
Generic Environment for Full Automation of Benchmarking

Tomáš Kalibera1, Lubomír Bulej1,2, Petr Tůma1

1Distributed Systems Research Group, Department of Software Engineering

Faculty of Mathematics and Physics, Charles University

Malostranské nám. 25, 118 00 Prague, Czech Republic

phone +420-221914267, fax +420-221914323

2Institute of Computer Science, Czech Academy of Sciences

Pod Vodárenskou věží 2, 182 07 Prague, Czech Republic 

phone +420-266053831

{tomas.kalibera, lubomir.bulej, petr.tuma}@mff.cuni.cz

Abstract. Regression testing is an important part of software quality assurance.

We work to extend regression testing to include regression benchmarking, which

applies benchmarking to detect regressions in performance. Given the specific re-

quirements of regression benchmarking, many contemporary benchmarks are not

directly usable in regression benchmarking. To overcome this, we present a case

for designing a generic benchmarking environment that will facilitate the use of

contemporary benchmarks in regression benchmarking, analyze the requirements

and propose architecture of such an environment.

1 Introduction

The growing complexity of software and the need for distributed development has

brought an increased demand for quality control in the software development process.

As witnessed in numerous open source projects, automated regression testing of the

software under development plays an important role in the quality assurance process.

Regression testing, however, mostly covers only the correct functionality of the tested

implementation. Regression benchmarking [BKT04a, BKT04b] extends regression

testing by also covering the performance of the tested implementation.

Regression benchmarking uses benchmarks to evaluate various performance attributes

of the software under development in consecutive snapshots, and analyzes the differen-

ces in these snapshots to detect performance regressions. The performance regressions

can have many forms, from a slow degradation of performance to various scalability

issues or inevitable decrease of performance through added functionality.

125



To provide useful results, the entire regression benchmarking process must be automa-

tic, so that human attention is needed only when a suspect performance regression has

been detected. The requirement of full automation means that a machine, rather than a

human, has to deal with obtaining, compiling and deploying both the software under

development and the benchmarks, executing the benchmarks on the software under

development, monitoring of the execution, and storing and analyzing the results. Most

contemporary benchmarks are not suitable for regression benchmarking simply because

they do not meet some of these requirements.

As a remedy to the above issues related to full automation, we propose a generic bench-

marking environment that supports automated deployment, execution and monitoring of

benchmarks and related software, and a repository for storing data in common format

that will serve as a data source for analysis and visualization tools. Although some of

the contemporary benchmarks will need to be modified or augmented to support the

benchmarking environment, we take care to keep the modifications small and typically

not intrusive.

In previous work [BKT04a, BKT04b] we have focused on issues of automatic data ac-

quisition and result analysis. The work presented in this paper complements our previ-

ous work by elaborating on the issues of automation of the benchmarking process. The

rest of the paper is organized as follows: Section 2 analyzes the requirements for de-

signing a generic benchmarking environment for regression benchmarking and points

out where this extends the related work, Section 3 proposes the architecture of the envi-

ronment that meets the requirements set out in Section 2, and Section 4 concludes the

paper.

2 Design Requirements for Generic Benchmarking Environment

Our design is primarily driven by generalization of requirements for regression bench-

marking, which can be divided intro three groups: installing and configuring the envi-

ronment, executing and monitoring of benchmarks, and storing of results. We describe

these requirements in detail and contrast our approach with related work in other pro-

jects that deal with the concept of systematic benchmarking. These projects include the

TAO distributed scoreboard [Do04a], the continuous performance metrics for

ACE+TAO+CIAO [Do04b], the Skoll continuous distributed quality assurance [Me04],

the Lockheed Martin ATL benchmarking tools [ATL04], and the NIST benchmarking

tools [Co02].

2.1 Installation and Configuration

Speaking in broad terms, we require the benchmarking environment to be platform-

independent, self-contained, extensible, scalable and easy to install.

126



For reasonable platform independence, the environment must run at least on recent

versions of the Linux, Solaris and Windows platforms. The benchmarking environment

running on these platforms must interoperate as some benchmarks take place in a hete-

rogeneous distributed environment. Naturally, the benchmarking environment should

be open to platform-specific extensions such as monitoring.

