
Toward the Design of Self–Organizing Dynamics

Jan Sudeikat1,2

1Multimedia Systems Laboratory (MMLab),
Faculty of Engineering and Computer Science,

Hamburg University of Applied Sciences,
Berliner Tor 7, 20099 Hamburg, Germany

sudeikat@informatik.haw-hamburg.de
2Distributed Systems and Information Systems (VSIS),
Computer Science Department, University of Hamburg,

Vogt–Kölln–Str. 30, 22527 Hamburg, Germany
4sudeika@informatik.uni-hamburg.de

Abstract: A growing demand for distributed and decentralized software, together with
an increasing inherent complexity of these systems challenges traditional software en-
gineering practices. Recently, the utilization of self–organizing processes has been
proposed as a way to relieve development efforts. While Agent–Oriented Software
Engineering (AOSE) provides suitable abstractions and implementation frameworks
for these system dynamics, the design of phenomena that rise solely from entity inter-
actions contradicts traditional top–down development strategies. This paper describes
work in progress and outlines a doctoral thesis that addresses the analysis and design of
self–organizing distributed systems in Multi–Agent Systems (MAS), i. e. collections
of autonomous, pro–active entities.

1 Introduction

Today’s application domains are increasingly dynamic and distributed, demanding corre-
sponding software architectures and decentralized coordination mechanisms. These do-
main properties as well as the continuously growing essential complexity of software chal-
lenge software engineering approaches to system analysis, design, and maintenance.

Agent Oriented Software Engineering (AOSE) [HSG05] is a prominent approach to the de-
velopment of complicated distributed software systems. Agents, i. e. autonomous and pro–
active entities are proposed as a basic design and development metaphor. Since highly dy-
namic and distributed application domains lend themselves to be understood as collections
of dependent and collaborating actors, this metaphor provides appropriate abstractions.
Applications result from agent interplay, and system dynamics have been reported to re-
semble Complex Adaptive Systems (CAS) [BY02]. The study of CAS examines collections
of interconnected entities that exhibit globally coherent, adaptive system behaviors, due to
cooperation and competition of individuals. Recognized examples are insect colonies, that
establish shortest trails to resources and sort their nests, due to local agent coordination.

361



These emergent phenomena result from self–organizing processes that establish and main-
tain system configurations solely by distributed entity coordination, i.e. in the absence of
central control units. Deliberate control of theses dynamics – observable in CAS as well
as artificial systems [Mog05] – challenges engineering efforts but promises robust, scal-
able and adaptive computational systems and has therefore been identified as a strategic
challenge to IT research1. The autonomous nature of agents and the complex interactions
between them not only enable the purposeful creation of self–organizing processes, but
can introduce them implicitly, leading to unintended system properties [Mog05].

Awareness is rising that CAS phenomena are inherently possible in MAS and poses the
open challenge for AOSE research to provide means to handle these phenomena in de-
velopment efforts (e. g. see [HSG05] page 4). Current engineering approaches to MAS
can be distinguished between top–down development methodologies and bottom–up, ex-
perimentation–based procedures. The former ones aim at generic agent–based applica-
tions, although they need to support the detection and prevention of possible occurrences
of self–organizing phenomena; while the latter ones intend particularly these phenomena
and would benefit from dedicated modeling techniques, design principles and validation
approaches. The here outlined work examines how both approaches can be combined,
by providing a novel modeling approach, to be supported by tailored analysis and design
processes as well as corresponding tool support.

2 Background and Related Work

Academic and industrial development efforts provide a number of sophisticated agent plat-
forms and agent–based programing languages [BPL06]. Building on these efforts, Agent
Oriented Software Engineering (AOSE) issues gain in importance for MAS research.
Top-down development procedures for MAS are supported by agent–oriented design ap-
proaches that are typically biased in favor of certain agent architectures and organizational
approaches that define organizational structures and interaction networks in terms of roles
and groups. These approaches are opposed by bottom–up emergentist procedures that
particularly focus on self–organizing dynamics.

Designers have specific system–wide, macroscopic properties in mind – derived from sys-
tem requirements – when structuring the future software system. In the case of self–
organizing systems the inherent non–linearity of agent interactions impair straightforward
predictions of system dynamics. Therefore, top–down development methodologies pro-
vide sets of sophisticated design tools, typically ignoring the possibility of self–organizing
dynamics (see e.g. [HSG05]), while emergentist approaches rely on experimentation pro-
cedures, commonly focusing on reconstruction of well–examined phenomena established
by cataloged coordination mechanisms [SGK06]. Therefore, development teams usually
(1) identify a well understood coordination mechanism and (2) map its constituent parts to
the actual application domain. Finally the (3) behavior of prototype implementations is ex-
amined and parameters – controlling agent/environment properties – are adjusted [SR06].

