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Vorwort 

Die 14. BTW-Tagung der Gesellschaft für Informatik (GI) fand vom 2. bis 4. 
März 2011 an der Technischen Universität Kaiserslautern statt. In den letzten 
beiden Jahrzehnten hat sich Kaiserslautern dank seiner Hochschulen und For-
schungseinrichtungen zu einem leistungsstarken Zentrum für innovative Techno-
logieprodukte und Dienstleistungen entwickelt. Wesentlich dazu beigetragen hat 
die Technische Universität Kaiserslautern, die 2010 ihren 40. Geburtstag feierte. 
Die stürmische Entwicklung im IT-Bereich wurde, neben dem Fachbereich In-
formatik, vor allem durch die Fraunhofer-Institute für Experimentelles Software 
Engineering (IESE), das Institut für Techno- und Wirtschaftsmathematik 
(ITWM) sowie das Deutsche Forschungszentrum für Künstliche Intelligenz 
(DFKI) vorangetrieben. Durch die jüngste Einrichtung eines Max-Planck-
Instituts für Software-Systeme erfährt die Wissenschaftsstadt Kaiserslautern eine 
weitere, starke Aufwertung im internationalen Forschungsumfeld. 

Die BTW-Tagung ist nun seit über 25 Jahren das zentrale Forum der deutsch-
sprachigen Datenbankgemeinde. Auf dieser Tagung treffen sich alle zwei Jahre 
nicht nur Wissenschaftler, sondern auch Praktiker und Anwender, die sich zu 
den vielfältigen Themen der Datenbank- und Informationssystemtechnologie 
austauschen. So wie sich die Eigenschaften der zu organisierenden und zu ver-
waltenden Daten verändert haben, haben sich auch die Techniken zu deren Or-
ganisation und Verarbeitung verändert und den neuen Herausforderungen ange-
passt. Neben der Behandlung strukturierter Daten nehmen in den letzten Jahren 
semi- bzw. unstrukturierte Daten einen immer größeren Raum ein. Klassische, 
zentrale Datenbanksystem-Architekturen wurden erweitert und teilweise abge-
löst von hauptspeicherbasierten, verteilten, parallelen oder offenen Systemen. 
Dabei spielen neue Hardware-Möglichkeiten eine immer wichtigere Rolle: hier-
zu gehören mobile Systeme, Multi-Core-Systeme, Graphikkarten oder auch spe-
zielle Speichermedien wie Flash-Speicher. Diese Techniken spiegeln sich in den 
aktuellen Themenbrennpunkten wider: Informationsintegration, Datenanalyse, 
Ontologien und Semantic Web, Datenstromverarbeitung, Service-Orientierung, 
Cloud-Technologien, Virtualisierungstechniken, Energieeffizienz u.v.a.m. 

In guter Tradition umfasste auch die BTW 2011 ein wissenschaftliches Pro-
gramm, ein Industrieprogramm und ein Demonstrationsprogramm sowie ein 
Studierendenprogramm, verschiedene Workshops und auch Tutorien zu aktuel-
len Themen im Rahmen der Datenbank-Tutorientage. Frühere BTW-Tagungen 
erreichten stets etwa 80 Einreichungen, aus denen nach strikter und anonymer 
Begutachtung das Tagungsprogramm ausgewählt wurde. Durch die Spezialisie-
rung vieler traditioneller BTW-Themenbereiche, die heutzutage mit eigenen 
Tagungen und Workshops um Beiträge werben, reduzierte sich die Anzahl der 
Einreichungen bei den zuletzt durchgeführten BTW-Tagungen merklich. Umso 
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beachtlicher ist der Wettbewerb um die Teilnahme an der BTW 2011 zu bewer-
ten, da die Anzahl der Einreichungen mit 83 (70 zum wissenschaftlichen Pro-
gramm und 13 zum Industrieprogramm) für die BTW eine Rekordmarke erreich-
te. Zwei kompetente Programmkomitees haben daraus für das wissenschaftliche 
Programm 24 Lang- und 6 Kurzbeiträge und für das Industrieprogramm 6 Bei-
träge ausgewählt, die in diesen Tagungsband aufgenommen und während der 
Tagung vorgetragen wurden. Im Demonstrationsprogramm konnten von 15 Ein-
reichungen 12 zur Präsentation angenommen werden. Alle akzeptierten De-
monstrationen sind in Kurzform in diesem Tagungsband beschrieben. 

