Automatic Generation of Machine Emulators:
Efficient Synthesis of Robust Virtual Machines
for Legacy Software Migration

Michael Franz Andreas Gal Christian W. Probst
University of California, Irvine Technical University of Denmark

Abstract: As older mainframe architectures become obsolete, the corresponding le-
gacy software is increasingly executed via platform emulators running on top of more
modern commodity hardware. These emulators are virtual machines that often include
a combination of interpreters and just-in-time compilers. Implementing interpreters
and compilers for each combination of emulated and target platform independently of
each other is a redundant and error-prone task. We describe an alternative approach
that automatically synthesizes specialized virtual-machine interpreters and just-in-time
compilers, which then execute on top of an existing software portability platform such
as Java. The result is a considerably reduced implementation effort.

1 Introduction

A substantial amount of legacy software has been designed for mainframe architectures
that are no longer commercially available. As the last computers implementing such an
architecture reach the end of their physical life span, the best option available if one wants
to continue running the legacy software is to construct a software emulator for the legacy
hardware architecture. Because of the effects of Moore’s law, a legacy mainframe program
that is being emulated in software on a modern microprocessor often does not even run
much slower than the original program did on the old hardware.

Programs that need to be emulated in this manner are typically “niche” programs—if a
program were of critical importance and used widely, it would be ported to a more modern
platform. If the original target architecture were really widespread, then the manufacturer
of that architecture would have provided a backward-compatibility solution of some kind.
However, this still leaves a substantial number of legacy programs without the “critical
mass” to make traditional porting approaches cost-effective. In fact, for many of these
programs, even the cost of constructing a dedicated emulator in software might be too
large when compared to the residual benefit provided by the legacy program.

A related concern when constructing a system emulator is that the hosting platform on
which the emulator executes might eventually itself become obsolete. Hence one either
needs good judgment and a bit of luck when picking a hosting platform for such an emu-
lator, or in the long run the original hosting platform itself may need to be emulated on yet
another machine, leading to a whole stack of cascaded emulators.

83

We aim to reduce the effort of creating emulators for legacy architectures, thereby giving
a new lease of life to a wider range of existing legacy programs. Our approach is based
on two strategies: First, the target of our emulation is not an actual hardware architecture,
but the portable Java platform that is available on almost every conceivable system. We
thereby greatly reduce the risk that any emulator constructed using our method would ever
become obsolete, because Java has “critical mass”. Second, our emulator is constructed
using a technique of generative programming, which greatly reduces the effort required
for its construction, and simultaneously also the scope for errors.

In the following, we give an introduction to virtual machines in general and to our approach
in particular. We then describe our application of generative programming for deriving an
interpreter and code generator from a machine specification. After a section discussing
related work, our paper ends with conclusions and an outlook to future work.

2 Virtual Machines

A software program that emulates the behavior of a specific hardware platform is also
called a virtual machine (VM). There has been considerable interest in virtual machines
recently, driven by the popularity of mobile-code approaches such as Java. Virtual ma-
chines emulate one platform on top of another by interpretation, by (just-in-time) compi-
lation, or by a combination of these two strategies. An interpreter executes individual vir-
tual machine instructions one by one, performing the corresponding functionality directly.
A (just-in-time) compiler takes a sequence of virtual machine instructions and translates
them to the native instruction set of the runtime platform prior to execution.

Implementing such an interpreter or just-in-time compiler is a non-trivial task. Previous
research has studied the use of domain-specific languages to specify code generators, as
well as the automatic generation of interpreters. Most of these solutions are complex
because they need to deal simultaneously with both varying emulated architectures and
varying actual execution platforms. As a result, none of these previous approaches has
gained widespread popularity for the purpose of supporting legacy code.

Our approach to machine emulation uses the Java Virtual Machine (JVM) as the target
platform. Since Java is available almost universally, this eliminates the variability problem
on the hosting side: if we can build an interpreter and/or a compiler that can bridge the gap
between the architecture to be emulated and the JVM, then users can deploy their legacy
software on any platform on which the JVM is available. To base a machine emulator
on the JVM, we need to build a compiler that “compiles up”, from a low-level machine
language into Java’s higher-level bytecode language. It is precisely this problem that we
have solved in a prototype system that we call Virtual Execution Environment for Legacy
Software (VEELS).

