
A technique for information system integration

Sergio Greco, Luigi Pontieri and Ester Zumpano
DEIS - University of Calabria

ISI-CNR -- National Research Council
87030 Rende, Italy

{greco,pontieri,zumpano}@si.deis.unical.it

Abstract: Nowadays, a central topic in database science is the need of an
integrated access to large amounts of data provided by various information sources
whose contents are strictly related. Often information sources have been designed
independently for autonomous applications, so they may present several kinds of
heterogeneity. Particularly hard to manage is the semantic heterogeneity, which is
due to schema and value inconsistencies. In this paper, we focus our attention
mainly on the inconsistency which arises when conflicting instances related to the
same concept and possibly coming from different sources are integrated. First, we
introduce an operator, called Merge Operator, which allows us to combine data
coming from different sources, preserving the information contained in each of
them. Then, we present a variant of this operator, the Extended Merge Operator,
which associates the integrated data with some information about the process by
which they have been obtained. Finally, in order to manage conflicts among
integrated data, we briefly present a technique for computing consistent answers
over inconsistent databases.

1. Introduction

The problem of integrating heterogeneous sources has been deeply investigated in the
fields of multidatabase systems [Br90], federated databases [Wi92] and, more recently,
mediated systems [Wi92] and data warehousing [CD97,In97]. In this paper we deal with
the problem of integrating heterogeneous sources using a mediator-based approach.
Integrating data from multiple heterogeneous sources determines two main different
kinds of inconsistency: schema conflicts, which occur when different sources use
different schemas to model the same concept, and data conflicts, which arise when
different sources record different values for the same object [Hu97,YO99]. In this paper,
we focus our attention on the integration of conflicting instances [Ar95,ABC99,Du96]
related to the same concept and possibly coming from different sources. Typically,
databases contain intentional knowledge expressed by means of integrity constraints,
that give information on the form the data must have. Contraints (such as functional
dependencies, inclusion dependencies, etc.) are mainly introduced to prevent incorrect
database states. In the approach we propose, a mediator M integrates the information
provided by a set of sources D1,,...,Dm preserving, as much as possible, the set of
constraints defined on each source and on the global view furnished by the mediator. In
particular, we define an operator, called Merge Operator, which allows us to complete
data contained in each source preserving the integrity constraints defined on it. A variant
of the merge operator, especially useful within the materialized view approach, is the
Extended Merge Operator, which extends any integrated tuple by storing information

75

relative to the process by which it has been obtained. Value inconsistencies, i.e.
violations of integrity constraints, may be present in the integrated view provided by a
mediator. In this paper we just consider inconsistencies related to the violation of
functional dependencies. In order to manage this kind of inconsistencies we employ a
technique defined in [GZ00], where a general logic framework for computing repairs
and consistent answers over inconsistent databases has been proposed. The technique,
based on disjunctive programs and stable model semantics, can be used to produce
consistent answers over inconsistent database, i.e. maximal set of atoms which do not
violate the constraints. The rest of the paper is organized as follows. In Section 2 we
present the system architecture used to perform integration process. Section 3 presents
the Merge Operator, while the Extended Merge Operator is described in Section 4.
Finally, in Section 5 we briefly illustrate the technique introduced in [GZ00], which we
use to compute consistent answers over inconsistent mediator views.

2. System Architecture

In order to perform the integration of multiple heterogeneous sources, we use a common
architecture based on mediators, shown in Figure 1.