The benchmarking environment must be self-contained and easy to install, enough to

support automated remote installation and configuration where possible. The automated

installation must not require prior or additional installation or configuration of third-

party software that is not readily available on the installation platform. While reaso-

nably platform independent, neither of the related projects supports fully automated

installation.

The benchmarking environment should support a wide scale of benchmarking sites,

ranging from a small developer or research site with few computers that are only occa-

sionally available for benchmarking, to a dedicated benchmarking cluster with

hundreds of computers. The scale of the benchmarking site should remain invisible to

the benchmarks. Neither of the related projects supports such a scale of benchmarking

sites. The target of [Do04a, Do04b, Me04] are mostly individual computers provided by

volunteers, while [Co02] is more focused on clusters.

2.2 Executing and Monitoring

The requirements related to executing and monitoring benchmarks are concerned with

the robustness of the benchmarking environment in face of failures, which minimizes

the required amount of human attention.

Besides the obvious requirement of the benchmarking environment being resilient to

failures of any of its components, it must also cope with failures of the benchmarks and

related software it executes. Crashes and deadlocks are the most common failures that

occur during benchmarking and are easy to detect and resolve. More complicated in

that respect are benchmark-specific failures that do not cause the benchmark to crash or

deadlock. Regardless of the type of a failure, its impact should be limited to the bench-

mark where the failure occurred. To our knowledge, neither of the related projects has

tackled this issue, except for [Co02], which allows setting of resource limits on executed

tasks.

A key requirement associated with regression benchmarking is that except for the soft-

ware under development, the setup of the benchmarks may not change. The benchmar-

king environment should therefore support a flexible host scheduling and assignment

policy, and ideally detect changes in the setup of the benchmarks. Given the nature of

the related projects, this issue only needed attention in [Co02], which supports host

assignment with respect to task requirements.

127



2.3 Storing of Results

The last group of requirements we consider stems from the need for common data for-

mat for storing and processing of benchmark results. Most benchmarks produce data in

a proprietary format, which prevents using a common set of tools for analysis and visua-

lization.

The common data format must support storing raw benchmark results in the best pos-

sible precision, along with a detailed description of the benchmark setup. Each measu-

red attribute should carry an annotation identifying its source and meaning, to allow

tracing the results back to their causes. In most projects, identification of the results is

responsibility of the user of a benchmark, except for [Co02], where a free-form descrip-

tion of the experiment is associated with the results. In [Do04b], the results come in

different formats from multiple benchmarks and are often pre-processed.

Along with the raw benchmark results, the data format should allow attaching seconda-

ry information that captures the conditions such as resource utilization under which a

benchmark was run, as well as its impact on the conditions. This information helps

ensure the validity of benchmark results in presence of constraints on the conditions

under which the benchmark should run.

The benchmark results should be kept in a repository that will allow for efficient storage

and retrieval. To conserve resources during analysis, the repository should support atta-

ching preprocessed or partially analyzed data to the benchmark results. A result reposi-

tory is only implemented in [Co02], using a relational database to store the results. The

fixed data model limits the flexibility of the repository.

3 Architecture of the Generic Benchmarking Environment

The requirements outlined in Section 2 suggest splitting the architecture of the bench-

marking environment into well-defined components with simple and well-specified

interaction. The workflow nature of regression benchmarking, with repetitive cycles of

deployment, execution, monitoring and analysis, further suggests designing the bench-

marking environment as a task processing system. The task processing system will run

on each host of a benchmarking site and implement all the benchmarking environment

does as specific tasks.

Implementing the task processing system as a Java application and the specific tasks as

Java classes helps achieve the requirements of platform independence and extensibility

from Section 2.1.

128



3.1 Task Processing System

Running a benchmark in a heterogeneous distributed environment involves deploying,

executing and monitoring the benchmark and related software. These actions may differ

in implementation for a specific benchmark or platform, but often share common fea-

tures such as the implementation of monitoring, the description of requirements, or the

process of deployment. This allows encapsulating the common features as simple tasks,

used to construct gradually more complex tasks for the actions involved in running the

benchmark.

