Impact-Based Search in Constraint-based Scheduling

Armin Wolf
Fraunhofer FIRST, Kekulstr. 7, 12489 Berlin
armin.wolf@first.fraunhofer.de

Abstract: A novel adaptation of impact-based search strategies for constraint-based
resource scheduling is presented. Search based on impacts applies a general purpose
search strategy originally from Linear Integer Programming and recently adapted to
Constraint Programming. To my knowledge it is shown for the first time that this
strategy is properly applicable to constraint-based scheduling and performs well on the
class of job-shop scheduling problems. Evidence is given empirically by comparison
with a problem-specific and a random strategy.

1 Introduction

In Constraint Programming (CP) one of the essentials to be successful in problem solving
is the ability to design an according search strategy. Mostly, there are problem specific
strategies, especially in constraint-based scheduling. Scheduling of activities on resources
are in general NP-hard problems (cf. [BIPNO1]), especially if they must be scheduled
optimally with respect to an objective function like their minimal make-span. Neverthe-
less, beyond polynomial algorithms for pruning the search space (e.g. [BIPNO1, BCO1,
Vil04, Vil07, Wol03]) specialized, highly sophisticated search strategies (cf. [BL0O, Vil05,
Wol04, Wol05]) have been applied successfully. In contrast to these special-purpose ap-
proaches, this article follows the idea presented in [Ref04]: a general-purpose, impact-
based search strategy. However, in [Ref04] this strategy inspired from Linear Integer Pro-
gramming is applied to problems like multi knapsack and magic square problems where
the variables’ domain are rather small. Due to the use of the impacts of variable-value
assignments the strategy requires approximations for problems with larger variables’ do-
mains as shown in [Ref04], e.g. for Latin square completion problems.

Within this paper a novel approach is presented such that impact-based search is appli-
cable and performs well in constraint-based scheduling where the variables have large or
even huge domains. Here, the impacts are independent from variable-value assignments
because they are computed for order decisions.

2 Search Strategies for Scheduling Problems

The considered scheduling problems are defined by a set activities and a set of resources.
An activity t is non-interruptible, has a non-empty set of potential start times Sy, i.e. a

523

finite integer set which is the domain of its variable start time s(¢). Furthermore, it has
a fixed duration d(t), i.e. a positive integer value. Due to lack of space, the following
considerations are restricted to non-preemptive single-resource scheduling problems: each
activity is related to exactly one resource which will be required exclusively during the
activity’s processing. Furthermore, the activities might be related by additional temporal
constraints like “before”, “after”, “together” etc. Thus, given a finite set of activities 7' =
{t1,...,tn} with at least two elements (n > 2), the considered scheduling problem is
to find a solution, i.e. some start times s(t;) € Si,,...,s(t,) € S, such that either
S(tl) + d(t,) < S(tj) or S(t]) + d(t]) < S(t,) holds for 1 <17 < 7 < n.

In Constraint Programming (CP) the usual approach to solve such a scheduling problem
consists of two steps:

1. model the scheduling problem as a constraint satisfaction problem (CSP) with an
appropriate set of constraints.

2. search for a solution of the CSP by using the pruning algorithms implemented for
the constraints.

The CSP modeling will be mainly based on some global constraints serializing the activi-
ties on a single-resource. Additionally some order constraints might state some temporal
conditions between the activities. Then in CP a depth-first backtracking tree-search is
usually applied to solve this problem. At each level of the search tree decisions are made
partitioning the actual search space: Given the currently valid constraint conjunction C,
decisions ey, . .., ej have to be taken such that (e; V... Vex) AC — C,C 4 (C Ae;)
and e; A e; < false hold for 1 < ¢ < j < k. Then, the search will select and state one
decision e;, i.e. C' A e;. If pruning detects no inconsistency search continues at the next
level. Otherwise backtracking is performed: Another not yet taken decision is selected if
possible; otherwise the previous level is considered recursively. For instance, labeling fits
in this pattern. There, the decisions on each level in the search tree are the assignments of
different values to a variable. For example, given C' = (X > 0A X <4 A X € [-2,2])
then the decisions e; = (X = 1),ea = (X = 2) satisfy the previously stated require-
ments, e.g. (e1 V ea) A C' < C, i.e. no solution will be lost during the search.

