
Automated Robustness Testing for Reactive Systems:
Application to Communicating Protocols

Fares Saad Khorchef Ismail Berrada Antoine Rollet
Richard Castanet

LaBRI - CNRS - UMR 5800
33405 Talence cedex, France

{saad-kho, berrada, rollet, castanet}@labri.fr

Abstract: In the telecommunications field, protocols have to be seriously validated
before their startup. Thus, it is necessary to test the conformance of a protocol, but it
is also important to test its robustness in presence of unexpected events. This paper
proposes a framework to test the robustness of a system. Firstly, we explain how to
increase the nominal specification in order to take into account the hazards. Then,
we show how to generate test sequences from the increased specification. Finally, we
propose a case study on the SSL protocol, using the TGSE tool.

1 Introduction

Protocol specifications are used to develop products and services. To ensure correctness of
such products, testing is the one of the used validation techniques. It consists of checking
that the behaviors of a real implementation of a system (IUT for Implementation Under
Test) is correct with respect to a specification.

With the exponential growth of Internet and with the growth of other services, protocol
testing has become more difficult. While testing to ensure that requirements are met is
necessary (i.e. conformance testing), tests aimed at ensuring that the system handles errors
and failures appropriately are often neglected (i.e. robustness testing).

Although a precise definition of robustness is somewhat elusive, functionally the meaning
is clear : the ability of a system to function in an acceptable way in presence of faults
or stressful environmental conditions [CW03]. The term "hazards" will be used to gather
faults and stressful conditions.

The aim of this paper is to provide a formal framework for robustness testing for Internet
protocols. In order to decide the robustness of an IUT, a clear criterion is needed, taking
into account the system behaviors in the presence of hazards. The contributions of this
paper are :

(1) A framework for robustness testing including a formal definition of robustness and
a test generation method. Our approach consists in enriching the nominal specification
(i.e. protocol standard specification) with some representable hazards in order to get an

409



increased specification.

(2) A case study on the SSL protocol [Hic95]. We show how to integrate hazards in the
specification of the handshake protocol in order to generate robustness test cases using the
TGSE tool [BF05].

The remainder of the paper is organized as follows : Section 2 introduces models and
notations used in the paper. Section 3 gives a definition and a classification of hazards.
Section 4 presents a formalization and a method to test the robustness. The case study is
given in Section 5. The related work is presented in Section 6. Section 7 concludes and
draws some perspectives.

2 Basic Concepts

A reactive system is a software component which reacts to stimuli of its environment. I/O
labelled transition systems (IOLTS) are used to describe the behaviors of such systems.
This section introduces the IOLTS model and some notations used throughout this paper.

2.1 Input Output Labelled Transition System

Definition 2.1 An IOLTS [TRE96] is an quadruplet S = (Q, A,→S , q0) such that: Q

is a nonempty finite set of states, q0 is the initial state, A is the alphabet of actions and,
→S⊆ Q × A × Q is the transition relation.

The alphabet A is partitioned into three sets A = AO ∪ AI ∪ I , where AO is the output
alphabet (an output is denoted by !a), AI is the input alphabet (an input is denoted by
?a) and I is the alphabet of internal actions (an internal action is denoted by τ ). Usual
notations are:

Notation Meaning Notation Meaning

q
ε
⇒ q′ q = q′ or q

τ1...τn

→ q′ Trace(q) {σ ∈ A∗ | q
σ
⇒}

q
a
⇒ q′ ∃ q1, q2 | q

ε
⇒ q1

a
→ q2

ε
⇒ q′ Trace(S) Trace(q0)

q
a1...an⇒ q′ ∃ q0...qn | q = q0

a1⇒ q1

a2⇒ ...
an⇒ qn = q′ Out(q) {a ∈ AO | q

a
⇒}

q after σ q′ ∈ Q | q
σ
⇒ q′} Out(S, σ) Out(S after σ)

S after σ q0 after σ ref(q) {a ∈ AI |a 	
a
−→)}

The observable behaviors is described by ⇒. q after σ is the set of reachable states from
q by σ. Trace(q) is the set of observable sequences starting from q. Out(q) is the set of
all possible outputs of q. Finally, ref(q) is the set of inputs which can not start a transition
from q.

