
TransM: A structured document transformation model

Nouhad Amaneddine ∗ Jean-Paul Bahsoun Jean-Paul Bodeveix

Institut de Recherche en Informatique de Toulouse
Université de Paul Sabatier, Toulouse, France

{amaneddi, bahsoun, bodeveix}@irit.fr

Abstract: We present in this paper a transformation model for structured documents.
TransM is a new model that deals with specified documents, where the structure con-
forms to a predefined data type. In particular TransM works on XML document con-
forming to a document type definition DTD. We present the different components of
our model and we put the point on the kernel part of TransM which is the transforma-
tion rules. We show the strengths and the weaknesses of some recent transformation
approaches and we prove that TransM can perform not only those simple and direct
transformations but also complicated ones, especially, those who handle recursive ap-
pearance in the structure of the modeled documents, where elements may appear at any
level of deepness in the hierarchical composition of the document structure, whilst the
problem is not clearly resolved in the existing transformation models. We propose
TransM as a general model for structured document transformation and we explore in
more details its specification core that carries out document transformations.

1 Introduction

Nowadays, documents are produced in electronic forms and they are often displayed using
different applications. Moreover, in the last recent years, the development of software
engineering intended to separate the document structure from the document presentation
[W303b][W303b].

Sharing documents between different systems is a very useful process in computer appli-
cation. In some cases, a part of the document concerning particular information is needed
by one application where the whole content is manipulated by another one [CI03][MR97].
Furthermore, document transformation shows an increasing attention of many research
teems in the last few years [XF01][Pe03][Wi03]. Consequently, a dedicated language for
specifying transformations should be defined. It may contain transformation rules that de-
scribe relationships between a source structure and a destination structure, and which can
be used to generate a target structured document instance conforming to a predefined docu-
ment type. The source and the destination model could be instances of the same document
structure definition, or, they may conform to two different document structures.

∗Lebanese university, faculty of Sciences

53

Structured document transformations relies on several modules. The core starts at the
transformation language based on rules or expressions. Then strategies for the traversal
of the input document must be defined. Advanced conditions and constraints may be
applied in order to filter selected information. Finally the writing policy is used to place
correspondent elements in the output structure. Some models utilize their own definition
languages to carry out the transformations [OM02], some other prefer to generate code for
specialized language rather than using a general one [Pe03]. Without forgetting the data
manipulation and the application of particular functions on document content in case of
needs. Consequently, many modules are used in order to accomplish all the steps of the
transformation process.

The chosen strategy is built according to the selected document structure. As XML
[W303b] became the standard markup language for structured document, a tree struc-
ture is preferred as the backbone structure for documents. Even if it has a tree form, an
XML document can be considered as a graph. We have in XML the possibility to represent
graphs. This can be performed by referring the destination node with the attribute of the
source one. Eventually, a unique identity should be chosen for each node in the document
thus it can be referred by its identity. This paper presents a new model for structured doc-
uments transformations, named TransM. We show the specification of the kernel part of
TransM which is the transformation rules and we present the general algorithm that holds
the transformation process. The paper is organized as follows: in section two we present
an overview on structured document and their frameworks. We detailed TransM in section
three. We present in section four some recent related works then we conclude in section
five by a perspective for our future work.

2 Structured documents and transformation overview

A document is considered to be structured when it contains implicitly or explicitly ad-
ditional information about its hierarchical composition [AB03][XF01]. Many types of
documents are considered as structured ones, as those applying pre-defined grammars that
can be a context free grammar or any other type of grammars [Mu98]. The structure of the
document is the backbone of its internal representation. It is the hidden side of the exter-
nal representation that is created conforming to the internal one and it is presented to the
user of the application. The most important representation of a structured document is a
representation that contains only the actual content of the document in the structured form.
Structured document can be a document with a tree structure or a graph one, or it can be a
document conforming to some constraints defined in another form than a grammar. XML
documents conforming to some Document Type Definition are such examples.

