
Essential Aspects of Compliance Management
with Focus on Business Process Automation

David Schumm, Tobias Anstett, Frank Leymann, Daniel Schleicher, Steve Strauch

Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

70569 Stuttgart, Germany
{schumm,anstett,leymann,schleicher,strauch}@iaas.uni-stuttgart.de

Abstract: Compliance requirements coming from laws, regulations and internal
policies constrain how a company may carry out its business. A company must
take various different actions for preventing compliance violations and for
detecting them. Business processes have to be changed accordingly in order to
adhere to these requirements. Manual controls need to be installed in order to
affect the work which is done outside of IT systems. Technical controls are
required for assuring compliance within IT systems. In this paper, we present a
compliance management model that captures the compliance problem from a
holistic point of view. We elaborate on a technical control which is called
compliance fragment and we position it in the compliance management model. A
compliance fragment is a connected, possibly incomplete process graph that can be
used as a reusable building block for ensuring a consistent specification and
integration of compliance into a workflow. In particular, we propose language
extensions to BPEL for representing compliance fragments. Furthermore, we
introduce a methodology for integrating compliance fragments into given
workflows.

1 Introduction

The term compliance denotes all measures that need to be taken in order to adhere to
requirements derived from laws, regulations, internal policies etc. As non-compliance
may lead to tangible punishments, immediate reactions to these requirements become a
necessary part of business process management. Many of these requirements necessitate
performing profound changes of the business processes and their technical
implementations, referred to as workflows [LR00]. These changes have to be verifiable,
traceable, and checkable for supporting governance and for providing evidence of
compliance in case of an audit. Consequently, a company is compliant when it can proof
that all requirements have been implemented and fulfilled in an appropriate manner. This
includes that the requirements are accordingly monitored and adequately checked.
Therefore, we need concepts for consistent representation of compliance requirements
and methods for their reliable integration into business processes and workflows
respectively.

127



In this paper, we build on and extend recent works related to compliance management in
business processes. In [Da09] we described the research challenges for governing
compliance in service-oriented architectures, spanning from design to execution and
evaluation of concerns. As one part of an overall solution, we focus on workflows that
have to be made compliant. In [Sc10a] we proposed to use process fragments as
compliance controls and we have specified and described a life cycle for their usage. We
discussed two main usage scenarios for the application of these compliance fragments.
The first scenario is to use them during process design as reusable building blocks. They
can either be glued into an existing process, or they can be used to completely build up a
process from scratch. The second scenario is to annotate compliance fragments to a
process in order to constrain the behavior of the process during its execution. We also
investigate how to manage compliance in Software as a Service (SaaS) scenarios. In
[Sc09] we introduced the concept of process templates that implicitly contain
compliance controls as well as points of variability for customization. Furthermore, we
presented an algorithm which ensures that these constraints are not violated. In this
paper, we focus on the design time aspects of compliant workflow design. Aside from
the compliance management model which we discuss in Section 3, the main
contributions of this work comprise a way to represent reusable compliance controls for
workflows, and a mechanism to integrate them into a given workflow.

This paper is structured as follows: the background of our approach and related work is
discussed in Section 2. In Section 3 we present a general compliance management model
and position the concept of compliance fragments in it. In Section 4 we specify language
extensions to the Business Process Execution Language (BPEL) [Oa07] for representing
compliance fragments. We also specify a methodology for integrating compliance
fragments into a workflow. Finally, conclusions are provided in Section 5.

2 Background and Related Work

In the following we provide some background information on the usage of compliance
fragments in process design. First of all, before a compliance fragment can be used it
needs to be created. In [Sc10a] we described two manual ways. One way is that a
domain expert analyzes existing processes and extracts meaningful structures, i.e.,
activities and control dependency among them. The other way is to design a fragment
from scratch based on a specification of requirements. In order to utilize fragments for
compliance both ways are applicable. The investigation of automatic techniques for
identification and extraction of compliance fragments from existing processes is ongoing
research in the COMPAS1 project. However, independent of how the fragment has been
created, it is important to have a proof that the process fragment is really implementing
particular compliance requirements. To provide this proof, the compliance requirements
need to be formalized in a language that can be understood by tools for verification and
model checking. For instance, linear temporal logic (LTL) allows designers to encode
requirements about the execution path in logical formulae.