The task processing system will distinguish two types of tasks – jobs, which accept

input, produce corresponding output and stop, and services, which are similar to jobs,

except they keep listening for next input. Both types of tasks will consist of their desc-

ription and implementation, the description defining requirements on the host to launch

the task, the list of states of the task, the conditions for launching and terminating the

task based on the state of other tasks, and the failure detection and resolution strategy of

the task.

The task processing system will schedule the tasks and track the dependencies between

the tasks defined by the conditions for launching and terminating the tasks. Depending

on the failure detection and resolution strategy of each task, the task processing system

will monitor the tasks and handle task failures by ignoring the failed task, restarting the

failed task from a checkpoint, or restarting the failed task with a limited number of

retries, as appropriate. The task processing system will also facilitate passing of infor-

mation between the tasks.

Separating the task processing system from the specific tasks helps keep the scale of the

benchmarking site invisible to the benchmarks, in line with the requirements of scalabi-

lity from Section 2.1. The introduction of the failure detection and resolution strategy

assists in achieving the requirements of robustness from Section 2.2.

3.2 Benchmarking Tasks

Benchmarking specific tasks will take care of downloading, compiling and executing

benchmarks and related software, as well as potential conversion of the results and their

storing in the result repository.

Most of these tasks will be common to various benchmarks and platforms, and only

tailored for a specific benchmark or platform in their configuration. Checking out sour-

ce code from CVS is an example of such a task, the configuration will specify the URL

of the CVS repository and the target directory. Some tasks, however, will be tailored to

a specific benchmark and platform, to make the benchmark fit the benchmarking envi-

ronment without modification. An example of such a task is populating a database used

by a benchmark with data specific to the benchmark.

129



The existence of tasks tailored to a specific benchmark and platform helps meet the

requirements of extensibility from Section 2.1.

The benchmarking tasks will be instantiated by other tasks acting as task generators,

starting with a bootstrap task generator. The task generators will rely on a configuration

listing the benchmarks to run and the platforms to use, as well as the tasks to schedule

for a specific benchmark and platform. Examples of task generators include a generator

that instantiates tasks for downloading source code of each configured benchmark, or a

generator that instantiates tasks for analyzing and visualizing the benchmark results of

each executed benchmark.

Two prominent tasks of the benchmarking environment will be the result repository and

the resource manager, both running as services. The result repository is a service used

by all tasks that produce benchmark results to store the results. The resource manager is

a service used by all task generators that instantiate the benchmarking tasks to allocate

exclusive resources such as computers used by the benchmarking tasks. The implemen-

tation of the services will accommodate the requirements on executing and monitoring

from Section 2.2, as well as the requirements on storing of results from Section 2.3.

3.3 Example Configuration

Figure 1 shows a part of an example configuration of the benchmarking environment

running the RUBiS benchmark [Ce04]. Shown are the control host, the client host and

the server host as three computers running the task processing system, as well as some

tasks.

The control host is central to the configuration, running the result repository and re-

source manager as two prominent services instantiated by the bootstrap task generator.

The client host runs the client emulator job of the RUBiS benchmark, responsible for

generating the service load. The job is associated with the actual client emulator pro-

cess, used without modification from the RUBiS benchmark. The server host runs the

database and container of the RUBiS benchmark as two prominent services, again asso-

ciated with the actual database and container processes from the RUBiS benchmark.

The services are used by the initialization, compilation and deployment jobs.

Figure 1 also shows states of the tasks and dependencies between the tasks, depicted by

state names in parentheses and wait conditions over arrows. Most services are in the up

state, most jobs are in the done state, except for the client emulator job, which waits for

the deployment job to reach the done state, and the deployment job, which is in the

running state. Other dependencies denote already completed waiting of jobs on services.

130



PROCESS:

MySQL

Server

TASK:

Database

(service,up)

TASK:

EJB Server

(service,up)

TASK:

Deploy Beans

(job,running)

TASK:

Fill Database

(job,done)

TASK:

Compile Beans

(job,done)

wait_for_done

wait_for_up

wait_for_up
wait_for_up

TASK:

Client Emulator

(job,prepared)

wait_for_done

wait_for_done

PROCESS:

Jonas EJB

Server

PROCESS:

Client Emulator

TASK:

Result Rep.

