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Abstract:
The ability of some RNA molecules to switch between different metastable con-

formations plays an important role in cellular processes. In order to identify such
molecules and to predict their conformational changes one has to investigate the re-
folding pathways. As a qualitative measure of these transitions, the barrier height
marks the energy peak along such refolding paths. We introduce a meta-heuristic to
estimate such barriers, which is an NP-complete problem. To guide an arbitrary path
heuristic, the method uses RNA shape representative structures as intermediate check-
points for detours. This enables a broad but efficient search for refolding pathways.
The resulting Shape Triples meta-heuristic enables a close to optimal estimation of the
barrier height that outperforms the precision of the employed path heuristic.

1 Introduction

RNA plays a central role in living cells. Numerous RNAs are able to switch between
different structures within their life time due to thermodynamics, temperature changes
(thermometers), ligand binding (riboswitches) or other signals [FHMS+01]. Such multi-
stable RNAs regulate gene expression directly or are connected to regulatory mechanisms,
e.g. splicing [LC93]. For the correct prediction and study of such structural changes it
is necessary to identify the lowest energy refolding pathway in the underlying RNA en-
ergy landscape. The energy barrier height surmounted along such paths can be used to
estimate refolding probabilities [GFW+08] or to study the kinetics of the folding process
[WSSF+04].

Maňuch et al. have shown that the calculation of the exact barrier height is a hard,
NP-complete problem for RNA secondary structure landscapes [MTSC09]. Therefore,
exact approaches rely on the full enumeration of the low energy parts of the landscape
[SvdPS99, FHSW02, KH05], resulting in exponential runtimes. Heuristics have been in-
troduced to avoid the exponential behaviour while still providing a reasonable estimate
of the barrier height. The first greedy approach by Morgan and Higgs considers direct
paths only [MH98] which are of minimal length. Subsequently, the barrier estimation
was improved via more advanced direct path heuristics [FHMS+01, TOSY06, GFW+08].
In order to avoid the restriction of direct pathways, heuristics were introduced that allow
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for minor detours in the landscape [LFH09, DLVHC10]. Such methods revealed the high
potential of non-direct pathways.

Our Shape Triples approach aims to improve the barrier height approximation of arbitrary
path heuristics by splitting the pathway prediction xs ! xt into xs ! r ! xt, where r
is a defined checkpoint for a detour. We use RNA shapes and their representative struc-
tures, the so called shreps [GVR04], to define the detour checkpoints r. This is based on
the observation that intermediate structures xi along low barrier pathways can show very
different branching patterns compared to the start and target structures xs, xt. Since RNA
shapes group structures based on their branching pattern, we can use shreps to access the
pattern of xi. By pivoting on the shreps of all shapes, we have a good chance to catch the
optimal detour while the number of shapes is very small compared to the number of RNA
structures.

The resulting Shape Triples meta-heuristic, i.e. a high-level strategy that guides other path
heuristics [Bla09], enables an efficient and precise estimation of barrier heights within
RNA energy landscapes.

To evaluate our method, we show for two bistable RNA molecules the increased precision
of the meta-heuristic compared to the employed path heuristic for a large number of refold-
ing paths. We further show that in most cases the exact barrier height can be determined
using our Shape Triples approach.

2 Preliminaries

In order to formulate our algorithms and results, we introduce the concept of energy land-
scapes, the barrier height problem, and their application to RNA. This is followed by an
overview of RNA shape abstractions.

Energy Landscapes and Barrier Heights

In order to describe and investigate folding processes, the concept of discrete energy land-
scapes is applied frequently [Wri32, Sta02, FHSW02]. It is defined by a triple 〈X, E, N〉,
i.e. a finite set of states X , an associated energy function E : X → R, and a neigh-
borhood relationship N : X → P(X), where P denotes the powerset. The folding
process is mainly influenced by the local minima M ⊆ X of the landscape defined by
∀m∈M∀x∈N(m) : E(m) ≤ E(x).

A folding trajectory corresponds to a walk (or path) w = (x1, . . . , xl) ∈ X l of length l
within the energy landscape that respects the neighborhood relation (∀i : xi ∈ N(xi−1)).
With W (xs, xt) we denote the infinite set of all possible walks starting in xs and ending
in xt.

The barrier height B denotes the lowest energy peak to make two structures xs, xt acces-
sible to each other, i.e.