When we specify the transformation, we indicate how the rules should be applied and
what they do mean. Direct transformation are made when we have a simple transforma-
tion process and we suppose that we will not use the same transformation another time.
Otherwise it is more wise to define the rules that we need in order to gain from the reusabil-

54

ity characteristic of the specifications. The recent research results are focusing on model
transformation [Wi03][PR02]. We remark that they differ in the literature between doc-
ument transformations and model transformations, while the two research areas can be
placed under one single title which is the structured document transformation. The QVT
approach [OM02] is one of those proposals that works on model transformation. For us,
while we can represent any object to be transformed in a structural form, the resolution of
the transformation will count on the general axis defined by the transformation of docu-
ments.

The main problem that we could mention in the used transformation method is that most
all of those methods are efficient when the transformation process is not complicated.
This case can be seen repeatedly in those transformations where both the input and out-
put structures are so closed and when there are no manipulations to be performed on the
transformed information. In this case, simple transformations are sufficient and we see
useful rules and efficient schemas with a very easy and comprehensive way are used to
accomplish the transformation. The problem starts when the structures of both input and
output documents are quite different and when we need to make changes on the contents
in order to produce the required document. In this case, we found either the used method
can hold those transformations but they are too complicated to be understood and applied,
and their use does not cover all the complicated situation we could face in such transfor-
mation, or, those methods are unable to support advanced transformations. In this case,
the eventual question that could be asked is what is the interest of providing such a method
and how relevant is its application, especially for a delicate transformation process. We
present in the next section the TransM model that can support not only those direct and
simple transformations but also more complicated ones.

3 Core of TransM transformation model

Before exploring our transformation rules which represent the kernel of the TransM, we
present the eXtensible Style Sheet Translation language. We show the different steps of
the transformation process then we introduce our model justifying the choice of generating
XSLT code.

3.1 XSLT

The W3C proposed XSLT as a transformation language for XML documents [W303b].
This language has considerable computation power. A key element of XSLT is the sub-
language of patterns, which is used to match and select elements. The pattern language
of XSLT has evolved into Xpath [W303b], a language for selecting nodes of a tree. It
performs the core functions of XSLT. XSLT is a recursive XML transformation language

55

and an XSLT program can be thought of as an ordered collection of templates. Each
template has an associated pattern and contains a nested set of construction rules. A tem-
plate processes nodes that match the selected pattern and constructs output according to
the construction rules. The transformation starts at the root of the input document and the
construction rules specify, by means of construction patterns, where in the XML document
the transformation process should continue. However, XSLT requires detailed and tedious
programming to accomplish complex structure transformations. As alternative, we con-
struct our transformation rules at the structure level. An XSLT program will be generated
automatically in order to perform transformations on the instance level.

3.2 Transformation process

The process consists of transforming XML documents conforming to a predefined docu-
ment type definition to another XML document conforming to a different document type
definition. It starts by making the association relations between the input and the output
structures as shown in figure 1. Those associations are chosen from a set of pre-defined
possible associations. Then the transformations are specified by a set of rules. Those rules
are used to hold the required transformations in the concrete level. The XSLT program
generated after the transformation rules aimed to transform document conforming to the
input structure to another document conforming to the output structure.

Input structure Output structure

g(B,F,G) Y Z

X f(D)

G

C

A

FE

DCB

A

Figure 1: Elements Associations

In this figure we show the input structure and the output structure with a tree forms. As-
sociations are represented by the dashed lines that link nodes from the input structure to
nodes of the output one. The association may be simple, which means that it represents a
direct copy of the node content, or it may be more complicated and expressed as a function
of many variables depending on more than one node in the input structure.

We will not explore the details of all the parts of our model. We present the core part of the
transformation system we are working on, which is the specification of the transformation
rules that are made according to the chosen user associations. The TransM model and its
different components are presented in figure 2.

56

of DTDoutof DTDin

Instance

XSLTDocument Document

XSLT generator

our rules−notations

transformations in

Specification on the

Associations

Node

Chosen

Pre−defined possible associations

DTDout
n−ary relation

DTDin

Instance

of DTDout
Representation

of DTDin

Internal Internal
Representation

Figure 2: TransM, a structured document transfor-
mation model

3.3 Transformation rules

The main idea that our model relies on is the definition of transformation rules that may
hold not only those simple transformations but also complicated ones. Thus the rules that
hold the transformations should satisfy this constraint.