Our current prototype system executes standard Linux PowerPC, ARM, and MIPS binaries
on top of the Java Virtual Machine by way of “compiling up”. It thereby makes it possible
to run all three kinds of binaries on any platform that a JVM is available on. VEELS
uses a mixed-mode execution strategy that combines an interpreter with a just-in-time

84

bytecode
JVMIIT translator

. <
execution <

native code
(host CPU)

application

machine code

VM
bytecode

virtual CPU

Figure 1: Life-cycle of emulated native machine code on top of a Java Virtual Machine (JVM).

compiler. Initially, the legacy machine code is interpreted by a simple CPU emulator that
is implemented in Java. Whenever a “hot spot” with high execution frequency is detected,
a just-in-time compiler is used to translate blocks of instructions into Java bytecode. If our
“target” JVM is in turn hosted using another just-in-time compiler (from JVM bytecode to
the actual native code of the underlying hardware platform), then the emulated code will
eventually be compiled (via the intermediate step of JVM bytecode) to native code.

Using dynamic optimization techniques similar to those found in binary translation frame-
works, we were able to reduce the performance penalty of our scheme to a surprisingly
low level. Even in our worst-case benchmarks and with an unoptimized prototype, the
slowdown of emulating PowerPC code on top of a Java VM running on a PowerPC pro-
cessor (double emulation) never exceeded a factor of 70. When emulating on a modern
Intel host, the slowdown was almost zero. Considering that most platform emulations will
concern much older, slower platforms than the still current PowerPC, our results imply that
it is perfectly reasonable to “compile up” native code so that it runs on top of a synthetic,
high-level instruction set architecture (ISA) such as the Java VM. The high-level ISA in
turn is then likely to be dynamically “compiled down” again into some low-level native
code, giving hardware architects much more leeway as they are no longer bound by any
constraints of backward compatibility (Figure 1). Even more important than pure perfor-
mance, the effort required to construct such an emulator is sufficiently low to be attractive
even for “niche” legacy architectures.

3 Building A Translator

Instead of manually and separately implementing the CPU emulator and code generator
for each emulated platform, we use generative programming to dynamically assemble spe-
cialized interpreters and code generators at runtime. Using the same initial specification,
we can dynamically instantiate an interpreter, a simple basic-block-based compiler, and a
superblock-based optimizing compiler.

In order to interpret foreign code on a host machine, one can execute it instruction-by-
instruction using a virtual CPU that emulates the instruction set of the guest system. This

85

void addi (int insn) { void decode (int insn) {

int D = (insn >> 21) & Ox1f; switch((insn >>> 26) & 0x3f) {
int A = (insn >> 16) & 0x1f); -

int imm = ((short) (insn & Oxffff)); case 14: addi (insn); break;
reg[D] = reg[A] + imm;

} }
}

Figure 2: The hosted machine code instructions are first decoded (right hand side), then individual
functions (here addi for the PowerPC architecture) extract the operands and emulate the instruction.

approach is not particularly efficient because in addition to the effort of actually executing
the operation, each instruction also has to be decoded first. As the example in Figure 2
shows, decoding an instruction can easily be more costly than actually executing it. This
approach also does not yield ideal results when dealing with irregularities in instruction
sets. As an example, the addi instruction of the PowerPC architecture (Figure 2) has a
special form that can be optimized when R, is used as source register, because R, always
returns 0 on PowerPC CPUs. While this would allow to write the value of the immediate
directly to the destination register, during instruction-by-instruction interpretation, any re-
duction in execution time resulting from this optimization is cancelled out by the increased
decoding effort required to actually detect the special form.