Mediator-based architectures are characterized by the presence of two types of
components: wrappers, which translate local languages, models and concepts of the data
sources into the global ones, and mediators, which take in input information from one
or more components below them and provide an integrated view of it [LRO96,Ga97].
Views, managed by mediators, may be virtual or materialized. When a mediator receives
a query, it dispatches subqueries to components below it (wrappers and/or mediators),
collects the results and merges them in order to construct the global answer. Mediators
provide an integrated view of a set of information sources. Each of these sources may be
a source database or a database view (virtual or materialized) furnished by another
mediator. We denote the former kind of source by basic source and the latter one by
derived source. Similarly, a relation provided by a basic source is said to be a basic
relation otherwise it is said to be a derived relation. A mediator has its own schema, that

76

we call mediator schema , and a set of integrity constraints whose satisfaction means that
data are consistent. Integrity constraints, which can also be associated with a source
schema, are first order formulas that must always be true. Although in this paper we only
consider functional dependencies, our approach to manage inconsistent data is more
general. The mediator schema represents, in an integrated way, some relevant concepts
that may be modelled differently within the schemas of different sources.
At each level of the integration system, the information provided by different sources
and related to the same concept is combined. The necessity of completing the
information regarding a concept is due to the fact that some information may not be
available at a source because it is not modeled within the schema of the source or simply
because some data instances contain undefined values for some attributes. A mediator
integrates different sources trying to preserve the available constraints by using one of
the merging operators defined in Sections 3 and 4, and manages conflicting values by
applying the technique described in Section 5.

3. Data Integration

A mediator has to define the content of any global relation as an integrated view of the
information provided by the relations it integrates. We assume that relations
corresponding to the same concept and furnished by different sources of a mediator are
homogenized with respect to a common ontology, so that attributes denoting the same
property have the same name [YO99]. Once the logical conflicts due to the schema
heterogeneity have been resolved, conflicts may arise, during the integration process,
among instances provided by different sources. In particular, the same real-world object
may correspond to many tuples, that may have the same value for the key attributes but
different values for some non-key attribute.
 Let us introduce some simple definitions in order to simplify the description of our
approach. We adopt the relational model for referring to schemas and instances
pertaining to the mediator and the sources it integrates.
 Let R be a relation name, then we denote by: attr(R) the set of attributes of R; key(R)
the set of attributes in the primary key of R; inst(R) the instance of R (set of tuples).
Moreover, given a tuple t ∈ inst(R), key(t) denotes the values of the key attributes of t.
The absence of information for an attribute is indicated by the symbol ⊥.

Definition 1. A relation R is said to be full if each tuple t in R t(a) ≠ ⊥ ∀ a ∈ attr(R).

We say that two homogenized relations R and S, associated to the same concept, are
overlapping if key(R) = key(S).

Definition 2 . Given two relations R and S s.t. att(R) ⊆ att(S) and two tuples r ∈ R and
s ∈ S, we say that r s if for each attribute A in att(R), is r[A] = s[A] or
r[A]=⊥. Moreover we say R S if ∀t1 ∈ inst(R) ∃ t2 ∈ inst(S) s.t. t1 t2.

Definition 3. Let R1,...,Rn be a set of overlapping relations. A relation R is a super
relation of R1,...,Rn if the following conditions hold:

− attr(R) = n
i 1=Υ attr(Ri)

77

− Ri R,

− key(R) = key(Ri) ∀ i=1..n.

Moreover, if R is a super relation of R1,,...,Rn , then we say that Ri is a sub-relation of R
for i=1..n.

A set of tuples with the same value for the key attributes is called c-tuple (cluster of
tuples) [Ar95]. A relation may be seen as a set of c-tuples. An important feature of the
integration process is related to the way conflicting tuples provided by overlapping
relations are combined. In the following section we define an operator which allows us
to integrate a set of relations preserving the original information.

3.1 The Merge Operator

Given two overlapping relations S1 and S2, the merge operator, denoted by , integrates
the information provided by S1 and S2. Let S= S1 S2, then the schema of S contains
both the attributes in S1 and S2, and its instance is obtained by completing the
information coming from each input relation with that coming from the other one.

Definition 4. Let S1 and S2 be two overlapping relations and let

be the result of the left (resp. right) outer join of S1 and S2 with join condition

key(S1)=key(S2).