1 COMPAS: Compliance-driven Models, Languages, and Architectures for Services, www.compas-ict.eu.

128



Such formal rules can be used in model checkers to verify if the requirements are
satisfied in a process [KA09]. The formalization of compliance requirements and their
checking against a process or against a single compliance fragment is an important step
for workflow compliance as we discuss in [Sc10b], but this is not the focus of this paper.

There exist different concepts for mapping compliance requirements to technical
controls that can be installed in a workflow. One possibility for integrating additional
steps related to compliance is the usage of sub processes or similar concepts such as
Worklets [Ad05]. In this way modular requirements can be implemented, for example
the retrieval and validation of a trusted timestamp from a certified timestamp provider
can be defined as a sub process. Beside sub processes, there are other concepts that can
be used to make a workflow compliant. Business processes can be annotated with
constraints which have to be checked during design time or runtime in order to prevent
violation of compliance rules. A variable can for example be annotated with a constraint
allowing numbers between one and ten to be assigned. The case-handling approach
[VA97] allows the ad-hoc definition of processes that adhere to certain rules like:
“Activity A must be executed at least once until the process is terminated.” In addition,
approaches that address the detection of compliance violations in a process are currently
discussed [Go09]. The concept of compliance fragments we present in this paper takes
advantage of the concepts listed above and combines their strengths to ensure compliant
behavior of a workflow.

3 Compliance Management in Business Processes

In this section, we propose a general model for compliance management (see Figure 1).
In particular we describe the various actions a company can take in order to establish a
strategy for achieving overall compliance. The compliance management model gives an
overview of the different kinds of technical and manual controls. We elaborate on
compliance fragments that can be installed as technical controls in workflow-based
applications.

Figure 1: Compliance management model

129



3.1 Compliance Management Model

An initial step of compliance management in a company is to perform a compliance
assessment. In this step business experts (e.g., lawyers, consultants) collect all relevant
compliance sources (e.g., laws, regulations, internal policies). The sources are then
interpreted by these experts in order to define compliance requirements for the company
and its business processes, i.e., internalized [Da09]. Compliance requirements basically
involve any aspect of the processes in a company: requirements are related to control
flow, information usage, location (of an actor in a process, data or resources), security,
quality of service, monitoring, privacy, trust, and licensing [HPO08]. As compliance
sources possibly give leeway in the interpretation, it is unlikely that two companies have
exactly the same set of compliance requirements, or the same implementation thereof.
Some requirements are generally like “use appropriate encryption methods”. How such a
requirement will be treated, depends on the particular interpretation of the compliance
experts and on the technical infrastructure that is available in a company. In addition, as
the degree of automation of the business processes differs from company to company,
the choice of controls also differs. We distinguish between technical controls which are
the measures that can be taken within IT systems, and manual controls which are
measures that can be taken outside IT systems.

Type 1: Controls for requirements that need to be checked.

Type 1.1. Controls of type 1.1 provide functionality for compliance checking within IT
systems. Controls of this type include checking of constraints during design time, at
runtime, or offline (i.e., after-the-fact). Depending on the particular application that has
to be checked, constraints can be specified in machine-readable languages like logical
languages (LTL, CTL, Deontic Logic etc.), in domain-specific languages or in graph-
based languages like annotation fragments as we proposed in [Sc10a]. Appropriate
software components need to be installed for checking these constraints, for instance a
model checker is required for checking logical constraints at design time and complex
event processing (CEP) engines are often used for runtime checking. Additionally,
offline monitoring is useful in many scenarios (e.g., process analysis, process mining).
Controls of this type in general do not change the behavior of the IT system, but they
have the prerequisite that the information which is required for checking is available. For
this reason some changes of the involved systems might be necessary, in order to make
the required information available. For instance, keeping records of electronic
communication is crucial for providing later evidence of compliance. This might require
modifications of the involved systems to support the extraction, collection, and storage
of sent and received emails, committed transactions, and other data (e.g., program
execution events or audit trails).

Type 1.2. Controls of type 1.2 refer to manual checking of compliance. The usage of this
kind of controls is necessary when the requirement cannot be checked within an IT
system in a (semi-) automated fashion. For instance, interviews and questionnaires can
be used for checking processes within a company which are not automated. Recently,
anonymous complaint boxes (e.g., for customers) and so-called “Whistleblowing
hotlines” are also attracting interest of companies for achieving compliance.

130



Several forms of audits represent a supplementary control. Audits include sample checks
performed for instance by a compliance officer, a technical audit of a software
framework, a financial audit, or an audit with a particular subject like “customer data
protection”. In addition to that, certification of a software system according to particular
requirements can also be a workable measure.