To overcome this problem, many existing machine emulators translate blocks of foreign
machine instructions directly into code executable by the host machine (“just-in-time”
compilation). By doing so, the decoding effort is incurred only once and can be recu-
perated over time if the translated block is executed repeatedly. Block translation is also
able to perform optimizations such as generating specialized code for specific instruction
forms. The additional decoding effort is incurred only once, while the execution time
benefit applies to each subsequent execution of the translated code block. On the other
hand, block translation can decrease performance if the translated block is not executed
frequently enough. To overcome this drawback, one uses “mixed-mode” execution that
combines interpretation and compilation. However, constructing a mixed-mode virtual
execution environment requires implementing a machine emulator at least twice: one that
acts as an interpreter and one that acts as a code generator.

3.1 Using Generative Programming to Obtain a Mixed-Mode Environment

Implementing the machine emulator twice is redundant and complicated. To make matters
worse, this needs to be done in two different languages. While the interpreter can use the
Java source language to implement the semantics of the emulated machine, the code gen-
erator needs to emit Java bytecode instructions. To avoid this duplication of work, we use
generative programming [BBCEO2, ECO00] to derive an interpreter and a code generator
for the emulated machine from the same specification. The solution involves using the
standard javac compiler to translate parts of the machine emulator into the JVM
bytecode language, and then extracting the bytecode that was generated. To this end,
we introduce a notion of code templates. A code template is a piece of Java code that
performs the actions required by the semantics of a foreign machine code instruction. For

86

Java tem plate | Interpreter Code G enerator
public static void jit_andc(int A, int S, int B) {
A=S& (B); probg proby
¥ instruction instruction

. epibg

Jvac

prolbg instruction

bytecode tem plate ’///ﬂ instmction
ublic static void jit_andc(int,int,int) {
RETSCREL T ’] instucto
1iload_1 \ n
I'iload_2
1
; iconst_ml epiby

| ixor
I iand
I'istore_0

return

Figure 3: Overview of our approach. For each native instruction, a Java function is programmed that
emulates the behavior. Using javac, this function is translated into a decode template, which is
then used by both the interpreter and the code generator.

class Interpreter extends Decoder ({

void emit (String signatue, String template, int[] context) {
Instruction i = cache.get (template, signature);
if (i == null) {
i = compile (template, signature, context.length);
cache.put (template, signature, 1);
}
i.execute (context);
}

void interpreter_loop() {
while (true) decode (Memory.read_word(reg.PC));
}

}

Figure 4: Structure of the interpreter implementation. The interpreter loop decodes the next instruc-
tion using the decode, which uses the emit method to select appropriate code patterns.

each such instruction, we implement a decoder function that extracts the operands and se-
lects one or more code templates to perform the necessary activities that together emulate
the machine instruction.

To be generic enough to serve for both, building an interpreter and building a code gen-
erator for a block translator, code templates operate on JVM local variables. To turn a
code template into a suitable form for the interpreter, it has to be surrounded by appro-
priate prologue and epilogue code to load the contents of the specified registers plus any
immediate values (in the prologue) and to commit back any changes to the register file (in
the epilogue). Deriving a pattern for the code generator works in a similar fashion, but
the prologue and epilogue code are located at the beginning and the end of the translated
block only. This allows for a more efficient execution, as register contents are exchanged
between instructions in the same block via local variables without having to update the
register file after each individual instruction.

The interpreter and the block translator apply different levels of specialization to code tem-
plates. The interpreter dynamically generates one Java method for each instruction of the

87

machine code:
addi rl, r0, 15
addi r2, rl, 30

interpreter: block-execution:
tmpl_addi.execute (int[] context) block.execute (
10 = reglcontext[1]]; // prologue: 0 10 = 15; // prologue: imm 15 in 11
11 = context[2]; // prologue: 15 11 = 30; // prologue: imm 30 in 12
12 = 10 + 11; // tmpl_addi // prologue: R1 in 12 (not read)
reg[context [0]] = 12; // epilogue: 1 12 = 10; // rewritten tmpl_addi_0
tmpl_addi.execute (int[] context) 13 = 12 + 11; // rewritten tmpl_addi
10 = reglcontext[1]]; // prologue: 1 reg[l] = 12; // epilogue
11 = context[2]; // prologue: 30 reg[2] = 13; // epilogue
12 = 10 + 11; // tmpl_addi
reg[context [0]] = 12; // epilogue: 2

Figure 5: Comparison of the Java bytecode (shown as pseudocode) executed for two subsequent
PowerPC addi instructions for the interpreter and the block translator.

emulated machine. This method receives context information containing intermediate val-
ues and register index numbers from the decoder, reads the appropriate registers, executes
the code template and then commits changes back to the register file before returning to
the interpreter loop. The basic structure of the interpreter is shown in Figure 4. The in-
terpreter loop reads the next instruction from the program counter location and decodes it
using the decode method, which is shared between interpreter and block translator. The
decode method selects the appropriate code patterns using the emit method. In case of
the interpreter, emit directly executes the requested pattern.

