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Abstract 
The evaluation of XPath expressions plays a central role in accessing XML 
documents and therefore may be used in XML database systems for different 
components. We demonstrate that different applications ranging from access 
control to transaction synchronization to the reuse of query results have very 
similar requirements to the evaluation of XPath expressions, which can be solved 
by the same two steps. Firstly, we compute from each XPath expression a regular 
expression of the selected node paths and right-shuffle predicate filters to the 
selected nodes. Secondly, we describe the treatment of predicate filters which may 
be used in XPath expressions for queries, access control, and synchronization, and 
present a fast predicate evaluator for these predicates. Finally, we introduce the 
concept of “ fall-back decisions” , which allow us to use an incomplete but efficient 
theorem prover, which solves most cases in practice and guarantees correct fall-
back behavior for the other cases. 

 
Keywords: XPath predicate evaluation, XPath overlap test, subset test. 

1. Introduction  

1.1 Motivation and problem description  

XML plays a central role as data exchange format in client-server applications with 
mobile partners. Whenever XML data is stored in a database, then both, access control 
and synchronization of the clients’  access to XML data are important topics [1],[5],[15]. 
Furthermore, when query results have to be shipped from a server-side XML database to 
mobile clients over small bandwidth connections, then reusing previous query results 
which are already stored at the client-side in order to answer a new query may 
considerably reduce the data transfer from server to client.  
XPath [18] is a standard which is used as data access language for XML data and which 
additionally plays a central role in other XML standards like XSL(T) and query 
languages like XQuery. XPath expressions can be used to characterize fragments of an 
XML document which are read by a query or are modified, as well as fragments which 
have been loaded into a local memory by a previous query, and fragments to which an 
access right is granted. Our work concentrates on XPath expressions that are used to 
exchange, access, or control the access of data. We present two tests, a subset test and an 
overlap test for XPath expressions, both of which contribute to solve three different 
problems in an XML database system with mobile clients: access control, the reuse of 
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previous query results, and synchronization. Our approach works on the qualified node 
names of the DTD (not on the physical node set) for elements or attributes which must be 
checked (or locked) for a given query or update operation.  
We follow approaches like [5,14] for the definition of access rights, i.e., we define which 
fragment of an XML document may be read and which fragment may be written. Access 
control has to check that no user attempts to access an XML fragment within an access 
mode (read or write) beyond his access rights granted in this access mode and thereby 
violates his access rights. Because we use XPath expressions in order to describe queries 
and access rights, the node set of any given XML document which can be accessed by an 
XPath query must be a subset of the node set which would be selected by an XPath 
expression which describes the access right exists. It is an essential requirement of our 
applications to the access control component that access violations are detected and 
reported, because users with different access rights must cooperate, but their individual 
decisions depend on their knowledge, i.e. on the data which they read. Therefore, our 
applications can not accept that different users get different answers to the same query. 
That is why we cannot implement an access right by using an additional filter which 
restricts the query results, as suggested in other contributions, e.g. [5,16].  
For example, one XPath expression  

XP1 = /  r oot  /  cust omer  [  @l ast name=“ Mei er ”  ]   
can be used to query for cust omer  elements which are directly located under a r oot  
element and have an attribute l ast name with the value “ Mei er ” . Such an XPath 
expression can either be used directly by an XPath query engine or indirectly by a 
component like XQuery or XSLT which use XPath in order to query for certain subsets 
of an XML document. Similarly, an access right for a user can be defined by another 
XPath expression  

XP2 = /  r oot  /  cust omer   
which allows the user to access all  cust omer  elements under the  r oot  element. 
Our subset tester proves without access to the database that the query XP1 selects a 
subset of the nodes described by the access right XP2 in all possible database states, i.e., 
an access which uses the query XP1 can be granted to a user with the access right XP2.  
The reuse of query results is interesting in an application environment where mobile 
clients with small bandwidth connections query XML data which is provided by a server-
side database. In order to be sure that a result of a previous query which is stored at the 
client-side can be reused, the client can prove that a new query asks for only a subset of 
the nodes that are stored as a previous query result. Reusing the previous query result to 
answer the new query, will significantly save communication costs between the server 
and the client compared to submitting the new query to the server and transferring the 
results back to the client. For example, let us assume that the query result of XP1 is still 
available in the main memory of a mobile device and a new query  

XP3 = / r oot / cust omer [  @f i r st name=“ Tom”  and @l ast name=“ Mei er ”  ]  
is submitted by the client application (say, because this data is needed in an XSLT 
stylesheet), then again our subset tester is used. However, this time it proves that XP3 
selects a subset of XP1, i.e. it concludes, that the previous query result of XP1 can be 
reused. That is, instead of submitting a query for XP3 to the server and sending the 
answer back to the mobile client, the previous query result of XP1 can be used to 
compute the answer to XP3 without data exchange between client and server.  
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Finally, transaction synchronization has to prevent two concurrent transactions from 
accessing the same fragment of an XML database concurrently with at least one of them 
requiring an exclusive access right.  For example, let us assume that a concurrent 
transaction wants to have an exclusive access to all data which are described by an XPath 
expression  

XP4 = /  r oot  /  *  [  @dest i nat i on=“ Ber l i n”  ]   
and the DTD of our XML document allows to substitute cust omer  for the node test *  
in XP4, then our overlap tester finds out that the XPath expressions XP3 and XP4 
overlap, i.e., there is a possible database state in which both XPath expressions select the 
same set of data (in this case customers “Tom Meyer”  who want to fly to the destination 
“Berlin” ). In such a situation the scheduler at the server-side decides that both 
transactions have to run serial, because they may access overlapping data.  
As mentioned in the previous example, we need the DTD information in order to expand 
* correctly, i.e., to find out that we can choose the element cust omer  for *.  
To summarize: The input of our tester is a DTD and two XPath expressions (XP1 and 
XP2) which are used for queries, access rights, locks, or stored previous query results. 
Our goal is to prove without any physical access to the actual state of the XML database 
that XP1 and XP2 select disjointed node sets or that the node set selected by XP1 is a 
subset of the node set selected by XP2.  