In general, the efficiency of such a tree-based search strongly depends on the choices
and selections made as well as their order in the traversed search tree. In general, the
choice/selection orders are variable/value orders: At each level a not yet considered con-
strained variable X (e.g. a start time) with its current domain of values {vy,..., v}
(e.g. the actual potential start times) is selected. Then, selecting one of these values, say
v, determines the decision X = v;.

Thus, there are three recommended general principles to reduce the search effort:

1. make decisions (e.g. for a variable) which maximally restrict the search space
2. select a decision (e.g. a variable’s value) maximizing the number of possibilities

3. make good choices at the top of the search tree.

524

For single-resource scheduling, especially for job-shop scheduling it is in general sufficient
to determine a linear order of the activities on each single-resource. Thus at each level of
the search tree two “unordered” activities p and ¢ have to be selected and either p “before”
q, i.e. s(p) + d(p) < s(q), or vice-versa g “before” p, i.e s(q) + d(¢) < s(p) has to be
stated. Thus, these principles have to be adapted properly to the partial ordering of the
activities.

A simple heuristic that addresses the first principle in job-shop scheduling is the consider-
ation of the resource with highest demand first. Here, the demand is the ratio of the sum
of durations and the difference between the latest possible end time and earliest start time
of all its activities. Then sort all activities on the current resource such that their slack is
not decreasing. Here, the slack is the ratio of the difference between the earliest and latest
start time of this activity and the activity’s duration. Then, the pairs of the first and second
activity, the first and third, etc. will be considered for their partial ordering (cf. [Wol05]).
Sorting could be either performed static before the search or updated during search. In the
following, another approach is presented. It is based on impacts (cf. [Ref04]) addressing
all three principles. However, it is generalized for order decisions. Again, the impact of
a decision means the reduction of the search space due to the pruning triggered by this
decision.

In general, the Cartesian product of all potential start variables P = |Sy, | x - - - |:S;,, | before
and after a decision is a good estimation of the size of the search space. By convention
let P’ denote this Cartesian product after a decision if P denotes this product before any
decision.

For another estimation the number of not defectable preferences [Vil04, Vil07] between
any two activities p and ¢ are computed before and after a decision. NV resp. N’ denotes
this number before/after a decision. Any two activities have no detectable preferences if
neither min(.S,) +d(p) > max(S,) nor min(S,) +d(q) > max(S,) holds, i.e. such pairs
of activities are unordered.

Considering both estimations, the overall impact of a partial ordering of a previously un-
ordered pair p, q is the normed weighted sum

I(p,q) = I(s(p) + d(p) < s(q)) = a(1—2"""N)+ p(1 - P'/P)

where « + 6 = 1 and o, 8 > 0 holds. Here, the ratio oN' =N ¢ (0,1] is a measure for
the reduction of the potential order decisions and the ratio P'/P € (0,1] is a measure
for the reduction of the potential start times value. The smaller the ratio R the greater the
reduction and thus the impact (1 — R) of a decision. These impacts are computed before
any search for all O(n?) unordered pairs addressing the last principle: The pairs are sorted
with respect to these initial impacts in decreasing order. While searching, i.e. establishing
different partial orders, the corresponding impacts Iy, ..., I according to the currently
considered CSP are computed. On this basis their average value

d
I(p,q) =1(s(p) + d(p) < s(q)) = 1/dz Ii(s(p) + d(p) < s(q))

525

is used to follow the first two principles: A pair p, g of unordered activities to be ordered
next is the one having maximal I(p,q) + I(g,p). Ties are broken on the impact of the
choice of such a pair: the one that will have maximal impact at the current level in the
search tree. For such a pair p, g the next decision is selected such that I(p, q) resp. I(q, p)
will be minimal, i.e. some “look ahead” is performed.

Finally, the impact-based search restarts at top level still remembering the already com-
puted impacts. For restarting the simple approach suggested in [Ref04] is used: For the
first run of the search at most 3n(n — 1)/2 choices are possible to find a solution. If no
solution was found for this cuf-off, this value is increased by multiplying it with 1.4142
(approx. v/2) before search is restarted.. This increase guarantees that the search process
is complete, i.e. it will find a solution if there is any and will prove inconsistency if there
is none.

