
Feature Dependencies have to be Managed
Throughout the Whole Product Life-cycle

Goetz Botterweck, Kwanwoo Lee

Lero – The Irish Software Engineering Research Centre
University of Limerick
Limerick, Ireland

goetz.botterweck@lero.ie

Hansung University
Seoul, South Korea
kwlee@hansung.ac.kr

Abstract: In this position paper, we discuss feature dependencies as one major
challenge in product line engineering. We suggest that (1) feature dependencies
should be treated as first class entities and (2) dependencies in various artefacts
across the software life cycle should be mapped onto each other.

1 Introduction

Product line engineering [PBL05, ClNo02] is based on the assumption that under certain
conditions it is more efficient to derive products from a product line than it would be to
develop these product from scratch.

However, the make that promise a reality the application engineering processes, which
derive the product (and account for the product-specific effort), have to be performed as
efficiently as possible. For instance, in the schematic overview shown in Figure 1, we
would have to improve the processes Product Configuration and Product Derivation to
make the creation of a Product more efficient.

One potential approach would be to group all interactive decisions, which require human
intelligence and creativity, into the process of Product Configuration and try to automate
the mechanic assembly and generation of the product in Product Derivation as much as
possible. Then, after we configured a product we could just ``press a button'' and the
product would be created by automated mechanisms.

101



2 Research problem: Dependencies

So what is stopping us from reaping all the efficiency benefits that product line engi-
neering seems to promise?

In our opinion, one of the main challenges in product derivation lies in dependencies
between features. For instance, consider the illustration in Figure 2: In product line engi-
neering it is common engineering practice to describe the product line with various arte-
facts, such as requirements models, feature models and implementation models. Each of
these models contains elements (requirements, features, components) and dependencies
between them.

Now, if we want to support the flexible configuration and derivation of products, where
we can choose arbitrary configurations (as long as they fulfil the constraints set by the
feature model) we have to support all potential combinations and, while doing so, take
into account the corresponding dependencies.

If we would follow a naive approach for implementing dependencies, we would create
implementation components for all the various cases. For n optional features, in the
worst case, we might end up with 2n implementation components. However, we are
looking for techniques to turn this into “just n implementation components for
n features". So how do we do that?

Implementation

Domain
Feature
Model

Application
Feature
Model

Features

Product
Configuration

D
om

ai
n
En

gi
ne

er
in
g

A
pp

lic
at
io
n
En

gi
ne

er
in
g

Domain
Implementation

Product

Product
Derivation

Domain
Engineering

Requirements

Product Line
Requirements

Product
Requirements

Figure 1: Schematic overview of product line engineering

102



Figure 2: Mappings and dependencies between SPL elements

3 Approach: Managing Dependencies Throughout the Product Life-
cycle

One of the things that force us take into account too many combinations are feature de-
pendencies -- because they cause, that the change in the selection of just one feature can
influence all kinds of implementation components.

Consequently, in our opinion one potential approach to address the described challenges
lies in the improved handling of dependencies. Concretely, we see the following tech-
niques:

• In all involved artefacts throughout the life cycle, dependencies have to be treated as
first class entities. In other words, dependencies have to be isolated into their own
units of description. For instance, when coding and structuring the implementation,
we should modularize the implementations of features dependencies into separate
components. Similar applies to dependencies in feature models and requirements.

• Just like mapping of features to components, we should map dependencies in
various artefacts onto each other. For instance, each feature dependency should be
mapped to a corresponding dependency implementation.

• To allow for flexible combinations of feature implementations and dependency
implementations, we have to apply techniques than can generate, assemble or weave
implementation units [VoGr07, StVo06]

103



• Especially aspect-oriented techniques allow to encapsulate the implementation of a
dependency (as a cross-cutting change) into its own unit of description

Figure 3: Dependencies as first class elements (with dependency mappings)

Starting from the earlier situation (Figure 2) the suggestions described above result in a
situation as illustrated in Figure 3, where dependencies are treated as first class entities
and dependencies in various artefacts across the life-cycle are mapped onto each other.

4 Sample Case: Calculator Product Line

To illustrate our approach, we want to briefly discuss an example which is taken from
earlier research [BLT09], see the diagram in Figure 4.

The upper part of the diagram shows extracts of the feature model of a sample product
line of calculators. It contains the optional features Mode, Notation, History, and
NumberSystem as well as the mandatory feature Off. The entities labelled d1 to d5
represent dependencies between features. For instance, d1 describes that the feature Off
(functionality to switch off the calculator) influences the run-time behaviour of feature
History (functionality to recall values calculated earlier).

104



Scientific Calculator PL

The vertical arrows indicate mappings between feature and implementation model. The
dependencies d1 to d5 are mapped onto corresponding aspectual components. For in-
stance, the aspect OffHistory.aj implements the dependency d1 between the features
Off and History.

In our approach [BLT09], all this information about feature dependencies, their
implementation and the corresponding mappings are captured by EMF-based models.
Hence, we can apply frameworks such as GMF or openArchitectureWare [oAW] to
handle and process these models.

In the long run, such techniques, hopefully, support our goals of making product deriva-
tion processes more efficient.

Bibliography

[BLT09] Botterweck, G.; Lee, K.; Thiel, S.: Automating Product Derivation in Software Product
Line Engineering, Proceedings of Software Engineering 2009 (SE09), 2-6 March 2009,
Kaiserslautern, Germany, 2009.

[VoGr07] Voelter, M.; Groher, I.: Product Line Implementation using Aspect-Oriented and
Model-Driven Software Development, 11th International Software Product Line
Conference (SPLC 2007), 10-14 September 2007, Kyoto, Japan, 2007.

Mode HistoryNotation OffNumber Sys.

d4 : REA d1 : RMd3 : RMd5 : RM d2 : RM

ModeHistory
Dep.aj

OffHistory
Dep.aj

AngleHistory
Dep.aj

NumsysHistory
Dep.aj

Notation
HistoryDep.aj

Down
Button.java

Up
Button.javaCalculatorPanel

History.aj

Calculator
Panel.java

Calculator
Button.java

Off
Button.java

Calculator
Applet.java

CalculatorAppl
etHistory.aj

EqualsButton
History.aj

Equals
Button.java

History
Item.java

Angle

DI = Design‐time inclusion
RM = Run‐time modification
REA = Run‐time exclusive activation

Figure 4: Dependency mappings in a sample product line

105



[StVo06] Stahl, T.; Voelter, M.: Model-driven Software Development : Technology, Engineering,
Management, ISBN 978-0470025703, Chichester, England; Hoboken, NJ, USA, John
Wiley, 2006.

[PBL05] Pohl, K.; Boeckle, G.; van der Linden, F.: Software Product Line Engineering :
Foundations, Principles, and Techniques, ISBN 978-3540243724, New York, NY,
Springer, 2005.

[ClNo02] Clements, P.; Northrop, L. M.: Software Product Lines: Practices and Patterns, The SEI
series in software engineering, ISBN 978-0201703320, Boston, MA, USA, Addison-
Wesley, 2002.

[oAW] openarchitectureware.org - Official Open Architecture Ware Homepage, Web site.
http://www.openarchitectureware.org/

106