Type 2: Controls for requirements that state how things need to be done.

Type 2.1. Controls of type 2.1 have an impact on the behavior of an IT system. Many
compliance requirements refer to security, privacy or trust. Thus, hardening the software
environment is a basic control. This includes installation and proper configuration of
rights and role management (like access control lists), firewalls, anti-virus, browser
security, license management etc. Custom settings of the applications and their data
storage may also be necessary, e.g., configuring a database to store particular data in an
encrypted manner, or installing a trigger that customer data may only be deleted after ten
years. Some applications can be configured with annotations or with a deployment
descriptor to use particular settings, e.g., related to security. As applications can invoke
services provided by a business partner, a company must ensure that the applied service
also adheres to the internalized requirements. Policies and Service Level Agreements
(SLA) are used for this purpose. In our research, we focus on the process structures that
allow an augmentation of the technical implementation of a business process with
activities related to compliance.

Type 2.2. Controls of type 2.2 are the measures outside of IT systems. More and more
companies are performing organizational changes for compliance management, e.g., the
Siemens AG dramatically increased the number of employees involved in compliance
programs [Si08]. This includes for instance the installation of one or more compliance
officers and role management for preventing violations of segregation of duty or binding
of duty requirements. Employees are instructed to adhere to the compliance requirements
with particular guidelines or a “code of business conduct”. Management of the security
of the company’s facility is also important. Analogous to workflows, business processes
can be inter-organizational as well (e.g., involve subcontractors). Therefore, a company
must ensure that its business partners also follow particular requirements. According
contracts are required for this. A necessary action for enabling compliance checking and
for supporting an audit is to keep records of documents, e.g., in tax consultancy most
documents typically have to be stored for at least ten years. Keeping records of talks is
also important, e.g., the minutes from a product advice talk in a bank are required for
providing proof that the risks of a product have been properly explained.

Controls of different types can be combined to more advanced instruments [An09]. For
example, software components of type 1.1 for checking for compliance violations can be
combined with instruments of type 2.1 for dynamically changing the behavior of a
running system (so-called compliance enforcement). Finally, for companies it is
desirable to have a way to flexibly react on changes of requirements, for instance when a
law is changed. Therefore, a connection of the compliance sources, the internalized
requirements and the controls which are used to implement them, needs to be
documented and maintained. This is also important to provide transparency to an auditor.

131



3.2 Compliance Fragments

A fundamental insight in our research is that compliance requirements related to
workflows do not necessarily require new types of activities or completely new language
constructs. The compliance requirements on which we base this work are provided by
case studies which are defined by industry partners of the COMPAS research project:
Thales Services SAS (France) and Telcordia Poland, in cooperation with
PriceWaterhouseCoopers Accountants N.V. (the Netherlands). These requirements are
mainly related to checking (Type 1.1) and enabling (Type 2.1) of security, role
management, traceability, audit trails, quality of service, and licensing. Most of the
security requirements related to workflows can be realized with available security
frameworks. Role management in a workflow based on BPEL can be implemented with
BPEL4People [Kl07] or using annotations and according tools for checking. Traceability
requires the extension of a workflow engine in order to emit execution events that are
augmented with unique identifiers, as our project partners showed in [Ho10]. However,
what is missing for achieving compliance in service-based applications is a concept for
reusable process structures that allows a consistent management of compliance
requirements within workflows (Type 2.1, with focus on business process automation).

To illustrate our approach, we take a simplified loan approval process as an example.
The activity labeled “Approval by Manager” is the step where a manger can approve a
loan request (see Figure 2, left). We assume a changed internal policy, stating that a loan
request can be approved without involving a manager if the risk is low. Whether a risk is
high or low can be decided by a clerk. To implement this requirement, the process has to
be adjusted. By reusing a compliance fragment for decisions (which someone created
before) we can add the functionality to check a loan request a second time (see the center
part of Figure 2). The right part of Figure 2 shows the process that is augmented with the
new compliance fragment (light grey).