B(xs, xt) = min{ max{ E(x ∈ w) | w ∈W (xs, xt) }} . (1)

The barrier height heavily influences the folding probabilities within a certain energy land-
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scape [FFHS00]. It can be used to derive energy landscape abstractions like barrier trees
[HS88, FHSW02] and enables studies of folding kinetics [WSSF+04, GFW+08].

The energy barrier problem is to determine the exact barrier height B of two given states
of an energy landscape.

RNA Secondary Structure Landscapes

In order to investigate the folding behavior of an RNA molecule the energy landscape of
its secondary structures can be used [FFHS00, LFH09]. Given the nucleotide sequence
S ∈ {A,U,G,C}n of an RNA of length n, a secondary structure x is a set of base pairs
{(i, j) | 1 ≤ i < j ≤ n} such that (a) Si, Sj form a Watson-Crick (A-U, G-C) or a G-U
base pair, with (b) at most one base pair per position, i.e. ∀(i,j),(k,l) : j '= k∧(i = k ⇔ j = l),
such that (c) all pairs are non-crossing, i.e. ∀(i,j),(k,l) : i < k < j ⇔ i < l < j. The free
energy of a given structure x can be calculated by a base pair based decomposition into
structural elements [ZS81]. We use the implementation from the Vienna RNA Package1

v1.7.2 within the Energy Landscape Library2 v3.2.0 [MWB07]. All energies are given in
kcal
mol where calculations use parameters “-d2 -T 37”. For details of the method applied
and the energy parameters we refer to literature [ZS81, Hof03].

The neighborhood within an energy landscape reflects small structural changes along the
folding process. To this end we apply so called single moves [FFHS00], i.e. the insertion
or deletion of a single base pair. Thus, the neighborhood of a given structure x is defined
by N(x) = {x′ | |bp(x)− bp(x′)| = 1}, using its number of base pairs bp(x) = |x|.
The discrete energy landscape of an RNA S is thus defined by X as all secondary structures
x of S, E as the free energy function defined by Zuker and Stiegler [ZS81], and the single
move neighborhood N .

Maňuch et al. have shown the NP-completeness of the energy barrier problem in such
RNA energy landscapes [MTSC09].

RNA Shape Abstractions

RNA shapes, introduced by Giegerich et al. [GVR04], are a coarse grained model of RNA
secondary structures. The shape abstraction is a homomorphic mapping of the secondary
structure set X of an RNA into a set of compact representations of the different branching
pattern covered by X . Five levels of abstraction are introduced and we denote these πi(x),
the shape abstraction of the i-th level of a given RNA structure x. For details on the
method we refer to literature [GVR04, SVR+06]. Throughout this manuscript we use the
RNAshapes3 implementation v2.1.5.

Given an RNA energy landscape 〈X, E, N〉, we denote with Pi the set of all shape ab-
stractions of level i of X , i.e. Pi = πi(X) = { πi(x) | x ∈ X}. Thus each shape pi ∈ Pi

describes a class of structures of X . The structure with minimal energy within the class
is called the shape representative structure or shrep r(pi), i.e. ∀x∈X : (πi(x) = pi) →
E(x) ≥ E(r(pi)).

In the following we will use the RNA shape abstraction concept to generate a new and

1Vienna RNA Package available at http://www.tbi.univie.ac.at/∼ivo/RNA/
2ELL available at http://www.bioinf.uni-freiburg.de/Software/
3RNAshapes available at http://bibiserv.techfak.uni-bielefeld.de/download/
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efficient meta-heuristic to estimate the barrier height between two RNA structures.

3 Methods

Since we want to present a meta-heuristic that employs an arbitrary path heuristic, we
briefly review two existing direct path methods for the energy barrier problem, namely
the MH heuristic by Morgan and Higgs [MH98] as well as a breadth-first-search (BFS)
approach [FHMS+01]. Both, the MH and BFS heuristic, can be implemented in our new
RNA Shape Approaches presented afterwards. The exhaustive Shape Network approach
exploits the potential of the RNA shape abstraction for the energy barrier problem. This
is followed by our efficient Shape Triples meta-heuristic that enables a fast and precise
barrier approximation.