1.2. Our focus in comparison to related work 

Other contributions have investigated the reuse of previous query results, transaction 
synchronization and the control of access rights independently of each other, whereas our 
predicative view of the problems allows us to use the same approach to solving key 
aspects of all three problems for XML database systems.  
Within the area of access control on XML databases there have been contributions to a 
wide variety of different aspects ranging from policies to user groups to document 
location in the web, to access control for fragments of XML documents [10,2,6,1]. 
Within the approaches to access control on fragments of XML documents, there is a 
trend towards fine-grained access rights, which include and go beyond access rights at 
the level of attributes or elements [16,5]. We follow and extend this direction and define 
access rights not only on the level of nodes, but also include fine-grained access rights 
specified by XPath expressions with predicate filters. In comparison to other approaches 
which use an additional filter that operates on physically given data in order to avoid 
access violations, our application environment requires our approach to give complete 
answers to all users and to reject each access that violates access rights.  
In comparison to approaches which delegate transaction synchronization to a database 
system that is used to store, query and modify the information contained in XML 
documents [8], our approach operates on the XPath formulas alone and does not rely on 
the existence of a database system. Therefore, it can be used as an add-on to an existing 
XML database system, but it can also be used to control concurrent access to large XML 
documents which are stored in a file system.  
Within the area of reusing previous query results, we follow approaches for semantic 
caching, which was introduced in [13] in contrast to tuple-based and page-based caching. 
In contrast to the first contributions to semantic caching, we follow [7, 11, 12, 17] and 
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decide on basis of the XPath expressions themselves and based on the DTD whether or 
not a new XPath query can reuse a previous XPath query result. Previous contributions 
[7, 11, 12, 17] report on decidability results or give upper and lower bounds for the 
complexity of the containment test for certain subclasses of XPath expressions. However, 
in contrast to this, we focus on a fast decision as to whether or not an XPath query result 
can be reused and we allow our containment test to be incomplete.  
Finally, our approach integrates ideas from predicate logic and provides a uniform 
predicate tester for access control, the reuse of query results, and synchronization. In 
contrast to contributions from the database area, we use a subset of XPath in order to 
access, lock and query document fragments. The work presented here is based on our 
previous work [3], however it adds the following contributions. We consider an 
additional problem, i.e. the ability to reuse previous query results for the evaluation of 
new XPath queries. We introduce a concept, called “ fall-back behavior” , which 
guarantees correct application behavior, and thereby allows us to use a fast but 
incomplete predicate tester. That is, depending on the application, we treat incomplete 
answers of our predicate tester in such a way that they do not harm access control, the 
reuse of query results, or transaction synchronization. Furthermore, we consider a more 
general DTD definition, i.e. we allow recursive definitions in DTDs, which leads us to a 
completely different evaluation strategy for XPath expressions. Finally, we allow a larger 
set of predicate filters and present an extended theorem prover.  

2. Normalization of XPath expressions  

2.1. An overview of the complete approach  

Within Section 2, we define the considered subset of XPath expressions and we show 
how to transform each of these XPath expressions into an equivalent set of normalized 
XPath expressions. Each normalized XPath expression selects only nodes with the same 
qualified node name, whereas the union of all normalized XPath expressions represents 
the same node set as the originally given XPath expression does. Each normalized XPath 
expression consists of two parts, a node path expression which describes the paths from 
the root node to the normalized XPath expression’s selected node, and a predicate filter 
attached to the selected node name. This allows us (in Section 3) to reduce subset tests 
and overlap tests for arbitrary XPath expression to subset tests and overlap tests on 
normalized XPath expressions so that they can be performed individually for each 
identified node. Because most applications prefer a tester to be rather fast than complete, 
we have developed an incomplete tester, and we introduce (within Section 4) the concept 
of fall-back decisions to handle the tester’s incompleteness.  

2.2. The considered subset of allowed XPath expressions and DTD definitions 

In general, an XPath expression is defined as being a sequence of location steps 
/ <Locat i onSt ep1>/ …/ <Locat i onSt epN>, where <Locat i onSt epI > is 
defined as axi s- speci f i er I : : node- t est I [ pr edi cat e f i l t er I ] . 
As the expressiveness of XPath is richer than required by our applications and may lead 
to complex test conditions, we restrict the considered XPath expressions for queries, 
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previous query results, access rights, write operations and locks to a subset called 
allowed XPath expressions by the following rules (most of which are taken from [3]) 
for predicate filters, node tests and axes: 
1. Allowed predicate filters 
Predicate filters [F] of allowed XPath expressions may only contain the following filter 
expressions F:  
• Every allowed XPath expression which does not contain a filter expression itself is an 

allowed filter expression.  For example, when A is an attribute and E is an element, 
then @A and ../E are allowed filter expressions used to check the existence of the 
attribute A or the element ../E .  