(service,up)

wait_for_up

TASK:

Resource Mgmt.

(service,up)

CONTROL HOST SERVER HOST

CLIENT HOST

TASK PROCESSING SYSTEM

TASK PROCESSING SYSTEM

TASK PROCESSING SYSTEM

Figure 1: Example configuration of the benchmarking environment running the RUBiS bench-

mark.

4 Conclusion

The paper is a part of our work to extend regression testing to include regression bench-

marking, which applies benchmarking to detect regressions in performance. We have

illustrated that the requirement of full automation, inherent to regression bench-

marking, is difficult to meet, as it includes automation of tasks such as downloading

source code of the benchmarks and related software, compiling the source code, or mo-

nitoring of the benchmarks and related software, all of which normally requires human

attention. Indeed, most contemporary benchmarks do not meet this requirement, as is

the case for example with ECperf [Su04], RUBiS [Ce04], SPECjAppServer2004 [Sp04]

or Trade3 [IBM04], which require manual configuration and deployment and can dead-

lock without terminating.

We have pointed out the difficulties on the related work in other projects that deal with

the concept of systematic benchmarking, and proceeded by proposing a generic bench-

marking environment based on a task processing system. We have explained why we

believe that our design of the benchmarking environment will allow us to overcome the

difficulties associated with regression benchmarking.

131



The paper has been styled more as an overview of the issues associated with full auto-

mation, inherent to regression benchmarking, than as a description of the generic

benchmarking environment. This is partly because of space considerations, partly be-

cause the environment is still a work in progress. For more details, please refer to

http://nenya.ms.mff.cuni.cz/been.

Acknowledgements. The work was partially supported by the Grant Agency of the

Czech Republic project number 201/03/0911.

References

[ATL04] Advanced Technology Labs, Lockheed Martin Corp.: Agent and Distributed Ob-

jects Quality of Service, http://www.atl.external.lmco.com/projects/QoS, 2004.

[BKT04a] Bulej L., Kalibera T., Tůma P.: Regression Benchmarking with Simple Middle-

ware Benchmarks. Proceedings of IPCCC 2004, Phoenix, USA, IEEE CS, 2004.

[BKT04b] Bulej L., Kalibera T., Tůma P.: Repeated Results Analysis for Middleware Reg-

ression Benchmarking. Special Issue on Performance Modeling and Evaluation of

High-Performance Parallel and Distributed Systems, Performance Evaluation: An

International Journal, Elsevier B.V., 2004.

[Ce04] Cecchet E., Chanda A., Elnikety S., Marguerite J., Zwaenepoel W.: Performance

Comparison of Middleware Architectures for Generating Dynamic Web Content.

Proceedings of Middleware 2004, Rio de Janeiro, Brazil, ACM, 2003.

[Co02] Courson M., Mink A., Marçais G., Traverse B.: An Automated Benchmarking

Toolset. Proceedings of HPCN 2000, Amsterdam, The Netherlands, LNCS 1823,

Springer Verlag, 2000.

[Do04a] Distributed Object Computing Group: ACE+TAO Distributed Scoreboard,

http://www.dre.vanderbilt.edu/scoreboard, 2004.

[Do04b] Distributed Object Computing Group: Continuous Metrics for ACE+TAO+CIAO,

http://www.dre.vanderbilt.edu/Stats, 2004.

[IBM04] IBM Corp.: Trade3,

http://www.ibm.com/software/webservers/appserv/benchmark3.html, 2004.

[Me04] Memon A., Porter A., Yilmaz C., Nagarajan A., Schmidt D.C., Natarajan B.:

Skoll: Distributed Continuous Quality Assurance. Proceedings of ICSE 2004, E-

dinburgh, Scotland, IEEE CS, 2004.

[Sp04] Standard Performance Evaluation Corporation: SPECjAppServer2004,

http://www.specbench.org/jAppServer2004, 2004.

[Su04] Sun Microsystems Inc.: ECperf Specification, http://java.sun.com/j2ee/ecperf,

2004.

132