The IOLTS S is called deterministic if no state accepts more than one successor with
an observable action. It is called observable if no transition is labeled by τ . S is called
input-complete if each state accepts all inputs of the alphabet.

410



2.2 Suspension Graph

In practice, the tester observes events from a system, but also the absence of events (quies-
cence). Several kinds of quiescence may happen in a state q ∈ Q: outputlock quiescence
if the system is blocked on standby input of the environment (Out(q) = ∅), deadlock qui-
escence if there is no more evolution of the system (∀a ∈ A|q �

a
−→) or livelock quiescence

if q
ε
⇒ q.

Definition 2.2 The suspension graph [JER03] of S = (Q, A,→, q0) is an IOLTS Sδ =
(Q, Aδ,→δ, q0) such that: Aδ = A∪{δ} with δ ∈ Aδ

O (δ is considered as an output). →δ

is obtained from → by adding loops q
δ
−→ q for all quiescence states

2.3 Meta-Graph

In order to model the behaviors of a system S = (Q, A,→, q0) in the presence of hazards,
we use the concept of the meta-graph associated to S. A meta-graph G is a graph such
that each state of G corresponds to a set of states of S having the same behaviors in the
presence of the same hazards.

Definition 2.3 A meta-graph associated to S is a triplet G = (V, E, L) such as:

• V = Vd ∪ Vm is a set of states. Vm ⊆ 2Q is called the set of meta-states and Vd is
called the set of degraded states such that Vd ∩ Q = ∅.

• L is an alphabet of actions,

• E ⊆ V × L × V is a set of edges

Definition 2.4 (Composition IOLTS ⊕ G)
Let S = (Q, q0, A,→S) be an IOLTS and G = (V, E, L) a meta-graph associated to S.
The composition of S and G, noted S ⊕ G, is the IOLTS (QS⊕G, qS⊕G

0
,

AS⊕G,→S⊕G) defined by: QS⊕G = Q ∪ Vd, qS⊕G
0

= q0, AS⊕G = A ∪ L and,

1. q
a
−→ q′ ⇒ q

a
−→S⊕G q′

2. (v, a, v′) ∈ E and v, v′ ∈ Vd ⇒ v
a
−→S⊕G v′.

3. (v, a, v′) ∈ E , v ∈ Vm and v′ ∈ Vd ⇒ q
a
−→S⊕G v′ for all q ∈ v.

4. (v, a, v′) ∈ E , v ∈ Vd and v′ ∈ Vm ⇒ v
a
−→S⊕G q for all q ∈ v′.

5. (v, a, v′) ∈ E and v, v′ ∈ Vm ⇒ q
a
−→S⊕G q′ for all q ∈ v and q′ ∈ v′

411



This composition consists in adding in S the set of transitions and states of meta-graph G.
Actually, for a state q of S member of a meta-state (i.e. a set of states) v of G, we add in
S the set of transitions and/or states starting from v. In the following, this composition is
used to integrate hazards modeled as meta-graph(s) in the nominal specification. Figure 3
illustrates this composition.

3 Hazards

In robustness testing, a hazard denotes any event not expected in the nominal specification
of the system. In this section, we propose to extend the hazards classification given in
[CW03]. Our classification considers :

Position of hazards relative to the system boundaries. We distinguish the internal (e.g.
memory overflow, processor failure, etc...), external (e.g. intrusion, stressful conditions,
etc...) and beyond the system boundaries hazards.

H
az

ar
ds

UnrepresentableUnobservable Uncontrollable

Controllable RepresentableObservable

OBSERVABILITY CONTROLLABILITY REPRESENTABILITY

Figure 1: Classification of hazards

Position of hazards relative to the tester controllability. We regroup the hazards bas-
ing on their observability, representability and controllability by the tester. Figure 1 gives
the different possible combinations :

1. Observable, controllable and representable hazards. They regroup invalid inputs
(e.g. modified inputs, erroneous inputs or lost inputs) or inopportune inputs (e.g.
messages in advance or late). These terms are defined below.