• Every comparison is an allowed filter expression, where the comparison operands are  
1.      constants as e.g. ‘  ”77”  ’    or  
2.      allowed XPath expressions which do not contain a filter expression themselves  

  and the comparison operators are ‘=’  or ‘ !=’ .  
If F1 and F2 are allowed filter expressions, then  ‘F1 and F2’  , ‘F1 or  F2’    and  ‘not  
(F1)’   are allowed filter expressions. 
2. Allowed node tests 
All node name tests including the wildcard ‘* ’  and name-spaces are allowed. However, 
we forbid node type tests like node(), processing-instruction(), and comment(). For 
example, when A is an attribute and E is an element, then @A , ./E , ../E, and //*/E are 
allowed XPath expressions.  
3. Allowed axis-specifiers  
• Our tester allows absolute or relative location paths with the following axis specifiers 

in their location steps: self, parent, ancestor, ancestor-or-self, child, descendant, 
descendant-or-self, namespace and attribute, but we forbid the following (-sibling) and 
preceding (-sibling) axes.  

This restriction of XPath to allowed XPath expression, which excludes position 
predicates like ‘ [2]’  and the use of the sibling axes, appears to be appropriate to data 
centric XML documents for the following reason. When nodes are added to or deleted 
from the document, XPath expressions containing position predicates or any of the 
sibling axes may have a different result set afterwards. Within the following sections, we 
consider only the allowed subset of XPath, i.e., when we use the terms location path, 
location step and filter predicates, we refer to allowed XPath expressions only.  

2.3. A preparation step: constructing a DTD graph  

Before the normalization of XPath expressions starts, the DTD is arranged in a so called 
directed DTD graph which contains all the elements and attributes of the DTD as nodes. 
The DTD graph contains a node for each element or attribute defined in the DTD and 
contains a directed edge for each parent-child relation or attribute-axis relation found in 
the DTD. Whenever the DTD is recursive, the DTD graph contains a cycle. For example, 
let the DTD contain the following element definitions:  

<! ELEMENT Root  (  E1? )  > 
<! ELEMENT E1 (  E2 |  At om ) > 
<! ELEMENT E2 ( E1*  ) > 
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<! ELEMENT At om ( #PCDATA) > 
The corresponding DTD graph is:  

 

The DTD graph is used to compute so called node paths when a location step is 
expanded. A node path is a sequence of element names1, which starts at the root (or at a 
node reached by a previous location step) and follows the child-axis or attribute-axis to 
the element of interest (i.e. to the element which is reached by a location step). Each 
node reached with the last expansion step is called selected node of its (normalized) 
XPath expression.  
The DTD graph describes a superset of the paths allowed by the DTD. Missing 
information can be added to the DTD graph by attaching additional filters to the DTD 
graph nodes [4]. For example, a filter [./E2 xor ./Atom] attached to the node E1 
expresses that each node E1 has either a child E2 or a child Atom. Similarly, a filter 
[unique(./E2)] attached to the node E1 expresses the constraint that for each element E1 
there exists at most one child element E2. Such filters can be used to improve the 
completeness of a tester. However when the applications require or accept a fast but 
incomplete tester (as outlined in Section 4), it is also correct to ignore the filters for the 
following reason. If the intersection of the path sets selected by two XPath queries (XP1 
and XP2) is empty under the superset of paths described by the DTD graph, we are also 
sure that this intersection is empty under subset of paths for XP1 and XP2 allowed under 
the given DTD, because the given DTD is at least as restrictive as the DTD graph. The 
same holds for the subset test, i.e., if an XPath query XP1 selects a subset of the paths 
selected by another query XP2 within the superset of paths described by the DTD graph, 
we can be sure that XP1 also selects a subset of XP2 under the more restrictive DTD.  
In general we accept well-formed DTDs. We exclude the element type ANY for 
efficiency reasons, because ANY would result in a lot of cycles in the DTD graph and 
thereby in more complex further computations. 

2.4 The first normalization step: computing node path expressions  

The goal of the first normalization step is to perform equivalence transformations on a 
given XPath expressions such that the only remaining element location steps follow the 
child-axis (and the attribute-axis respectively), i.e. that each selected node can be 
described by a node path from the root node to this node. We compute a node path 
expression which describes these node paths, i.e. the node path expression describes the 

                                                                 
1 The last node in a node path may also be an attribute, however, we avoid mentioning this 

explicitly in what follows in order to keep the presentation simple.   
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set of all node paths to a node selected by the given XPath expression. This 
transformation into a node path expression is applied to the XPath expression location 
step by location step and uses the given DTD graph. Predicate filters are ignored within 
this first normalization step and are considered in the second step.  
In order to give an extended example of how the first normalization step computes a 
node path expression from a given XPath expression, we use the DTD graph of the 
previous section and the following XPath expression   
 ( XP1)   / / E1/ / E2/ . . / * / / E1    .  
The first location step, / / E1, includes arbitrary long node paths from the root to any 
element E1 (i.e. / Root / E1 , / Root / E1/ E2/ E1 , etc.). That is why we use a node 
path expression  

/ Root ( / E1/ E2) N/ E1   ,  N≥0 
in order to describe all node paths from the root to the element E1. This node path 
expression contains a node path loop , i.e. ( / E1/ E2) N ( N≥0) , which summarizes all 
node paths containing zero or more sequences of / E1/ E2. Detecting loops is part of this 
normalization step, and avoids us finding an infinite number of node paths to the node 
name E1.   
The second location step in XP1 , / / E2 , can be described by an additional node path 
expression for node paths form the previously selected node names (here only E1) to the 
currently selected node names (here E2) , in this case by the node path expression 
/ E2( / E1/ E2) N2 ( N2≥0) .  Thereafter, the node path expression which describes all 
node paths for the first two location steps of the given XPath expression XP1, i.e. for the 
XPath expression / / E1/ / E2 , can be computed by appending the node path expression 
computed for the second location step (from E1 to E2) to the previously computed node 
path expression which describes node paths from the root to E1, i.e., the result is  

