Snowfall: Hardware Stream Analysis Made Easy

Jens Teubner Louis Woods
ETH Zurich, Systems Group - Universititstrasse 6 - 8092 Zurich, Switzerland
{jens.teubner | louis.woods}@inf .ethz.ch

1 Introduction

Field-programmable gate arrays (FPGAs) are chip devices that can be runtime-reconfigur-
ed to realize arbitrary processing tasks directly in hardware. Industrial products [Net, Xtr]
as well as research prototypes [MTA09, MVB+09, SLST 10, TMA11] demonstrated how
this capability can be exploited to build highly efficient processors for data warehousing,
data mining, or stream analysis tasks.

On the flip side, the construction of dedicated hardware circuits requires considerable engi-
neering efforts and skills that are often not available in application-focussed development
teams. To bridge this gap, at ETH we have developed a set of tools that aid developers of
high-performance stream processing solutions and enable agile hardware generation for
changing application demands.

In this demonstration, we showcase Snowfall, a compiler tool for low-level stream analysis.
Comparable to scanner generators for software-based systems (e.g., lex/flex), Snowfall
can be used to decode incoming data streams in hardware, react to low-level patterns in a
stream, and perform initial input data analysis. Snowfall plays well together with Glacier,
a query-to-hardware compiler that we described and demonstrated in [MTA09, MTA10].
A typical use case is to use Snowfall for input parsing and pre-processing, then perform
SQL-style query processing on top with a hardware query plan obtained with the help of
Glacier.

In the demo, we illustrate Snowfall based on a real-world use case with exceptionally high
demands for throughput and latency. With the help of Snowfall, we perform risk checking
for financial trading applications. Snowfall allows for a declarative description of the
problem, yet will generate a hardware circuit that can process input streams in real time.

2 Field-Programmable Gate Arrays and State Machines

Field-programmable gate arrays (FPGAs) are programmable chip devices that can imple-
ment electronic circuits directly in hardware. They are programmed with a hardware de-
scription language such as VHDL or Verilog. Vendor-provided synthesis tools map circuit
descriptions expressed in these languages to basic FPGA device primitives (e.g., lookup

738

SOH = 0x01; # special value "SOH" (field delimiter)
FIXVersion = "4.2";

FIX Data Types

Length = [0-9]+;

Qty = [0-9]* (.’ [0-9]%)7;

String = (any - SOH) *;

FIX Fields

BeginString = "8=FIX." FIXVersion SOH;

BodyLength = "9=" Length SOH;

CheckSum = "10=" (any - SOH){3} SOH;

AnyField = [1-9] [0-9]1{0,3} "=" (any - SOH)* SOH;

NewOrderSingleMessage =
BeginString BodyLength "35=D" SOH
AnyField * :>> "110=" Qty SOH
AnyField * :>> "b55=" String SOH
AnyField * :>> "54=1" SQOH
AnyField * :>> CheckSum Qcheck_order;

msg type = NewOrderSingleMessage
quantity of executed order
symbol

#
#
#
this order is a buy

main := NewOrderSinglelMessage;

Figure 1: Excerpt from a parser specification to decode FIX order messages.

tables; flip-flop registers; or Block RAMs). They generate a bit stream that, when uploaded
to the FPGA, instantiates these primitives and realizes the hardware circuit.

Probably the most important design technique for FPGA circuits is the use of finite state
machines, be it to implement the control logic that complements the data flow-oriented
circuit components; to communicate with external devices; or to interpret data streams or
protocols. Finite state machines fit the available FPGA chip resource types well and can
run at very high speeds.

Designing the proper state machine for a given application need, however, can be tedious
and error-prone. Even for relatively simple tasks, the necessary state machine can quickly
grow too large to be truly understood by a human developer. And once programmed
successfully, state machines tend to be hard to document and maintain. The problem is
exacerbated by the necessity to express the state machine in VHDL or Verilog—languages
that typical application developers are rarely familiar with.

3 Snowfall

Snowfall, which is part of a tool set that we develop in the context of the Avalanche project
at ETH Zurich, addresses both aspects of the problem. It provides a high-level abstraction
to express state machines and associated semantic actions.! Snowfall optimizes these state
machines and emits VHDL code that implements them efficiently in hardware.

! Snowfall is based on the Ragel state machine compiler http: //www.complang.org/ragel/.

739

Figure 1 shows an excerpt of the Snowfall code that decodes FIX messages for online
trading applications. The code describes the lexical structure of buy orders (message type
‘NewOrderSingleMessage’ in the FIX specification) and inspects the quantity and stock
symbol fields (FIX fields 110 and 55).

