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Abstract: Current compilers for aspect-oriented programs are rather costly in terms
of memory and time consumed at compile-time. This is because member accesses that
are advised by aspects, generally, occur several times in the program code. These sites
are in complex methods whose control flows must be updated when weaving advice.
In this paper we present a new weaving technique that introduces indirections into the
program code which makes weaving advice easier. We will show that the time and
memory consumption at compile-time benefits from this approach and still the loss of
runtime-performance is acceptable as the introduced indirections are optimized away
by the execution environment.

1 Introduction

Aspect-oriented programming (AOP) [K™] is a paradigm for modularizing crosscutting
concerns. The most prominent kind of AOP languages [Ker] are Aspect]-like languages
[Aspa]. The fundamental concepts of the Aspect] flavor of AOP are join points, pointcuts
and advice. A pointcut is a query that quantifies over join points, which are points in the
execution of the program. Thereby a set of related join points is defined. Pointcuts are
composed of primitive queries which are called pointcut designators (PCDs). Advice are
pieces of functionality that can be attached to pointcuts, taking semantic effect when the
respective pointcuts “match”, i. e., when join points referred to by the pointcut are reached.
Examples of join points in Aspect]’s model are method/constructor executions/calls, field
accesses, initializations etc.

Join point shadows (JPS) map dynamic join points to their corresponding static code struc-
tures (expression, statement or block in the Aspect] language) that might yield dynamic
join points during execution [MKC]. The shadows of join points matched by pointcuts are
calculated given a pointcut and the kind of advice, i.e., before or after.

In current compiler technology for AspectJ-like languages, JPSs play a twofold role: (a)
tools like the Aspect] Development Tools Eclipse plugin [CCHWO05] use them to make
the crosscutting structure explicit in the code, and (b) the weaver uses them as the points
at which it weaves code for dispatching to advice. We argue that using join point shadows
as weaving locations has some problems w.r.t. the compilation efficiency. Shadows for
pointcuts that match field access and method and/or constructor call join points can in



general be spread all over the program; even worse, they may appear several times. Hence,
the same weaving action must be executed repeatedly at each of these.

For illustration, consider the pseudo-code in Listing 1, consisting of two classes A and B
and the aspect Log. The latter executes advice at any point during the execution, when
fields of the class A are accessed'. The shadows of Log’s pointcut are marked by an
asterisk (#) in Listing 1.

1| class A { 7 Lo (#) a.x..
2 int x; } 8 }
3 void p() { .. (#) a.x .. } }
| class B { 10
void o() { 11| aspect Log {
if (...) .. (#) a.x..; 2| before(): get(» A.*) {..} }

Listing 1: Weaving locations with current compilation techniques.

As performance evaluations indicate, this causes significant overhead. The reason for
which is the complexity of a weaving action. First, when weaving advice dispatch code at a
join point shadow, care must be taken of the control flow of the method whose instructions
are affected. At bytecode level, control flow is realized by jump instructions with relative
offsets, which must be updated to skip the additional instructions that comprise the advice
dispatch logic. There are other constructs in Java bytecode [LY99] such as exception tables
or debug information that also must be kept up-to-date.

Second, in order to cope with the complexity of the bytecode instrumentation, bytecode
toolkits that abstract from details of the Java bytecode and collections of meta-data are gen-
erally used. The Aspect] compiler uses the BCEL bytecode manipulation toolkit [BCE];
the AspectBench Compiler (abc) [AT05] employs Soot [Soo]. The use of bytecode toolk-
its and collections of meta-data, however, increases the compilation time and the memory
usage significantly.

Decreasing the compile-time of Aspect] programs is a relevant issue. As reported in [HH],
the time needed by the Aspect] compiler increases considerably, compared to the time
needed by a conventinal compiler even to compile programs without aspects. Poor compile
time performance impacts the efficiency of the development process since it slows down
the “compile-test-debug” cycle. Furthermore, efficient compilation techniques are crucial
for systems that support runtime weaving [PRO, Ste, Aspb].