/ Root ( / E1/ E2) N/ E1/ E2( / E1/ E2) N2 ( N≥0,  N2≥0)  .   
This can be simplified to   

/ Root ( / E1/ E2) N ( N≥1)  
where ( / E1/ E2) N ( N≥1)  describes a loop of one or more sequences of / E1/ E2 .  
As the third location step of XP1, i.e. the parent-axis location step / . . , requires 
removing the last node from each computed node path, the node path expression for the 
first three location steps is  

/ Root ( / E1/ E2) N/ E1[ . / E2]  ( N≥0)  2.   
The next location step of XP1 , / *  , is applied to the node name E1 and selects its two 
successor node names, At om and E2. For each successor node name, a node path 
expression is computed by appending the node name to the previously computed node 
path expression, i.e., we get the node path expression  

/ Root ( / E1/ E2) N/ E1[ . / E2] / At om  ( N≥0) ,  
which describes all node paths of / / E1/ / E2/ . . / *  to At om nodes, and similarly, we 
get the node path expression  

/ Root ( / E1/ E2) N/ E1[ . / E2] / E2  ( N≥0)  
which describes all node paths to E2 nodes.  The latter  node path expression can be 

                                                                 
2 The predicate filter [./E2] states that only elements E1 which have a successor E2 are selected.  
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simplified to  
/ Root ( / E1/ E2) N/ E1/ E2  ( N≥0)  .  

The XPath expression XP1 requires to apply the last location step / / E1 to both of the 
previously selected node names, At om and E2, but an application of this location step to 
At om is prohibited by the DTD graph, because At om has no successor nodes. 
Therefore, the last location step can only be applied to the node name E2. All node paths 
from E2 to E1  are described by the node path expression ( / E1/ E2) N2/ E1 ( N2≥0)  .  
This node path expression of the node paths from E2 to E1 is appended to the previously 
computed node path expression, in order to get the final result  

/ Root ( / E1/ E2) N/ E1/ E2( / E1/ E2) N2/ E1  ( N≥0,  N2≥0)  ,  
which can be simplified to  

/ Root ( / E1/ E2) N/ E1 ( N≥1)  .   
This finally computed node path expression describes all node paths from the root node 
to those nodes which are selected by the XPath expression XP1.  

2.5. General expansion of an XPath expression using the DTD graph  

Let us generalize the example given. The node path expression which corresponds to an 
XPath expression is computed location step by location step by evaluating the DTD 
graph, where location steps in successor direction (child-axis, descendent-axis, and 
descendent-or-self-axis) are treated differently from location steps in ancestor direction 
(parent-axis, ancestor-axis, and ancestor-or-self-axis). Each location step is applied to 
each node in a set of selected nodes, where the first location step is applied to the root 
node only.  
Whenever the location step follows the successor direction (child-axis, descendent-axis, 
or descendent-or-self-axis), then for each (previously) selected node3, a node path 
expression which describes the node paths from the previously selected node to the node 
selected by this location step is computed. This node path expression is appended to that 
node path expression which describes all node paths from the root node to the previously 
selected node. After the expansion of this location step, we again have a set of selected 
nodes and for each node name a node path expression which describes all node paths to 
that selected node.  
Whenever the location step follows the ancestor direction (parent-axis, ancestor-axis, or 
ancestor-or-self-axis), then for each selected node and the given node path expression 
which describes the node paths to that selected node, the location step in ancestor 
direction selects one or more nodes on the node path from the root to the currently 
selected node name. That is why a location step in ancestor direction splits the given 
node path into a prefix which becomes the new node path to the selected node and a 
suffix which is used as a predicate filter.  
For example, let XP2 be the result of appending a location step  / ancest or : : E1  to 
the XPath expression XP1 of the previous subsection, i.e.,    

XP2 = / / E1/ / E2/ . . / * / / E1/ ancest or : : E1 .  

                                                                 
3 In the above example, the last location step / / E1 has to be considered for two previously 
selected node names, At om and E2, because both were selected by the previous location step, / * .  
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After the location steps / / E1/ / E2/ . . / * / / E1 have been evaluated as before, which 
has given  us the node path expression  / Root ( / E1/ E2) N/ E1 ( N≥1) , the location 
step / ancest or : : E1 requires going back to any occurrence of E1 in the node path 
except the last one. Hence, for XP2, we get the node path expression   

/ Root ( / E1/ E2) N1/ E1 [  . ( / E2/ E1) N2 ]     ( N1≥0)  ( N2≥1) . 
Here,  

/ Root ( / E1/ E2) N1/ E1 ( N≥0)   
is the prefix which describes all node paths from the root node to selected nodes E1 and  

[  . ( / E2/ E1) N2 ]  ( N2≥1)  
is a filter expression which is used to further restrict the selected nodes.  
To summarize, a location step in ancestor direction applied to a given node path 
expression selects one or more nodes. For each selected node, the location step splits the 
given node path expression into parts: the first identifies the selected node and the 
second is used as a predicate filter which has to be applied to the selected node.  
In order to simplify of the following presentation, we let normalized XPath expressions 
use a syntactic extension of XPath expressions which allows node path expressions for 
node paths to occur everywhere, where XPath allows an element to occur, and which 
also allows loops of child-axis location steps and loops of parent-axis location steps to 
occur in predicate filters.  

