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Abstract: In this study we consider the performance of different feature detectors used
as the basis for the registration of images from two-dimensional gel electrophoresis.
These are three spot detectors also used to identify proteins, and two domain inde-
pendent keypoint detectors. We conduct a case study with images from a publically
available data set which are synthetically distorted using thin plate splines. The per-
formance is assessed by the repeatability score, the probability of an image structure
to be detected in original and distorted images with reasonable localization accuracy.

1 Introduction

Two-dimensional gel electrophoresis is a well established approach for separating proteins
in cell samples, and along with mass spectrometry one of the key technologies for compar-
ative proteomics [Spe04]. To assess protein quantification and differences from varying
experimental conditions and technical or biological replicates, it is essential to account for
variations and distortions between gels and resulting gel images due to the experimental
procedure. To ease this analysis, and especially with increasing amount of gel data avail-
able, the automatic analysis of gel images is of large interest. Typically, a first step in this
process is the registration of pairs of gel images [DDY03].

Due to the global and local characteristics of deviations between gel images non-
rigid transformations have to be applied. Registration techniques can be distinguished
in feature-less and feature-based approaches, where also combinations were proposed
[ZF03]. The first category directly exploits the intensity information of the images
[WGP08]. In contrast, the latter one first detects features in both images which are subse-
quently matched and used to guide the computation of a suitable transformation for regis-
tration. Results and quality of feature-based registration obviously depend on the amount,
spatial distribution, and localization accuracy of features used for matching.

For registration of gel images, protein spots have typically been used as features within
feature-based registration methods (e.g. [P+99, R+04, SK08]) as they are detected any-
way to identify proteins. However, for the registration process there is no need to restrict
potential types of features to spots. In this work we aim at assessing the appropriateness
of five feature detectors as basis for subsequent matching and registration of gel images.
Among these are three spot detectors, namely the Laplace, Ring, and Meaningful Bound-
aries detector. We contrast these with two keypoint detectors, SIFT and SURF, which are
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widely used for various image analysis tasks, however, have not been applied to gel im-
ages. We expect our results to give guidance to select suitable feature types and detectors
for robust and precise registration algorithms.

The remainder of this paper is organized as follows. After reviewing related work in Sec-
tion 2 we briefly review the feature detectors evaluated. The test data and our evaluation
strategy are detailed in Sec. 4, and the results are presented in Sec. 5.

2 Related Work

Over the years various techniques for automatically registering pairs of 2D electrophoresis
images have been published. Regardless of whether the registration method is exclusively
based on feature correspondences, or if it is a combined feature-based and feature-less
technique, the quality of the registration result is directly linked to the quality of the corre-
spondences provided. The more robust these matches are, the more uniformly distributed
over the entire image area and the less outliers they contain, the better the registration
will work. A large number of correct matches is especially important with regard to the
domain of gel image registration, since here non-rigid image transformations have to be
applied, requiring much more parameters than rigid ones and, thus, more correspondences
for robust transformation estimation (cf. Sec. 4). In addition, common statistically robust
estimators, like RANSAC, are not applicable for these transformations due to the high-
dimensional parameter space and a high computational effort.

An indispensable prerequisite to determine robust correspondences for pairs of images is
the detection of stable features in each single image, which are then matched for correspon-
dence selection. Given the domain of gel images it is straight-forward to extract such fea-
tures by explicitly detecting the most striking image patterns, i.e., protein spots. Common
techniques for detecting those are, e.g., Laplacians [R+04], watersheds [P+99], morpho-
logical operators [CP92] or parametric spot models like 2D Gaussians [PF89]. Also more
complex algorithms have been proposed, e.g., based on Markov Random Fields [Bak00].
However, spot-like structures in gel images are only one possible choice for stable features.

In various other computer vision applications, like camera motion recovery [HZ04], mo-
saicing [Cap04] or robot navigation [GZBSV03], also robust features for correspondence
extraction are indispensable. In these scenarios usually no assumptions about specific
image contents or structures can be made. Thus, for feature detection flexible keypoint de-
tectors have been devised that yield stable features independent of a certain image domain
or application context, and also under severe image deformations and degradations.