3 Experiments

Well-known benchmark instances of job-shop scheduling (JSS) problems are chosen to
compare different search strategies: the 10 x 10 (LA16-20) and the 15 x 10 (LA21-25)
instances introduced in [Law84]. Three different search strategies are compared on these
resource constrained project scheduling instances: the previously introduced impact-based
search with « = (3 = 0.5, the sorting search presented in [Wol05] and restated in the
previous section as well as a random search that sorts the pairs to be ordered randomly
restarting in the same manner as the impact-based search (cf. previous section).

All search procedures perform in two phases sufficient for the considered benchmark prob-
lems: After the linear orders on the single-resources are established due to search, the start
times of the activities are labeled with their earliest possible times without search. The
different search strategies are applied to the problem instances twice: (1) restricting the
make-span to be less than its minimal value proving the optimality of the minimal make-
span and (2) restricting the make-span to be equal to its minimal value finding an optimal
solution.

All search strategies as well as the problem models are realized in our Java constraint
solving library £irstCS [Wol06]. The constraint models consists of two types of con-
straints: SingleResource for each resource serializing the corresponding activities
and Before for the linear orders of the activities within each job. Before constraints
are also used for ordering unordered activities during search.

The comparison of the search strategies is performed under Windows XP, SP2 on a PC
Pentium 4, 2.99 GHz, with 2 GByte RAM running Sun Java 1.6. The results are presented
in Table 1. Fields without any entry reflect the fact that ongoing unsuccessful search was
interrupted after one hour. The results for the LA21 instance are omitted because each
strategy neither proves optimality nor finds an optimal solution within one hour runtime.
No search was required to prove the optimality of the LA23 instance: initial pruning de-
tects the inconsistency of the considered CSP. Best results are highlighted in boldface.
Comparing the numbers shows that impact-based search performs well for the proofs of

526

optimality: In 75 % of all non-trivial cases it performs best according to the number of
performed backtracks (# backtracks) and choices made (# choices) as well as runtime (in
msec.). Further, impact-based search performs also rather well for finding an optimal so-
lution, i.e. a schedule. However, the problem-specific adapted sorting search performs a

bit better. Random search is in both cases the least performing strategy.

JSS instance LAl16 | LA17 LAI8 LAI19 LA20 | LA22 | LA23 LA24 LA25
min. make-span 945 784 848 842 902 927 1032 935 977
proof of optimality: (I)mpact-based, (S)orting, (R)andom
backtracks(I) 537 47 483 9429 671 633 0 75458 | 1924905

choices (I) 536 46 482 9479 670 632 0 75584 | 1925304
time [msec.](T) 594 375 672 6579 766 1657 0 97815 | 2120822
backtracks(S) 1355 7 5289 19901 3773 295 0 | 130405 —

choices(S) 1354 6 5288 19000 3772 294 0 | 130404 —
time [msec.](S) 594 32 2156 8844 1953 313 0 | 108676 > 1h
backtracks(R) 4157565 313 97039 | 2813405 | 1900578 — 0 — —

choices(R) 4158462 312 97423 | 2814188 | 1901317 — 0 — —
time [msec.](R) 1287777 203 34095 983631 721090 > 1h 0 > 1h > 1h

finding an optimal solution: (I)mpact-based, (S)orting, (R)andom
backtracks(I) 93 2 366 6812 496 1850 1252 50611 640820

choices(I) 129 33 396 6873 523 1910 1337 50781 641239
time [msec.](I) 297 281 848 842 902 3093 2266 65502 721608
backtracks(S) 123 1 3087 17245 469 550 48 36151 —

choices(S) 156 28 3128 17285 503 595 95 36208 —
time [msec.](S) 78 31 1297 17610 266 609 156 27486 > 1h
backtracks(R) 46785 15 | 229754 198568 351237 — — — —

choices(R) 47087 53 | 230312 199024 351826 — — — —
time [msec.](R) 1439 31 78956 73628 126036 >1h | > 1h > 1h > 1h

Table 1: Benchmark results for some LA job-shop scheduling instances

4 Conclusion

A novel adaptation of impact-based search strategies for constraint-based resource schedul-
ing is presented. It is shown that this strategy — properly applied to constraint-based
scheduling — performs well on the class of job-shop scheduling problems: evidence is
given empirically by comparison with a problem-specific and a random strategy. The en-
couraging results will motivate some future work on fine tuning, e.g. of the parameters «
and 3, based on more exhaustive experiments especially on other job-shop scheduling
instances.