Figure 2: A loan approval process is being augmented with a
compliance fragment for an additional decision

132



In [Sc10a] we introduced a compliance fragment as a connected, possibly incomplete
process graph that can be used as a reusable building block to realize compliance
requirements in terms of process logic. Compliance fragments can be used to augment a
process to make it compliant to requirements related to control structures and activities
to be executed. Compared to a normal process, a compliance fragment has significantly
relaxed completeness and consistency criteria. For instance, a process graph has to
contain a process start and a process end node for consistency. A fragment may contain
such nodes, but it is not required to. In addition, a fragment may also contain activity
placeholders (so-called regions) that can be filled with activities or other fragments. The
concept of compliance fragments we proposed in [Sc10a] allows us to specify various
different kinds of fragments. An important differentiation is how many entries and exits
a fragment has. A fragment with no entries has the meaning of a process start fragment,
which is useful for modelling a process from scratch. However, when using more than
one of such a fragment, a conflict might occur due to multiple start nodes. The fragments
we focus on have at least one entry and one exit.

4 Managing Compliance Fragments

In this section, we propose extensions to BPEL to provide the capability to represent and
serialize compliance fragments (Section 4.1). Subsequently, we present a methodology
for integrating compliance fragments into a given workflow (Section 4.2).

4.1 BPEL Extensions for Compliance Fragments

We propose design time extensions to BPEL which do not require an extension of the
runtime environment that executes the processes. All extensions except the extension for
unique identifiers are replaced during integration of the fragment into the process
(discussed in Section 4.2). We use the attribute mustUnderstand="yes" for the extension
namespace so that a process engine will reject running a process in which not all
placeholders have been replaced by standard BPEL constructs.

frg:fragmentEntry. The entry of a fragment is a placeholder for integration into a given
process or for composition of multiple fragments. A fragmentEntry hast to have one or
more leaving control links, and it must not have any incoming control links. An attribute
(type="mandatory|optional") specifies whether the entry has to be wired for assuring
compliant behavior, or if it can be neglected and removed. Figure 3 illustrates the
concept and the schema of the fragmentEntry.

Figure 3: BPEL extension for fragment entry

133



frg:fragmentExit. Analogously to an entry, a fragmentExit is a placeholder for a
composition. It must have at least one incoming control link, and it must not have any
leaving control links. A fragmentExit has the same attribute (type) as a fragmentEntry
with analogous semantics. If a fragmentEntry has multiple incoming control links, then
all of those control links have to have their target in one and the same activity in the final
composition. Figure 4 illustrates the fragmentExit and its schema in BPEL.

Figure 4: BPEL extension for fragment exit

frg:fragmentRegion. A fragmentRegion is a placeholder that needs to be replaced with
other BPEL structures. A region can be filled with standard activities, but it can also be
used for composition of process fragments. Constraints can be imposed on a region for
specifying how it may be filled. By using an annotation mechanism the constraints can
be specified in an arbitrary format in a separate document. Figure 5 (left) shows a
fragmentRegion (the cloud shape) on which constraints are imposed (the documents
shape). We do not specify which language(s) to use for stating the constraints at this
point in order to keep the overall concept modular and composable. Figure 5 (right)
shows the schema for a fragment region.

Figure 5: BPEL extension for fragment region

frg:fragmentScope. A process fragment may define a context (e.g., variables, data types).
In BPEL, the scope construct is used for this purpose. However, we have to distinguish
between the scope of a fragment and a BPEL scope to avoid confusion on the one hand,
and to provide clear semantics on the other hand. A fragmentScope which is derived
from the BPEL scope can be used as container for context constructs, such as
variables, partnerLinks, faultHandlers etc. A fragmentScope has the same
characteristics as a BPEL scope in terms of XML schema (see Figure 6).

134



Figure 6: BPEL extension for fragment container

frg:fragmentFlow. BPEL is a hybrid language, both graph-based and block-structured
[Ko09]. To support the concept of multiple entries and exits of a fragment we take the
graph-based part, i.e., the BPEL flow construct as basis. Just like a fragmentScope is not
the same as a BPEL scope, a fragmentFlow is not the same as a standard BPEL flow.
When integrating the fragment into a process, the control links which are nested in the
fragmentFlow have to be merged with the control links which are nested in the ancestor
BPEL flow. Figure 6 shows how a fragmentScope and a fragmentFlow can be used for
providing a container for a compliance fragment.

ext:id. In order to reference constructs from the outside, they must have a unique
identifier. Using the name of a construct as identifier causes problems as the name might
be changed often; this requires all references to be updated accordingly. Thus, we prefer
a universally unique identifier (UUID) [LMS05] for this purpose. In order to keep the
fragment clean from the constraints, we propose to extend all BPEL elements with an
identifier attribute. An annotation mechanism which references this identifier allows the
specification of constraints on regions and other BPEL constructs (e.g., impose
constraints on variables) from the outside. For the identifier extension (see Figure 7) we
have chosen a different namespace (with prefix ext) than for the other extensions as this
extension can be ignored by an execution engine, i.e., mustUnderstand="no".