1e. g. by the Feldafinger Kreis: http://www.feldafinger-kreis.de/ergebnisse/spezi inhalt 01.htm

362



3 Toward a Multi–Level Modeling Approach to MAS

Inspired by established multi–level descriptions for CAS behavior analysis, we propose in-
termediate – mesoscopic – description levels to mediate between top–down and bottom–up
development efforts. This modeling notion allows to relate system behaviors to averaged
individual agent behaviors, facilitating bottom–up analysis of implementations [RS06]
and top–down (re-)design via predictive system simulations [SR06]. Macroscopic system
models illustrate possible system configurations. Denoting the space of possible system
states aids to draw a distinction between desired structures and/or emergents from unin-
tended ones, facilitating developers to identify the intended transitions between them that
should be enforced by the self–organizing dynamics [SR06]. Microscopic modeling levels
guide agent implementation, following specific agent architectures.

Transitions between macroscopic configurations can be explained by mesoscopic models
which introduce intermediate artifacts, abstracting from microscopic agent behaviors (cf.
figure 1) [RS06]. Abstraction is done by averaging out multiple microscopic agent behav-
iors and replacing them by a few abstract states. Appropriate abstraction is a considerable
modeling effort, which requires classifying agent states according to their contribution to
the macroscopic dynamics. It has been found that these models are useful to mathemat-
ically describeing these processes that result from distributed coordination mechanisms
in MAS [RS06]. The introduced mesoscopic states resemble roles which agents play in
respect of the exhibited macroscopic system dynamics.

Current work addresses support for the application development life-cycle – from require-
ments analysis via MAS design and predictive simulations to system validation – of self–
organizing MAS via mesoscopic modeling. Open issues concern how intended system
behaviors can be analyzed and transferred to appropriate system abstractions that guide
MAS implementation. As the model driven development of applications via mesoscopic
models is currently impaired by the diversity of applied coordination mechanisms and cor-
responding agent platforms, an appropriate reference agent model is under development.
Mesoscopic modeling will be facilitated by a distributed analysis/testbed infrastructure, al-
lowing time series examination and their (semi-)automated comparison to expected system
behaviors, transferring MAS simulation to behavior space testing.

Circumstances and Procedure

Careful supervision by Prof. Dr. Renz at HAW Hamburg initiated research how theories
of complex system dynamics effect software engineering for self–organizing systems. Re-
search is based on an inspiring cooperation with Prof. Dr. Lamersdorf from Hamburg
University, combining theory and engineering practices. After post graduate studies in
theoretical computer science the PhD proposal has been accepted in summer 2006 and the
completion of the thesis is scheduled for three subsequent years, where the above discussed
challenges are to be addressed in an iterative process. In three distinct steps the necessary
analysis support and modeling notions will be revised, alternated by the treatment (mod-
eling, implementation and evaluation) of appropriate cases studies. The resulting insights
will trigger incremental development of appropriate testbed and validation facilities.

363



Microscopic MAS Model

Mesoscopic MAS Model

Modeling Effort

Macroscopic System Model Macroscopic
System
Behavior

Microscopic
Agent
Behavior

represents

built-in

Self-Organization

Self-Organization
/ Emergence

Modeling
Effort

explains

average /
coarse-grain

: MAS Model : Agent Impl.: Agent Model : Mesosc. Model

Figure 1: The relation between agent implementation behaviors (right) and modeling (left). Meso-
scopic models average out agent behaviors and explain macroscopic structures [SR06].

4 Conclusions

In this paper, the challenges to the development of self–organizing dynamics in software
have been outlined. To support engineering efforts, a novel multi–level modeling approach
has been presented, facilitating system analysis and redesign. Future work will address
three areas of examination: First, theoretical issues concern the utilization of formal tools
to express and examine mesoscopic models; Secondly, Software–Engineering issues arise,
demanding an examination of how this modeling notion can be embedded in current AOSE
best practices; Finally, practical issues concern suitable MAS analysis tool support.

References

[BPL06] Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf. Tools and Standards. In
Multiagent Engineering - Theory and Applications in Enterprises, Springer Series: Inter-
national Handbooks on Information Systems, 3 2006.

[BY02] Y. Bar-Yam. General Features of Complex Systems. In Encyclopedia of Life Support
Systems (EOLSS), Oxford ,UK, 2002. EOLSS Publishers.

[HSG05] Brian Henderson-Sellers and Paolo Giorgini, editors. Agent-oriented Methodologies. Idea
Group Publishing, 2005. ISBN: 1591405815.

[Mog05] Jeffrey C. Mogul. Emergent (Mis)behavior vs. Complex Software Systems. Technical
Report HPL-2006-2, HP Laboratories Palo Alto, 2005.

[RS06] Wolfgang Renz and Jan Sudeikat. Emergent Roles in Multi Agent Systems - A Case
Study in Minority Games. KI - Zeitschrift fuer Kuenstliche Intelligenz, 2006.

[SGK06] G. D. M. Serugendo, M. P. Gleizes, and A. Karageorgos. Self–Organisation and Emer-
gence in MAS: An Overview. In Informatica, volume 30, pages 45–54, 2006.

[SR06] Jan Sudeikat and Wolfgang Renz. On the Redesign of Self–Organizing Multi–Agent
Systems. International Transactions on Systems Science and Applications, 2(1):81–89,
2006.

364