The merge operator is a binary operator defined as follows:
where:

Observe that given two relations R and S such that attr(R) ⊆ attr(S), the binary operator
θ replaces null values occurring in R with values taken from S. Moreover, in the above
definition, each tuple t in θ(R,S) is derived from some tuple t1 of R (resp. t2 of S) by
replacing null values of t1 (resp. t2) with the values of the corresponding attributes of t2
(resp. t1). Thus, the merged relation S1 S2 is defined so that if S2 does not contain any
tuple t2 such that key(t1)=key(t2) the resulting tuple will have null values for the
attributes not present in S1; otherwise, for each tuple t2 in S2 such that key(t1)=key(t2),
the operator produces a tuple completing t1. In a similar way the operator extends the
content of S2.

Proposition 1. Let S1 and S2 be two overlapping relations, then:

− attr(S1 S2)= attr(S1) ∪ attr(S2)
− key(S1 S2)= key(S1) = key(S2),
− S1 S1 S2 and S2 S1 S2

Example 1. Consider the relations S1 and S2 reported in Fig. 2 and storing information
about some employees. In each of them Name is the key attribute and the functional

78

dependency Office → City holds. The integrated relation T is obtained by merging S1

and S2, i.e. T= S1 S2.

Name Office City
Greg Research NY
Red Sales WA

Smith Admin NY

Name Office City BirthYear
Smith Sales WA 1965
Taylor Admin SF 1971

Lan Sales NY 1980

Name Office City BirthYear
Greg Research NY ⊥
Red Sales WA ⊥

Smith Admin NY 1965
Smith Sales WA 1965

Taylor Admin SF 1971
Lan Sales NY 1980

Note that in the integrated relation T the cluster associated to Smith contains two tuples
so the key dependency is violated; on the contrary the functional dependency
Office → City holds.

Let S1 and S2 be two overlapping relations, let K = key(S1) = key(S2), A={a1,...,an } =
attr(S1) ∪ attr(S2)-K, B={b1,...,bm}= attr(S1)-attr(S2) and C={c1,...,cq} =attr(S2)-attr(S1).
The merge operator introduced in Definition 4 can be easily expressed by means of the
following SQL statement (where, given a relation R and a set of attributes X={X1,...,Xt},
the notation R.X stands for R.X1,...,R.Xt:

SELECT S1.K, S1.B, COALESCE(S1.a1 , S2.a1),...,COALESCE(S1.an , S2.an), S2.C
FROM S1 LEFT OUTER JOIN S2 ON S1.K = S2.K
UNION
SELECT S2.K, S1.B, COALESCE(S2.a1 , S1.a1),..., COALESCE(S2.a n , S1.an), S2.C
FROM S1 RIGHT OUTER JOIN S2 ON S1.K = S2.K

where the standard operator COALESCE(a1,...,an) returns the first not null value in the
sequence.

Proposition 2.
− S1 S2= S2 S1 (commutative property)
− (S1 S2) S3 = S1 (S2 S3) (associative property)
− S1 S1 S1

Note that if the relation S does not contain null value or it is consistent the
idempotent property holds (S1 S1 = S1).
Obviously, given a set of overlapping relations S1 , S2 ,..., Sn, the associated super-
relation S can be obtained as S = S1 S2 ... Sn, in other words S is the integrated
view of S1 , S2,..., Sn.
 The problem we have considered is similar to the one treated in [YO99], which
assumes the source relations, involved in the integration process, have previously been
homogenized. In particular, any homogenized source relations is a fragment of the global
relation, that is it contains a subset of the attributes of the global relation and has its same
key K. The technique proposed in [YO99] makes use of an operator , called Match
Join, to manufacture tuples in global relations using fragments. This operator consists of
the outer-join of the ValSet of each attribute, where the ValSet of an attribute A is the
union of the projections of each fragment on {K,A}. Therefore, the application of the

S1

Fig.2

S2

T

79

Match Join operator produces tuples containing associations of values that may not be
present in any fragment.

Example 2. We report in Figure 3 the relation obtained by applying the Match Join
operator to the relations S1 and S2 of Example 1.