2. Observable, controllable and unrepresentable hazards. They are composed by some
external failures whose influence on the inputs are not very clear or difficult to rep-
resent (e.g. pressure, radiation, temperature).

3. Unobservable, controllable and unrepresentable hazards. They are composed by
some complex internal failures which we can not describe with classic models (e.g,
memory overflow, processor bugs).

The other possible combinations of figure 1 are not considered because we will not able
to test something not controllable. For observable and representable events, we identify
three kinds of hazards :

412



Invalid Inputs describing some erroneous, specified inputs (e.g. incorrect values, errors
of initialization, temporization faults).

Inopportune Inputs corresponding to actions which exist in the alphabet of the specifi-
cation, but not expected in the given state. ref(q) (see standard notations of IOLTS)
denotes the inopportune inputs in a state q ∈ Q.

Unexpected outputs. Taking into account the hazards can lead the system, in some cases,
to send some unexpected outputs. Sometimes, such outputs may be considered as accept-
able. For example, restarting a session, resetting or closing a connection may be acceptable
behaviors. As a consequence, all acceptable outputs must be added to the specification.

4 Proposed framework

In this part, we propose a formal approach to generate robustness test cases. Firstly, we
show how to integrate the representable hazards in the initial model. The obtained model
is called increased specification. Secondly, we formalize the robustness of an implemen-
tation compared to the increased specification. Basing on the previous relation, we explain
how to produce robustness test cases using a test purpose. The approach diagram is given
in figure 2.

and determinization

Increased Specification

Synchronous Product

Hazard Graph Specification

Inopportune inputs computing

Inopportune Inputs Graph

Addition of the suspension traces
Test Purpose

Robustness test cases

S ⊕ CGH ⊕ IIG

SA

SA ⊗ RTP

CHG S

CHG ⊕ S

IIG

RTP

RTC

Figure 2: Approach diagram

413



4.1 Increase of the specification

The aim of the increased specification is to formally describe the acceptable behaviors
in presence of controllable and representable hazards. In our approach, we describe the
behavior of the system in presence of one or several hazard(s) modeled by meta-graph(s).
Figures 3 (a) and (b) illustrate this concept. Assuming that S (figure 3 (a)) is in its initial
state, if it receives the hazard ?a′, it has to move to the degraded state d2 according to the
meta-graph of figure 3 (b). Besides, if it sends the acceptable output !x′, it has to move to
the degraded state d1, which permits the system to come back to a nominal behavior (here
the initial state) in case of reception of ?a.

In the following, we suppose that hazards (invalid inputs and acceptable outputs) are mod-
elled by one or more meta-graph(s) CHG (Controllable Hazard’s Graph). Then, inop-
portune inputs can be automatically computed and are represented by meta-graph(s) IIG

(Inopportune Input Graph). The increased specification (see figure 3 (f)) is obtained as
follows. For a nominal specification S and a set of hazards modeled by a meta-graph
CHG, we firstly compose them to obtain CGH ⊕ S (see figure 3 (c)). Secondly, we
compute the inopportune inputs of CGH ⊕ S to construct IIG (figure 3 (d)). Then, we
build CGH ⊕ S ⊕ IIG (figure 3 (e)). Finally, we add suspension traces and we pro-
ceed to determinization of CGH ⊕ S ⊕ IIG (figure 3 (f)) in order to obtain the increased
specification.