In this paper, we introduce a new technique for weaving Aspect]-like aspects which de-
creases both the number of places where advice dispatch logic must be woven in and the
complexity of a weaving action. We present the concept behind the approach and issues
to be considered, discuss the current implementation, its limitations and ways to address
them. We evaluate the approach and show that it indeed speeds up compilation.

The remainder of this paper is organized as follows. Sec. 2 introduces the concept of
our approach. Sec. 3 presents the implementation details. Sec.4 discusses other weaving
approaches, against which the approach proposed here is compared by means of empirical

11t could have been defined to match calls to methods of 2, as well. The discussion is not affected.



evaluation in Sec.5. Sec.6 summarizes the paper as well as outlines open issues and
possible solutions to them.

2 Envelope-Based Weaving in a Nutshell

To decrease the number of weaving locations and, hence, the amount of weaving required,
we introduce accessors (getters and setters) for fields and proxies for methods. We will
use the term envelope methods (envelope for short) to uniformly refer to accessors and
proxies. Envelope methods are generated for any method and field in the declaring class.
Envelopes simply call the original method, respectively perform the original field access,
and then return. Furthermore, method call/field access sites in the program are transformed
such that instead of directly calling a method or accessing a field, they call the respective
envelope methods.

For illustrating the transformation process, Listing 2 shows a transformed version of the
code in Listing 1. Consider the class A in Listing 2 and compare it to its counterpart in
Listing 1. The version of A in Listing 2 has two new accessors for x, getX and setX.
Also, the code of B has been transformed to replace any direct access to x by a call to the
respective envelope. For reasons of brevity and simplicity, no envelopes for the method
B.o() and B.p () are shown in Listing 2.

1|eclass A { 8 if(..) ..a.getX()..;
2 int x; 9 L.a.getX() ..
int getX() { (#) return x; } 10 }
void setX (int value) {x = value;}} 11 void p() { ..a.getX().. } }
s|class B { 13| aspect Log {
7 void o () { 14 before() : get(x A.x) {..} }

Listing 2: Weaving locations in the envelope-based weaving style.

The effect of the code generation and transformation just explained is threefold. First, it
simplifies the search for weaving locations. Method call/execution and field access join
points can only occur within envelopes, i.e., envelopes are the only weaving locations and
the search for weaving locations can be directly targeted to them. Furthermore, the number
of envelopes per member is limited: There is only one envelope per field and kind of
access; the number of envelopes per method is equal to the number of overridden versions
of the method.

For example, there is exactly one weaving location (#) for the pointcut in Listing 2. It is
located in the respective getter in the class declaring the field. A conventional weaver must
consider every get bytecode instruction as a potential weaving location. In our particular
example, weaving location search could be even further optimized: only accesses to fields
of class A are selected by the pointcut, so only envelopes within A are relevant to the
search; a similar restriction of the search area is not possible with a conventional weaver.

Second, and more importantly, with the envelope-based weaving the number of advice
weaving actions is reduced. Advice is woven only once per affected field. In the example,



only one member matches the pattern in the pointcut; there is only one weaving location,
i.e., the weaving process has to be performed only once, rather than three times as with
conventional weaving. As far as method calls are concerned, the hypothesis underlying
our approach is that, in general, there are much more call sites than declarations of meth-
ods. An analysis of the SpecJVMO98 [SPE] benchmark, a representative set of client appli-
cations, showed that the hypothesis is correct: For the complete benchmark suite, there are
about three times as many calls to application methods than declared application methods.
In cases when there are less call sites for a method than polymorphic implementations of
the method, our approach has to weave in more places than Aspect]. But, as explained,
this is not common place.

Finally, the most important effect of introducing envelopes is that the weaving process it-
self becomes extremely simple. Envelope methods have a very primitive sequential struc-
ture free of control statements (e. g., 1 £ or while), exception handlers, or debugging in-
formation. This means that all precautions with regard to maintaining the control structure
of methods affected by weaving can be dropped. Weaving becomes simple enough to be
performed by modifying the Java bytecode directly; no tools for complex bytecode ma-
nipulation and less meta-data are needed.