Zum sechsten Mal war im Rahmen der BTW ein Wettbewerb um die beste Dis-
sertation, diesmal für den Zeitraum Oktober 2008 bis September 2010, im Be-
reich der Datenbank- und Informationssysteme ausgeschrieben. Die Auszeich-
nung erhielt Dr. Christian Mathis für seine von Prof. Theo Härder betreute 
Dissertation "Storing, Indexing, and Querying XML Documents in Native Data-
base Management Systems". 

Zusätzlich umfasste das Programm der BTW 2011 mehrere eingeladene Vorträ-
ge. Das wissenschaftliche Programm wurde durch Themen aus den Bereichen 
Kerndatenbanktechnologie, Middleware und Entwicklung von Web-
Applikationen bereichert. Vortragende waren Hasso Plattner (SAP AG und HPI 
Potsdam), Nelson Mattos (Google EMEA) sowie Shivakumar Vaithyanathan 
(IBM Research). Die Attraktivität des Industrieprogramms wurde durch drei 
Beiträge von Namik Hrle (IBM), Dieter Gawlik (Oracle) und Franz Färber (SAP 
AG) zu den Themen Datenanalyse, Ereignisverarbeitung und Multi-
Mandantenfähigkeit erhöht. 

Die Materialien zur BTW 2011 werden auch über die Tagung hinaus unter 
http://btw2011.de zu Verfügung stehen. 

Die Organisation einer so großen Tagung wie der BTW mit ihren angeschlosse-
nen Veranstaltungen ist nicht ohne zahlreiche Partner und Unterstützer möglich. 
Sie sind auf den folgenden Seiten aufgeführt. Ihnen gilt unser besonderer Dank 
ebenso wie den Sponsoren der Tagung und der GI-Geschäftsstelle. 

Kaiserslautern, Dresden, Stuttgart, Darmstadt, im Januar 2011 

Bernhard Mitschang, Vorsitzender des Programmkomitees 

Harald Schöning, Vorsitzender des Industriekomitees 

Wolfgang Lehner, Vorsitzender des Demonstrationskomitees 

Theo Härder, Tagungsleitung und Vorsitzender des Organisationskomitees 

Holger Schwarz, Tagungsband und Konferenz-Management-System 
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SanssouciDB: An In-Memory Database for Processing
Enterprise Workloads

Hasso Plattner

Hasso-Plattner-Institute

University of Potsdam

August-Bebel-Str. 88

14482 Potsdam, Germany

Email: hasso.plattner@hpi.uni-potsdam.de

Abstract: In this paper, we present SanssouciDB: a database system designed for serv-
ing ERP transactions and analytics out of the same data store. It consists of a column-
store engine for high-speed analytics and transactions on sparse tables, as well as an
engine for so-called combined columns, i.e., column groups which are used for mate-
rializing result sets, intermediates, and for pocessing transactions on tables touching
many attributes at the same time. Our analysis of SAP customer data showed that the
vast majority of transactions in an ERP system are of analytical nature. We describe
the key concepts of SanssouciDB’s architecture: concurrency control, techniques for
compression and parallelization, and logging. To illustrate the potential of combining
OLTP and OLAP processing in the same database, we give several examples of new
applications which have been built on top of an early version of SanssouciDB and
discuss the speedup achieved when running these applications at SAP customer sites.

1 Introduction

The motto for the last 25 years of commercial DBMS development could well have been

“One Size Fits All” [SMA+07]. Traditional DBMS architectures have been designed to

support a wide variety of applications with general-purpose data management functional-

ity. All of these applications have different characteristics and place different demands on

the data management software. The general-purpose database management systems that

rule the market today do everything well but do not excel in any area.