3.2 Block Compilation By Piggybacking On javac

The block compiler, in contrast, uses the code templates to generate specialized code that
reads and writes from the specific registers encoded in the instruction at the current pro-
gram counter location. This allows the block-compiled code to execute much faster be-
cause the context information is directly encoded in the resulting Java bytecode.

The specialization of code templates is done using bytecode rewriting [RW02]. Each code
template expects its arguments in local variables. The block translator assigns unique local
variable numbers to registers and immediate values and ensures through rewriting that
specialized templates access the appropriate registers. The differences in the generated
and executed bytecode for interpreter and block-translator are shown in Figure 5.

Having found a way to derive interpreter and block-compiler from the same specification
we still have to find a way to actually specify the code templates. The most obvious ap-
proach would be to specify Java bytecode instructions for each code template. While this
is trivial for simple instructions such as addi, it gets rather difficult and error-prone for
more complex instructions such as cnt 1 zw (Figure 6). The key insight of our approach
is that we do not need to perform this translation manually, but that we can “piggy-
back” on the existing javac compiler. For this, we use Java methods to code machine
instructions as shown in the lower part of Figure 6. Incoming and outgoing register val-

88

tmpl_cntlzw: 0=D 1=A

0: iload_1
1: istore_2
2: bipush 32
4: istore_3
5: bipush 32
tmpl_addi: 0=D 1=A 2=imm 7: istore_3
0: iload_1 8: goto 18
1: iload_2 11: iload_2
2: iadd 12: iconst_1
3: istore_0 13: iushr

14: istore_2
15: iinc 3, -1
18: iload_2
19: ifne 11
22: iload_3
23: istore_0

public static void public static void
addi (int D, int A, int imm) { cntlzw(int A, int S) {
D =A + imm; int w = S; int a = 32;
} for (a = 32; w !=0; —-—a) w >>>= 1;
A = a;

}

Figure 6: Java bytecode (upper part) and source code templates (lower part) for the addi and
cnltzw instructions. Using javac, these templates are translated to class files, which are parsed
at runtime to extract a code template from each method in the specification class.

ues and immediates are modeled as arguments and will be allocated to local variables by
javac, starting at index 0. Later on, these references are rewritten to access the actual
locations at which register values and immediates are stored in the generated code. The
code rewriting mechanism also handles temporary values (w, a), and remaps branch in-
structions as needed. When the emulator starts, the generated class file is parsed to extract
a code template from each method in the specification class. The parsed templates are then
used for code generation.

It should be noted that we rely on javac to always generate code for writes to argu-
ments, even if they are not used again in the code. The statement D = A + imm in the
addi template, for example, generates an istore_0 instruction (Figure 6). Executing

native code

interpreter loop

s

basic-block based translation

interpreter loop

code hashtable code hashtable

{D v code [vecote

super block }
super-block based translation

Figure 7: Comparison of basic-block-based and superblock-based translation of a loop in native
machine code to Java bytecode.

89

the addi method, the value written to local variable 0 would be dead immediately af-
ter the istore_0 instruction because of Java’s copy semantics for method arguments.
Through bytecode rewriting, however, the i store_0 instruction is remapped to a mean-
ingful local variable index, which is then used in the epilogue to update the content of the
associated register. Future versions of javac might detect and eliminate such redundant
writes, thereby breaking our current code template mechanism. To compensate, we would
need to extend our code rewriting component to use other language constructs such as
getstatic and putstatic as placeholders to access register values and immediates.