There are some issues with our weaving approach, that ought to be addressed. First, en-
velopes add an indirection, affecting the runtime behavior of the compiled program. How-
ever, due to modern just-in-time (JIT) compiling virtual machines [Jik,Hot], the introduced
indirection only has small impact on the runtime performance, as our evaluation will also
confirm. A JVM using a JIT compiler compiles Java bytecode to machine code and na-
tively executes the machine code. At this step, several optimizations are applied to gener-
ate high-performance machine code, one of which is inlining [B*99]. The JIT compiler
may decide to inline a method instead of calling it via a dispatch table when the call at hand
is non-polymorphic. Small methods are more likely to be inlined because the ratio of addi-
tional time for the JIT compilation and the time saved by cheaper dispatch is better than for
larger methods. Our envelope generation makes use of this knowledge: the generated code
embodies hints for the JIT enabling the latter to optimize away the introduced indirections.

The above said, we would like to add the following remark. As far as systems with static
weaving are concerned, we view our approach as complementary to conventional weav-
ing techniques. We envisage it to be used for compiling the program at development
time when a fast “compile-test-debug” cycle is important; compiler techniques that aim at
runtime-optimal code can than be used for production builds. We also see our approach as
a promising technique for aspect-oriented environments with runtime weaving. In those
systems, poor compile-time is also poor runtime, because deploying an aspect imposes a
delay on the running application.

Another issue with our approach is that envelopes operate on the callee site and, hence,
do not have direct access to the caller object. To support the this pointcut designator of
Aspect], we provide an extension to standard Java 5 Virtual Machines that makes this kind
of context accessible again. The extension is implemented by means of the Java Native
Interface (JNI) [JNI] and the JVM Tools Interface JVMTI) [JVM]. As we will see in
section 5 the runtime penalty imposed by the extension is negligible.



Finally, unlike conventional weaving approaches, envelope-based weaving distinguishes
between weaving locations and join point shadows. Our weaving locations do not directly
correspod to the crosscutting structure expressed by the pointcut and can not be used to
display feedback to the programmer in an integrated development environment. We will
discuss in section 6 how this feedback can still be provided by our approach without sig-
nificantly slowing down performance.

3 Implementation Issues

In this section we present the technical details of the approach. We start by short presenta-
tions of the programming model and of background information on the Java classfile for-
mat.

3.1 Programming Model

We have implemented the envelope-based weaving approach for a subset of Aspect]’s
pointcut designators?, namely call, get, and set and the dynamic PCDs this and
target. As we will discuss, the approach applies to other kinds of join points, as well. In
the current version, we only support before and after advice but no around advice
which we will address in future work.

Since our focus is on the weaving technique, we do not provide a dedicated source-code
compiler for aspects. Rather, advice functionality must be implemented as normal virtual
methods in standard Java classes, which are compiled by a Java source-code compiler.
The class must have a public static method aspectOf (), which returns an instance of
the class®. An aspect is specified in a file as a list of pointcut-and-advice definitions in the
following format:

before (<parameters>) | after (<parameters>)

<pointcut>
<aspect class>.<advice method>;

Up to the second colon, this is the same syntax as for pointcut-and-advice in Aspect].
<parameters> specifies that values from the context of a join point are passed to the
advice*. The following example shows how to define a before advice for all calls to public
methods. The advice functionality is defined in the method callAdvice () in the class
MethodInvocationAspect.

before() : call(public * *.x(..)) : MethodInvocationAspect.callAdvice;

2The implementation can be downloaded at [Env].
3This is in the vein of how the Aspect] compiler generates Java bytecode.
4The advice method’s signature must declare the same parameter list.



3.2 The Java Class File Format

Since we directly modify Java bytecode class files [LY99], a short explanation of their ele-
ments that are affected by the implementation is in place here. A class file consists of sev-
eral sections, of which only the following are relevant for our discussion: type informa-
tion, constant pool, fields, and methods. The constant pool contains, among other values,
the fully qualified names of classes and members that are referenced from the class’ code.