2.6. The second normalization step: shuffling predicate filters to the right  

While predicate filters have been ignored in the previous computations of node path 
expressions, within the following second normalization step, predicate filters are shuffled 
to the right-most node names in the node paths, i.e., to the selected node names. For 
example,  
 / Root / E1[ . / @a=” 5” ] / E2     
is transformed into  
 / Root / E1/ E2[ . . / @a=” 5” ]  .    
In general, each predicate filter which does not belong to the last location step is right-
shuffled along the child-axis (or attribute-axis) until it becomes a filter for the selected 
node name. This is done by adding parent-axis steps to the location path of each filter 
comparison which is not a constant for each right-shuffle.  
Similarly, when a predicate filter is right shuffled along a node path loop to descendent 
nodes, this adds a corresponding node path loop along the ancestor-axis to the predicate 
filter. For example, let [ FE ] be a predicate filter then  

 / Root / E1 [ FE] / ( / E2/ E1) N   ( N≥0)   
is transformed into  

 / Root / E1/ ( / E2/ E1) N [ ( . . / . . / ) N FE]    ( N≥0)   .  
Here, the parent-axis loop ( . . / . . / ) N ( N≥0)   in the predicate filter [ ( . . / . . / ) N 
FE]  is a shortcut notation for an even positive number of location-steps along the 
parent-axis.  

Finally, all predicate filters [P1], ..., [Pn] which belong to the selected node are 
combined into a single predicate filter [ P1 and ... and Pn ]. This is possible, because we 
restricted predicate filters to Boolean expressions and none of the filters depends on 
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order (neither document order nor filter application order). Whenever there is no 
predicate filter for a selected node, we add a predicate filter [ true( ) ] to that selected 
node. 
To summarize, our normalization uses the DTD graph to transform an arbitrarily allowed 
XPath expression into an equivalent set of normalized XPath expressions each of which 
is of the form 

r ex [ pr edi cat e f i l t er ]  ,   
where r ex  is a regular node path expression which describes all node paths of the given 
XPath expression to one selected node and pr edi cat e f i l t er  is a predicate filter 
expression which may or may not contain node path expressions and parent-axis loops. 
Notice that r ex  is a regular expression which is built only along the child-axis and 
which contains no wildcards (” *” ) as a node test, but may contain node path loops. 
Furthermore, a normalized XPath expression defines all the restrictions of the selected 
node through predicate filters in the location step of the selected node itself, and the 
previous location steps of the location path do not contain any predicate filter any more. 
This will be the input for the predicate evaluator discussed in Section 3.  

3. Problem reduction to predicate tests on XPath expressions  

3.1. Reducing the locking of fragments to an overlap test for node path expressions 

A new lock request can be granted, if the XML fragment to be locked does not overlap 
with any other locked XML fragment for which a lock in an incompatible lock mode has 
already been granted to a different transaction. In order to check this, the overlap test is 
applied to each node of the DTD graph which is selected by both lock requests (or by 
both XPath expressions associated with the lock requests respectively). When given two 
normalized XPath expressions, r ex1[ X1]  and r ex2[ X2]  which select the same DTD 
graph node, the overlap test returns false (i.e. that the normalized XPath expressions are 
disjointed), if r ex1 and r ex2 select no common node path or  ‘(  X1 and X2 ) ’   is 
unsatisfiable.  
A tester for regular expressions [9] checks whether or not r ex1 and r ex2 select a 
common node path, and our tester for filter predicates (as described in Sections 3.3 to 
3.6) checks whether or not  ‘( X1 and X2) ’   is  satisfiable.  

3.2. Reducing access control and the reuse of query results to subset tests on node 
path expressions 

Access is granted (or an old query result can be reused respectively), if an XPath 
expression XP1 which is being used for the current operation selects a subset of the 
nodes which are selected by an XPath expression XP2 which is given for an access right 
(or the previous query result respectively) – independently of the current content of an 
XML document. The subset test is performed on the normalized XPath expressions 
computed from XP1 and XP2. Our subset test is successful, if for each DTD graph node 
which is selected by a normalized XPath expression  

r ex1 [  f i l t er 1 ]    
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which is computed from XP1, a normalized XPath expression  
r ex2 [  f i l t er 2 ]    

which is computed from XP2 exists,  such that the following holds:  
1. The element paths described by the regular expression r ex1 are a subset of the 

element paths described by the regular expression r ex2.  
2.  f i l t er 1  �    f i l t er 2 .    
A subset test for regular expressions as needed in order to check the first condition is 
described in [9].The second condition is equivalent to:   

(  f i l t er 1  and (  not  f i l t er 2 )  )     is unsatisfiable,  
i.e., we can use the same predicate evaluator as we can use for the overlap test. Access is 
granted (or an old query result can be reused), if and only if this formula is unsatisfiable 
for each DTD graph node.  If access cannot be granted, an access violation exception is 
thrown. If it is not possible to reuse an old query result, the new query has to be 
submitted to the server and the results have to be shipped back to the client.  

3.3. Filters with elements for which the DTD allows multiple occurrences  

The tester for filter expressions has to distinguish two cases for each element (say ‘E2’ ) 
which is a child element of another element (say ‘E1’ ). If the DTD allows at most one 
child element E2 for a given element E1, then the expression ‘ . / E2/ @a=" 3"  and 
. / E2/ @a=" 4" ’  is unsatisfiable. Therefore, a predicate filter [ . / E2/ @a=" 3" ]  used 
in the context of elements E1 must select a node set which is disjointed from the node set 
selected by the predicate filter [ . / E2/ @a=" 4" ] .  In the case, the test is forwarded to 
our predicate tester without any further modification. The same is done for all attributes, 
because for every given context node, there is (at most) one occurrence of this attribute. 
However, if the DTD allows a single element E1 to have multiple child elements ‘E2’ , 
then for a given context node E1 there may be one child element ‘E2’  with a value "3" 
for the attribute ‘a’  and another child element ‘E2’  with a value "4" for the attribute ‘a’ . 
Therefore, the expression  