Directly incorporating the characteristics of certain application areas and addressing them

in the system architecture as well as in the data layout can improve performance by at least

a factor of ten. Such major gains were reported from database systems tailored to appli-

cation areas such as text search and text mining, stream processing, and data warehous-

ing [SMA+07]. In the following, we will use the term characteristic-oriented database

system to refer to such systems. Our vision is to unite operational processing and analyti-

cal processing in one database management system for enterprise applications. We believe

that this effort is an essential prerequisite for addressing the shortcomings of existing so-

lutions to enterprise data management and for meeting the requirements of tomorrow’s

enterprise applications (see also [Pla09]).
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This paper introduces SanssouciDB, an in-memory database for processing enterprise

workloads consisting of both transactional and analytical queries. SanssouciDB picks

up the idea of a characteristics-oriented database system: it is specifically tailored to en-

terprise applications. Although the main constituents of SanssouciDB’s architecture are

well-known techniques which were previously available, we combine them in a novel

way.

The paper is organized as follows: Section 2 gives an overview of SanssouciDB’s archi-

tecture. Afterwards, we describe three important components of the architecture in greater

detail: Section 3 provides the reader with details of how data access is organized in main

memory and how compression weighs in. Section 4 describes transaction management

in SanssouciDB by explaining how concurrency control is realized as well as present-

ing the techniques used for logging and recovery. In Section 5 we present the parallel

aggregation and join algorithms that we implemented for SanssouciDB. We believe that

SanssouciDB’s architecture has a great potential for improving the performance of enter-

prise applications. Therefore, in Section 6, we give a couple of application examples where

significant improvements could be achieved at a number of SAP customer sites using the

concepts presented in this paper. Section 7 concludes the paper.

2 Architecture of SanssouciDB

Nearly all enterprise applications rely on the relational data model, so we have made

SanssouciDB a relational database system. The relations stored in SanssouciDB per-

manently reside in main memory, since accessing main memory is orders of magnitude

faster than accessing disk. Figure 1 presents a conceptual overview of SanssouciDB.

SanssouciDB runs on a cluster of blades in a distributed fashion, with one server pro-

cess per blade. The server process itself can run multiple threads, one per physical core

available on the blade, managed by a scheduler (not shown in Figure 1).

To communicate with clients and other server processes, a SanssouciDB server process

has an interface service and a session manager. The session manager keeps track of client

connections and the associated parameters such as the connection timeout. The interface

service provides the SQL interface and support for stored procedures. The interface ser-

vice runs on top of the distribution layer, which is responsible for coordinating distributed

metadata handling, distributed transaction processing, and distributed query processing.

To allow fast, blade-local metadata lookups, the distribution layer replicates and synchro-

nizes metadata across the server processes running on the different blades. The metadata

contains information about the storage location of tables and their partitions. Because data

may be partitioned across blades, SanssouciDB provides distributed transactions and dis-

tributed query processing. The distribution layer also includes the transaction manager.

While there are many interesting challenges in the distribution layer, we omit a detailed

discussion of these topics in this paper. Data replication for column-oriented databases is

discussed in [SEJ+11].

The main copy of a database table is kept in main memory (rather than on disk) and

3
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Figure 1: Conceptual Overview of SanssouciDB

consists of a main store, a differential store, and a collection of indexes. Non-volatile

storage is required to provide the persistence for the database. Section 3.1 presents a

detailed discussion about the separation into main and differential store.

Ideally, we would like to fit the complete database of an enterprise onto a single blade, that

is, into a machine with a single main board containing multiple CPUs and a large array

of main memory modules. However, not even the largest blades available at the time of

writing allow us to do so. We thus assume a cluster of multiple blades, where the blades

are interconnected by a network (see Figure 1).