A method declaration consists of constant pool references that resolve to the method’s
name and signature (the list of the method’s parameters and the return type) and the access
flags. Access flags reflect the modifiers that are declared for the method in the source code.
Methods that are neither native nor abstract, have a Code attribute’ that stores the method
body. Apart from the instructions, the Code attribute contains several values that must
be considered. Besides the code length value which must always contain the correct
size, the values max stack and max locals must be taken care of. They specify
the maximum depth of the operand stack and the number of words needed to store local
variables.

3.3 Introducing Envelopes

Envelopes are generated in the same class in which the enveloped member is defined and
have the same visibility as their enveloped members.

Method envelopes. Any method to be enveloped is made private and its signature is
changed by adding an additional parameter, the type of which serves the purpose of giving
the method to envelope a new identity. We basically create a new overloaded method this

way?®.

The generated envelope gets the name and the signature of the original method. The body
of the generated envelope method performs three tasks: (1) push the arguments for the
actual method call onto the operand stack, (2) call the original implementation, (3) return
to the caller. The arguments to be passed to the original method are those passed to the
envelope method. As the signature of the original method was extended by one object, the
envelope additionally passes the constant nul1l to the enveloped method.

The call from the envelope to the enveloped method is dispatched statically because the
enveloped method is made private. This gives the JIT compiler a hint that the called
method can be inlined, which basically optimizes away the envelope.

Since envelope methods get the name of the original method, call sites do not need to be
modified.

3Other attributes are irrelevant for our discussion; they are neither read nor modified by our implementation.
OWe change the method’s identity by changing its signature rather than its name, because renaming would
violate some presumptions made by the bytecode verifier.



Field envelopes. The naming scheme for field envelopes encodes the name of the declar-
ing class, the field name, and the kind of access. The inclusion of the class name ensures
that no envelope method with the same name is accidentally inherited from a superclass.
Field envelopes cannot be inherited because they are generated with the modifier final.

The body of a field envelope method has a similar form as a method envelope’s body. First
the context for the field access is established. This is composed of the object whose field
is to be accessed (this in the context of the envelope) and, in the case of a field-write
access, the field’s new value. Next, there are an instruction for direct field access and an
appropriate returning instruction.

To replace direct field accesses with calls to respective field envelopes, the code of all
methods that access fields is modified. All instructions for direct field access are replaced
by instructions calling the respective generated envelope methods. The name of the enve-
lope method to use for the call is derived from the field reference and the kind of access.
The instructions for direct field access can simply be overwritten with the instructions that
call the envelope methods because they occupy the same number of bytes.

Envelope methods for fields are quasi-statically dispatched as they have no super imple-
mentation and are final. Even though they are invoked like virtual methods, they behave
as if they were being statically dispatched and the JIT compiler can recognize and exploit
this fact to generate efficient machine code.

Special cases, for which no envelopes are generated. In two cases no envelopes are
generated. First, for fields defined in interfaces; defining non-abstract methods in inter-
faces is not possible’. A workaround is to generate a dedicated class containing envelopes
for interface fields. Second, no envelopes are generated for native methods because this
would require that the signature of the native implementation is changed®.

3.4 Weaving in the envelopes

Weaving advice associated with static pointcuts (call, get, or set) is simple. En-
velopes always have the same structure (schematically shown by the graphic on the left-
hand side of Fig. 1) and there is exactly one location within their code where to insert the
generated advice dispatch logic. Depending on the kind of advice, this is either right be-
fore the first instruction of the envelope or right after the instruction in the middle of the
envelope, where the enveloped member is accessed. To facilitate weaving, auxiliary data
structures are generated during the transformation phase. A byte array that holds the byte-
code for envelopes is stored for each possible join point; the index of the instruction where
the enveloped member is accessed is also marked, so that the position can be accessed di-
rectly if needed to weave an after advice.

7 A field access is replaced by a call to the respective envelope, only if the field is not defined in an interface.
8The native implementation is looked up using a naming scheme. For the native overloaded method void
m(int) inclass pckge.A, there must be a function named Java_-pckge_A_m__TI in a native library [JNI].
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Figure 1: How blocks of advice dispatch code are woven.