A rule of the rule database is selected if its left hand side matches the current node of the
source document, and the associated constraint is satisfied. The new document is obtained
by evaluating the right hand side. If no rule apply, the same document is traversed (in
a top-bottom, left to right order) until a node can trigger of a rule. The subtree is then
transformed according to the corresponding rules.

The right hand side defines the image of the current node. It may recursively call other
transformation rules in order to build the image tree. In the same way, the right hand side is
composed of two different parts: the first one consists in providing the position where the
filtered data should be placed and the second part manipulates the content of the selected
information.

57

3.3.1 Rules syntax and semantics

Our method consists of a compromise solution between relative-path based method and
absolute-path based ones. We use an additional strategy that allows us to specify a set of
rules for a particular type of document, depending on the type of the transformation. Also,
we can control the selection and the writing of the element in any level of deepness.

The transformation is expressed as a set of : filter → expression production rules. We
named the left hand side of the rule by filter and the right hand side by expression. The
filter may refer to any part of the whole document, so that, rules may be context dependant.

In order to simplify the understanding of the production rules definition we show by a list
of cases how to express specific transformations. Each case represents a general trans-
formation process. Because of the space limitations, we could not include in this paper
the complete formal definition of the production rules neither the general transformation
algorithm.

Selection constraints: This kind of constraints are usually applied to the left hand side of
the transformation rule, here frequently-used sample cases:

1. A simple copy: Source_element → Target_element. All occurrences of the
"Source_element" tag are replaced by "Target_element".

2. Element with a specific child: Source_element[specific_child]→ Target_element.
All occurrences of the "Source_element" tag having a child named "specific_child"
are replaced by "Target_element".
Here, we have applied the filter →filter"["constraint"]" production rule.

3. More constraints on children Element_A[(Element_B/Element_C)+, Element_D]
→ Target_element. This rule selects Element_A elements that have a non
empty sequence of Element_B children with Element_C child, followed by
Element_D child.

4. Constraint on a sequence of elements and on element’s occurrence:
Element_D[A+, B*, C] → Target_element. This rule identifies Element_D
elements that have a list of one or more A child followed by zero or more B
child that are followed by a single C child.

5. Constraint on attributes Element_A[@attr]→ Target_element. Here we select
Element_A elements which have an attribute called attr

6. Selecting elements with specific attribute value: Element_A(@attr="v1")→
Target_element. This rule identifies Element_A elements having an attribute
named attr with v1 value.

7. More conditions on attributes: Element_A[!@attr]→ Target_element. Here
we identify Element_A elements that do not have an attribute named attr.

8. Condition on elements’ content:Element_A[B="text1" & C/D="text2"]→ Tar-
get_element. This rule selects Element_A elements having the string "text1"
as a text content of its element B child and the string "text2" as a text content
of the child D of the Element_A’s child C.

58

9. Constraint with absolute path: Element_A[/C/D@attr]→ Target_element. This
rule selects Element_A elements if the root of the structure that contain A has a
grand child named D. Moreover, this grand child possesses an attribute called
attr.

10. Constraint with relative path: Element_A[C/D@attr]→ Target_element. This
rule selects Element_A element if its grand child D has an attribute named attr.

Production constraints: Assigning elements of the input document to variables In the
selection constraint sample cases, we have considered the selection criteria in the left
hand side of the production rule. This part of the rule may wrap a filtering condi-
tions or constraints. We represented the right hand side as a simple Target_element.
The following examples reveal how to manipulate output data in the right hand side
of the production rule. The result of the production will eventually depend on the
selected information. The left hand side will write down data selected with respect
of the left hand side filtering.

1. Matching attribute values: Element_A(@att1=x’, @att2=y’, @att3=z’)→ Tar-
get_element(@at1=x’+y’, @at2= z’-x’). This rule selects Element_A ele-
ments which have three attributes named att1, att2 and att3. It recuperates
the values of those attributes in x’, y’ and z’ variables then it uses them when
producing output element.