In [MS04] a thorough analysis of various general keypoint detectors is presented. Most
of them are either based on image derivatives, i.e., Hessian or moment matrices. One of
the most prominent ones is probably the Harris corner detector [HS88]. Alternative ap-
proaches, e.g., rely on evaluation of local image intensity patterns [SB97]. More recently
a new class of scale invariant detectors, the Scale Invariant Feature Transform (SIFT)
[Low04] and Speeded-Up Robust Features (SURF) [BTvG06], became popular. Com-
pared to explicit spot and local feature detectors these have the advantage that they also
detect more and other meaningful image structures. In particular, their scale invariance al-
lows for extraction of characteristic intensity configurations on larger scales, e.g., striking
intensity distributions in the images, which yields a larger flexibility in feature extraction.
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3 Feature Detection for 2D Gel Image Registration

Our aim in this paper is to provide a thorough performance evaluation of common gel
image specific spot detectors, and in particular, to compare those to more general keypoint
detectors in the domain of 2D electrophoresis gel images. In detail, we will analyze the
robustness of different techniques with regard to non-rigid image deformations and non-
uniform image structure distributions as they are typical for gel images. Below, different
approaches for feature detection included in our case study are discussed in more detail.

3.1 Spot Detectors

Laplace Detector One of the most simple and fast techniques for spot detection in gel
images is given by Laplacian detection (e.g., [R+04, RG07]). Spot centers are modeled as
image locations with significant local curvature, detectable in terms of significant values in
2nd order derivatives. The spot detection itself is done by smoothing the image applying a
Gaussian mask and then simply thresholding the Laplace images ∂2

x and ∂2
y :

f(x, y) =

�
1, if (∂2

x(x, y) > tL) ∧ (∂2
y(x, y) > tL) with tL = 0

0, otherwise

As detected spot locations are usually not isolated, connected components are extracted
from the binary image f , and only their mass centers are kept as valid locations (Fig. 2).

Ring and Ellipse Operators The ring operator proposed in [WTN97] for spot detec-
tion is based on the assumption that spots usually show a circular or elliptical shape, with
the inner parts of the ellipse being darker than the outer ones. Related structures are de-
tected by initially smoothing the gel image with a Gaussian mask, and then applying Otsu
thresholds to the original image intensity values, and also to local gradient magnitudes.

In the resulting two binary images all pixels (x, y) that show a low intensity and lie in
homogeneous image regions are further analyzed. The main idea is to search for spot-
specific intensity distributions given two sets of pixels, Cx,y and Rx,y , for each (x, y):

Cx,y = {(u, v)|(u − x)2 + (v − y)2/α2 ≤ r2
M}

Rx,y = {(u, v)|r2
m ≤ (u − x)2 + (v − y)2/α2 ≤ r2

M}

Cx,y includes all pixels lying in an elliptical region (specified by α) around pixel (x, y)
with distances up to rM to the center pixel (x, y), while Rx,y contains only the pixels of
Cx,y with a distance of at least rm to the center. The ring detector itself is then given by

h(x, y) = min
(u,v)∈Rx,y

I(u, v) − min
(u,v)∈Cx,y

I(u, v).

For final spot detection, h is thresholded with tH = 0, connected components are labeled
in the resulting binary image, and spots are extracted as the components’ centers of mass.

Level Lines and Meaningful Boundaries The concept of meaningful boundaries de-
fines a measure of meaning for closed curves based on the Helmholtz principle [A+07].
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The level lines of the lower gray level sets are extracted from a 2D gel image and examined
for their meaning to derive meaningful level lines and by this detect spots. The meaning
of a level line is determined by its length and the probability of occurence of a contrast in
the image, which is larger than the minimal contrast on the level line. Meaningful level
lines are reduced to one contour per spot, and the enclosed area determines the position of
the spot by its center of mass (Fig. 2, right clip).

3.2 Image Content Independent Feature Detectors

If no assumptions about image contents and structures can be made, feature detectors in-
dependent of such knowledge are needed. Optimally, these are invariant against scale and
transformations. Recently, two such scale invariant keypoint detectors were published, the
Scale Invariant Feature Transform [Low04] and Speeded-Up Robust Features [BTvG06].
Both are quite robust against affine transformations and gained large importance due to
their proven general applicability in various scenarios. In the context of our study we eval-
uate their robustness with regard to the domain of 2D gel images, and regarding non-rigid
transformations which has not been done systematically until now.