1

2

34

d1 d2

1

2

4 3

1,2

1

d1 d2

d1 d2

1

2

4 3

1 2

3,4,d1,d2

d1 d2

1

2

4 3ref(2)={?a}
ref(4)={?a,?b} ref(3)={?a,?b}

ref(d1)={?a,?b}

ref(1)={?b}

ref(d2)={?a,?b}

?a′

?a, ?b

?a′

(a). S

?a

!x ?b

!y

?a, ?b

?a, ?b
?a

!x

?a′

!x′

?a

!y

!x′

?a, ?b ?a, ?b

(e). S ⊕ CGH ⊕ IIG

?a

(b). CGH

!x′

?a

?a

?a, ?b

?b

?a′

!x′

!y

!δ

!δ

!δ

!δ !x′

?a, ?b ?a, ?b

(f). SA

?a

?a, ?b

?a

!x

?b ?a

(d). IIG

(c). S ⊕ CGH

?a

?a′

?a

!x

!x′

!x′

!y

?a′

?a′

Figure 3: Increase of specification

414



4.2 Robustness relation

In order to describe formally the notion of robustness, the following hypothesis are needed :

Increased specification. We suppose that the nominal specification is modeled by an
IOLTS S = (Q, A,→, q0). The increased specification of S is modeled by a deterministic,
observable and input-complete IOLTS SA = (QSA , ASA ,→SA

, qSA

0
) (the construction of

SA is the one given in the previous sub-section).

Implementation. The real implementation under test (IUT) is unknown, but to be able
to reason formally on the robustness of an implementation I with respect to a specification
S, we assume that :

1. I is modelled by an IOLTS,

2. I conforms to S,

3. I is input-complete on the alphabet ASA .

Robustness relation. Let I be an implementation of a specification S and SA its in-
creased specification. The robustness relation Robust is defined by :

I Robust SA ≡def ∀σ ∈ Trace(SA)\Trace(Sδ) ⇒ Out(Iδ, σ) ⊆ Out(SA, σ).

Only the increased behaviors (added) are useful for robustness testing because the nominal
behaviors (including valid quiescence) already passed the conformance testing.

Example 1 Let us consider figure 4.

• I1 Robust SA because all traces in I1 are included in SA

• not(I2 Robust SA) because I2 after ?a′ sends !y but SA after ?a′ sends !x′.

• not(I3 Robust SA): I3 after ?a′ reaches another state not specified in SA.

• not(I4 Robust SA): I4 after ?a′ sends !y and reaches another state not specified in
SA.

415



?a

?b, !δ

?a, ?b

?a

?b

!y

?a, ?b, !δ

?a′

!y

I2

?a

!x

?b, !δ

?a, ?b

?a

?b

!y

?a, ?b, !δ

x′

?a′
?a

!x

?b, !δ

?a, ?b

?a

?a

!y

?a, ?b, !δ ?a, ?b

?a′

!y
!x

?b

?b, !δ

?a

?a

!x

?a, ?b, !δ

x′

?b

?a′

?b, !δ

!y

?a, ?b, !δ ?a, ?b

?a′

?a

?b!x

x′

!x

?a

!y

I3

I1SAS

I4

?a, ?b ?a, ?b

?a, ?b

!y

?b
?a, ?b

?a, ?b

τ

Figure 4: Robustness relation

4.3 Test generation

After the integration of hazards (invalid inputs, inopportune inputs and acceptable outputs),
the size of the increased specification becomes very large. In order to reduce test costs,
we propose to select the tests by using test purposes. This method was used in some
conformance testing works [BF05, JER03]. The principle of this method is founded on the
synchronization between the specification and the test purpose modelled by two IOLTS.

The robustness test generation may be summarized as follows. 1) Choice of robustness
test purpose. 2) Synchronization between the specification and the test purpose in order
to deduce the behaviors which satisfied the test purpose. 3) Mirror image (i.e. inputs
become outputs and outputs become inputs) of the synchronous product. 4) Extraction of
robustness test cases.
The Robustness Test Purpose (RTP) is used to check some robustness properties in the
IUT. In the proposed case study, we use TGSE tool [BF05] in order to generate test cases.

5 Case study: The SSL Protocol

Netscape describes SSL as follows [Hic95] : "The SSL protocol is designed to provide
privacy between two communicating applications (a client and a server). Second, the pro-
tocol is designed to authenticate the server, and optionally the client". SSL is standardized
by the IETF (Internet Engineering Task Force ). The full specification of the SSL proto-

416



col is written in the RFC 2246. There exists several implementations of the SSL protocol
(Open SSL, SSLeay, BSAFF 3.0, SSL Plus, SSL Ref 3.0).

