined. In the following section we define an operator which allows us 
to integrate a set of relations preserving the original information. 
 
3.1 The Merge Operator 
 

Given two overlapping relations S1 and S2, the merge operator, denoted by , integrates 
the information provided by S1 and S2. Let S= S1  S2, then the schema of S contains 
both the attributes in S1 and S2, and its instance is obtained by completing the 
information coming from each input relation with that coming from the other one. 
 

Definition 4.  Let S1 and S2 be two overlapping relations and let  

 
be the result of the left (resp. right) outer join of S1 and S2 with join condition 

key(S1)=key(S2).  

The merge operator is a binary operator defined as follows:  
where:  

 

Observe that given two relations R and S such that attr(R) ⊆ attr(S), the binary operator 
θ  replaces null values occurring in R with values taken from S. Moreover, in the above 
definition, each tuple t in θ(R,S) is derived from some tuple t1 of R (resp. t2 of S) by 
replacing null values of t1 (resp. t2) with the values of the corresponding attributes of t2 
(resp. t1). Thus, the merged relation S1  S2  is defined so that if S2 does not contain any 
tuple t2 such that key(t1)=key(t2) the resulting tuple will have null values for the 
attributes not present in  S1; otherwise, for each tuple t2  in S2 such that key(t1)=key(t2), 
the operator produces a tuple completing t1. In a similar way the operator extends the 
content of S2. 
 

Proposition 1. Let S1 and S2 be two overlapping relations, then: 

− attr(S1  S2)= attr(S1) ∪ attr(S2) 
− key(S1   S2)= key(S1) = key(S2), 
− S1   S1  S2 and S2  S1   S2 

 

Example 1. Consider the relations S1 and S2 reported in Fig. 2 and storing information 
about some employees. In each of them  Name is the key attribute and the functional 
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dependency Office → City  holds. The integrated relation T is obtained by merging S1 

and S2, i.e. T= S1  S2. 
 

Name Office  City 
Greg Research NY 
Red Sales WA 

Smith Admin NY 
 

Name Office  City BirthYear 
Smith Sales WA 1965 
Taylor Admin SF 1971 

Lan Sales NY 1980 
 

 
Name Office  City BirthYear 
Greg Research NY ⊥ 
Red Sales WA ⊥ 

Smith Admin NY 1965 
Smith Sales WA 1965 

Taylor Admin SF 1971 
Lan Sales NY 1980 

 
Note that in the integrated relation T  the cluster associated to Smith contains two tuples 
so  the  key  dependency  is  violated;  on  the  contrary  the functional dependency 
Office → City  holds.  
 

Let S1 and S2  be two overlapping relations, let K = key(S1) = key(S2), A={a1,...,an } = 
attr(S1) ∪ attr(S2)-K, B={b1,...,bm}= attr(S1)-attr(S2) and C={c1,...,cq} =attr(S2)-attr(S1). 
The merge operator introduced in Definition 4 can be easily expressed by means of the 
following SQL statement (where, given a relation R and a set of attributes X={X1,...,Xt}, 
the notation R.X stands for R.X1,...,R.Xt: 
 

SELECT S1.K, S1.B, COALESCE(S1.a1 , S2.a1),...,COALESCE(S1.an , S2.an), S2.C 
FROM S1 LEFT OUTER JOIN S2 ON S1.K = S2.K 
UNION  
SELECT S2.K, S1.B, COALESCE(S2.a1 , S1.a1),..., COALESCE(S2.a n , S1.an), S2.C  
FROM S1  RIGHT OUTER JOIN S2 ON S1.K = S2.K 

 

where the standard operator  COALESCE(a1,...,an) returns the first not null value in the 
sequence. 
 

Proposition 2. 
− S1  S2= S2  S1     (commutative property) 
− (S1   S2 )  S3 = S1   (S2  S3)      (associative property) 
− S1  S1   S1    
 

Note that if the relation S does not contain null value or it is consistent the                         
idempotent property holds (S1  S1  = S1). 
Obviously, given a set of overlapping relations S1 ,  S2 ,..., Sn, the associated super-
relation S can be obtained as S = S1   S2 ...   Sn, in other words S is the integrated 
view of S1 , S2,..., Sn. 
     The problem we have considered is similar to the one treated in [YO99], which 
assumes the source relations, involved in the integration process, have previously been 
homogenized. In particular, any homogenized source relations is a fragment of the global 
relation, that is it contains a subset of the attributes of the global relation and has its same 
key K. The technique proposed in [YO99] makes use of an operator , called  Match 
Join, to manufacture tuples in global relations using fragments. This operator consists of 
the outer-join of the ValSet of each attribute, where the ValSet of an attribute A is the 
union of the projections of each fragment on {K,A}. Therefore, the application of the 

S1 

Fig.2 

S2 

T 
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Match Join operator produces tuples containing associations of values that may not be 
present in any fragment. 
 