SIFT - Scale Invariant Feature Transform The basic concept of SIFT [Low04] is a
thorough analysis of image characteristics in scale space. Different scales are acquired
by downsampling the input image I(x, y) applying Gaussian convolution kernel functions
Gσ(x, y) of specific standard deviation σ:

Iσ(x, y) = Gσ(x, y) ∗ I(x, y)

Combining different scales of an image into a continuous function of scale yields the image
scale space. Between neighboring scales σ is varied by a constant factor k. Keypoints are
then given by local extrema in the difference images Dσ(x, y) between two subsequent
scales:

Dσ(x, y) = Ikσ(x, y) − Iσ(x, y)

For extrema detection, the difference value Dσ(x, y) of each point (x, y, σ) in scale space
is compared to all neighbors in a 3×3×3 neighborhood. By fitting a 3D quadratic function
to the local point the extremum can be localized with subpixel accuracy (Fig. 2, left).

SURF - Speeded-Up Robust Features More than SIFT the SURF approach is tuned for
efficiency, but the features nevertheless show a high stability [BTvG06]. The main idea is
given by an analysis of local Hessian matrices H(x, y, σ) over various scales:

H(x, y, σ) =



Lxx(x, y, σ) Lxy(x, y, σ)
Lyx(x, y, σ) Lyy(x, y, σ)

�
,

where L.. are the results of convolving the input image with 2nd order Gaussian deriva-
tives in xx, yy, xy and yx direction, respectively. However, for efficiency reasons the
entries of the matrix are calculated only approximately applying discrete box filters as ap-
proximations to the Gaussian derivative kernels. Convolutions with box filters can quite
efficiently be calculated given integral images. In addition, in contrast to usual scale space
approaches, the images are not resampled within a pyramid, but detection results for vari-
ous scales are produced by simply applying differently sized filters to the input image.
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In SURF robust keypoints are defined by maximal determinant values of local Hessian
matrices. Accordingly, detection is done by searching for maximum determinants. Initially
a non-maximum suppression in a 3× 3× 3 neighborhood of each point is performed, and
maxima locations are interpolated in scale and space, like in the SIFT approach (Fig. 2).

4 Experimental Evaluation

Evaluating the efficiency of spot and keypoint detectors, respectively, is a difficult task.
The main problem is usually a lack of ground truth data with known corresponding feature
point locations. Accordingly, one common approach is to generate synthetically deformed
images from a given reference image by applying a known transformation so that corre-
spondences can be calculated directly (e.g. [MS04, BTvG06]). Before and after transfor-
mation features are then detected in the test images applying different detectors. To assess
quality and robustness of the various detectors, meaningful quality measures are used.

Dataset For testing the various feature detection techniques we used a selection of gels
from the LECB 2-D PAGE Gel Images Data Sets [LLL84], freely available for public
use1. In detail we selected 45 images from the Human leukemias data set, each image
sized 512 × 512 pixels in 8-bit GIF format. All images were converted to PGM format
and automatically cropped given the annotated valid spot areas within the gels as specified
in the complementary description files. Since not all area specifications were accurate
and sometimes artefacts remained at the border of images, 10 images were manually post-
processed afterwards (cropping, filling of spurious white regions with local background
color) to also remove these artefacts and prevent detectors from selecting spurious features.

Categorization of Images The images of the dataset show a wide variety of complexity,
ranging from bright images with very few spots to very dark images with lots of struc-
ture. To enable a thorough comparison, the gels were manually classified into 4 different
complexity classes, where each class contained 7 to 15 images:
C0 gels with only some few spots;
C1 gels with a moderate number of spots;
C2 gels with lots of spots;
C3 gels that were quite dark and spot segmentation quite difficult in large areas.

Synthetic Image Deformations using Thin Plate Splines The deformation of 2D elec-
trophoresis gel images is often modelled applying bilinear transformations [SA+02] or
thin plate splines [Ped02]. Since thin plate spline (TPS) transformations [Boo89] can
take full advantage of the information provided by landmark points [DDY03] we choose
this model for our experiments. 25 basis functions were applied to model local and global
deformations. For each image, the centers for the 25 basis functions were uniformly sam-
pled in the image domain. For each basis function a displacement vector was drawn
from a Gaussian distribution with standard deviation σD and zero mean. The standard
deviation σD was varied to simulate different amounts of distortion of the 2D gels. A
global affine transformation was added to these displacements, which again was randomly