2. Filtering by Using end-values: Element_A(@att1="value1", @att2="value2")
→ Target_element(@at1="value3", at2="value4"). This rule matches the Ele-
ment_A elements that have the first attribute value equal to "value1" and the
second attribute value equal to "value2" then write the output node with differ-
ent static values for its attributes.

3. Filters composition:
Element_A(@att1="value1", @att2=x’)(Element_B(@att1=y’)) →
Element_C(@at1="value2", @at2=x’+y’). This rule selects Elements_A ele-
ments having two attributes, att1 with value "value1" and att2, and one child,
Element_B with attribue att1. The values of att1 and att2 are assigned to the
variables x’ and y’. The right hand side creates the Element_C element with
two attribute, the first one is called at1 and values "value2" the second one is
called at2 and values x’+y’.

Also, filters with variable assignment can be made on the tag name, the attribute list and
the children list. As same, additional constraints can be applied on the presence of a
particular attribute with a given value, a presence of a child, of a descendant one, a value
of a child, a sibling and on ancestor. The selection we use enables us to navigate over
all the structure of the document. Form current node in the hierarchical document, we can
select a node using criteria depending on any node of the document. The context dependent
filtering mechanism ca access ancestors, children sibling or the root of the document. The
algorithm processes in an descendent way from the root down to the leaves of the document
[YS99]. Linking the two neighbor elements in the selection part is not enforced, but it can
be done according to the needs imposed by the type of the transformation we want. In

59

other words, we can refer to a node directly by the node name or by presenting the parent
followed by a slash then the required node, this if we need to add constraints concerning
this particular element. Filters and expression start always by the main pattern which is
the element identifier. The other parts of both left and right hand side of the production
rule consist of condition criteria and selection tools as same as the writing paradigm in the
right hand side.

3.4 Example: Image transformation

Consider the example of transforming an image stored as an XML file that conforms to a
predefined document type definition DTD to another image that conforms to the structure
imposed by another DTD. We assume that the basic elements that compose the image are
rectangles, triangles and circles. Each element has its own properties that are represented
as attributes in the corresponding DTD.

The choice of this particular example is not to show how to model graphics in XML.
In fact, XML possesses the Scalable Vector Graphics language (SVG) [W303a]. This is
a modularized language for describing two dimensional vector and mixed vector/raster
graphics in XML. We chose the DTD of an image because of its recursive nature. Our
goal is to show how to use our rules to transform documents where recursive elements
may appear.

In this example we intend to change the color of red rectangles into green ones and the blue
circles in green ones, furthermore, we want to apply translation on the circles following
the horizontal coordinate. The X coordinate of the center of the target circle equals the
sum of the coordinates of the center of the source circle . Vertical positions of the source
center and the target one are the same and the radius of both circles are equal.

The DTD we chose to define the structure of the XML document that represents the image
is as follows:

<!ELEMENT image (rectangle|circle|image)* >
<!ELEMENT rectangle (EMPTY)>
<!ELEMENT circle (EMPTY)>
<!ATTLIST rectangle

color CDATA #IMPLIED
length CDATA #IMPLIED
width CDATA #IMPLIED

>
<!ATTLIST circle

color CDATA #IMPLIED
radius CDATA #IMPLIED
x_center CDATA #IMPLIED
y_center CDATA #IMPLIED
>

60

This DTD shows that a recursive appearance of a graphical element is possible, a rectangle
can include a circle that can include in its turn another node of the same type rectangle.
We suppose that the target structure has the same DTD, with different node names.