A necessary prerequisite for a database system running on such a cluster of blades is

data partitioning and distribution across blades. Managing data across blades introduces

more complexity into the system, for example, distributed query processing algorithms

accessing partitions in parallel across blades have to be implemented, as we will describe

in Section 5. Furthermore, accessing data via the network incurs higher communication

costs than blade-local data access. Finally, different data partitioning strategies have an

impact on query performance and load balancing. Therefore, from time to time, it can

become necessary to reorganize the partitions to achieve better load balancing or to adapt

to a particular query workload. Some of our considerations on data placement and dynamic

cluster reorganization can be found in [SEJ+11].
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After deciding on a multi-blade system as the target hardware, the next question is: should

many less powerful low-end blades be used or do we design for a small number of more

powerful high-end blades? For SanssouciDB, we chose the latter option, since high-end

blades are more reliable and allow more blade-local data processing thereby avoiding ex-

pensive network communication to access data on remote blades. In our target hardware

configuration, a typical blade contains up to 2 TB of main memory and up to 64 cores.

With 25 of these blades, we can manage the enterprise data of the largest companies in the

world.

To make efficient use of this architecture, SanssouciDB exploits parallelism at all levels.

This includes distributed query processing (among blades), parallel query processing algo-

rithms (among cores on a blade) and exploiting Single Instruction Multiple Data (SIMD)

instructions at processor level [WPB+09].

Combined columns as shown in Figure 1 are column groups in the sense of fine-grained

hybrid data layout [GKP+11], which will be discussed in Section 3.1. Column grouping

is particularly advantageous for columns that often occur together as join or group-by

columns (see also the aggregation and join algorithms presented in Section 5). In the

following sections, we will examine the concepts shown in Figure 1 in greater detail.

3 Data Access and Compression

In this section, we describe how SanssouciDB organizes data access in main memory and

how compression is used to speed up processing and make efficient use of the available

main memory capacity.

3.1 Organizing and Accessing Data in Main Memory

Traditionally, the data values in a database are stored in a row-oriented fashion, with com-

plete tuples stored in adjacent blocks on disk or in main memory. This allows for fast

access of single tuples, but is not well suited for accessing a set of values from a single

column. The left part of Figure 2 exemplifies this by illustrating the access patterns of

two SQL statements: the result of the upper statement is a single tuple, which leads to

a sequential read operation of an entire row in the row store. However, accessing a set

of attributes leads to a number of costly random access operations as shown in the lower

left part. The grey shaded part of the memory region illustrates data that is read, but not

required. This happens as data is read from main memory in chunks of the size of a cash

line which can be larger than the size of a single attribute.

An analysis of database accesses in enterprise applications has shown that set-based reads

are the most common operation [Pla09], making row-oriented databases a poor choice

for these types of applications. Column-oriented databases [ABH09], in contrast, are

well suited for these set-based operations. In particular, column scans, where all the

data values that must be scanned are read sequentially, can be implemented very effi-
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Figure 2: Operations on the Row Store and the Column Store

ciently. The right part of Figure 2 illustrate these considerations. The different lengths

of the columns illustrates a varying compression rate; compression is described later in

this section. Good scan performance makes column stores a good choice for analytical

processing; indeed, many commercial column-oriented databases target the analytics mar-

ket, for example, SAP Business Warehouse Accelerator and Sybase IQ. The disadvantage

of column-oriented databases is that the performance of row-based operations is typically

poor. To combine the best of both worlds, SanssouciDB allows certain columns to be

stored together, such as columns that are frequently queried as a group. In the following,

we refer to these groups of columns as combined columns (see Figure 1). Allowing these

column types combines the advantage of the column-oriented data organization to allow

for fast reads with good write performance. Further benefits of these combined columns

are described in Section 5.

As outlined above, column stores provide good scan performance. To evaluate a query

predicate on a column, for example, finding all occurrences of a certain material number, a

column scan is applied. However, when the query predicate has a high selectivity, that is,

when only a small number of all rows are returned, scanning results in too much overhead.

For columns that are often queried with highly selective predicates, like primary or foreign

key columns, SanssouciDB allows the specification of inverted indexes (see Figure 1).

To reduce the need for locking and to allow us to maintain a history of all changes to the

database, we adopt an insert-only approach. We define the term “insert-only” as follows:

An insert-only database system does not allow applications to perform updates or deletions

on physically stored tuples of data. In SanssouciDB, all write operations insert a new

tuple into the differential buffer, while the main store is only accessed by read operations.