The advice dispatch block is also simple. For any pointcut-advice before () / af-
ter () <pointcut> SomeAspect .someAdvice, the code to weave in
corresponds to the source code SomeAspect .aspectOf () .someAdvice (). Point-
cuts can also extract values from the context of matched join points to be passed to advice.
In this case, additional instructions are generated within the advice dispatch logic that pass
the respective values to the invoked advice method.

Weaving for dynamic pointcut designators (cflow, this, target, within) is
slightly more complicated. In their presence advice is only possibly executed at a weaving
location. Conditional logic (called residue in [HH]) must precede the advice invocation in
the advice dispatch logic, together with a branch instruction that skips the advice invoca-
tion, if the check fails. The relative offset of the branch instruction is fix: the length of the
following instructions for the advice dispatch. That is, a block of instructions to weave for
a matching pointcut-advice contains only jump instructions targeted just behind the block,
if any. Consequently, each such block can be handled separately and inserting one of them
does not require to update others already inserted, as schematically shown in Fig. 1.

For the dynamic PCDs, cflow, within, and this, the dynamic context to be checked
is not directly accessible in our weaving approach. within and this refer to context that
can be resolved statically with Aspect]’s weaving style. This is not true for our approach,
since the advice dispatch is woven in callee’s rather than in caller’s context. We resolve
the context exposed by these PCDs dynamically. When the JPS is executed in an envelope,
both PCDs refers to the method on the call stack just below the envelope. This context
is provided in our approach by means of a static native method that uses the JVM Tools
Interface (JVMTI). Right now, we do not support cf1ow; we plan to implement it in a
similar way as the Aspect] compiler [HH].

After weaving the dispatch logic for all applicable pointcut-advice, an envelope’s code
length, its number of local variables, and the maximum depth of the operand stack are

10



adjusted. As shown in Fig. 1°, each block of advice dispatch (with or without residues) is
be regarded separately; the calculated values are aggregated. No complex analysis of the
envelope method after weaving is necessary.

3.5 Weaving Location Search

Since join points only occur in our envelope methods, we can employ a different matching
strategy than the Aspect] compiler. There, every possible weaving location is matched
against the declared pointcuts [HH]. In contrast, we match the pointcuts only against all
envelopes. In addition, the envelopes are contained in a hierarchical structure reflecting the
application’s class hierarchy. For pointcuts containing type restrictions, such as call (*
ClassType.* (..)), this allows us to rule out a large number of weaving locations
very fast, since envelopes not contained in ClassType do not have to be investigated.

3.6 Dynamic weaving

We have implemented a prototype for a dynamic weaving environment using our envelope-
based weaving. This prototype is realized as a Java Agent using standard Java 5 features.
The agent is called-back from the JVM to transform a Java class file just before the class
is defined by the JVM. This is when the envelopes are introduced; the same representation
of the transformed class file as presented in Sec. 3.4 is kept in memory. When an aspect
is deployed, weaving location search and weaving is performed as described in Sec. 3.5,
respectively 3.4. Classes that contain envelopes which have been modified in the weaving
step are redefined using the HotSwap [DmiO1] technology.

4 Related Work

In this section, we discuss related work against which we will evaluate envelope-based
weaving in the following section.

4.1 Aspect Compilers

There are two compilers publicly available for Aspect]-like AOP languages: the a jc com-
piler included in the Aspect] distribution [Aspa], and the AspectBench Compiler [AT05]
(abc for short).

9The precedence of different advice that affect the same weaving location has not yet been addressed and is
arbitrary in the current implementation.
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The Aspect] compiler employs some optimizations targeted at reducing the compilation
time [HH]. Nevertheless, even in the absence of aspects, the compilation with a jc, ver-
sion 1.1, is about 62 % slower than with javac, version 1.4. This is because the weaver
scans all binaries produced by the source code compiler for weaving instructions.