‘ . / E2[ @a=" 3" ]  and . / E2[ @a=" 4" ] ’       (*) 
is satisfiable, when the DTD allows multiple child elements E2. Therefore, an XPath 
expression / / E1[ . / E2/ @a=" 3" ]  , which only requires the existence of a child ‘E2’  
with an attribute ‘a’  with a value of " 3" , may overlap with an XPath expression / / E1[  
. / E2/ @a=" 4"  ]  , which requires the existence of a (possibly different) child ‘E2’  
with an attribute ‘a’  with a value of " 4" .  
That is why in the second case, i.e., when multiple child element ‘E2’  are allowed for the 
same element ‘E1’ , we rename the element names ‘E2’  to ‘E2( 1) ’ , ‘E2( 2) ’  , … etc., 
where ‘E2( 1) ’  and ‘E2( 2) ’  represent possibly different occurrences of ‘E2’ . Then we 
rewrite the formula (*) as  

. / E2( 1) [ @a=” 3” ]   and  . / E2( 2) [ @a=” 4” ]      (**) . 
This formula is forwarded to our predicate tester which now finds out that this 
conjunction is satisfiable. From a logic point of view, ‘ . / E2( 1) ’  requires the existence 
of an element ‘ / E2’  which is a child element of the current element, and / E2( 2)  
requires the existence of a possibly but not necessarily different element ‘ / E2’  which is 
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also a child element of the current element.4 Only a predicate ‘not (  . / E2[ @a] ) ’  will 
be rewritten as ‘not (  . / E2( X) [ @a] ) ’ , with a variable X which means that whatever 
value X has (for X=1, X=2, …etc.) no attribute a of the element E2 exists.5 This is useful 
for finding out e.g. that the rewritten formula  

. / E2( 1) [ @a=” 3” ]   and  not (  . / E2( X) [ @a] )   
is unsatisfiable or in other words that  

‘ . / E2[ @a=” 3” ]       implies   . / E2[ @a]  ’   
which is needed for the subset test. 

3.4. Rewrite rules for predicate filters with loops 

Before we start rewriting formulas, we rename all loop variables N which belong to 
independent loops in such a way that we use different variables N1, N2, … for different 
loops. Thereafter, we apply the following rewrite rules to the formulas which are 
received from the subset test or from the overlap test.  Let L be a loop of parent-axis 
location steps ( . . / ) N with ( N≥0)  , and let F1 and F2 be filter expressions. Then we 
move disjunctions and conjunctions outside of loops, i.e.  
  ” L ( F1 or  F2) ”  �   ” L( F1)  or  L( F2) ” .  
  ” L ( F1 and F2) ”  �   ” L( F1)  and L( F2) ” .  
For example, ” ( . . / ) N[ @a and @b] ”  is replaced with ” ( . . / ) N[ @a]  and 
( . . / ) N[ @b] ” . Note that the value for N must be identical in both parts of the 
conjunction.  
Thereafter, we apply rewrite rules for filter formulas without loops as follows.  

3.5. Rewrite rules for the evaluation of filter formulas without loops 

The next step is to apply the following equivalence transformation rules which transform 
a formula towards a disjunctive normal form (DNF) as close as possible:  
Let A and B be location path expressions (without a loop) which require the existence of 
a location path A or B relative to the current node, and let C be a constant. We use 
eq( A, B)  to describe the equality of A and B and neq( A, B)  to describe the inequality 
of A and B, where eq( A, B)  and neq( A, B)  both assume that both A and B exist 
relative to the current node.  
We separate path tests from constraints regarding equality and inequality of given 
attribute values:  
  ”  A = B             �  ”  A and B and eq( A, B) ”   
  ”  A ! = B  ”          �  ”  A and B and neq( A, B)  ”   
  ”  not  (  A = B )  ”    �  ”  not  ( A)  or  not  ( B)  or  neq( A, B) ”   
  ”  not  (  A ! = B )  ”   �  ”  not  ( A)  or  not  ( B)  or  eq( A, B)  ”   
  ”  A = C  ”           �  ”  A and eq( A, C) ”   
  ”  A ! = C  ”          �  ”  A and neq( A, C)  ”   

                                                                 
4 In terms of predicate logic, we could write the formula (**) as     

( ∃∃∃∃ . / E2( 1) )  ( ∃∃∃∃ . / E2( 2) )  ( . / E2( 1) [ @a=” 3” ]   and  . / E2( 2) [ @a=” 4” ]   .  
5 In terms of predicate logic, this would be  ‘ (∀∀∀∀X)  not (  . / E2( X) [ @a] ) ’  
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  ”  not  (  A = C )  ”     �  ”  not  ( A)  or  neq( A, C) ”   
  ”  not  (  A ! = C )  ”    �  ”  not  ( A)  or  eq( A, C)  ”  .   
Let additionally F, F1 and F2 be filter expressions.  
We move negations inside location path expressions by applying the following rule6:  
  ”  not  (  A [ F]  )  ”     �  ”  not  ( A)  or  A[ not ( F) ]  ”   
We move negations inside the formula as far as possible by applying the following rules:  
  ”  not  (  F1 and F2 )  ” �  ”  not  (  F1 )  or  not  ( F2)  ”  
  ”  not  (  F1 or  F2 )  ”  �   ”  not  (  F1 )  and not  ( F2)  ”  
  ”  not  (  not ( F)  )  ”    �   ”  F ”   
We move disjunctions outside of conjunctions and location path expressions, i.e.  
  ”  ( F or  F1)  and F2 ”  �   ”  F and F2 or  F1 and F2 ”   
  ”  A [  F1 or  F2 ] ”     �   ”  A [ F1]  or  A [ F2] ” .  
And we move conjunctions outside of location paths, i.e.  
  ”  A [ F1 and F2] ”      �   ”  A [ F1]  and A [ F2] ” .   
A formula in disjunctive normal form (DNF) is satisfiable, if and only if at least one 
conjunction of the formula in DNF is satisfiable. This is checked using the following 
algorithm.  