The SSL Protocol contains four under-protocols: Handshake protocol, SSL Changes Ci-
pher Spec protocol, SSL Alert protocol and SSL Record protocol. The Handshake protocol
is composed of two phases. First step deals with the selection of a cipher, the exchange of a
master key and the authentication of the server. Second step handles client authentication,
if requested and finishes the handshaking. After the handshake stage is complete, the data
transfer between client and server begins. All messages during handshaking and after, are
sent over the SSL Record protocol Layer.

Here, we deal only with the specification of the handshake protocol which describes three
scenarios of communication as shown in the following table :

Case Sequences

No Session Identifier, No Client au-
thentication

!Client-Hello, ?Server-Hello, ?Client-Master-Key, ?Client-Finished, !Server-Verify,
!Server-Finished

Session Identifier Used, No Client
authentication

!Client-Hello, ?Server-Hello, ?Client-Finished, !Server-Verify, !Server-Finished

Session Identifier Used, Client au-
thentication

!Client-Hello, ?Server-Hello, ?Client-Master-Key, ?Client-Finished, !Server-Verify,
?Request-Certificate, !Client-Certificate !Server-Finished

Table 1: Nominal scenarios of the Handshake protocol

The standard specification (RFC2246) defines the following errors :

• NO-CIPHER-ERROR. This error is returned by the client to the server when it can
not find a cipher or key size. This error is not recoverable.

• NO-CERTIFICATE-ERROR. When a REQUEST-CERTIFICATE message is sent,
this error may be returned if the client has no certificate to reply with. This error is
recoverable (for client authentication only).

• BAD-CERTIFICATE-ERROR. This error is returned when a certificate is deemed
bad by the receiving party. Bad means that either the signature of the certificate
was bad or that the values in the certificate were inappropriate (e.g. a name in the
certificate did not match the expected name). This error is recoverable (for client
authentication only).

• UNSUPPORTED-CERTIFICATE-TYPE-ERROR. This error is returned when a
client/server receives a certificate type that it can not support. This error is recover-
able (for client authentication only).

Two error messages have been omitted from the specification document (this problem is
noticed in [BD95]). The first, an UNSUPPORTED AUTHENTICATION TYPE ERROR
message, is a mistake which would prevent the protocol using different methods of authen-
tication of a client. The second, an UNEXPECTED-MESSAGE-ERROR would allow an
implementation to close the connection cleanly if an implementation sent an out-off-order
message.

417



In order to verify the robustness of the Handshake protocol, we increase the nominal spec-
ification by integrating hazards (invalid inputs and inopportune inputs). Besides, to model
the previous hazards, we consider the following hypothesis. 1) if the implementation re-
ceives an invalid input then it closes the connection and, 2) if it receives an inopportune
input then it loops in the same state. Formally, the previous hypothesis may be modelled
by meta-graphs. The increased specification is given in figure 5 (Annexe), it is composed
of 20 states and 176 transitions. In figure 5, the inopportune inputs are represented by
ref(q) for any state q but in the experimentations, they are automatically computed.

5.1 Robustness test generation with TGSE tool

In order to generate robustness test cases, we have defined a set of robustness test pur-
poses aiming at checking the behavior of an implementation in presence of the certifi-
cate failures (No-Certificate-Error, Bad-Certificate-Error, Unsupported-Certificate-Type-
Error), the cipher failures (No-Cipher-Error) and two other failures (Unexpected-Message-
Error et Unsupported-Authentification-Type-Error) :

• RTP1: Closing the connection between the client and the server after detection of a
certificate failure.

• RTP2: Closing the connection after detection of a cipher failure.

• RTP3 : Closing the connection after detection of unexpected error message.