Figure 7: BPEL extension for unique identifiers

Using identifiers is also important for traceability and for maintenance reasons.
Traceability in an execution environment can be supported by augmenting execution
events with identifiers of the activities that are executed during runtime. The identifiers
also allow distinguishing between the original parts of the process and integrated
compliance fragments. The XML schema of the extensions and a concrete compliance
fragment using these extensions can be found in COMPAS deliverable [Eu10].

135



4.2 Integrating Compliance Fragments into Workflows

During integration entries and exits of a fragment have to be “wired” with the process,
i.e., control links between process activities and fragment activities are being established
to obtain a complete and executable process. Placeholders are replaced with real
functionality, i.e., the parameters are replaced with specific values, and regions are filled
with activities or other fragments. In the following, we elaborate the different steps that
have to be accomplished in order to incorporate a compliance fragment into an existing
process. As illustrated in Figure 8, we use the concept of plugs to graphically represent a
fragmentEntry and a fragmentExit. In order to wire a fragmentEntry (see Figure 8)
we have to find and select a possible fragmentExit which can be plugged into it.

Figure 8: Compliance fragment for decisions where entries and exits are shown as plugs

If a former integration operation has not yet been completed, the available entries or
exits can be chosen. Otherwise, either a new control link has to be created or an existing
link has to be unplugged (i.e., broken) into a fragmentExit and a fragmentEntry as
illustrated in Figure 9. Optional entries of a fragment are not required in any case. They
can either be wired with the above described operations, or be removed. They are not
required for the realization of the compliance feature that the fragment implements, but
can be useful in process modeling. For instance, they can be used to define an additional
control dependency to synchronize parallel paths. Wiring the exits of a fragment is done
in an analogous manner. To wire an exit with an entry these constructs need to be
plugged together: Transition conditions that possibly exist either need to be merged
(using logical and) or one of them needs to be selected. Plugged connectors are
transformed into one control link, i.e., a new link is inserted from the source of the
fragmentExit to the target of the fragmentEntry. The helper constructs for the entry
and the exit connectors are then no longer needed and can be removed.

Figure 9: Breaking a control link and plugging an exit into an entry

136



The context defined in the fragmentScope (e.g., variables) has to be merged with the
process context in order to complete the procedure of integration of a fragment into a
process. Corresponding artifacts like variables can be matched based on their name,
identifier, type or other attributes. Possibly, data types used in the fragment have to be
adjusted to those used in the process for compatibility (e.g., Integer vs. Long). If any
fault, compensation and termination handling is defined in the fragmentScope, this also
needs to be taken into account. The main challenge when implementing design tool
support for integration is how to design an easy-to-use wizard that assists the user in the
wiring and in merging of the contexts. The integration is complete when all mandatory
entries and exits have been wired, all optional ones are either wired or removed, all
regions are filled or removed, and the context of the fragment and the process have been
merged. In addition, the WSDL interface descriptions and policies which might be
attached to a compliance fragment need to be combined with the WSDL and the policies
of the process. After integration the process does not contain any fragment-related
language extensions anymore, except for the identifiers used on the fragment constructs.

5 Conclusion and Future Work

In this paper, we have presented the essential aspects of compliance management in
general and elaborated a workflow-based approach as one part of an overall solution for
achieving compliance. We have discussed concrete language extensions to the process
execution language BPEL for enabling compliant service composition with compliance
fragments. Additionally, we have discussed a mechanism to integrate compliance
fragments into workflows. With the concept of compliance fragments we can address
requirements that concern the activities within a workflow, i.e., concerning the service
invocations and human tasks defined therein, as well as their control dependency. The
impact of compliance is however not limited to the workflow as we showed in the
compliance management model. It also has an effect on the various applications and
humans which are involved in the business processes. For instance, constraints on data
storage fall into the category of requirements that can be tackled with technical controls,
but not with the aid of compliance fragments. Further technical and non-technical
concepts are needed for an overall approach to compliant business process automation
and a compliant business.