3.6. Test algorithm for a single conjunction  

We use the following algorithm in order to check whether or not a single conjunction 
of conditions is satisfiable which extends an algorithm given in [3].  
 
( 0) I f  t he conj unct i on cont ai ns a l ocat i on pat h A and  
  i t  cont ai ns an expr essi on not ( A)  7 
 r et ur n  “ conj unct i on i s  unsat i sf i abl e”  ;  
( 1) For  each const ant  occur r i ng i n t he conj unct i on 
 i nt r oduce an own equi val ence c l ass Ci  ( 1<=i <=m) ;   
( 2) For  each node pat h whi ch does not  cont ai n a l oop 
  i nt r oduce an own equi val ence c l ass Ci  ( m+1<=i <=n) ;   
( 3) For  each compar i son eq( A, B)  f ound i n t he conj unct i on 

wi t h CA and CB bei ng t he equi val ence c l asses cont ai ni ng 
   A and B:   
  i nt r oduce a new equi val ence c l ass CA+B  
   whi ch cont ai ns t he uni on of  al l  el ement s of  CA and CB  
   and t her eaf t er  del et e CA and CB.  ;   
( 4) For  each equi val ence cl ass Ci   
   i f  Ci  cont ai ns t wo di f f er ent  const ant s  

 r et ur n  “ conj unct i on i s  unsat i sf i abl e”  ;   
( 5) I f  t he conj unct i on cont ai ns a compar i son neq( A, B)  wher e  

A and B ar e f ound i n t he same equi val ence cl ass  

                                                                 
6 Unfortunately, there is no similar rule which allows us to move a negation inside (or outside) of a 

loop, because a loop summarizes many alternative places of a filter. This is one source where 
our tester is incomplete; however, an approach to overcome this incompleteness for the subset 
test is presented in a forthcoming paper [4].   

7 As mentioned in Section 3.3. not ( A)  may be of the form not  E2( X)  and A may be E2( 1) .  
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 r et ur n  “ conj unct i on i s  unsat i sf i abl e”  ;   
( 6) I f  t he conj unct i on cont ai ns “ not ( . . / ) N( A) ”  wher e A i s a 

node pat h and t he conj unct i on cont ai ns a condi t i on 
“ Pat h/ A”  wher e “ Pat h/ ”  i s uni f i abl e wi t h “ ( . . / ) N”  

 r et ur n  “ conj unct i on i s  unsat i sf i abl e”  ;   
( 7) I f  t he conj unct i on cont ai ns “ not  ( . . / ) N( A! =B) ”  and 
  t he conj unct i on cont ai ns a condi t i on neq( Pat h/ A, Pat h/ B)  
  wher e “ Pat h/ ”  i s  uni f i abl e wi t h ( . . / ) N 
 r et ur n  “ conj unct i on i s  unsat i sf i abl e”  ;   
( 8) I f  t he conj unct i on cont ai ns “ not  ( . . / ) N( A=B) ”  and 
  t he conj unct i on cont ai ns a condi t i on eq( Pat h/ A, Pat h/ B)  
  wher e “ Pat h/ ”  i s  uni f i abl e wi t h ( . . / ) N 
 r et ur n  “ conj unct i on i s  unsat i sf i abl e”  ;   
( 9) r et ur n  “ conj unct i on i s  assumed t o be sat i sf i abl e”  ;   
 
At first (step (0)), we check for each occurrence of  ‘not (  A ) ’  in a conjunction 
whether or not the same conjunction also contains the location path ‘A’  alone (stating 
that ‘A’  exists). Remember that not (  A )  claims that the node set selected by this 
node path relative to the current node is empty. Therefore, if the conjunction contains 
also a location path ‘A’ , it is unsatisfiable. For example, the condition ‘not( E(X)/@a1 )’   
states that in the current context no element ‘E’  has an attribute ‘a1’ , and the condition 
‘E(2)/@a1’  states that an element ‘E’  which has an attribute ‘a1’  exists. In order to find 
out that the conjunction of both conditions is unsatisfiable, we substitute the variable ‘X’  
with the constant ‘2’ .  
Secondly (steps (1) and (2)), the algorithm introduces an equivalence class for each 
constant and for each node path which does not contain a loop, where different node 
paths are considered as being different, i.e. ./E1/@a , ./E1/@b , and ./E1/E1/@a are 
considered as belonging to three different equivalence classes.  
Thirdly (step (3)), for each equality constraint eq(  A,  B )  which occurs in the 
conjunction, we combine the equivalence class which contains ‘A’  and the equivalence 
class which contains ‘B’  into a single equivalence class which contains the union of all 
attribute paths and constants found in at least one of both equivalence classes.  
Fourthly, whenever there is an equivalence class which contains two different constants, 
say c1 and c2, this means that the set of conditions given for that location path is 
equivalent to ‘c1=c2’  which is unsatisfiable.  
At fifth, we consider all conditions of the form neq(  A,  B )  occurring in the 
conjunction. If we find out, that ‘A’  and ‘B’  belong to the same equivalence class (i.e. 
that eq( A, B)  holds) for at least one condition of the form neq(  A,  B ) , then this 
conjunction is unsatisfiable.  
At sixth, if the conjunction contains a term “ not  ( . . / ) N( A) ”  where A is a node 
path, this forbids any ancestor element which can be reached by ( . . / ) N to have a node 
path A ( to an element or attribute). If now the conjunction additionally contains a 
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condition Pat h/ A where “Pat h/ ”  is unifiable8 with ( . . / ) N, this would require an 
ancestor to have such an attribute A. That is why the algorithm returns  “conjunction is 
unsatisfiable”  . 
At seventh, if the condition contains a term “ not  ( . . / ) N( A=B) ”  and the 
conjunction contains a condition eq( Pat h/ A, Pat h/ B)  where “Pat h/ ”  is unifiable 
with ( . . / ) N , then again the loop forbids such a condition eq( Pat h/ A, Pat h/ B)  to 
become t r ue. Therefore, the algorithm returns “conjunction is unsatisfiable”  . 
Similarly, if the condition contains a term “ not  ( . . / ) N( A! =B) ”  and the 
conjunction contains a condition neq( Pat h/ A, Pat h/ B)  where “Pat h/ ”  is unifiable 
with ( . . / ) N , then again the loop forbids such a condition neq( Pat h/ A, Pat h/ B)  
to become t r ue. Again, the algorithm returns “conjunction is unsatisfiable”  . 
Otherwise (step (9)) the conjunction is treated as satisfiable. Since our tester is fast but 
incomplete, step (9) includes unsatisfiable predicates. Note however that treating some 
unsatisfiable conjunctions (most of which will never occur in practice) as satisfiable 
allows us to significantly speed up our predicate evaluator and still guarantees correct 
fallback decisions for all three applications.  