Example 2. We report in Figure 3 the relation obtained by applying the Match Join 
operator to the relations S1 and S2 of Example 1. 
 

Name Office  City BirthYear 
Greg Research NY ⊥ 
Red Sales WA ⊥ 

Smith Admin NY 1965 
Smith Admin WA 1965 
Smith Sales NY 1965 
Smith Sales WA 1965 

Taylor Admin SF 1971 
Lan Sales NY 1980 

 
 
 

The Match Join operator applied to the source relations of Example 1 produces tuples 
violating the functional dependency Office → City since it mixes values coming from 
different tuples with the same key in all possible ways. On the contrary our merge 
operator only tries to derive unknown values so that number of integrated tuples 
violating the constraints is reduced (see Example 1). 
 
 
4. Data Integration in the Materialized Approach 
 
The materialization of integrated views, commonly adopted in data warehousing 
systems, produces a significant reduction in query response time with respect to the 
virtual approach. In particular, the advantage of the materialized approach is significant 
when data are provided by multiple databases, entailing expensive joins to build the 
integrated view [Hu97]. In the presence of materialized views it can be advantageous to 
store some information about the way data have been obtained, in order to answer 
queries containing conditions on data origin. Given a set of overlapping relations 
R1,...,Rn the correspondent super relation R, obtained  by applying the merge operator, 
does not contain any information on the origin of the data in  R. In order to maintain 
information about the process by which the derived data have been obtained, we 
associate to each tuple a new attribute (integrating path attribute) representing the 
sequence of the sources that have been employed for deriving the tuple. Thus the 
schemas of the overlapping basic relations have to be extended with the integrating path 
attribute, denoted by Path. 
 

Definition 5. Let R be a basic relation. A relation S is the  extended basic relation of R if 
the following conditions hold: 
− attr(S) = attr(R) ∪ Path , 
− Path(S)=R, 
− R  S, 
− key(R) = key(Ri) ∀i=1..n. 
 

Fig. 3 The merged relation T= S1  S2 
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Example 3. The extended basic relation associated with the basic relations S1 and S2 in 
Example 1 are represented in Figure 4 . 

 
Name Office City Path 
Greg Research NY S1 
Red Sales WA S1 

Smith Admin NY S1 
 

Name Office City Birth Path 
Smith Sales WA 1965 S2 
Taylor Admin SF 1971 S2 

Lan Sales NY 1980 S2 

 

Note that from the integration of a set of overlapping extended basic relations we obtain 
an extended derived relation. In the rest of the paper, if there is no ambiguity, we 
indicate with extended relation both basic and derived extended relations, that is a 
generic relation enriched with the integrating path attribute. 
 
4.1 The Extended Merge Operator 
 

In this section we introduce a variant of the merge operator presented previously, which 
is particularly useful to mediators maintaining materialized views of the integrated 
information. The Extended Merge operator, denoted by  , receives in input two 
extended overlapping relations and builds the correspondent super-relation, where the 
value of the Path attribute of each output tuple is obtained by concatenating the Path 
values of the input tuples it derives from. 
 

Definition 6. Let S1  and S2  be two extended overlapping relations, the relation 
 

                  
where: 
 
 

 
and  the symbol .  denotes the concatenation operator. 
 

Example4. Consider the extended basic relations S1 and  S2 in Figure 4. The relation  
T=S1    S2 is reported in Figure 5. 
 

Name Office City BirthYear Path 
Greg Research NY ⊥ S1S2 
Red Sales WA ⊥ S1S2 
Smith Admin NY 1965 S1S2 
Smith Sales WA 1965 S1S2 
Taylor Admin SF 1971 S1S2 
Lan Sales NY 1980 S1S2 

 
 
Obviously, given a set of extended overlapping relations S1, S2 ,..., Sn , the associated 
extended super-relation S can be obtained as S = S1  S2 ...  Sn. In other words S is 

Fig.5 The extended merged relation T= S1    S2 

S1 S2 
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the integrated view of S1,, S2 ,..., Sn. The attribute Path of each tuple t in S corresponds to 
a permutation of all the extended basic relations S1 ,S2 ,..., Sn. 
 
4.2 Querying extended relations 
 
The information provided by the Path attribute can be useful for evaluating queries on 
the materialized views residing at the mediator. In particular, it can be employed to 
reconstruct the contents of a source relation from the materialized view or to answer 
queries expressing the satisfaction  of user preference criteria about the origin of data. 
 

Origin of data. As previously stated, the Path value of each tuple in the extended super 
relation represents the sequence of the sources that have been employed for deriving the 
tuple. In particular, the first source in the path attribute is the one from which the 
integration process has begun, i.e. the source whose values have been preserved in the 
global relation. Thus, the original instance of each basic relation, Ri, can be 
reconstructed by selecting from the extended super relation the tuples having Ri as first 
source in the Path sequence, and then by projecting on attr(Ri). 
 