To apply the above-mentioned transformation, we use the following rule that conforms to
the general syntax of rule definitions :

Rule TransImage{
image → target_image;
rectangle (@color = "red", @length=x’, @width=y’)→ target_rectangle (@color

= "green", @length=x’, @width=y’);
circle (@color = "blue" , @radius = r’, @x_center = x’, @y_center = y’) →
target_circle(@color = "green", @radius = r’, @x_center=x’+y’, @y_center =

y’);
}

Consider the following XML document that conforms to the DTD mentioned above:

Input XML:


<circle/>

</image>

The application of the rule TransImage on the instance document produces the following
XML document:

Output XML

<target_image>
<target_rectangle color = "green" length = "34" width = "56" />
<targe_image>

<target_circle color = "green" radius = "9" x_center="14" y_center = "6"/>
</target_image>

</targe_image>

It is shown that the lines corresponding to the green circle and the line corresponding to
the empty circle are omitted in the output document. This is because there is no implicit
rules for circles that are not blue in the input documents. If we want to copy all the circles
we should add an explicit rule with conditions that differ from those used to select other

61

types of circles. The existence of two different rules for the same element does not cause
any problem, since conditions imposed in those two rules and for the same element are
different. In fact, we do not need many rules since we can compose constraints in the
rule by using logical operators. Thus complicated filtering could be made by using logical
expression in the constraint part of the rule.

Because of the possible recursive appearance of the elements in the input and the output
structures, it is difficult to express the associations only graphically. We need textual
forms to convey such associations. Graphical associations are convenient to be utilized in
the instance level. In this case, rules could not be used as specifications and they should
be applied locally. This is what happens in add-hoc transformation application where
transformations are local ones. This is not the case in our model where we define rules
on the abstract level in order to be reused everywhere we need the transformations and for
any document instance.

4 Recent approaches

Recently, different methods have been defined for carrying out document transformations.
Some of them work directly on the basic level of the document which is its content [Jo02].
Therefore the transformation is performed on the data level. Some others specify the
transformation rules and apply the transformation process with respect to the specifications
[BBG01]. Other research groups are working on the same problem but with a different
form, like introducing the problem as model transformation. In this case the power of
UML to represent and manipulate models is used [Wi03]. On the other hand, we can differ
from those textual method and graphical ones, some approaches consider all the needed
steps concerning the transformation process can be performed by graphical method, in
other words, by using geometric notations to express transformation procedures. Thus,
they use a full graphical way to hold the transformation between different applications or
different models [Wi03].

We present in a brief way some of the recent transformation approaches. We explain for
each approach its relevance and its behavior, as well as the framework of its application.

4.1 OMG’ QVT

Models are the primary artifacts in the OMG’s model driven architecture software de-
velopment approach [OM03]. MDA made a significant difference from earlier uses of
modeling languages such as OMG’s UML, in which the primary purpose of models was
to aid understanding and communication.

In MDA, transformations play a key role, a standard syntax and execution semantics for
transformation is an important enabler for an open MDA tools chain. In [OM02] the OMG

62

issued a revised Request for Proposal for MOF 2.0 Query, views and Transformations to
address a technology part of the OMG Meta Object Facility entering to the main issues in
the manipulation of the MOF models. The object management group has issued a Request
for Proposal for Query/views/Transformation (QVT) language to exploit the Meta-Object
Facility that share common core concepts with the Unified Modeling Language (UML).

The proposed pattern language of QVT is not always the best way for expressing aspects
of a particular transformation. The differentiation between relation and mapping cause a
wondering confuse. The relations are not clearly the specifications of the mappings. This
is obviously shown when some of the mapping rules are kept as they are in their definition
in the relations part.

The second problem appears in those complicated transformations, especially when in-
heritance sub-models appear in the hierarchical architecture of the manipulated model.
This problem is difficult to be seen when a graphical representation of the model or the
structured document is shown.

4.2 MTrans

MTrans [PR02] is a transformation-specific language developed at France Telecom. Ded-
icated languages or domain-specific languages (DSL) are programming languages or exe-
cutable specification languages that offer, through appropriate notations and abstractions,
expressive power focused on, and usually restricted to a particular problem domain.

The use of a domain-specific language may be a solution of some problems related to the
software development (reusability, productivity, maintainability). [Wi03] demonstrates
that dedicated languages can reduce the cost of software maintenance. Other studies
[Kr92] present those languages as one of the main solutions to satisfy software reusability.

MTrans aims to supply a general framework for expressing model transformation. It is
based on a meta-modeling approach and contains a language and an environment to write
model transformation. It uses a finite set of instructions, and it is used to transform only
MOF compliant models.