RNA Direct Path Heuristics

Direct path heuristics find an approximate solution to the energy barrier problem for two
RNA structures xs, xt. Considering only single moves (base pair insertion/deletion), a
direct path ŵ is a walk w(xs, xt) of minimal length, i.e. of base pair distance d(xs, xt) =
|(xs∪xt)\ (xs∩xt)| [MH98]. In the following the abbreviation BDP(xs, xt) will be used
to denote the barrier height between xs and xt estimated by a direct path heuristic.

The MH heuristic: Morgan and Higgs introduced a simple greedy heuristic to explore
direct paths [MH98]. It uses an iterative conflict-driven scheme of base pair insertions and
deletions and evaluates the maximal energy reached within the resulting walk. Applied
in several iterations, while storing the path with lowest barrier found, it returns an upper
bound on the barrier height. For details on the method refer to the literature [MH98,
FHMS+01, GFW+08].

The BFS heuristic: Flamm et al. improved the greedy MH approach using a limited
breadth-first-search (BFS) [FHMS+01]. Starting from the initial structure xs, it enumer-
ates all single moves possible in direct walks towards the target structure xt. From these
walks only the best m candidates are considered for extension in the next iteration. This
continues until the full walk length of d(xs, xt), and thus the target structure xt, is reached.
BFS enables better barrier height approximations compared to MH to the cost of increasing
runtime correlated with m [GFW+08]. In the following, we denote a BFS search with
cut-off m with BFSm.

Drawbacks of Direct Paths: Direct path heuristics are fast, but at the cost of precision,
since only a small “corridor” of the energy landscape is investigated. Thus, the barrier
height estimated via direct paths is usually higher than the exact one, i.e. BDP(xs, xt) ≥
B(xs, xt) [MH98]. Lorenz et al. have shown that lowest barrier pathways often contain
detours and that rerouting via non-direct structures can significantly improve barrier height
approximations [LFH09].

Shape Approaches

The central idea of our Shape Approaches is to use energy minimal shrep structures as
intermediate checkpoints to reroute the path calculation of a given path heuristic, i.e. to
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go from the start structure xs via shreps to target xt. The resulting non-direct detour paths
are more likely to enable a precise barrier estimate than the employed path heuristic alone.
For simplicity, we exemplify the Shape Approaches employing a direct path heuristic as
MH or BFS.

The Shape Network approach: In order to evaluate the potential of any Shape Approach
we use the Shape Network (SN), which uses the notion of shapes to create an abstraction
of the energy landscape. The Shape Network is a fully connected, labeled graph where
each node represents the shrep r(pi) of a shape pi ∈ Pi of a given fixed shape abstraction
level i. In the following, we ignore the level identifier i and abbreviate r(pi) = rp to
ease the presentation. Each edge between two nodes rp, rp′ is labeled with a barrier height
approximation via direct paths BDP(rp, rp′) (e.g. using MH or BFS).

Utilizing a simple variation of the dynamic programming algorithm by Floyd for the short-
est path problem [Flo62], we get the barrier height approximation BF(rp, rp′) for any two
shreps rp, rp′ via any path within the Shape Network. Thus, using this BF estimate we can
get an upper bound BSN(xs, xt) of the barrier height between two RNA structures xs, xt

including detours via an implicit sequence of shreps by

BSN(xs, xt) = min
p,p′∈P

{ max

BDP(xs, rp),
BF(rp, rp′),
BDP(rp′ , xt)

 , BDP(xs, xt) } (2)

The major drawback of the Shape Network approach is the high computational cost to
calculate the Shape Network via |P |2 direct path calculations where computation time
depends on the heuristic (see direct path section). Afterwards the Floyd algorithm runs
efficiently in O(|P |3) and results in the barrier height approximation BF between all pairs
of shreps. Once BF is calculated, these approximations can be used to estimate the barrier
height between any two structures using BSN from Eq. 2 with (2·|P |+1) path calculations
each.

Thus, the Shape Network approach is a useful tool when interested in a vast number of
barrier heights, e.g. to calculate a barrier tree representation of the energy landscape’s
minima [FHSW02]. Beyond that, we can convert the Shape Network itself into an even
coarser barrier tree abstraction covering the shrep structures that might reflect general
properties of the energy landscape. Finally, the Shape Network approach gives a lower
bound for meta-heuristics based on the Shape Approach idea.

The Shape Triples approach: In the following, we will introduce our Shape Triples (ST)
meta-heuristic which enables a fast and efficient barrier height approximation. It is based
on the observation that the majority of the barrier paths within the Shape Network are very
short. We get already good upper bounds BST(xs, xt) on the barrier height when only
investigating detours with one intermediate shape representative rp, i.e.