The focus of abc is on extensibility. It is designed to facilitate easy implementation of
new language features and optimizations [A*05]. The customization power is derived
from Polyglot [Pol], a compiler framework, and Soot [Soo] on which abc is built. In some
cases, abc generates code that exhibits better run-time performance as compared to ajc
[ATb]. However, at the cost of a compilation time that is slower than with ajc [ATa].
For this reason, we will not further consider abc in the evaluation section.

4.2 Runtime Weaving

In the following, we discuss three AOP implementations for Java offering runtime weaving
with regard to how they weave aspect functionality into base application code. Each of
them represents a specific approach to runtime weaving.

AspectWerkz 2.0 [Aspb] transforms possible join point shadows through a compiler or
at load-time. Advice invocations are either woven in during the transformation step or the
shadows are merely prepared for later attachment of advice. Several other AOP imple-
mentations with runtime weaving follow basically the same approach, like JAC [PSDF]
and JBoss AOP [JBo].

At first sight, AspectWerkz’s weaving bears some similarity with our approach. In both
cases generated methods are invoked at join point shadows. However, unlike our approach,
AspectWerkz does not aim at reducing the number of weaving locations. The purpose of
generated methods rather is to facilitate late introduction of advice. Wrappers are gener-
ated on the caller site: One wrapper per affected member and per method in which the
access occurs. Similar to conventional weaving with ajc, the same weaving action must
be executed multiple times. Also, unlike our approach, values from the original join point
shadow context are passed to the invoked generated method, which requires costly modi-
fications of the method containing the join point shadow.

Steamloom [BHMO, H™, Ste] provides support for aspect-oriented mechanisms at the
execution layer. It is implemented as an extension to IBM’s Jikes Research Virtual Ma-
chine (RVM) [Jik]. In Steamloom, weaving location retrieval and weaving are entirely
done at runtime. When aspects are woven into a running application, advice method invo-
cations are inserted at all corresponding weaving locations, and the affected methods are
recompiled with the JIT compiler.

Woven code is minimal in Steamloom. Only instructions necessary to prepare and exe-
cute advice invocations are woven in at weaving locations which are the same as join point
shadows, similar ajc. Therefore, unlike in the approach presented here, no indirections
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are introduced. The overhead induced by recompiling methods is comparable to the over-
head of redefining classes through HotSwap. Nevertheless, Steamloom performs more ex-
pensive queries on the application’s bytecode than our envelope-based weaving approach,
when evaluating pointcuts. Its weaving approach is basically that of the Aspect] compiler,
except that it is performed at the VM level.

PROSE [PGA, PAG, PRO], the third approach we take into account, exists in two ver-
sions. The one we consider here (called PROSE 1) relies on a standard JVM’s debugger
interface and is unique in that it does not instrument an application’s code at all. Upon
weaving an aspect into a running application, PROSE 1 registers breakpoints at the JSPs of
the aspect. To that end, a certain amount of querying the loaded classes’ bytecodes is nec-
essary. Once a breakpoint is registered and reached, execution branches to the PROSE in-
frastructure, which looks up the appropriate advice functionality and invokes it. In PROSE
1, no methods have ever to be recompiled, which is an advantage over the other discussed
approaches, and over our envelope-based weaving implementation. The downside of its
approach is twofold. First, it needs time to query the application bytecodes to identify
breakpoints. Second, context switches at debugger breakpoints are very expensive.

The second version of PROSE basically pursues the same strategy for deploying aspects.
However, it does not rely on the JVM’s debugger interface but provides similar features
by means of an extension of the Jikes RVM.

5 Evaluation

In this section, we compare envelope-based weaving with Aspect] 1.2.1 [Aspa], AspectWerkz
2.0 [Aspb], PROSE 1.2.1 [PRO], and Steamloom 0.5 [Ste]. First, our comparison involves
compilation performance: (a) Aspect weaving time in the context of both static compila-
tion and (b) dynamic weaving, and (c) memory consumption are measured. Second, we
consider the runtime impact of aspect oriented execution environments in terms of (d) the
the overall performance of applications and (e) the performance of single join points in
absence and presence of advice.

