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Functional Programming has been used to generate highly efficient and
highly verified implementations of operating systems (Klein et al., 2009) and
cryptographic implementations (Zinzindohoué et al., 2017) by generating a sub-
set of the C programming language and using various compilers to generate fast
or safe code. More common verified C implementations can exhibit problems in
practice due to that choice (Kaufmann et al., 2016).
Branching behaviour is now shown to be more succeptible to leaking secret
information from programs (Kocher et al., 2019). This branching exhibits an
observable side-effect of otherwise pure computations. The question comes to
mind: Can we use purely functional programming to get rid of those side-effects?
Even more so, will the security arguments against sidechannel feasibility be more
rigorous than those of implementations which generate C code, or even those
written purely in C?
My research is using the Haskell programming language as a testbed for this
due to a strict type system which lends itself to secure programming practices
(Peyton Jones, 2012). A new Ed25119 (Bernstein et al., 2012) implementation
with focus on avoiding branching behaviour on secrets is being developed and
will be used as an example for verification of similar applications. This talk will
introduce the problem setting surrounding my research question.
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