BST(xs, xt) = min
p∈P
{ max

{
BDP(xs, rp),
BDP(rp, xt)

}
, BDP(xs, xt) }. (3)

Thus, our two Shape Approaches yield new barrier height approximations BSN and BST
between the two structures xs, xt. These estimates are related via:

B(xs, xt) ≤ BSN(xs, xt) ≤ BST(xs, xt) ≤ BDP(xs, xt). (4)
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function GETBST(xs, xt, P )
B ← BDP(xs, xt) 0 initialization of barrier estimate
for all (p ∈ P ) do

if (E(rp) < B) then 0 low energy shreps only
B ← min{ B, max{BDP(xs, rp), BDP(rp, xt)}} 0 update B if needed

end if
end for
return B 0 final BST(xs, xt) estimate

end function

Figure 1: Scheme for an efficient calculation of BST(xs, xt).

In order to calculate BST(xs, xt) from Eq. 3 we do not have to consider all shrep structures
as possible intermediate checkpoints for detours. Every indirect path using a shrep r with
E(r) > BDP(xs, xt) will result in a worse barrier height estimation than already given by
BDP (see Eq. 3). Thus we can use an adaptive scheme to reduce the computational cost
for calculating BST that considers only shreps with energy below the best barrier height
estimation found so far as given in Fig. 1. The scheme can be further improved when using
an energy sorted shape/shrep enumeration: as soon as a shrep exceeds the current barrier
estimate the iteration can be terminated. Note, the same applies to the Shape Network
approach.

4 Results and Discussion

We investigate the Shape Approaches using the RNA molecules L45 and SL from Tab. 1.
SL is the spliced leader RNA from Leptomonas collosoma taken from [LC93]. It was
shown that the ability of this molecule to switch between two metastable structures heavily
influences its splicing behavior. L45 is a bistable artificial RNA taken from [LFH09].

In order to evaluate the methods, we study the barrier height error, i.e. the approximated
(Eq. 2/3) minus the exact barrier height (Eq. 1). To this end we pick 5000 random pairs
(xs, xt) of local minima for SL with structural distance ≥ 7 and energy ≤ 0. The exact

ID shape i 2 3 4 5 structures
L45 |Pi| = 528 68 57 13 |X| = 5,999,391,327
SL |Pi| = 6305 594 336 49 |X| < 1.725× 1018

L45 S GGGCGCGGUUCGCCCUCCGCUAAAUGCGGAAGAUAAAUUGUGUCU

xs (((((.....)))))(((((.....)))))(((((.....)))))

xt ((((((((((.....(((((.....))))).....))))))))))

SL S AACUAAAACAAUUUUUGAAGAACAGUUUCUGUACUUCAUUGGUAUGUAGAGACUUC

xs ..((...((((((..(((((.((((...)))).)))))..))).)))..)).....

xt .......................((((((((((((.....)))))..)))))))..

Table 1: RNA shape/structure numbers and sequences S for the energy landscapes investigated. For
SL we estimated |X| via sequence length n using the upper bound of 1.07427 · n−3/2 · 2.35467n

from [CKKS09]. The structures xs/xt correspond to the switch structures of the bistable molecules.
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Figure 2: Evaluation of the Shape Approaches for RNA SL. (left) Direct path BFS-heuristic for cut-
off 1 and 5 in comparison to Shape Network and Shape Triples approach at shape level i=3. (right)
Performance of the Shape Triples approach when applying different direct path heuristics and shape
levels i. Boxes cover 50% of the distribution while solid lines mark the median.

barrier height is calculated using an exhaustive approach implemented in the barriers
program [FHSW02].

Figure 2 (left side) evaluates the Shape Approaches compared to the BFS direct path
heuristics for SL. The Shape Network approach performs best among all methods and
finds the exact barrier for ≥75% of the pairs (SN+BFS5). This shows the potential of de-
tour pathways using RNA shapes. Furthermore, the much simpler Shape Triples heuristic
shows only a slightly higher error on average and still outperforms the direct path heuristic.