All measurements were performed on a Dual Xeon workstation (3 GHz per CPU) running
Linux 2.4.27 with 2 GB memory. Aspect] and AspectWerkz were run on the Sun HotSpot
JVM, version 1.5.0_01, and PROSE was run on version 1.4.2_08 of that VM (newer VMs
do not support PROSE).

5.1 Weaving Performance and Memory Consumption

Static weaving performance is measured by compiling the Xalan-J XSLT parser [Xal]
which consists of nearly 1200 classes. We have used different compilation scenarios:
without any aspect (none), with an aspect advising calls of a specified method (call-one),
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Figure 2: Compilation overheads for different compilation scenarios.

and with an aspect advising all calls'® to public methods declared in classes in the Xalan
packages (call-all). The advice simply increases a counter. In Aspect], advice can be
woven at method call sites or execution sites'!. In the latter case the number of weaving
actions is reduced, as it is in our approach. For this reason, we also mesaured ajc’s
overhead when one specific execution site (exec-one), and executions sites of all public
methods in Xalan packages (exec-all) are advised. For performance reference values, we
have compiled Xalan with the Java compiler from the Eclipse JDT, version 0.452_R30x,
which takes 6.4 seconds. The overheads in compilation time that a jc and our compiler
yield when compiling Xalan for the various configurations are displayed in Fig.2. For
ajc, we only give the overall overhead; for our own compiler, we also provide details on
how the overall compilation overhead is composed.

Like a jc, the overhead of our tool increases with the number of affected weavinig loca-
tions. However, for our tool the increase rate is considerably smaller. The overhead ranges
from 34% in the simplest case to 36% in the most complex case. For Aspect] the overhead
ranges from 64% to 289%.

Dynamic weaving performance was measured for AspectWerkz, PROSE and our pro-
totype described in Sec. 3.6 using envelope-based weaving. We have used the RayTracer
benchmark from the JavaGrande benchmark collection [Javb]. The application, consisting
of 11 classes, was decorated with an aspect that advises all calls to public methods declared
in the raytracer package with a simple counter-incrementing advice. For these mea-
surements, we distinguish the time needed to prepare the application classes from the time
for actually deploying an aspect at runtime. PROSE does not conduct preparation. Prepa-
ration takes 376 ms in AspectWerkz and only 66 ms in our prototype. Deployment takes

10 Advising accesses to all fields declared in any Xalan class yields comparable results.
""The same is not possible for field accesses.
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an additional 424 ms in AspectWerkz and 101 ms in our prototype; PROSE takes 677 ms.
Again, avoiding expensive lookup operations in envelope-based weaving is beneficial.

When comparing memory consumption, our approach again benefits from the avoid-
ance of memory-intensive data structures as Aspect) needs them during weaving. When
executing scenario (call-all), a jc needs 121 MB of memory, while our approach only con-
sumes 67 MB.

5.2 Runtime Overhead

To measure the impact of the vari-

ous AOP environments on the run- _ Z -

time performance of applications g _ ] -

that are not decorated with as- &

pects, we have used the SPECjvm98 E 4 9 > =

benchmarks [SPE]. They were run & 3 212 o2& =
unmodified on the HotSpot 142 5 2 = a g g g %
client VM and on both the clientand < | Z =38
server versions of HotSpot 1.5.0. 0

Moreover, they were run in the HotSpot client 1.4 HotSpot server 1.5
AspectWerkz and PROSE environ- HotSpot client 1.5

ments (on HotSpot 1.5.0 and 1.4.2,
respectively), and after introducing
envelopes as described in Sec. 3.3 (on both HotSpot 1.5.0 VMs). Results from computing
the average time spent to run the benchmarks are shown in Fig. 3.

Figure 3: SPECjvm98 results.

The results indicate that envelope-based weaving and the Java Agent mentioned in Sec. 3.4
impose an overhead of 7.7 % on a running application. The overhead is however reduced
to 5.2 % when an application subject to envelope-based weaving is run on the HotSpot
server VM, which performs immediate JIT compilation and more aggressive inlining.