Before the last version of the MTrans framework, MTrans rules were translated into XSLT
code [Pe03]. Then an XSLT processor was used to transform an XMI document that rep-
resents the source model into another XMI document representing the destination model.
Because of some difficulties faced in manipulating and using the extensible style sheet
translations, the research group has changed the generated language that carries out the
transformation, and they use Python instead of XSLT.

One of the problems that faces MTrans is the fact that it transforms only those entities
that can appear in a flat meta-model. Flat meta-model is a meta model that contains only
concepts, which means that it is a meta model that defines the set of terminal instances
[PZB00]. By example, if we have in the source meta-model an inheritance tree structure,
only leafs are interesting for transformations. Mtrans does not support transformation of

63

recursive elements. Rules are not named so it is not possible to call a rule in order to apply
it from other rules. Another disadvantage of this framework is that the used language
seems to be able to do many manipulations on transformations but it is not clear how it
does them.

4.3 UMLX

UMLX provides an open source tool to support the OMG’s Model Driven Architecture
initiative [OM03]. It describes a primarily graphical transformation language that extends
UML through the use of a transformation diagram to define how an input model is to be
transformed to an output model.

UMLX uses standard UML class diagrams to define information schema and their in-
stances. It extends the class diagram to define inter schema transformations. Four main
extensions have been added to the class diagram to support model transformation [Wi03].
The first one is a graphical representation of an invocation which is used when transfer-
ring a schema syntax to another schema syntax. Two other graphical design were added
to distinguish the input model from the output one. We think that even if those additional
graphical tools may intend to enrich the used graphical language, it is obvious that some
of them are irrelevant representations. Since the input model and the output one are clearly
known especially when arrows are used in the schema that represent the two models and
the transformation. Additional geometrical objects are used to clearly reveal input and
output models.

A problem appears in using the UMLX transformation which is the incapability of mod-
eling recursive instances of both source and destination models especially when the depth
of the modeled entity is not known. For known depth relations we need to pass an outer
context down as an inner context is explored. This can be seen in the resolution of primary
key in the UMLX2RDBMS example shown in [Wi03].

Graphical notations can get cumbersome for strange complicated relationships, but seem
simpler for practical simple graphs. The graphics is a less explored area, so it takes a while
to learn the new idioms, and possibly to provide the correct family of helper transforma-
tions/syntax extensions.

4.4 Other transformation approaches

Many approaches attempted to perform structured document transformation. The diffi-
culties appear each time the transformation become complicated and advanced manipu-
lation on the selected information are needed to be applied. Some of those approaches
are based on syntax directed translation (SDT), others have added extensions to the SDT
method to resolve more critical contexts (ESDT), some others are based on pattern match-
ing [Ho04][IN04]. On the other hand, some transformation models consider as essential

64

the backbone structure of the modeled document: they build formal definitions and they
apply the transformation through a syntax that conforms to the predefined specifications.
The tree automaton based approach [Mu98] and the filter based approach are such exam-
ples. The efficiency of the used methods that carry out the transformation remains a serious
problem, as same as the complexity of the adopted algorithms. Some research context ex-
plored transformation process approaches in more details [AB03]. They explained for each
one its relevance and its behavior as well as the framework of its application. The problem
remains always with non-direct transformations and when the structures of the input model
and the output one are not alike. In this case, additional manipulation should be performed
in the transformation process and it is not clear how to solve such transformation in those
existing approaches.