From the code in Figure 1, Snowfall will build a hardware state machine (expressed in
VHDL) that recognizes the specified FIX message type. Whenever (parts of) the state ma-
chine have successfully matched on the input data, it will trigger the execution of action
code blocks. These contain user-defined VHDL code that can be used to process lexi-
cal elements in the input stream (lex/flex are used in a similar way in software-based
systems).

Since in this demo description we are restricted by space limits, Figure 1 shows only
one example of how action code can be embedded into a Snowfall language specification.
The @check_order annotation after the CheckSum syntactical element specifies that the
routine check_order should be invoked whenever a full NewOrderSingleMessage was
successfully parsed.

A typical implementation of an action code like check_order will build an internal rep-
resentation of a FIX order tuple (e.g., of schema (quantity, symbol)). The tuple is then
forwarded on to further hardware logic that performs high-level analysis of the stream of
FIX orders. One such analysis task could be an assessment of the risk associated with the
orders made. For instance, we would like an alert to be raised whenever the order volume
within a given time window exceeds a certain limit.

3.1 Glacier: A Query-to-Hardware Compiler

Higher-level stream analysis tasks are a good fit for Glacier, another part of our FPGA
toolbox. Glacier is a SQL-to-hardware compiler. Given a query in an SQL dialect with
streaming extensions, Glacier generates the VHDL description of a corresponding hard-
ware query plan. The inner workings of Glacier are the subjects of [MTA09, MTA10].

To implement our risk analysis example, a Glacier-generated hardware plan consumes
tuples that our FIX parser constructed in check_orders and performs aggregation and
windowing on the tuple stream. For instance, the query

SELECT SUM (quantity) AS qsum
FROM orders [SIZE 600 ADVANCE 60 TIME]
GROUP BY symbol

aggregates all orders over a window of 10 minutes and reports the ordered quantities for
each stock symbol every minute. A violation of risk limits could easily be detected from
the aggregated output of this query; or a dedicated query could be written that only emits
data in alert situations.

In summary, the combination of Snowfall and Glacier makes the development of stream
processing solutions on FPGAs comparable to a typical software development work flow.

740

At the same time, generated solutions will run as bare-hardware implementations and thus
benefit from the architectural advantages offered by the FPGA technology. In particular,
the risk analysis example sketched here benefits from network-speed processing—no order
will be missed even under peak load—and real-time latency—the system could react to
risk violations within sub-microseconds time.

4 Demonstration Setup

The real value of our tool set results from the seamless interplay among our own tools,
but also with commercial FPGA synthesis and simulation tools. To make this point, we
will bring to Kaiserslautern not only Snowfall, but also a full FPGA design environment as
well as FPGA hardware. We will show how a full example application can be developed,
simulated, and debugged; and we will show how the resulting application can process a
(synthetic) FIX message stream in real time.

Visitors of the demo will be invited to modify our code examples, write their own queries
for Glacier, and inspect the generated hardware solution using commercial circuit visual-
ization tools. The focus application for this demonstration, Snowfall, includes function-
ality to debug and visualize generated state machines. We will show and explain this
functionality and illustrate how Snowfall eases the development of FPGA-based stream
processing solutions.

Acknowledgements

This work was supported by SNF Ambizione grant number 126405 and by the Enterprise
Computing Center (ECC) of ETH Zurich (http://www.ecc.ethz.ch/).

References

[MTAO09] Rene Mueller, Jens Teubner, and Gustavo Alonso. Streams on Wires—A Query com-
piler for FPGAs. Proceedings of the VLDB Endowment (PVLDB), 2(1), August 2009.

[MTA10] Rene Mueller, Jens Teubner, and Gustavo Alonso. Glacier: A Query-to-Hardware Com-
piler. In Proc. of the 2010 ACM SIGMOD Conference on Management of Data, Indi-
anapolis, IN, USA, June 2010.

ishek Mitra, Marcos R. Vieira, Petko Bakalov, Vassilis J. Tsotras, and Walid A.

[MVB*09] Abhishek Mitra, M R. Vieira, Petko Bakalov, Vassilis J. T d Walid A
Najjar. Boosting XML Filtering Through a Scalable FPGA-Based Architecture. In
Int’l Conference on Innovative Data Research (CIDR), Asilomar, CA, January 2009.

[Net] Netezza Inc. http://www.netezza.com/.

[SLST10] Mohammad Sadoghi, Martin Labrecque, Harsh Singh, Warren Shum, and Hans-Arno
Jacobsen. Efficient Event Processing through Reconfigurable Hardware for Algorith-
mic Trading. Proceedings of the VLDB Endowment (PVLDB), 3(2), September 2010.

[TMA11] Jens Teubner, Rene Mueller, and Gustavo Alonso. Frequent Item Computation on a
Chip. IEEE Transactions on on Knowledge and Data Engineering (TKDE), 2011.

