
Can Verification of Cryptographic Libraries be

liberated from the von Neumann Style?

Marcel Fourné
Lehrstuhl Formale Methoden der Informatik

Universität Duisburg-Essen

Functional Programming has been used to generate highly efficient and
highly verified implementations of operating systems (Klein et al., 2009) and
cryptographic implementations (Zinzindohoué et al., 2017) by generating a sub-
set of the C programming language and using various compilers to generate fast
or safe code. More common verified C implementations can exhibit problems in
practice due to that choice (Kaufmann et al., 2016).
Branching behaviour is now shown to be more succeptible to leaking secret
information from programs (Kocher et al., 2019). This branching exhibits an
observable side-effect of otherwise pure computations. The question comes to
mind: Can we use purely functional programming to get rid of those side-effects?
Even more so, will the security arguments against sidechannel feasibility be more
rigorous than those of implementations which generate C code, or even those
written purely in C?
My research is using the Haskell programming language as a testbed for this
due to a strict type system which lends itself to secure programming practices
(Peyton Jones, 2012). A new Ed25119 (Bernstein et al., 2012) implementation
with focus on avoiding branching behaviour on secrets is being developed and
will be used as an example for verification of similar applications. This talk will
introduce the problem setting surrounding my research question.

References

Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe
& Bo-Yin Yang (2012). High-speed high-security signatures. Jour-
nal of Cryptographic Engineering 2(2), 77–89. ISSN 2190-8516. URL
https://doi.org/10.1007/s13389-012-0027-1.

Thierry Kaufmann, Hervé Pelletier, Serge Vaudenay & Karine Vil-
legas (2016). When constant-time source yields variable-time binary: Ex-
ploiting curve25519-donna built with msvc 2015. In International Conference
on Cryptology and Network Security, 573–582. Springer.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch
& Simon Winwood (2009). seL4: Formal Verification of an OS Kernel.

cr
yp

to
da

y
m

at
te

rs
29

(2
01

8)
B

ei
tr

äg
e

vo
m

29
.K

ry
pt

o-
Ta

g,
06

.-0
7.

09
.2

01
8,

B
os

ch
,R

en
ni

ng
en

.
do

i:1
0.

18
42

0/
cd

m
-2

01
8-

29
-2

6



In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP ’09, 207–220. ACM, New York, NY, USA. ISBN 978-1-
60558-752-3. URL http://doi.acm.org/10.1145/1629575.1629596.

Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz & Yuval Yarom (2019).
Spectre Attacks: Exploiting Speculative Execution. In 40th IEEE Symposium
on Security and Privacy (S&P’19).

Simon Peyton Jones (2012). Safe Haskell. In Haskell ’12: Proceed-
ings of the Fifth ACM SIGPLAN Symposium on Haskell. ACM. URL
https://www.microsoft.com/en-us/research/publication/safe-haskell/.

Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko & Benjamin Beurdouche (2017). HACL*: A verified modern
cryptographic library. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 1789–1806. ACM.