Name Office City BirthYear
Greg Research NY ⊥
Red Sales WA ⊥

Smith Admin NY 1965
Smith Admin WA 1965
Smith Sales NY 1965
Smith Sales WA 1965

Taylor Admin SF 1971
Lan Sales NY 1980

The Match Join operator applied to the source relations of Example 1 produces tuples
violating the functional dependency Office → City since it mixes values coming from
different tuples with the same key in all possible ways. On the contrary our merge
operator only tries to derive unknown values so that number of integrated tuples
violating the constraints is reduced (see Example 1).

4. Data Integration in the Materialized Approach

The materialization of integrated views, commonly adopted in data warehousing
systems, produces a significant reduction in query response time with respect to the
virtual approach. In particular, the advantage of the materialized approach is significant
when data are provided by multiple databases, entailing expensive joins to build the
integrated view [Hu97]. In the presence of materialized views it can be advantageous to
store some information about the way data have been obtained, in order to answer
queries containing conditions on data origin. Given a set of overlapping relations
R1,...,Rn the correspondent super relation R, obtained by applying the merge operator,
does not contain any information on the origin of the data in R. In order to maintain
information about the process by which the derived data have been obtained, we
associate to each tuple a new attribute (integrating path attribute) representing the
sequence of the sources that have been employed for deriving the tuple. Thus the
schemas of the overlapping basic relations have to be extended with the integrating path
attribute, denoted by Path.

Definition 5. Let R be a basic relation. A relation S is the extended basic relation of R if
the following conditions hold:
− attr(S) = attr(R) ∪ Path ,
− Path(S)=R,
− R S,
− key(R) = key(Ri) ∀i=1..n.

Fig. 3 The merged relation T= S1 S2

80

Example 3. The extended basic relation associated with the basic relations S1 and S2 in
Example 1 are represented in Figure 4 .

Name Office City Path
Greg Research NY S1
Red Sales WA S1

Smith Admin NY S1

Name Office City Birth Path
Smith Sales WA 1965 S2
Taylor Admin SF 1971 S2

Lan Sales NY 1980 S2

Note that from the integration of a set of overlapping extended basic relations we obtain
an extended derived relation. In the rest of the paper, if there is no ambiguity, we
indicate with extended relation both basic and derived extended relations, that is a
generic relation enriched with the integrating path attribute.

4.1 The Extended Merge Operator

In this section we introduce a variant of the merge operator presented previously, which
is particularly useful to mediators maintaining materialized views of the integrated
information. The Extended Merge operator, denoted by , receives in input two
extended overlapping relations and builds the correspondent super-relation, where the
value of the Path attribute of each output tuple is obtained by concatenating the Path
values of the input tuples it derives from.

Definition 6. Let S1 and S2 be two extended overlapping relations, the relation

where:

and the symbol . denotes the concatenation operator.

Example4. Consider the extended basic relations S1 and S2 in Figure 4. The relation
T=S1 S2 is reported in Figure 5.

Name Office City BirthYear Path
Greg Research NY ⊥ S1S2
Red Sales WA ⊥ S1S2
Smith Admin NY 1965 S1S2
Smith Sales WA 1965 S1S2
Taylor Admin SF 1971 S1S2
Lan Sales NY 1980 S1S2

Obviously, given a set of extended overlapping relations S1, S2 ,..., Sn , the associated
extended super-relation S can be obtained as S = S1 S2 ... Sn. In other words S is

Fig.5 The extended merged relation T= S1 S2

S1 S2

81

the integrated view of S1,, S2 ,..., Sn. The attribute Path of each tuple t in S corresponds to
a permutation of all the extended basic relations S1 ,S2 ,..., Sn.

4.2 Querying extended relations

The information provided by the Path attribute can be useful for evaluating queries on
the materialized views residing at the mediator. In particular, it can be employed to
reconstruct the contents of a source relation from the materialized view or to answer
queries expressing the satisfaction of user preference criteria about the origin of data.