3.3 Superblock Translation

Besides interpreting foreign machine code instruction-by-instruction, our system can also
compile entire blocks of machine code into Java bytecode. In its simplest form this is done
at basic block granularity. A hash table is used to map program counter (PC) locations in
the native program to Java methods containing the equivalent “compiled up” bytecode.
Whenever the emulator encounters a PC location for which no compiled Java method ex-
ists yet, it starts compiling a new block from that location until the next branch instruction.
Every time a basic block completes execution, it returns to the interpreter loop and returns
the updated program counter location. The interpreter loop then uses the hash table to
locate the next code block to be executed (Figure 7).

Having to consult a hash table at every basic block boundary is expensive and takes up a
significant fraction of the execution time. Additionally, having to exit and enter translated
code blocks frequently is also costly because the CPU state has to be read into local vari-
ables at method entry and then committed back when exiting. Last but not least, going
through a hash table also inhibits the just-in-time compiler of the host system from per-
forming global optimization of the code. As far as the underlying just-in-time compiler
is concerned, basic blocks are disconnected code fragments and aggressive optimizations
such as loop hoisting or partial redundancy elimination cannot be applied to them. To
overcome these limitations we group “hot” basic blocks and translate them to a single
“superblock”. Ideally, such superblocks are entered and exited infrequently and most ba-
sic block transitions happen inside of the same superblock (Figure 7). If both caller and
callee are located within the same superblock, the cost for the transition is reduced to the
cost of executing a simple Java goto instruction. Even more importantly, by using actual
Java control-flow constructs, loops in the native machine code are translated to loops in the
generated bytecode, enabling the underlying just-in-time compiler to detect and optimize
them.

3.4 Trace-based Block Selection

Our dynamic translator uses a technique similar to Dynamo [BDB99] and records a pro-
gram trace when it detects a loop header. The path between the loop header and the corre-

90

for (int 1 = 0; 1 < 10000000; ++1i) recorded trace:
if ((random() & 1) == 1) loop:
al(); guard(i < 10000000) ;
else guard((random() & 1) == 1);
b(); a(); /x inlined code from a() =*/
++1i;
goto loop;

Figure 8: A simple loop that randomly executes a () or b (). The recorded trace contains only one
of the two possible alternatives, and as a result has to be exited frequently during execution.

sponding backward branch is then translated into a superblock. Since this enables the full
loop to be executed locally within the superblock, performance is increased dramatically
for simple example code.

For real-world code, however, the speedup is much smaller than expected. This is caused
by the inability of our system to “grow” traces once they have been recorded. Dynamo,
in contrast, grows existing traces when a guard condition fails, following the rationale
that all paths leading out of a hot region (loop) are likely to be hot as well. For this,
Dynamo patches the existing trace in place to target the newly recorded trace every time the
associated guard instruction fails. Growing the trace cache in such a manner can deal with
loops that do not consist of a single hot path but which in fact have several loop-internal
hot paths (Figure 8). In contrast to Dynamo, we are emitting traces as Java bytecode and
not as native machine code. We are therefore unable to grow traces by patching them in
situ. Thus, whenever we encounter a non-trivial loop, we are able to execute only one path
through the loop efficiently—all other paths cause the superblock to be exited.

Popularity-based block selection. To deal with the multiple-path problem described
above, we are investigating block selection based on popularity (“hotness”). For this,
the code is executed for a while at the basic-block level and all basic blocks reached are
recorded. When a certain threshold is exceeded, this information is used to select basic
blocks for a superblock.

By no longer recording a single trace, this approach should be able to improve upon the
shortcomings of the trace-based basic-block collector as far as multiple paths are con-
cerned. However, execution of the resulting superblock is likely to be somewhat slower
for the path that was previously recorded as a trace, because direct branches can no longer
be optimized away. With respect to the severe performance penalty associated with the
multiple-path problem, however, this slowdown is probably negligible.

3.5 Emulation Environment

Executing legacy software requires more than emulating a CPU and a main memory. In-
stead, an appropriate legacy execution environment has to be emulated as well. Our pro-
totype system focuses on providing Linux support and provides two emulation modes:
user-space emulation and system-level emulation.

The user-space emulation mode is sufficient for executing most legacy Linux applications.

