Towards Information Flow Auditing in Workflows

Claus Wonnemann
Department of Telematics
Albert-Ludwigs-Universitit Freiburg, Germany
wonnemann@iig.uni-freiburg.de

Abstract:

The paper proposes an approach for compliance audits in workflow environments
based on the tracking of information flow. Requirements are formalized as a binary re-
lation on the workflow principals. The workflows’ execution logs are transferred into
graph-based representations of the explicit information flows (dataflows) and adher-
ence to compliance requirements is checked while traversing these graphs. The scope
and limits are discussed and the major milestones for further work are outlined.

1 Introduction

Many compliance requirements that are applicable to IT systems somehow regulate the
flow of information, e.g. when some sensitive information must not be disclosed to unau-
thorized parties, or if some datum has to pass a number of checks before being released
(e.g. to ensure the four-eyes-principle). Such information flow constraints can be ex-
pressed as relations among system principals, independently from the concrete imple-
mentation. This formalization is stronger than access control policies because it captures
information propagation throughout the system (end-to-end) rather than access at certain
points. Further, it captures implicit information flows, which lie outside the scope of access
control mechanisms (see below).

This paper proposes an approach for compliance audits in workflow environments based
on the a-posteriori tracking of information flow. We present the IFAudit system, which
consists of a policy language for the expression of information flow constraints and an
audit algorithm to track explicit information flow (dataflow), based on log data. We discuss
the scope and limits of the implementation and outline the most important milestones for
further work.

Types of Information Flow There are two types of information flow: explicit and im-
plicit. Explicit flow is information transfer through “legitimate” channels that are intended
for this purpose, such as messages and shared storage. Implicit flow describes the ex-
traction of information through inference. This is the case when multiple data items are
combined to yield information, e.g. when anonymized patient records are matched against
address directories to reduce the anonymity set and, eventually, reveal a patient’s identity.
Information can also be inferred from the observable behavior of the system. For instance,

549

by observing the response times of a crypto system, an attacker might infer knowledge on
its private key. Here, the system’s timing behavior forms a covert channel that enables an
attacker to obtain secret information.

2 Workflows and Log Data

Workflows formally describe business processes as structured sequences of activities. The
execution of a workflow is coordinated by an execution engine which triggers activities,
synchronizes their interaction and communication, and writes log data. These log files are
the basis for the audits considered in this paper.

Log files of workflow systems are structured as sequences of entries that each represent a
workflow activity. An entry comprises (among other attributes) the originator, on which
behalf the activity was performed, and the data items that were read (input) and written
(output) by the activity. Further, it is assumed that each entry can be attributed to a work-
flow instance and that the entries are totally ordered (e.g. by providing a timestamp).

Expressed formally, £y denotes the log file for a workflow W, with Ly, € A*, where A
is the universe of all log file entries. £y can be partitioned into a set {i}",}V,...,i"}
where zl/v denotes the trace (ordered sequence of log entries) for the i execution of W
(0 <4 <n). An entry a has the attributes orig (the originator), input (the set of input data
items) and output (the set of output data items). The attributes of an entry are referenced
with a dot (e.g. a.orig). For convenience, activity and log entry (of the activity) are used
interchangeably in the following.

3 Policies

An information flow policy P = {r1,...,7,} is a set of rules that specify which principals
in a system may or must not exchange information. The principals in our setting are the
originators (subjects) that appear in a log file Lyy, denoted as Syy = Uqer,, a.0rig.

The function sc : S - D assigns principals security domains from the set D of domains.
The information flow policy specifies among which security domains information may or
must not be exchanged. An activity has the same domain as its originator.

Fig. 1(a) shows a typical multi-level security policy with three domains (a crossed arrow
indicates that there must not be information flow). Compliance requirements often demand
that some data has to take a specific path, for instance, to ensure that financial statements
are checked by the revision department before being published to investors. Fig. 1(b)
depicts a corresponding policy: information coming from the Accounting domain must
not flow directly to the /R department, but has to pass through Revision.

A policy rule has the form Restriction = Exception. Restriction is a flow relation
source ~ target, which specifies that information must not flow from domain source
to domain target (source, target € D). Exception is a logical combination of flow re-

550

<Policy> ::= <Rule> | <Rule>, <Policy>

<Rule> ::= <Restriction> =
<Exception>
<Restriction> ::= true | <FlowRel>
<Exception> ::= false | <FR-DNF>
<FR-DNF> ::= (<ConClause>) |

(<ConClause>) VvV <FR-DNF>

<ConClause> ::= <FlowRel> |
Accoun-
ting <FlowRel> A <ConClause>
<FlowRel> ::= <Domain>~<Domain>
@ (b) <Domain> ::=deD
Figure 1: Example Flow Policies. Figure 2: Policy grammar in BNF.

lations in disjunctive normal form which defines legitimate flows that might contradict
Restriction (as in the example in Fig. 1(b)). Fig. 2 gives the grammar for these policies
in Backus-Naur-Form.