To track the different versions of a tuple, a table in the differential buffer contains two
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Figure 3: Column Store Write Operations

system attributes for each record: the TID of the transaction that wrote the record and an

invalidated row field referencing to the row that became invalid by inserting this record,

i.e., the previous version of the record. In case of an insert operation this field is left

empty. Figure 3 depicts an example of insert and update operations and their effect on the

differential buffer, for example, TA2 updates row 3 and inserts D:3 into the invalidated row

field to signal that row 3 of the differential buffer is now invalid and is the successor of the

record in row 4.

A consequence of this insert-only approach is that data volumes increase over time. Our

objective is to always keep all the relevant data in main memory, but as new data is added

over time this becomes increasingly difficult. To ensure low latency access to the most

recent data we make use of data aging algorithms to partition data into active data, which

is always kept in main memory, and passive data that may be moved to flash-based storage,

if necessary. The history store, which is kept in non-volatile storage, is responsible for

keeping track of passive data. Keeping the history allows SanssouciDB to execute time-

travel queries, which reflect the state of the database at any user-specified point in time.

3.2 Compression

As main memory sizes have grown rapidly, access latency to main memory has become

the bottleneck for the execution time of computations: processors are wasting cycles while

waiting for data to arrive. This is especially true for databases as described in [ADHW99].

While cache-conscious algorithms are one way to improve performance significantly

[ADH02, RR00, RR99], another option is to reduce the amount of data transferred from

and to main memory, which can be achieved by compressing [WKHM00]. On the one
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hand, compression reduces I/O operations between main memory and CPU registers, on

the other hand, it leverages the cache hierarchy more effectively since more information

fits into a cache line.

The number of CPU cycles required for compressing and decompressing data and the sav-

ings in CPU cycles from shorter memory access time result in increased processor utiliza-

tion. This increases overall performance as long as the database system is I/O bound. Once

compression and decompression become so CPU-intensive that the database application is

CPU bound, compression has a negative effect on the overall execution time. Therefore,

most column-oriented in-memory databases use light-weight compression techniques that

have low CPU overhead [AMF06]. Common light-weight compression techniques are

dictionary encoding, run-length encoding, bit-vector encoding, and null suppression.

In SanssouciDB, we compress data using dictionary encoding. In dictionary encoding,

all values of a column are replaced by an integer called value ID. The original values

are kept in a sorted array called dictionary. The value ID is the position of the value in

the dictionary; see Figure 4. Our experiments have shown than run-length encoding on a

sorted column incurs the fewest amount of cache misses among these compression tech-

niques. However, applying run-length encoding requires sorting of each column before

storing it. In order to reconstruct records correctly, we would have to store the original

row ID as well. When reconstructing records, each column must be searched for that ID

resulting in linear complexity. As enterprise applications typically operate on tables with

up to millions records, we cannot use explicit row IDs for each attribute in SanssouciDB,

but keep the order of attributes for each tuple identical throughout all columns for tuple

reconstruction. Dictionary encoding allows for this direct offsetting into each column and

offers excellent compression rates in an enterprise environment where many values, for

example, country names, are repeated. Therefore, dictionary encoding suits our needs best

and is our compression technique of choice in SanssouciDB. Read performance is also

improved, because many operations can be performed directly on the compressed data.

For a more complete discussion of compression, we refer the reader to [LSF09].

3.3 Optimzing write operations

As described in the previous section, data is compressed to utilize memory efficiently.

This causes write operations to be expensive, because they would require reorganizing the

storage structure and recalculating the compression. Therefore, write operations on the

column store do not directly modify compressed data of the so-called main store, but all

changes go into a separate data structure called differential buffer as shown in Figure 4.