[Xtr] XtremeData Inc. http://wuw.xtremedata.com/.

741

	Vorwort

	Inhaltsverzeichnis
	Eingeladene Vorträge
	SanssouciDB: An In-Memory Database for Processing Enterprise Workloads
	The Web as the development platform of the future
	The Power of Declarative Languages: From Information Extraction to Machine Learning

	Wissenschaftliches Programm
	Verarbeitung großer Datenmengen
	MapReduce and PACT - Comparing Data Parallel Programming Models
	Parallel Sorted Neighborhood Blocking with MapReduce
	PigSPARQL: Übersetzung von SPARQL nach Pig Latin

	Datenströme
	Koordinierte zyklische Kontext-Aktualisierungen in Datenströmen
	Tracking Hot-k Items over Web 2.0 Streams
	Flexible and Efficient Sensor Data Processing - A Hybrid Approach
	Feature-Based Graph Similarity with Co-Occurence Histograms and the Earth Mover's Distance

	Vorhersagemodelle
	Lightweight Performance Forecasts for Buffer Algorithms
	Offline Design Tuning for Hierarchies of Forecast Models
	Online Hot Spot Prediction in Road Networks

	DB-Implementierung
	Advanced Cardinality Estimation in the XML Query Graph Model
	Efficient In-Memory Indexing with Generalized Prefix Trees
	Stets Wertvollständig! - Snapshot Isolation für das Constraint-basierte Datenbank Caching

	Anfrageverarbeitung
	A generalized join algorithm
	View Maintenance using Partial Deltas
	Cloudy Transactions: Cooperative XML Authoring on Amazon S3

	Informationsextraktion
	Conceptiual Views for Entity-Centric Search: Turning Data into Meaningful Concepts
	A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases
	Efficient Interest Group Discovery in Social Networks using an Integrated Structure/Quality Index
	Filtertechniken für geschützte biometrische Datenbanken

	Benchmarking & Simulation
	Benchmarking Hybrid OLTP&OLAP Database Systems
	Simulating Multi-Tenant OLAP Database Clusters
	SSD != SSD – An Empirical Study to Identify Common Properties and Type-specific Behavior
	HiSim: A Highly Extensible Large-Scale P2P Network Simulator

	Probabilistische und inkonsistente Daten
	Operators for Analyzing and Modifying Probabi listic Data - A Question of Efficiency
	Resolving Temporal Conflicts in Inconsistent RDF Knowledge Bases
	QSQL^p: Eine Erweiterung der probabilistischenMany-World-Semantik umRelevanzwahrscheinlichkeiten

	Maßgeschneiderte DB-Anwendungen
	Generierung maßgeschneiderter Relationenschemata in Softwareproduktlinien mittels Superimposition
	SIMPL – A Framework for Accessing External Data in Simulation Workflows
	Einsatz domänenspezifischer Sprachen zur Migration von
Datenbankanwendungen

	Dissertationspreis
	XML Query Processing in XTC

	Industrieprogramm
	Complex Event Processing und Reporting
	An Integrated Data ManagementApproach to Manage Health Care Data
	Involving Business Users in the Design of Complex Event
Processing Systems
	Fast and Easy Delivery of Data Mining Insights to
Reporting Systems

	Rund um OLAP
	Technical Introduction to the IBM Smart Analytics Optimizer for DB2 for System z
	Architecture of a Highly Scalable Data Warehouse Appliance Integrated to Mainframe Database Systems
	Interactive Predictive Analytics with Columnar Databases

	In-Memory und Cloud
	An In-Memory Database System for Multi-Tenant
Applications
	Available-To-Promise on an In-Memory Column Store
	Cloud Storage: Wie viel Cloud Computing steckt dahinter?

	Panel
	Panel: “One Size Fits All”: An Idea Whose Time Has Come and Gone?

	Demonstrationsprogramm
	Improving Service Discovery through
Enriched Service Descriptions
	StreamCars – DatenstrommanagementbasierteVerarbeitung von Sensordaten im Fahrzeug
	NexusDSEditor — Integrated Tool Support for the DataStream Processing Middleware NexusDS
	AIMS: An SQL-based System for Airspace Monitoring
	PROOF: Produktmonitoring im Web
	ProCEM Software Suite - Integrierte Ablaufsteuerung und -überwachung auf Basis von Open Source Systemen
	Demonstration des Parallel Data Generation Framework
	Measuring Energy Consumption of a Database Cluster
	Snowfall: Hardware Stream Analysis Made Easy
	MOAW: An Agile Visual Modeling and Exploration Tool
for Irregularly Structured Data
	Touch it, Mine it, View it, Shape it
	Metadata-driven Data Migration for SAP Projects

	Ende