1http://www.lecb.ncifcrf.gov/2DgelDataSets/
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Figure 1: A sample gel from class C2, undistorted (left) and deformed with σD = 4 (right).

sampled. The rotation was uniformly drawn from the interval [−10◦; 10◦], the shearing
axis uniformly from [−90◦; 90◦] and the two scale factors uniformly from the interval
[0.9; 1.1]. Given the resulting displacements for the centers, a TPS transformation was
determined and the original image transformed accordingly. To simulate variations in
the gray value structure, white noise was added to the interplolated intensities which was
sampled independently from a Gaussian distribution with standard deviation 5. For each
σD ∈ {1, 2, 3, 4, 5} we generated 10 randomly distorted images for each original image.
This results for each σD in an evaluation set of 45 × 10 = 450 distorted images. For an
example of a distorted gel image see Fig. 1. All images with one distorted image for each
distortion level and detected features are available as supplemental material on our server2.

Performance Measure Comparing the robustness and efficiency of feature detectors is
an important task in computer vision, and various performance measures exist. With regard
to the topic of this paper we are particularly interested in the repeatability score Rsr of a
certain detector (cf. [MS04]). It quantifies the probability of a feature in an undistorted
image I to be re-localized in a deformed version IT of the same image with accuracy r:

Rsr(I, IT ) =
|PT |
|PI | with PT = { pt | r >� pi − TPS(pt) �} (1)

PI is the set of features pi detected in the undistorted original gel image, and PT is the set
of features pt detected in the transformed image, that have a distance not bigger than r to
their initial counterparts in the original image after TPS transformation. For the evalua-
tion in this work we used r = 1.5 pixels. This value has already proven its suitability in
evaluating feature detectors for non-rigid registration, allowing for convenient registration
results given the robustness and flexibility of up-to-date feature descriptors (cf. [MS04]) .

Obviously the overall number of final correspondences not only depends on the initially
detected features, but also on the subsequent matching process where suitable feature
descriptors have to be applied. In this work, we concentrate on robust detection of features
as an indispensable prerequisite and fundamental precondition for any matching process.

2http://www2.informatik.uni-halle.de/agprbio/AG/Publication/OnlineMaterial/GCB 2008/Gels
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Figure 2: Prototypical detection results for SIFT, SURF, the ring operator, Laplacians and the mean-
ingful boundaries (from left to right) for an image of class C3. Green crosses mark spot centers.

5 Results and Discussion

Five different spot and keypoint detectors, respectively, were included in our study, i.e.,
Laplacians (’laplace’), the ring detector (’ring’), meaningful boundaries (’level’), SIFT
(’sift’), and SURF (’surf’). For SIFT and SURF we used publicly available software pack-
ages, i.e., the free C++ implementation of SIFT by A. Vedaldi3 and the original SURF
library provided by its authors4. All other detectors were re-implemented by ourselves.

Detector C0 C1 C2 C3

Laplace 100 150 275 300
Ring 13 33 87 226
Level 45 101 153 158
SIFT 247 534 826 1100
SURF 43 148 330 573

Table 1: Avg. number of features detected with
standard parameter settings for the gel images
in each complexity class C0 to C3.

Each of the detectors was applied to all
original images within the four complexity
classes and all images within the five dis-
tortion levels. All detectors were initially
run with standard parameter settings as spec-
ified in related publications. The only ex-
ception is for the Laplacian detector adopted
from [R+04] where the number of spots to
be detected was explicitly specified manu-
ally. The authors select the 400 most intense
spots from their gel images. However, for images in our experiments this number appeared
too high, especially for image categories with few spots. The detector is enforced to ex-
tract spots even from more or less homogeneous background regions. Hence we chose
more suitable spot numbers for each complexity class in our test dataset (Tab. 1).

First it is noted that the number of features detected on average in undistorted images
varies significantly for different detectors (see Tab. 1 and Fig. 2 for an example of detection
results from a clipped section of one gel image). SIFT and SURF almost always extract
significantly more keypoints than the spot detectors. The ring operator yields less than 100
spots for classes C0 to C2, which is well below the counts for the other spot detectors. As
a large number of correspondences and, thus, features is required for precise registration,
the keypoint detectors show superior compared to the spot detectors regarding this aspect.