91

It does so by creating a flat process address space into which the executable is loaded. The
emulation system intercepts Linux system calls and emulates them in the Java context,
i.e., the operating system itself is emulated as well [Fra93]. It is sufficient to support a
small simplified subset of the over 200 system calls implemented by an actual Linux ker-
nel. Complex system calls such as mmap, which changes the process memory mapping,
remain unimplemented and return an error code when invoked, as the standard Linux C li-
brary contains fall-back code that can emulate proper behavior even without such complex
system functions.

The system-level emulation mode emulates the hardware features of a PowerPC architec-
ture to a sufficient degree that a standard Linux kernel can be booted. The Linux kernel
running on top then uses emulated hardware devices for I/O.

Both emulation modes have advantages and disadvantages. The user-space emulation has
a performance benefit. It also integrates much better with the surrounding software envi-
ronment since file I/O is handled by the host system. The system-level emulator, on the
other hand, handles its own file system through emulated block devices. These emulated
block devices become opaque files for the host system. An advantage of the system-level
approach is that it can faithfully replicate the complete original execution environment,
offering a higher degree of backward compatibility for legacy software, but at the expense
of convenience and speed.

4 Related Work

There are three main bodies of related work: code-generator generators and interpreter
generators each are concerned with synthesizing similar components as those generated
by our system. The third area is the co-generation of both code generators (or, more gen-
erally, compilers) and abstract machines. The aspect of executing the generated program
is related to binary translation.

The most prominent example for a code generator generator is Burg [FHP92], extending
earlier work [AGT89, App87]. Just like BEG [ESL89] and Twig [AGT89], Burg works
on tree grammars and generates a tree parser, which in turn make two passes over the
tree for code generation. The main difference between these approaches and our work
is that they strive to select optimal code sequences for nodes in the IR tree. In contrast,
we use bytecode templates that might be globally sub-optimal and rely on the just-in-time
compiler of the underlying virtual machine to optimize the program.

In the area of pure interpreter generators, VMgen [EGKP02] is the only working approach
that we know of. In principle, our system provides a functionality similar to that of VMgen.
However, we automatically generate the description of instructions of the interpreter from
the bytecode files output by javac. The rest of the generated interpreter is static in that
it does not change if the input language changes.

Finally, there has been work in the area of semantics-directed generation of compilers and
abstract machines (e.g. [Die96]). The main concern in this area is to prove correctness
of compilers and abstract machines generated from a description of the semantics of a

92

programming language. In contrast to this, we use a general-purpose high-level language
(Java) to specify the operational semantics of VM instructions. By using javac for the
generation of code templates for both the code generator and the virtual machine, we
implicitly obtain a correctness proof “for free” with respect to the semantics of Java.

With focus on the execution of our generated system, our approach is closely related to
binary translation [Pro01] systems such as VirtualPC [Mic], but in contrast to existing sys-
tems we do not need to implement a specific compiler for each host system. Once we add
the necessary machine description for the guest system, we can emulate that architecture
on any machine capable of running JVM. At the same time we are able to benefit from the
extensive optimizations performed by just-in-time compilers found in modern JVMs.

Like our approach, QEMU [Bel] emulates different CPUs and has support for user level
emulation as well as full system emulation. It uses native code pattern-based dynamic
compilation [PR98], which motivated the bytecode template mechanism we use in VEELS.
QEMU, however, only supports block-based translation and does not attempt to generate
an interpreter from the same pattern-based machine specification.

S Summary and Outlook

We have presented a novel approach to dynamically assemble interpreters and code gen-
erators from a common specification. Our simple yet elegant approach allows to specify a
machine description as a series of Java source code snippets, which in turn are compiled
to Java bytecode and used to generate an interpreter and various code generators. Using
a general-purpose high-level language to specify the operational semantics of virtual ma-
chine instructions gives us maximum flexibility and expressibility for the implementation
of each instruction template, and we can use the standard Java bytecode compiler to turn
the source code snippets into bytecode templates.