4. Fall-back decisions for time-out situations 

Our basic idea is to test whether or not access may be granted, a query result may be 
reused, or transactions may be executed concurrently without access to the XML 
database. The time consumed for such a test and whether or not it is acceptable depends 
on the application and may be too short to run a complete tester in rarely occurring cases 
(i.e. for some pairs of ‘complex’  XPath expressions). Therefore, for each application, we 
need a fall-back behavior that is used, whenever the time which is needed for such a test 
exceeds the given time limits.  
If the combination of two XPath expressions to be locked for concurrent transactions is 
too complex for a tester, to decide in time whether or not the XPath expressions overlap, 
we would not run the transactions in parallel. Since this pessimistic fall-back decision has 
the same consequences as if the tester finds out, that the XPath expressions overlap, it is 
sufficient to use an incomplete tester, which returns the pessimistic fall-back decision in 
such complex situations.  
As regards the reuse of query results which are already locally stored (say on a mobile 
device), if a tester cannot decide in time whether or not a new XPath query expression 
selects a subset of a previous query result which is already stored on that mobile client, 
we would not reuse that query result. Since the consequence of this decision is the same 
as if the tester finds out, that the new XPath expression does not select a subset of a 
previous one, it is again sufficient to use an incomplete tester. In complex situations, this 
tester returns a fall-back decision which behaves as if the new XPath expression does not 
select a subset of the old one.  

                                                                 
8 We say that “Pat h/ ”  and( . . / ) N are unifiable, if and only if we can substitute a value for N 

such that they are identical, e.g. ( . . / ) N and . . / . . /  are identical, if we are allowed to insert 
2 for N. 
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For access rights, there are two alternative approaches. One is to forbid the use of 
complex access rights, so that no fall-back decision is needed, in which a tester can not 
decide about the access right in time (i.e. whether or not an XPath expression which is 
used to access a fragment selects a subset of the nodes for which an access right exists). 
Complex test situations for our tester can be avoided, if e.g. an XPath expression which 
is used for an access right does not contain a predicate filter at all or does not contain a 
comparison of two access expressions in a predicate filter. The other alternative is to 
allow arbitrary complex access right predicates and to reject a user’s access in situations, 
where a user query would exceed the time limit given for access control. These situations 
occur very rarely, because access rights are less complex than usual queries, and the test 
is usually much simpler than for the reuse of previous query results. If in such a case a 
user’s access is rejected, the user query has to be reformulated to solve the problem.  
Altogether, the fall-back decision for access control is the same as if the tester finds out, 
that the accessing XPath expression does not select a subset of nodes selected by the 
XPath expression for the access right: in complex situations, the tester returns the fall-
back decision, i.e., that the accessing XPath expression does not select a subset of the 
access right XPath expression.  
Finally, we can adapt our tester to the specific needs of the application. This means that 
one application can grant more time in order to achieve more completeness while another 
decides to reduce completeness in order to raise efficiency. For example, transaction 
synchronization will use the tester only for those cases which allow an efficient decision 
(with the effect that it tends to lock larger parts of the document instead of checking 
locks for a long time).  

5. Summary and conclusions  

Our contribution to access control, the reuse of previous query results, and locking in 
XML databases reduces central problems in these application areas to subset tests and 
overlap tests on pairs of XPath expressions. The basic idea is to use a DTD graph in 
order to transform XPath expressions into equivalent regular expressions which describe 
paths of child-axis location steps to accessed nodes, and to right-shuffle predicate filters 
along these paths to the accessed nodes. Then we reduce the subset test (and the overlap 
test respectively) for XPath expressions to a subset test (and an overlap test respectively) 
on the regular node path expressions and a subset test (and an overlap test respectively) 
on the filter expressions. Our tester is efficiently applicable to a wide variety of practical 
cases, but incomplete. Therefore, we introduce the concept of fall-back decisions in each 
application, in order to treat the cases where the tester is incomplete in an appropriate 
way.  
One direction for further research is to reduce the gap where the tester tends to 
incompleteness, e.g. by covering more cases where a formula contains loops. While a 
step towards this direction has been contributed in [4] for the subset test, we consider a 
similar extension to the overlap test to be a promising direction for further research.  
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