Origin of data. As previously stated, the Path value of each tuple in the extended super
relation represents the sequence of the sources that have been employed for deriving the
tuple. In particular, the first source in the path attribute is the one from which the
integration process has begun, i.e. the source whose values have been preserved in the
global relation. Thus, the original instance of each basic relation, Ri, can be
reconstructed by selecting from the extended super relation the tuples having Ri as first
source in the Path sequence, and then by projecting on attr(Ri).

Definition 7. Let R1,..., Rn be a set of extended overlapping relations and R be the
corresponding extended super relation, then a tuple t ∈ R is said to be Ri -derived if:

Proposition 3. Let R be an extended relation and Ri be a sub-relation of R, then a tuple t
in R is Ri - derived if Path(t)= Ri * _, where _ denotes any source sequence.

Proposition 4. Let R be an extended relation and Ri be a basic sub-relation of R, and

, then
§ Ri R' if Ri is a full relation
§ Ri R' otherwise

Note that, in the materialized approach, the content of each full basic relation can be
easily reconstructed from the extended super-relation corresponding to it.

Answering queries satisfying user Preference. The availability of the Path information
makes the satisfaction of user preference criteria in queries against materialized views
easy. Since the Path attribute stores information about the order in which source
relations have been integrated, it establishes a priority order on the way relations have
been used to build the output tuple.
A preference constraint is a rule of the form Si Sj, where Si, Sj are two source
relations. Preference constraints imply a partial order on the source relations. We shall
write S1 S2 ... Sk as shorthand for S1 S2 ,S2 S3,...,Sk-1 Sk. The presence of such
constraints requires the satisfaction of preference criteria during the computation of the
answer. A priority statement of the form Si Sj specifies a preference on the tuples
provided by the relation Si with respect to the ones provided by the relation Sj.
The satisfaction of a set of priority statements can be easily performed by selecting the
tuples whose Path value corresponds to a permu tation of the sources coherent with the
partial order imposed by the preference criteria.

82

5. Managing Inconsistent data

We assume that each mediator component involved in the integration process contains
an explicit representation of intentional knowledge, expressed by means of integrity
constraints. Integrity constraints express semantic information over data, i.e.
relationships that must hold among data. Generally, a database D has associated a set of
integrity constraints IC. A database instance D is said to be consistent if D satisfies IC,
otherwise it is inconsistent. In this paper we concentrate on functional dependencies.
Using the technique proposed in [GZ00] we compute consistent answers for possibly
inconsistent databases. The technique is based on the generation of a disjunctive
program DP(IC) derived from the set of integrity constraints IC. The computation of the
consistent answers of a query G can be derived by considering the minimal models of
the program DP(IC) over the database D. For a complete description see [GZ00].

Definition 8. Let c be a functional dependency x |= y over P, which can be expressed by
a formula of the form

(∀x,y,z,u,v) [P(x,y,u) ∧ P(x,z,v) ⊃ y = z]
then, dj(c) denotes the extended disjunctive rule

¬P(x,y,u) ∨ ¬ P(x,z,v) ← P(x,y,u) , P(x,z,v) , y ≠ z

Let IC be a set of functional dependencies, then DP(IC) = { dj(c) | c in IC }.
Thus, DP(IC) denotes the set of disjunctive rules derived from the rewriting of IC.
MM(DP(IC),D) denotes the set of minimal models of DP(IC) ∪ D.

Definition 9. Given a database D, a set of integrity constraints IC and a query G, then
the consistent answer for G over D consists of the three distinct sets denoting,
respectively, true, undefined and false atoms:

Theorem 1. Let D be an integrated database, FD a set of functional dependencies and G
a query, then, the computation of a consistent answer of G over D can be done in
polynomial time.

Example 5. Consider the integrated relation T of Example 1 and the functional
dependency Name → (Office,City,BithYear) stating that Name is a key for the relation.
The functional dependency can be rewritten as first order formula:

The associated disjunctive program is

The above program has two stable models M1 = D ∪ { ¬T(Smith,Admin,NY,1965) } and
M2 = D ∪ {¬T(Smith,Sales,WA, 1965) }. Thus, the query answering for the office of
employee Red is Sales, whereas the answer to the query asking for the office of
employee Smith is unknown since there are two alternative values.