In addition, we mention that both the inopportune inputs and quiescence are automatically
generated by the TGSE tool[BF05]. The following table summarizes the different results
obtained by a TGSE implementation under Linux Fedora 3 station (Intel Pentium 4 CPU
1.80GHz, 128Mo of memory). "RTC size" represents the average size of the robustness
test cases and "CPU Time" represents the average time needed to extract the RTC. We no-

Robustness test purposes RTC size CPU Time(ms)

RTP1 53 0.9618

RTP2 10 0.3599

RTP3 20 0.15797

Table 2: Results obtained by TGSE tool

tice that Robustness Test Cases are significantly longer than in usual conformance testing
methods. The reason is that the integration of hazards in the specification increases the
number of possible transitions.

418



6 Related work

Many research have been done in the domain of protocol testing . The majority of these
works deals with conformance testing [IEE04] (an overview may be found in [JER03]). In
this section, we focus particularly on robustness testing works.

[CW03] proposes a study on robustness testing, focusing on hazard classification and some
possible directions to handle the problem. Authors define the robustness notion as "the
ability of a system to function acceptably in the presence of faults or stressful environ-
mental conditions" and provide a state of the contributions in this domain.

The PROTOS project [RLT02] proposes to describe the system with a high level of ab-
straction and then to simulate abnormal inputs in the specification. It is mainly focused on
the detection of vulnerabilities of a network software system. In this case, robustness is
restricted to the notion of network security.

Some approaches are based on software fault injection :
The FIAT tool [BCSS90] modifies a processus binary image in memory, [Reg05] applies
randomly interruptions in the IUT, whereas the BALLISTA tool works on data unexpected
modifications. These approaches are based on integration of faults directly in the software
implementation of the system, but do not care about interpretation of different behaviours.

Another approach consists in using model-based test generation. The main difficulty of
such technics is to describe the hazards in the model. Many works consider such approach :
[SKD05, FMP05, Rol03].

[SKD05] proposes a first approach based on a refusal graph used to model hazards. Con-
trary to our method, it only deals with inopportune inputs, but not with invalid inputs.
Moreover, our approach distinguishes between inputs and outputs in the model.

[FMP05] uses a formal fault model in order to build a "mutant" specification. They use a
fault model in order to add "fault" transitions in the specification. They define a robustness
relation based on a robustness property. Contrary to our approach, they do not permit to
integrate unexpected inputs in the model.

[Rol03] uses a degraded specification to model the behavior in case of critical situation,
and integrates the hazards directly in the test sequences. A major difference between
[Rol03] and this work is in the concept of robustness : we consider here that robustness
implies conformance; [Rol03] does not.

7 Conclusion

In this paper, we have presented a formal framework and a generation technic to test the ro-
bustness of a protocol modeled as IOLTS. We proposed to integrate representable hazards
in the specification after suspension traces addition and determinization. Then we used
this increased specification in order to generate robustness test cases using a test purpose.
Secondly, we proposed a case study on the SSL protocol by describing how to increase

419



the specification, and by generating test sequences with the TGSE tool. This case study
permits to show the complementary aspect of conformance and robustness testing.

Currently, we are working on tools to help the designer of a system to describe the behavior
of the system in case of unexpected events. Besides, we are studying a way to handle time
constraints in robustness testing.

References

[BCSS90] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek. Fault Injection Experiments
Using FIAT. IEEE Trans. Comput., 39(4):575–582, 1990.

[BD95] J. Bradley and N. Davies. Analysis of the SSL Protocol. Technical Report CSTR-95-021,
Department of Computer Science, University of Bristol, June 1995.

[BF05] I. BERRADA and P. FELIX. TGSE: Un outil générique pour le test. In CFIP’2005:
Ingénérie des Protocoles, pages 67–84, 29 Mars 2005.

[CW03] R. CASTANET and H. WAESELYNK. Techniques avancées de test de systèmes com-
plexes: Test de robustesse. Technical report, Action spécifique 23 du CNRS, 11 2003.

[FMP05] J-C. FERNANDEZ, L. MOUNIER, and C. PACHON. A Model-Based Approach for
Robustness Testing. In LNCS, editor, Testing of Communication Systems, volume 3502,
pages 333–348. ifip, may/june 2005.

[Hic95] Kipp Hickman. The SSL Protocol. Technical report, Netscape Communications Corp.,
Feb 9 1995.