References

[BCO1] Nicolas Beldiceanu and Mats Carlsson. Sweep as a Generic Pruning Technique Applied
to the Non-overlapping Rectangles Constraint. In Toby Walsh, editor, Principles and

527

[BLOO]

[BIPNOI1]

[Law84]

[Ref04]

[Vil04]

[Vil05]

[Vil07]

[Wol03]

[Wol04]

[Wol05]

[Wol06]

Practice of Constraint Programming — CP 2001, 7th International Conference, volume
2239 of Lecture Notes in Computer Science, pages 377-391. Springer Verlag, 2001.

Philippe Baptiste and Claude Le Pape. Constraint Propagation and Decomposition Tech-
niques for Highly Disjunctive and Highly Cumulative Project Scheduling Problems. Con-
straints, 5(1-2):119-139, 2000.

Philippe Baptiste, Claude le Pape, and Wim Nuijten. Constraint-Based Scheduling. Num-
ber 39 in International Series in Operations Research & Management Science. Kluwer
Academic Publishers, 2001.

S. Lawrence. Resource constrained project scheduling: an experimental investigation
of heuristic scheduling techniques (Supplement). Technical report, Graduate School of
Industrial Administration, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1984.

Philippe Refalo. Impact-Based Search Strategies for Constraint Programming. In
Mark Wallace, editor, Principles and Practice of Constraint Programming - CP 2004,
10th International Conference, CP 2004, Toronto, Canada, September 27 - October 1,
2004, Proceedings, volume 3258 of Lecture Notes in Computer Science, pages 557-571.
Springer, 2004.

Petr Vilim. O(nlogn) Filtering Algorithms for Unary Resource Constraint. In Pro-
ceedings of the International Conference on Integration of Al and OR Techniques in
Constraint Programming for Combinatorical Optimisation Problems — CP-AI-OR’04,
volume 3011 of Lecture Notes in Computer Science, pages 335-347. Springer Verlag,
2004.

Petr Vilim. Computing Explanations for the Unary Resource Constraint. In Integration of
Al and OR Techniques in Constraint Programming for Combinatorial Optimization Prob-
lems: Second International Conference, CP-AI-OR 2005, Proceedings, volume 3524 of
Lecture Notes in Computer Science, pages 396—409. Springer Verlag, 2005.

Petr Vilim. Global Constraints in Scheduling. PhD thesis, Charles University in Prague,
Faculty of Mathematics and Physics, Department of Theoretical Computer Science and
Mathematical Logic, KTIML MFF, Universita Karlova, Malostranské namésti 2/25, 118
00 Praha 1, Czech Republic, August 2007.

Armin Wolf. Pruning while Sweeping over Task Intervals. In Francesca Rossi, editor,
Principles and Practice of Constraint Programming — CP 2003, 9th International Con-
ference, volume 2833 of Lecture Notes in Computer Science, pages 739-753. Springer
Verlag, 2003.

Armin Wolf. Reduce-To-The-Opt — A Specialized Search Algorithm for Contiguous Task
Scheduling. In K.R. Apt, F. Fages, F. Rossi, P. Szeredi, and J. Vancza, editors, Recent
Advances in Constraints, volume 3010 of Lecture Notes in Artificial Intelligence, pages
223-232. Springer Verlag, 2004.

Armin Wolf. Better Propagation for Non-reemptive Single-Resource Constraint Prob-
lems. In B. Faltings, A. Petcu, F. Fages, and F. Rossi, editors, Recent Advances in
Constraints, Joint ERCIM/CoLogNET International Workshop on Constraint Solving and
Constraint Logic Programming, CSCLP 2004, Lausanne, Switzerland, June 23-25, 2004,
Revised Selected and Invited Papers, volume 3419 of Lecture Notes in Artificial Intelli-
gence, pages 201-215. Springer Verlag, 2005.

Armin Wolf. Object-Oriented Constraint Programming in Java Using the Library
firstcs. In Michael Fink, Hans Tompits, and Stefan Woltran, editors, 20th Workshop
on Logic Programming, Vienna, Austria, February 22-24, 2006, volume 1843-06-02 of
INFSYS Research Report, pages 21-32. Technische Universitdt Wien, 2006.

528