Using this grammar, the example policies from Fig. 1 have the form

Secret~Confidential = false,
Confidential~Public = false,

Secret~Public = false

and

Accounting~IR = (Accounting~Revision A Revision~IR),
respectively.

Besides the (extensional) specification of flow relations, which express whether informa-
tion may flow between domains, an information flow policy must define which (patterns
of) system actions constitute information transmission. In its current state, the IFAudit
system only supports the detection of dataflow, i.e. explicit information flow: There is an
information flow from domain d; to domain ds, if (and only if) there is a data item which
has been modified by an activity from d; and is subsequently read by an activity from
ds. This approach is similar to the tainting mode in the Perl programming language. It is
sufficiently expressive to capture common compliance violations, such as failure to “san-
itize” information or illicit propagation of some data item. A more comprehensive and
fine-grained analysis is subject of ongoing work (see Section 6).

4 Audit Algorithm

The IFAudit system analyzes explicit information flow on the workflow level, i.e. the in-
formation transfer that occurs among the activities. Activities are regarded as black boxes
of which the internal workings are not necessarily known, but only their I/O. On this ab-
straction level, IFAudit allows to check whether a workflow instance has exhibited illicit

551

VISIT(u):
for each (Rule r € OpenRules that is closed by u) do
Report violation of r through flow(s) from SRc(r) to u;
for each (Rule r € P that is opened by u) do
e OpenRules := OpenRules U r;

. SRC(r) = SRC(r) U u;
Policy

Worion Execsion Mark u as visited;
Successors = Direct successors of u;
Sort Successors in ascending order;
P/ for each (v in Successors) do
if (v is not marked as visited) then
Analysis

e
— VISIT(v);

PETETE for each (Rule r € P that is opened by u) do

Preprocessing

SRC(r) = SRc(r) \ u;
if (SRC(r) = {}) then
OpenRules := OpenRules \ r;

Figure 3: Outline of the IFAudit system. Figure 4: Pseudo-code for VISIT.

information flows with respect to a specified policy.

The structure of IFAudit is outlined in Fig. 3. The log entries of each workflow instance are
transferred into a propagation graph (PG) that represents the explicit information flows
(dataflows) between the involved principals. The PGs are subsequently analyzed for illicit
information flows according to the given policy. The PG for a trace ZKV c Lyy is denoted
PGY. Itis defined as a graph (V, E), where V = {a € A|a € iV} is a set of activities
(representing the graph’s vertices), and E = {(a,b) € (Ax.A)|a < bAa.outputnb.input +
{}} is an asymmetric relation representing the graph’s (directed) edges. An edge (a,b) in
a PG indicates that there was a dataflow from activity a to activity b.

Policy Check To check whether a workflow instance adheres to a given policy, its PG is
traversed in a depth-first fashion. During traversal, it is checked whether an activity marks
the starting point of an illicit information flow (i.e. if it is assigned a security domain that is
the source of a rule’s restriction). Such rules are kept in a set of “open” rules and checked
whether they are “closed” (i.e. violated) by a subsequent activity. An activity closes a rule,
if its assigned security class corresponds to the end point of that rule’s restriction, and if
the rule’s exception-clause evaluates to false. Fig. 4 shows the pseudo-code for the pro-
cedure VISIT, which checks whether an activity closes or opens a rule before recursively
applying itself to each of the activity’s successors. The field OpenRules contains the set
of rules that have been opened by one or many activities residing above the current activity
in the PG. The mapping SRC maps each rule from OpenRules to the set of activities that
have opened that rule.

5 Related Work

The Examina system allows the formalization and a-posteriori checking of privacy poli-
cies [Acc08]. However, there is no explicit notion of information flow, i.e. information
cannot be tracked over several data items. Research in process mining focuses on building
models of the process’ control structure (e.g. using Petri nets) [vdAWMO04]; concerning

552

security aspects, there is some work addressing the detection of anomalous process behav-
ior [vdAdMOS5]. Research on information flow control concentrates almost exclusively on
the prevention of illicit flow through static and dynamic methods [SMO03]. The a-posteriori
detection has previously been addressed by the author [AW09].