83

6. Conclusions

In this paper, we focused our attention on the integration of conflicting instances
[Ar95,ABC99,Du96] related to the same concept and possibly coming from different
sources. We have presented an operator, called Merge operator, which allows us to
combine data coming from different sources, preserving the information contained in
each of them and a variant of it, i.e. the Extended Merge Operator, which keep track of
the process by which the derived data have been obtained.
The problem we have considered is similar to the one treated in [YO99], which defines
the Match Join operator to manifacture tuples in global relations using fragments. The
Match Join operator produces tuples containing associations of values that may be not
present in any fragment, while the merge operators we introduced only tries to derive
unknown values.

Bibliography

[Ar95] Argaval, S.; Keller, A.M.; Wiederhold, G.; Saraswat, K.: Flexible Relation: an
Approach or Integrating Data from Multiple, Possibly Inconsistent Databases. In
Proc. 11th Int. Conf. on Data Engineering, 1995; pp. 495--504.

[ABC99] Arenas, M.; Bertossi, L.; Chomicki, J.: Consistent Query Answers in Inconsistent
Databases. In Proc. PODS Conference, 1999; pp. 68--79.

[Br90] Breitbart, Y: Multidatabase interoperability. In Sigmod Record 19(3), 1990; pp. 53-60.

[CD97] Chaudhuri, S.; Dayal, U.: An Overview of Data Warehousing and OLAP Technology.
In ACM SIGMOD Record, 26(1), 1997; pp. 65--74.

[Du96] Dung, P. M.: Integrating Data from Possibly Inconsistent Databases. In Proc. 1st Int.
Conf. on Cooperative Information Systems, 1996, pp. 58--65.

[EGM97] Eiter, T.; Gottlob, G.; Mannila, H.:Disjunctive Datalog. In ACM Transactions on
Database Systems, 22(3), 1997; pp. 364--418.

[Ga97] Garcia-Molina, H.; Papakonstantinou, Y.; Quass, D.; Rajaraman, A.; Sagiv, Y.;
Ullman, J.; Vassalos, V.; Widom, J.: The TSIMMIS approach to mediation: Data
models and languages. In J. Intelligent Information Systems, 8(2),1997; pp. 117--132.

[GS95] Grant, J.; Subrahmanian, V.S.: Reasoning in Inconsistent Knowledge Bases. In IEEE-
Trans. on Knowledge and Data Eng., 7(1),1195;pp. 177--189.

[GZ00] Greco, S.; Zumpano, E.:Querying Inconsistent Database.In Proc. 7th Int. Conf. Logic
for Programming and Automated Reasoning,2000; pp. 308--325.

[Hu97] Hull, R.:Managing Semantic Heterogeneity in Databases: a Theoretical Perspective.In
Proc. Symposium on Principles of Database Systems, 1997; pp. 51--61

[In97] Inmon, W.H.:What is a Data Warehouse?. Prism Tech. Topic, 1(4),1997.

[LRO96] Levy, A.; Rajaraman, A.; Ordille, J.:Querying heterogeneous information sources
using source descriptions. In Proc. VLDB. Conf.,1996; pp. 251--262.

[LM99] Lin, J.; Mendelzon, A.O.:Knowledge Base Merging by Majority.In Pareschi, R.;
Fronhoefer, B. (Eds.): Dynamic Worlds.Kluwer, 1999.

[YO99] Yan, L.L.; Ozsu, M.T.:Conflict Tolerant Queries in Aurora. In Proc. 4th Int. Conf. on
Cooperative Information Systems,1999; pp. 279--290.

[Wi92] Wiederhold, G.:Mediators in the architecture of future information systems.IEEE
Computer, 25(3),1992; p. 38--49.

84