Managing change of compliance requirements is another challenge that needs to be
addressed. What is the methodology for updating a business process that has already
been augmented with compliance fragments? As a first step to answer this question we
investigate further techniques for managing compliance fragments (extraction,
highlighting, and hiding). Furthermore, we examine the usage of different languages for
stating constraints on the placeholders in a fragment, i.e., on the regions. Especially
aggregation and combination of constraints in compositions is a challenge. Besides this,
we are developing tools for compliance template and compliance fragment management.

Acknowledgements. The work published in this article was partially funded by the FP7
COMPAS project (www.compas-ict.eu, contract no. FP7-215175) and the FP7
MASTER project (www.master-fp7.eu, contract no. FP7-216917).

137



References

[Ad05] Adams, M. et al.: Facilitating Flexibility and Dynamic Exception Handling in
Workflows through Worklets. Proceedings of the 17th Int. Conference on Advanced
Information Systems Engineering (CAiSE’05), Springer, 2005.

[An09] Anstett, T. et al.: MC-Cube: Mastering Customizable Compliance in the Cloud.
Proceedings of the 7th Int. Joint Conference on Service Oriented Computing
(ICSOC’09), Springer, 2009.

[Da09] Daniel, F. et al.: Business Compliance Governance in Service-Oriented Architectures.
Proceedings of the IEEE 23rd Int. Conference on Advanced Information Networking and
Applications (AINA’09), IEEE, 2009.

[Eu10] European Project COMPAS: BPEL Extensions for Compliant Services. Project
Deliverable D4.2, http://www.compas-ict.eu/results.php, 2010.

[Go09] Governatori, G. et al.: Detecting Regulatory Compliance for Business Process Models
through Semantic Annotations. Proceedings of the Business Process Management
Workshops, volume 17, chapter 2, Springer, 2009.

[Ho10] Holmes, T. et al.: Monitoring and Analyzing Service-based Internet Systems through a
Model-Aware Service Environment. Proceedings of the 22nd Int. Conference on
Advanced Information Systems Engineering (CAISE’10), Springer, 2010.

[HPO08] v.d. Heuvel, W.-J.; Papazoglou, M.; Orriens, B.: On the Risk Management and Auditing
of SOA based Business Processes. Proceedings of the 3rd Int. Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA), Springer, 2008.

[KA09] Kokash, N.; Arbab, F.: Formal Behavioral Modeling and Compliance Analysis for
Service-Oriented Systems. Proceedings of the 7th Int. Symposium on Formal Methods
for Components and Objects, FMCO 2008, Springer, 2009.

[Kl07] Kloppmann, M. et al.: WS-BPEL Extension for People (BPEL4People), Version 1.0,
White Paper, 2007.

[Ko09] Kopp, O. et al.: The Difference Between Graph-Based and Block-Structured Business
Process Modelling Languages. In: Enterprise Modelling and Information Systems.
Vol. 4(1), Gesellschaft für Informatik e.V. (GI), 2009.

[LMS05] Leach, P.; Mealling, M.; Salz, R.: A Universally Unique Identifier (UUID) urn
Namespace, RFC 4122, 2005.

[LR00] Leymann, F.; Roller, D.: Production Workflow. Prentice Hall PTR, 2000.
[Oa07] OASIS: Web Services Business Process Execution Language Version 2.0. OASIS

Committee Specification, 2007.
[Sc09] Schleicher, D. et al.: Maintaining Compliance in Customizable Process Models.

Proceedings of the 17th Int. Conference on Cooperative Information Systems (CoopIS),
Springer, 2009.

[Sc10a] Schumm, D. et al.: Integrating Compliance into Business Processes: Process Fragments
as Reusable Compliance Controls. Proceedings of the Multikonferenz
Wirtschaftsinformatik (MKWI’10), Universitätsverlag Göttingen, 2010.

[Sc10b] Schumm, D. et al.: Business Process Compliance through Reusable Units of Compliant
Processes. Proceedings of the 1st Workshop on Engineering SOA and the Web
(ESW’10), in conjunction with ICWE'10, Springer, 2010.

[Si08] Siemens AG: Corporate Compliance Website, Report on Compliance 2008. Online,
http://www.siemens.com/responsibility/report/08/en/key_figures/compliance.htm

[VA97] Voorhoeve, M.; v.d. Aalst, W.M.P.: Ad-hoc Workflow: Problems and Solutions.
Proceedings of the 8th Int. Workshop on Database and Expert Systems Applications
(DEXA’97), Springer, 1997.

138