Operating on the bytecode-level instead of generating Java source code permits to dy-
namically generate specialized interpreters and code generators at runtime. This allows
to instantiate application-specific interpreters and code generators. In our prototype, we
generate a minimal interpreter that covers only machine instructions that are actually used
by the application. For fairly complex and irregular architectures such as PowerPC, this
results in a substantially smaller and more efficient implementation.

VEELS is an ongoing research effort. Already today, we can provide emulation of older
architectures that should compare well with the peak performance available on the his-
toric hardware. For example, when comparing an emulated PowerPC hosted on a mod-
ern Intel processor with actual PowerPC hardware that is only five years old, the perfor-
mance is similar. Our near-term focus is to improve performance by further developing
the popularity-based superblock translator.

We are also currently exploiting how to apply our approach to Microsoft’s .NET infras-
tructure [MG]. Initial experiments have shown that Microsoft’s C# compiler does not
optimize write operations to local variables either, which will allow us to use the same
template mechanism as we do for the Java Virtual Machine.

93

References

[AGT89]

[App87]

[BBCE02]

[BDB99]

[Bel]

[Die96]

[EC00]

[EGKP02]

[ESL89]

[FHP92]

[Fra93]

MG]

[Mic]

[PRO§]

[Pro01]

[RW02]

94

A. V. Aho, M. Ganapathi, and S. W. K. Tjiang. Code Generation Using Tree Match-
ing and Dynamic Programming. ACM Transactions on Programming Languages and
Systems, 11(4):491-516, October 1989.

A. Appel. Concise Specification of Locally Optimal Code Generators. Technical Report
CS-TR-080-87, Princeton University, 1987.

B. Barth, G. Butler, K. Czarnecki, and U. Eisenecker. Generative Programming. Object-
Oriented Technology: ECOOP 2001 Workshop Reader. Lecture Notes in Computer Sci-
ence, 2323:135-149, 2002.

V. Bala, E. Duesterwald, and S. Banerjia. Transparent Dynamic Optimization: The De-
sign and Implementation of Dynamo. Technical Report HPL-1999-78, Hewlett Packard
Laboratories, June 1999.

F. Bellard. Qemu: Generic and Open Source Processor Emulator. http://fabrice.
bellard. free. fr/gemu. Last visited on 6th Feburary 2007.

S. Diehl. Semantics-directed Generation of Compilers and Abstract Machines. PhD
thesis, Universitit Saarbriicken, 1996.

U. W. Eisenecker and K. Czarnecki. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

M. A. Ertl, D. Gregg, A. Krall, and B. Paysan. Vmgen: A Generator Of Efficient Virtual
Machine Interpreters. Software—Practice and Experience, 32(3):265-294, 2002.

H. Emmelmann, F.-W. Schroer, and L. Landwehr. BEG: A Generator for Efficient Back
Ends. In PLDI ’89: Proceedings of the ACM SIGPLAN 1989 Conference on Program-
ming Language Design and Implementation, pages 227-237, Portland, Oregon, June
1989.

C. W. Fraser, D. R. Hanson, and T. A. Proebsting. Engineering a Simple, Efficient
Code-Generator Generator. ACM Letters on Programming Languages and Systems,
1(3):213-226, September 1992.

M. Franz. Emulating an Operating System on Top of Another. Software—Practice and
Experience, 23(6):677-692, June 1993.

E. Meijer and J. Gough. Technical Overview of the Common Language Run-
time. http://research.microsoft.com/~emeijer/papers/CLR.pdf.
Last visited on 6th February 2007.

Microsoft Corporation. Virtual PC. http://www.microsoft.com/virtualpc.
Last visited on 6th February 2007.

I. Piumarta and F. Riccardi. Optimizing Direct Threaded Code by Selective Inlining.
In PLDI ’98: Proceedings of the ACM SIGPLAN 1998 Conference on Programming
Language Design and Implementation, pages 291-300, Montreal, Quebec, Canada, June
1998.

M. Probst. Fast Machine-Adaptable Dynamic Binary Translation. In Proceedings of the
3rd Workshop on Binay Translation, Barcelona, Spain, September 2001.

A. Rudys and D. S. Wallach. Enforcing Java Run-Time Properties Using Bytecode
Rewriting. In International Symposium on Software Security, Tokyo, Japan, November
2002.