Definition 7. Let R1,..., Rn be a set of extended overlapping relations and R be the 
corresponding extended super relation, then a tuple t ∈ R is said to be Ri -derived if: 

 
 
Proposition 3. Let R be an extended relation and Ri be a sub-relation of R, then a tuple t 
in R is Ri - derived if Path(t)= Ri * _, where _ denotes any source sequence.  
 
Proposition 4. Let R be an extended relation and Ri be a basic sub-relation of R,      and 

, then 
§ Ri   R' if Ri is a full relation 
§ Ri  R'  otherwise 

 

Note that, in the materialized approach, the content of each full basic relation can be 
easily reconstructed from the extended super-relation corresponding to it. 
 

Answering queries satisfying user Preference. The availability of the Path information 
makes the satisfaction of user preference criteria in queries against materialized views 
easy. Since the  Path attribute stores information about the order in which source 
relations have been integrated, it establishes a priority order on the way relations have 
been used to build the output tuple.  
A preference constraint is a rule of the form Si  Sj, where Si, Sj are two source 
relations. Preference constraints imply a partial order on the source relations. We shall 
write S1  S2 ...  Sk  as shorthand for S1 S2 ,S2 S3,...,Sk-1 Sk. The presence of such 
constraints requires the satisfaction of preference criteria during the computation of the 
answer. A priority statement of the form Si  Sj specifies a preference on the tuples 
provided by the relation Si with respect to the ones provided by the relation Sj. 
The satisfaction of a set of priority statements can be easily performed by selecting the 
tuples whose Path value corresponds to a permu tation of the sources coherent with the 
partial order imposed by the preference criteria. 
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5. Managing Inconsistent data 
 
We assume that each mediator component involved in the integration process contains 
an explicit representation of intentional knowledge, expressed  by means of integrity 
constraints. Integrity constraints express semantic information over data, i.e. 
relationships that must hold among data. Generally, a  database D has associated a set of 
integrity constraints IC. A database instance D is said to be consistent if D satisfies IC, 
otherwise it is inconsistent. In this paper we concentrate on functional dependencies. 
Using the technique proposed in  [GZ00] we compute consistent answers for possibly 
inconsistent databases. The technique is based on the generation of a disjunctive 
program DP(IC) derived from the set of integrity constraints IC. The computation of the 
consistent answers of a query G can be derived by considering the minimal models of 
the program DP(IC) over the database D. For a complete description  see [GZ00]. 
 

Definition 8. Let c be a functional dependency x |= y  over P, which can be expressed by 
a formula of the form  

(∀x,y,z,u,v) [ P(x,y,u) ∧  P(x,z,v) ⊃ y = z ] 
then, dj(c) denotes the extended disjunctive rule  

¬P(x,y,u) ∨ ¬  P(x,z,v) ←  P(x,y,u) , P(x,z,v) , y ≠  z  
 

Let IC be a set of functional dependencies, then  DP(IC)  = { dj(c) | c in IC }.  
Thus, DP(IC) denotes the set of disjunctive rules derived from the rewriting of IC. 
MM(DP(IC),D)  denotes the set of minimal models of DP(IC) ∪ D. 
 

Definition 9. Given a database D, a set of integrity constraints IC and a query G,  then 
the consistent answer for G over D consists of the three distinct sets denoting, 
respectively, true, undefined and false atoms: 
 

 
 

Theorem 1. Let D be an integrated database, FD a set of functional dependencies and G 
a query, then, the computation of a consistent answer of G over D can be done in 
polynomial time. 
 

Example 5. Consider the integrated relation T of Example 1  and the functional 
dependency Name → (Office,City,BithYear) stating that Name is a key for the relation. 
The functional dependency can be rewritten as first order formula: 

 
The associated disjunctive program is  

 
 

The above program has two stable models M1 = D ∪ { ¬T(Smith,Admin,NY,1965) } and 
M2 = D ∪ {¬T(Smith,Sales,WA, 1965) }. Thus, the query answering for the  office of 
employee Red is Sales, whereas the answer to the query asking for the office of 
employee Smith is unknown since there are two alternative values. 
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6. Conclusions 
 
In this paper, we focused our attention on the integration of conflicting instances 
[Ar95,ABC99,Du96] related to the same concept and possibly coming from different 
sources. We have presented an operator, called  Merge operator, which allows us to 
combine data coming from different sources, preserving the information contained in 
each of them and a variant of it, i.e. the  Extended Merge Operator, which keep track of 
the process by which the derived data have been obtained.  
The problem we have considered is similar to the one treated in  [YO99], which defines 
the Match Join operator to manifacture tuples in global relations using fragments. The 
Match Join operator produces tuples containing associations of values that may be not 
present in any fragment, while the merge operators we introduced only tries to derive 
unknown values.  
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