Both structures are dictionary encoded, while the main store is further compressed using

additional compression techniques. While the dictionary of the main store is a sorted ar-

ray, which defines the mapping of a value to its value ID as the position of that value in the

array, the dictionary of the differential buffer is an unsorted array, allowing for fast inser-

tion of new values. The arbitrary order of values in the differential buffer dictionary slows

down read operations, since a lookup of a value ID has complexity O(N), or O(logN)
if an index structure, e.g., a B+/CSB+ tree is used for value ID lookup. A growing dif-
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Figure 4: Operations on the Row Store and the Column Store

ferential buffer degrades read performance and increases memory usage since the value

ID vector is not further compressed as in the main store and, in addition, the index of the

dictionary, i.e., the CSB+ tree, grows fast if a column has many unique values. Therefore,

differential buffer and main store are merged from time to time. The merge process is a

reorganization of the column store integrating the differential buffer into the main store

and clearing the differential buffer afterwards [KGT+10].

4 Transaction Management

Enterprise applications require strong transactional guarantees. SanssouciDB uses a Multi

Version Concurrency Control (MVCC) scheme to isolate concurrent transactions, while a

physiological logging and snapshotting approach is used to persist transactional changes

on non-volatile memory to provide fault tolerance. In the following, we give an overview

of how the MVCC scheme exploits versioning of tuples provided by the insert-only ap-

proach and describe the logging scheme of SanssouciDB.

4.1 Concurrency Control

Isolation of concurrent transactions is enforced by a central transaction manager maintain-

ing information about all write transactions and the consistent view manager deciding on

visibility of records per table. A so-called transaction token is generated by the transac-

tion manager for each transaction and encodes what transactions are open and committed

at the point in time the transaction starts. This transaction token is passed to the consistent

view manager of each table accessed and is used to emulate the same record visibility as
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TID TA State CID

... ... ...

6 aborted -

7 committed 7

8 open -

9 committed 9

10 committed 8

11 committed 10

Table 1: Example for transac-
tion information maintained
by the transaction manager.

TID New Rows Invalidated Rows

< 8 1, 2 M:20, M:10, M:5

9 3
10 4 D:3

11 D:2

Table 2: Consistent view information for transac-
tions of Figure 3

at transaction start time.

For token generation, the transaction manager keeps track of the following information for

all write transaction: (i) unique transaction IDs (TID), (ii) the state of each transaction,

i.e., open, aborted, or committed, and (iii) once the transaction is committed, a commit ID

(CID). While CIDs define the commit order, TIDs reflect the start order of transactions.

This is exemplified in Table 1. From this information, the transaction manager generates

the following values of the transaction token:

• maxCID: the highest CID, in our example maxCID=10

• minWriteTID and closedTIDs: together these values describe all transactions that

are closed. In our example we have minWriteTID=7 and closedTIDs={9,10,11}.

Changes made by a transaction Ti with TIDi < minWriteTID or TIDi ∈ closedTIDs

must be visible for transactions Tj if TIDj ≥ TIDi.

• TID: for a write transaction this is the unique TID of the transaction. For read trans-

actions this is the TID that would be assigned to the next starting write transaction.

Hence, different read transactions might have the same TID. A read transaction Ti

is not allowed to see changes made by a transaction Tj , if TIDj ≥ TIDi. If a

read transaction is promoted to a write transaction it may be necessary to update

the transaction token with a new TID, because the original value might be used by

another transaction.

All write operations insert a new record into the column store as part of the insert-only

concept (c.f. Section 3.1). Rows inserted into the differential store by an open transaction

are not visible to any concurrent transaction. New and invalidated rows are announced

to the consistent view manager as soon as the transaction commits. The consistent view

manager keeps track of all added and invalidated rows to determine the visibility of records

for a transaction.

For every transaction Ti, the consistent view manager maintains two lists: one list with

the rows added by Ti and a second list of row IDs invalidated by Ti. For a transaction Tj ,

changes made by transactions with a TID smaller than Tj’s TID are visible to Tj . For a
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compact representation of change information, the consistent view manager consolidates

the added row list and invalidated row lists of all transactions with a TID smaller than

the MinReadTID into a single new row and a single invalidated row list. MinReadTID

is defined as the maximum TID for which all changes written with the same or a lower

TID may be shown to all active transactions. For all transactions Ti with a TID larger

than MinReadTID, individual change information must be kept. Table 2 depicts the lists

maintained by the consistent view manager for our example transactions of Figure 3: TA1

inserts row 3, while TA2 invalidates row 3 and adds row 4. The first row of Table 2 shows

the consolidation of new and invalidated row lists for all transactions with TIDs smaller

than MinReadTID=8.