Of course, the total number of features detected is not sufficient for high detector quality.
As important is the repeatability score of the detector, i.e., the number of initially detected
features that are expected to be re-localized in deformed and degraded images. The re-
peatability score as defined in Equ. (1) in Sec. 4 relates the number of re-detected features
to the number of features detected initially. Accordingly, it is normalized with regard to the

3http://vision.ucla.edu/˜vedaldi/code/siftpp/siftpp.html
4http://www.vision.ee.ethz.ch/˜surf/
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Figure 3: Average repeatability scores per class for various detectors applied to all four complexity
classes for varying distortion levels σ.

total number of features. As a consequence, the repeatability scores achieved for different
detectors are only comparable if approximately the same number of features was detected.
To this end we have performed additional evaluation runs where the parameters for SIFT,
SURF and Laplacian detectors were adjusted to yield approximately the same number of
features. The ring detector and meaningful boundaries were not included since there is no
reasonable way to adapt them for detecting comparable numbers of features.

The results of our experiments are summarized in Fig. 3. For each class the mean repeata-
bility scores for each detector are plotted, calculated by averaging the detection results for
all images of a class with a given distortion level. The graphs ’sift’, ’surf’, ’laplace’, ’ring’
and ’level’ give results for experiments with standard parameter settings. For SIFT, SURF
and Laplace there are additional curves in each plot, related to non-standard parameter set-
tings. For ’sift(laplace)’ and ’surf(laplace)’ both detectors were adjusted to detect the same
number of keypoints as the Laplace does for its standard settings. Likewise ’laplace(sift)’
and ’surf(sift)’ give the results for both detectors parameterized to yield the same high
number of features that SIFT detects with default settings (cf. Tab. 1 for exact numbers).

For standard parameters, the meaningful boundaries give a repeatability of about 90% for
all configurations, the ring operator yields also about 90% for categories C0 and C1, which
drops to about 75% for C3. SIFT and SURF show performances in the range of about 60%
to 80%. The standard repeatability score of Laplace for categories C0 to C2 is comparable
to the ones of SIFT and SURF, and drops to 55 − 50% for category C3.
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Adjusting SURF to detect the same number of feature points as SIFT, which results ap-
proximately in doubling the number of keypoints, reduces its performance significantly to
about 45 − 65%. Accordingly, considering both the total number of detected features and
the repeatability score, SIFT appears to have advantages over SURF, independent of the
image category. For the Laplace detector, the repeatability goes down to about 40 − 55%,
particularly for images with little structure as in categories C0 and C1. This is not surpris-
ing, but underlines the superiority of standard SIFT in these classes. It becomes obvious
that the Laplace detector is by no means suitable for detecting large numbers of features.

Restricting the feature number of SIFT to the smaller number of the Laplace detector yields
significant improvements of the repeatability which increases by ≈ 15 − 20% in each
category. In contrast, if SURF is restricted to the same number of features its repeatability
remains more or less unchanged except for category C0, where it declines significantly5.

In general, our evaluation results show that the image category has little influence on the
repeatability scores of the various detectors, but mainly yields significant differences in
the total number of detected feature points. Increasing the amount of distortion has also
little influence for the meaningful boundaries and ring detector, but decreases the perfor-
mance for the others of about 10%. If only the repeatability is considered, the meaningful
boundaries and ring detector yield the highest scores and the largest robustness. Contrary,
if a large number of robust features is required general scale invariant detectors, in partic-
ular SIFT, appear favorable compared to explicit spot detectors. Given their repeatability
scores they form a suitable foundation for extracting a large number of robust feature cor-
respondences essential for high-quality feature-based gel image registration.

6 Conclusion

In current approaches for feature-based registration of gel images, correspondences are
almost always based on protein spots as domain inherent features. The first contribution
of this paper is a novel systematic quantitative analysis of various commonly used spot
detectors. It allows for an objective evaluation of the detectors with regard to stability and
repeatability. Secondly, we propose the application of more general keypoint detectors
for feature extraction, i.e., SIFT and SURF. Compared to explicit spot detectors a signifi-
cantly larger number of features per image is extracted on average with a likewise higher
repeatability. Since large numbers of stable features yield an important basis for robust
correspondence detection and also high-quality image registration, SIFT and SURF show
advantages over conventional techniques and should no longer be ignored in this field.
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