5 Conclusion and future work

Prior to constructing our model, we examined several approaches for specifying transfor-
mation for structured documents. None of them seemed suitable as a specification model
for complex transformations. Some are too operational in natures and other can describe
local transformations only. We presented in this paper our model for transforming struc-
tured document .We have shown its core part which is the transformation specifications in
term of rules in more details. The XSLT language is suitable to transform an XML doc-
ument into another one, but it is hard and error prone to manually write XSLT programs.
Our formalism allows expressing transformation rules in a more succinct and readable
way. This model can be used not only for transforming structured document, but also for
model transformation. The main requirement will be the representation of the input and
output meta model as DTD and their model instances as XML documents conforming to
the defined DTD. The difference with the model transformation is that we are working
on two levels: the abstract level and the concrete level. In the model transformation, the
OMG community has proposed the UML modeling language as model representation. It
intends to affront the incompatibility of having a variety of meta models the OMG has
projected a general structure for meta model integration. This organization conducted to a
four level architecture: the meta-meta model level, the meta model level, the model level
and the data level. In this architecture, each level preserves an instantiation relation with its
superior model. We aim to study possible extensions on our rule definition. We intend to
study particular transformation in case we find in our tests that the rule specification does
not fit to handle a particular type of transformation. Therefore, and as the architecture of
our model permits, our ongoing research will continue to study various potential optimiza-
tions to incorporate into our rule specification and the template generating algorithm. We
intend to develop the core part of the XSLT generator. This part will be transparent for the
end users. It may relies on transducer, or we may use a parsing algorithm that transfers
directly our code into XSLT. We may use regular grammars for code transformation. We
are searching a practical and efficient method to generate extensible style sheet translation
without any lost of the semantic handled by our transformation rules.

65

References

[AB03] Amaneddine, N. and Badr, Y. A taxonomy of transformation methods for structured doc-
ument. Proceeding of the second International Conference on Computer Systems and Ap-
plications, ACS/IEEE, Tunisia, ISBN 07803779837. Library of Congress: 2003106612.
July 2003.

[BBG01] Banerji, A., Bartolini, C., and Ger, D. Web services conversation language wscl 1.0.
http://www.e-speak.hp.com/media/wscl_5_16_01.pdf. 2001.

[CI03] CIDX. The chemical industry data exchange. http://www.cidx.org. September
2003.

[Ho04] Hosoya, H. Regular expression filters for xml. In Programming Languages Technologies
for XML (PLAN-X), Venice, Italy. January 2004.

[IN04] INRIA, F. The cduce language. http://www.cduce.org/. 2004.

[Jo02] Jones, D. Translating c to ada. http://www.knosof.co.uk/ctoa.htmlKnowl-
edge Software Ltd, Hants, UK. 2002.

[Kr92] Krueger, C. Software reuse. in ACM computing survey. 1992.

[MR97] Murray-Rust, P. Chemical markup language. World Wide Web journal, 135-147,http:
//xml-cml.org. 1997.

[Mu98] Murata, M. Data model for document transformation and assembly (extended abstract).
In Principle on Digital Document Processing, pages 140-152. 1998.

[OM02] OMG. Qvt. Initial submission for the MOF Query/views/Transformation, DSTC Interna-
tional Business Machines. 2002.

[OM03] OMG. Omg. The Object Management Group, www.omg.org. 2003.

[Pe03] Peltier, M. Techniques de transformation de modèles basé sur la méta-modélisation. Ph.D
dissertation, University of Nantes. September 2003.

[PR02] Peltier, M. and R&D, F. T. ransformation entre un profil uml et un méta-modèle mof. In
Langage et modèles à objets LMO. ISBN: 2-7261-1131-9. 2002.

[PZB00] Peltier, M., Ziserman, F., and Bezivin, J. On levels of model transformation. In XML
Europe conference, Paris. 2000.

[W303a] W3C. Scalable vector graphics (svg) 1.1 specification. http://www.w3.org/TR/
SVG/. 2003.

[W303b] W3C. The world wide web consortium. http://www.w3.org/XML/. 2003.

[Wi03] Willink, E. Umlx: A graphical transformation language for mda. In MDAFA03, Work-
shop on model driven architecture foundation and application, Enschede, The Nether-
lands. 2003.

[XF01] X.Tang and F.W.Tompa. Specifying transformations for structured documents. Proceed-
ing of the 4th International Workshop on the Web and Databases (WebDB’2001). May
2001.

[YS99] Yamasaki, K. and Sodeshima, Y. A comparison of bottom-up pushdown tree transducers
and top-down pushdown tree transducers. Department of Information Sciences, Faculty
of Science and Technology, University of Tokyo 2641 Japan. 1999.

66