To determine the visibility of tuples for transaction Ti, i.e., with TIDi=12, the consistent

view manager interprets the transaction token as follows: (i) since for a running transaction

Ti the condition TIDi > MinReadTID holds, all changes listed in the consolidated list (first

row in Table 2) are visible for Ti. In addition, all changes made by transactions Tj with

TIDj ≤ TIDi are visible for Ti. In our example, this are the changes of transactions with

TIDs 9, 10, and 11. All changes of Tk with TIDi ≤ TIDk are not visible for Ti.

While read operations can access all visible rows without acquiring locks, write transac-

tions are serialized by locks on row level. Besides main store and differential buffer, which

store the most recent version of a tuple, each table has a history store containing previous

versions of tuples. The history store uses the CID for distinguishing multiple old versions

of a tuple. In doing so, SanssouciDB provides a time-travel feature similar to the one

described in [Sto87].

4.2 Logging and Recovery

Enterprise applications are required to be resilient to failures. Fault tolerance in a database

system refers to its ability to recover from a failure and is achieved by executing a recovery

protocol when restarting a crashed database, thereby restoring its latest consistent state

before the failure. This state must be derived using log data that survived the failure, in the

form of logs residing on a non-volatile medium. Writing log information to non-volatile

memory is a potential bottleneck because it is bound by disk throughput. To prevent log

writes from delaying transaction processing, SanssouciDB uses a parallel logging scheme

to leverage the throughput of multiple physical log volumes.

To recover a table, the main as well as the differential store must be rebuilt in a consistent

fashion. The main part of a table is snapshot to a non-volatile medium when main and

differential store are merged (c.f. Section 3.1). In order to fall-back to a consistent state

during recovery, redo information for all write operations since the last merge is logged to

the delta log. The central transaction manager writes a commit log file recording the state

transitions of all write transactions.

At restart of a crashed database, the main part is recovered using its latest snapshot and the

differential buffer is recovered by replaying the delta and commit logs. While recovering

the main store from a snapshot is fast, for example when using memory-mapped files on
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an SSD, replaying log information is a potential bottleneck for fast recovery.

As described in Section 3.1, the main store of a table as well as the differential buffer

consists of a vector holding value IDs and a dictionary defining the mapping of value

IDs to values. During normal operations, the dictionary builds up over time, i.e., a new

mapping entry is created in the dictionary each time a new unique value is inserted. Both

value ID vector and dictionary, must be rebuilt during recovery using the delta log.

To allow parallel recovery, we use a physiological logging scheme [GR93] that stores the

insert position (row ID) and the value ID for each write operation, called a value log. The

logging scheme also includes logs for the dictionary mapping (dictionary logs). A value

log entry contains the TID, the affected attribute, the row ID, and the value ID of the

inserted value defined by the dictionary mapping. A dictionary log contains the attribute,

the value, and the value ID.

The system attributes of each record (TID and invalidated row) are logged in the value

log format. Combined with commit logs written by the transaction manager, they are used

to rebuild the added row and invalidated row lists of the transaction manager at recovery

time. A commit log entry contains the TID, the transaction state, and a commit ID if the

state is committed.

To reduce the number of log entries for a row, only value logs for attributes that were actu-

ally changed by an update operation are persisted. During recovery, the missing attribute

values of a record, i.e., attribute values that are not updated but have the same value as the

previous version of the record can be derived from the previous version of the record.

Dictionary entries are visible to other transactions before the writing transaction has com-

mitted, to prevent the dictionary from becoming a bottleneck during transaction process-

ing. Therefore, dictionary entries must be managed outside the transactional context of

a running transaction to prevent removal of a dictionary entry in case of a rollback. For

example, if transaction Ti inserts a dictionary mapping ’abc’ → 1 and is aborted after

another transaction Tj reads and uses the mapping for ’abc’ from the dictionary, removing

the mapping from the dictionary during rollback of Ti would affect Tj , which must not

happen. Logging dictionary changes outside the transactional context causes the problem

that in case transactions are aborted a dictionary might contain unused values. However,

unused entries are removed with the next merge of differential and main store and will not

find their way into the new main store.