The figure also compares (on the right) the performance of the Shape Triples approach for
different shape levels and direct path heuristics. Here, BFS clearly beats the MH-heuristic
and increasing BFS cut-offs lower the error (as in [GFW+08]). More importantly, the
Shape Triples approach always yields better results, depicting the robustness of the method
and its independence of the direct path method applied. Finally, increased abstraction
(shape level) reduces the precision of the method. This is expected since less detours in
the landscape are considered (see Tab. 1 for shape numbers). Nevertheless, the differences
get less significant when employing a more precise path heuristic like BFS5 (in green).

Table 2 evaluates the Shape Triples approach for the structure pairs from Tab. 1. In most
cases BST matches or is close to the exact barrier height B and improves the upper bound
from direct path results (BDP). Note, even for high shape abstraction levels we gain a
significant improvement. First experiments reveal that an increase of the BFS cut-off can
further improve our BST results (data not shown).
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Shape Triples BST(xs, xt)

ID B(xs, xt) shape i 2 3 4 5

L45 -7.5 only BFS5 -4.87 with BFS5 -7.5 -7.5 -6.4 -6.2
BDP(xs, xt) ≥ -4.87 |Pi|% 16.7 33.8 31.6 38.5

SL 0.5 only BFS5 2.6 with BFS5 0.5 0.51 0.51 2.6
BDP(xs, xt) ≥ 1.9 |Pi|% 5.9 9.4 14.8 18.4

Table 2: Barrier height evaluation for the xs/xt structure pairs from Tab. 1. Given is the ex-
act barrier B(xs, xt), the estimate via only direct path BFS5, the lowest barrier for such direct
paths BDP(xs, xt), and the Shape Triples approximations BST(xs, xt) for different shape level us-
ing BFS5. |Pi|% denotes the percentage of |Pi| from Tab. 1 used to calculate BST (see Methods).

The number of shapes |Pi| grows slowly exponential with increasing sequence length (see
Tab. 1) [NS09, LPC08]. Nevertheless, the percentage of shapes considered to calculate
BST drops drastically as shown by |Pi|% in Tab. 2. Therefore, even for increasing sequence
length, the computation effort of the Shape Triples approach remains low.

We compare our results to the κ,λ-neighborhood approach presented in [LFH09]. There,
detours are rerouted through energy minimal structures within the κ,λ-neighborhood, i.e.
via energy minimal structures within the structural distances κ and λ to the start and target
structures, respectively. Using a BFS100 heuristic (R. Lorenz, pers. commun.), Lorenz
et al. are able to estimate the exact barrier height of -7.5 for L45 [LFH09]4. The Shape
Triples approach reproduces the same exact barrier height for different shape levels (see
Tab. 2) while using a much faster BFS5 with cut-off 5 instead of 100 (see Methods).

5 Conclusion

We have introduced RNA shape based meta-heuristics to estimate the barrier height be-
tween RNA structures, an important problem to study multistable RNA molecules. The
methods use shape representative structures (shreps) as intermediate checkpoints to reroute
a given path heuristic. This enables a broader search in the energy landscape as done by
the employed heuristic alone. We have shown that our Shape Triples approach is able
to estimate barrier heights close to the optimum using a BFS5 heuristic. The approach
scales with the number of investigated shreps as shown in Fig. 1. Thus, the use of different
shape levels enables a trade-off between barrier precision and computational performance
(see Tab. 2) where the latter depends on the performance of the individual path heuristic
applied.

While being introduced for direct path heuristics only, the method is applicable to any other
path heuristic. Thus, we plan to investigate the use of the RNATABUPATH [DLVHC10],
currently using a different RNA energy scheme, that was shown to yield slightly bet-
ter results than BFS by allowing for minor detours. When employing RNATABUPATH

4Note, in [LFH09] the energy difference ΔE = (B(xs, xt)−E(xs)) is given. Thus, the barrier height was
recalculated by (E(xs) + ΔE).
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within the Shape Triples approach it may be possible to improve the results even further
(see Eq. 4).

We plan to investigate different shrep selection strategies to further speedup the method.
Possible directions are the structural distance to start and target structure or a shape dis-
tance based evaluation.

Furthermore, the method is basically not restricted to RNA shapes but open to any sam-
pling of low energy structures of the underlying RNA energy landscape. Thus, any scheme
for an efficient calculation of such a set of structures can be used to replace the set of shape
representatives in the Shape Triples approach (Fig. 1) and might even improve the results.

Therefore, we consider the Shape Triples meta-heuristic to be a very useful tool to combine
results from different algorithmic fields to gain very precise barrier height estimates for
arbitrary RNA structures.
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