[IEE04] IEEE. International Organization for Standardization, Conformance testing methodol-
ogy and framework - part 2: abstract test suite specification, 2004.

[JER03] T. JERON. Génération de tests pour les systèmes réactifs. Un survol des théories et
techniques. In IRIT, editor, ETR2003. Systèmes, Réseaux et Applications, pages 105–
122. IRIT, Septembre 2003.

[Reg05] John Regehr. Random testing of interrupt-driven software. In EMSOFT ’05: Proceed-
ings of the 5th ACM international conference on Embedded software, pages 290–298,
New York, NY, USA, 2005. ACM Press.

[RLT02] J. Röning, M. Laakso, and A. Takanen. PROTOS - systematic approach to eliminate
software vulnerabilities. http://www.ee.oulu.fi/research/ouspg, May 2002. 2002.

[Rol03] A. Rollet. Testing robustness of real-time embedded systems. In Proceedings of Work-
shop On Testing Real-Time and Embedded Systems (WTRTES), Satellite Workshop of
Formal Methods (FM) 2003 Symposium, Pisa, Italy, September 13 2003.

[SKD05] F. SAAD-KHORCHEF and X. DELORD. Une méthode pour le test de robustesse adap-
tée aux protocoles de communication. 29 mars 2005.

[TRE96] J. TRETMANS. Conformance Testing with Labelled Transition Systems: Implementa-
tion Relations and Test Generation. Computer Networks and ISDN Systems, 29:49–79,
1996.

420



Annexe

STATES:
0: SSL−Client
1: SSLC1
2: SSLC2
3: SSLC3
4: SSL−NO−SID
5: SSL−MID
6: SSLCNS1
7: SSLCM1
8: SSLCM2
9: SSLCM3
10: SSLC−FINISH−A
11 SSLC−CERT−A
12: SSLC−CERT−B
13: SSLC−FINISH−B
14: SSLCC1
15: SSLCC2
16: SSLCC3
17: SSLCC4
18: SSLCC5
19: SSLCC6

INPUTS
?I−0: ?Close−Connection
?I−1: ?Server−Hello(No−Sid)
?I−2: ?Server−Hello(Hit)
?I−3: ?Server−Verify
?I−4: ?Server−Finished
?I−5: ?Server−Request−Certificate
?I−6: ?SSL−Data−Record

OUTPUTS
!O−0: !Client−Hello(No−SId)
!O−1: !Client−Hello(Sid)
!O−2: !Close−Connection
!O−3: !Client−Master−Key
!O−4: !Client−Finished
!O−5: !Client−Certificate
!O−6: !SSL−Data−Record

HAZARDS
H−0: No−Certificate−Error
H−1: Bad−Certificate−Error
H−2: No−Cipher−Error
H−3: Unsupported−Certificate−Type−Error
H−4: Unsupported−Authentication−Type−Error
H−5: Unexpected−Message−Error

ref(18)

ref(19)

ref(17)

ref(15)

ref(14)

ref(11)

ref(8)

ref(12)

ref(5)

ref(1)

ref(4)

ref(6)

ref(0)

ref(13)

ref(7)

ref(16)

ref(3)

ref(2)

ref(9)

O

1

!O−0

2

!O−1

3 4

?I−1

5

!O−3

6

!H−4 !H−5 !H−1!H−3

7

!O−4

8

?I−3

0

!O−2

9

?I−3!O−4

10

11

?I−5

12

?I−4

13

!O−4

14

!H−0

16

1517

?I−0 !O−2

18

?H−4

?I−0

19

?H−1 ?H−3?H−5?I−4 !O−4

?I−4

?I−5

?I−0

?I−4
?I−4

?I−0

?H−5 ?H−1 ?H−3

?I−4

?I−4

?I−0

!O−4

?H−4

!O−4

!O−5

!H−0

!O−5

?0−4

?I−1

?I−2

?I−6,!O−6

?I−0

?H−0

?I−4

!H−2

!δ

!δ

!δ

!δ

!δ

Figure 5: Increased specification of the Handshake protocol

421