We also measured the overhead imposed simply by the presence of our Java Agent by
executing the SPECjvm98 benchmarks with and without the Agent on the HotSpot 1.5.0
JVM. In average the execution was slowed down by 1.6% when run in server mode and
not at all when run in client mode.

Join points’ runtime performance. Finally, we were interested in the cost of attaching
advice to join points. To determine this cost, we have used a suite of micro-measurements
[HM] that measures the number of operations of a certain kind that a given environment
can perform per second. We have applied these measurements to method calls'?, both
without advice and with a (counter-incrementing) before advice attached. For these mea-

12We also measured field get operations. The results were similar to method calls. This is why we do not
present them here.
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Aspect] | AspectWerkz Prose | Steamloom | Our Tool

call without advice || 2.71-10% 2.69-10% | 2.51-10°% 1.86-10% | 2.68-10°
call with advide 2.87-10% 3.04-10% | 2.87-10° 9.40-107 | 2.67-10%

Table 1: Micro-measurement results.

surements, we have taken into account all environments listed at the beginning of this sec-
tion. All systems do not suffer significantly from advising method calls, except PROSE,
whose performance drop is due to the expensive context switches at debugger breakpoints
(cf. Sec.4.2).

6 Summary and Future Work

The presented weaving technique requires less time and less memory than conventional
compilers for Aspect]-like languages. At the same time, the imposed runtime overhead
is acceptable. As a result, this technique can be used at development time to speed up
the “compile-test-debug” cycles. We have also shown that our approach can efficiently be
used in runtime-weaving environments.

Our current implementation does not support the full Aspect] language. Only the pointcut
designators call, get, set, this, target,and within are implemented. Also, only
before and after advice is supported. Other pointcut designators, e.g., handler,
and around advice can be realized similarly and will be supported in future versions of
our tool. We are also working on a version with static resolution for the within pointcut
designator.

Our current implementation does not “remembers” the actual positions of join point shad-
ows in the source code. However, knowledge about actual join point shadows is needed
by tools like Eclipse’s Aspect] Development Tools (AJDT) [AJD] to present the crosscut-
ting structure to the programmer in special views. Initial experiments, however, show that
the join point shadow search can be executed efficiently during the transformation phase
of our approach. During this phase, all potential join point shadows of field accesses are
already visited. In the same way, it is possible to visit all potential join point shadows of
method calls and match all shadows against the declared pointcuts. We prototypically ex-
tended our tool with such a join point shadow search and measured the comile time for the
scenarios presented in 5.1. In the worst case this extension slows our tool down by 10.3%.
What is missing is the construction of an appropriate structure for the IDE to display'>.
As aresult, a combined tool that uses envelope-based weaving and conventional style join
point shadow search will provide best performance.

In the current implementation of envelope-based weaving we introduce envelopes for all
members and not just for those that are affected by a pointcut-and-advice. In future re-
leases we will include this optimization which will reduce the runtime overhead. E.g.,
when no aspects are present in a program, the code will not be transformed at all.

13Such a structure can be generated by a jc. However, during our measurements this feature was deactivated.
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As described in Sections 1 and 3.3, our weaving approach relies on the JIT compiler to
optimize away the introduced indirections by inlining. In the context of runtime weaving,
the same optimization might become problematic, as deploying an aspect not only entails
recompilation of the affected envelopes but of all methods where envelopes are inlined.
Also the methods where envelopes are inlined have to be remembered to be able to recom-
pile them. We will investigate the possibilities of dedicated virtual machine level support
and techniques like guarded inlining [DA99]. Initial experiments with the Jikes Research
Virtual Machine [Jik] indicate that runtime performance can be improved this way.

The introduction of our envelopes adds methods to each class which changes the class’
meta-data that is visible to the application via Java’s Reflection API [Java]. It is also pos-
sible that the programmer accesses fields via the Reflection API, circumventing our acces-
sor methods. Again, by implementing VM-level support, the behavior of the Reflection
API could be changed to be compatible with the envelope approach. Similarly, the way
native methods are treated can be modified to allow introduction of proxies for them.
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