6 Conclusion and Future Work

The IFAudit system allows to check whether information in workflow applications has
flown along specified paths. Therefore it can validate adherence to those compliance rules
that constrain information propagation. In its current state, IFAudit is restricted to dataflow,
which is arguably the most relevant type of information flow in the compliance context.
Since information flow in a computer system is, in general, undecidable [DD77], IFAudit
uses a common approximation: it is assumed that an activity reading a datum completely
absorbs the contained information and passes it entirely to every output datum. This is a
conservative assumption which ensures that every (explicit) information flow is captured.
The drawback is that the system is likely to generate many false positives, when an infor-
mational dependency is assumed where there is not one. Therefore, precision improvement
is a major subject of current and future work (see below).

We currently evaluate the correctness and efficiency of the IFAudit system with a proof-
of-concept implementation. For this purpose, a simulation environment for workflows
was built, which can execute multiple instances of a workflow model (parametrized with
varying input) and write the corresponding log files. Further, it is planned to extend IFAudit
in multiple directions:

Inference The accumulation of multiple data items causes illicit flow, if, for instance,
multiple anonymized patient records can be combined to reveal an identity. In order to
detect such flows, we plan to integrate a mechanism that allows the formalization of in-
ference capabilities in terms of inference rules. This way, it can be checked whether there
might occur illicit flow whenever multiple data items converge at some principal, possibly
in the course of multiple executions. Inference rules can also be used to formalize common
compliance policies such as Chinese Wall: here it must be ruled out that information from
competing clients ever converge at the same principal.

Formalization and Detection of Implicit Flow To capture implicit information flows
through covert channels, more sophisticated flow semantics than tainting are needed. The
classical notion is noninterference, the requirement that the interactions of higher-level
users with a system must not influence the interactions of lower-level users [GMS82].

We are currently working on an audit algorithm for the detection of implicit flow based
on information theory. It measures how much the entropy of hidden (high-level) vari-
ables decreases when public (low-level) variables can be observed. If the entropy drops
significantly, there is information transmission from the hidden to the public variable. Con-
versely, noninterference holds when the entropy does not change at all. The advantage of

553

the audit approach compared to static methods is that the transferred information can be
precisely quantified (with respect to the given log data). While static methods can deter-
mine whether the possibility of implicit information transfer exists (in principle), audits
can determine whether such a transfer has indeed occurred, and to which extent.

Declassification Generic flow semantics such as noninterference in its original form are
too restrictive for most applications, since they characterize information flows through
causal flows and reject secure programs where there is a causal flow without an associated
information flow [RyaOl]. Further, certain “downward” flows are necessary in virtually
every application: a standard password check is considered insecure because even the
rejection of a wrong guess reveals some information on the password (namely, what it is
not). Instead of requiring no inference between high and low ar all, it is more reasonable
to require that the higher-level behavior must not influence lower-level observations in a
critical way. This issue is known as declassification (for an overview see [SS05]). We are
currently seeking to integrate a suitable downgrading mechanism into IFAudit that allows
to consider encrypted channels and other “sanitizing” effects in a workflow.

References

[Acc08] Rafael Accorsi. Automated Privacy Audits to Complement the Notion of Control for
Identity Management. In Policies and Research in Identity Management. Springer,
2008.

[AWO09] Rafael Accorsi and Claus Wonnemann. Detective Information Flow Analysis for Busi-

ness Processes. In BPSC, pages 223-224, 2009.

[CS08] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In Proceedings 21st
IEEE CSF, pages 51-65, Washington, DC, USA, 2008. IEEE Computer Society.

[DD77] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure infor-
mation flow. Commun. ACM, 20(7):504-513, 1977.

[GMS2] Joseph A. Goguen and José Meseguer. Security Policies and Security Models. In
Proceedings IEEE Symposium on Security and Privacy, pages 11-20, 1982.

[Rya0O1] Peter Y. A. Ryan. Mathematical Models of Computer Security. In Foundations of
Security Analysis and Design, pages 1-62, London, UK, 2001. Springer-Verlag.

[SMO03] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5-19, 2003.

[SSO05] Andrei Sabelfeld and David Sands. Dimensions and Principles of Declassification. In
Proceedings 18th IEEE CSFW, pages 255-269. IEEE Computer Society, 2005.

[vdAdMO5] W. v.d.Aalst and A. de Medeiros. Process Mining and Security: Detecting Anomalous
Process Executions and Checking Process Conformance. ENTCS, 121:3 — 21, 2005.

[vAAWMO4] W. v.d.Aalst, T. Weijters, and L. Maruster. Workflow Mining: Discovering Process
Models from Event Logs. TKDE, 16(9):1128-1142, 2004.

554