To speed up recovery of the differential buffer further, the value ID vector as well as the

dictionary can be snapshot from time to time, which allows for truncating the delta log.

5 Parallel Aggregation and Join

SanssouciDB runs on a blade architecture with multiple cores per blade (see Section 2).

The system can parallelize algorithms along two dimensions: across blades and within a

blade. In the first case, we assume a shared-nothing architecture. Each blade is responsible

for a certain partition of the data. In the second case, compute threads that run in parallel
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Figure 5: Parallel Aggregation

on one blade can access the same data on that blade, which is typical for a shared-memory

architecture. In this section, we want to discuss aggregation and join algorithms developed

for SanssouciDB.

5.1 Parallel Aggregation

Aggregation algorithms have been proposed for shared-nothing architectures and for shared-

memory architectures. For a discussion on distributed aggregation across blades, we refer

the reader to [TLRG08]. Here, we want to discuss the shared-memory variant is imple-

mented utilizing multiple concurrently running threads. We first consider how the input

data is accessed (see upper part of Figure 5). Let us assume, we can run n threads in

parallel. Initially, we run n aggregation threads. Each aggregation thread (1) fetches a

certain rather small partition of the input relation, (2) aggregates this partition, and (3)

returns to step (1) until the complete input relation is processed. This approach avoids the

problem of unbalanced computation costs: If we would statically partition the table into n
chunks, one per thread, computation costs could differ substantially per chunk and thread.

Using smaller chunks and dynamically assigning them to threads evenly distributes the

computation costs over all threads.

Each thread has a private, cache-sized hash table, into which it writes its aggregation

results to. Because the hash table is of the size of the cache, the number of cache misses

are reduced. If the number of entries in a hash table exceeds a threshold, for example,

when 80 % of all entries are occupied, the aggregation thread initializes a new hash table

and moves the old one into a shared buffer. When the aggregation threads are finished,

the buffered hash tables have to be merged. This is accomplished by merger threads. The
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buffered tables are merged using range partitioning. Each merger thread is responsible for

a certain range, indicated by a different shade of grey. The merger threads aggregate their

partition into so-called part hash table. Part hash tables are also private to each thread. The

partitioning criterion can be defined on the keys of the local hash tables. For example, all

keys, whose hashed binary representation starts with an 11, belong to the same range and

are assigned to a certain merger thread. The final result can be obtained by concatenating

the part hash tables (since they contain disjoint partitions).

The algorithm can be improved by allowing merger threads to run when the input table has

not been completely consumed by the aggregation threads. Aggregation phases and merge

phases alternate. This allows us to restrict the number of local hash tables in the buffer, thus

reducing the memory footprint of the algorithm. Note, a lock is required to synchronize

the partitioning operations on the input table and on the hash tables in the buffer. These

locks are, however, only held for a very short period of time, because partition ranges can

be computed quickly.

5.2 Parallel Join

Similar to the aggregation algorithm, SanssouciDB can compute joins across blades and

within one blade utilizing multiple threads. To compute a distributed join across blades,

SanssouciDB applies the well-known semijoin method: Let us assume a join between

tables R and S on the set of join columns A. Tables R and S are stored on different blades

(1 and 2). First, projection πA(R) is calculated on Blade 1. The projection retains the

set of join columns A and applies duplicate removal. The projected result is then sent to

Blade 2, where the intermediate result T = πA(R)� S is computed. T is the set of tuples

of S that have a match in R �� S. Projection πA(T ) is sent back to the node storing R to

calculate U = R �� πA(T ). The final join result is obtained by calculating U �� T .

In the distributed join computation, some operations run locally on a blade. For these

operations, parallel algorithms tailored to shared-memory architectures can be applied.

Because the computation of distinct values and aggregation are closely related, projection

πA(R) on Blade 1 can be computed using a slightly modified version of the parallel ag-

gregation algorithm above. Furthermore, the semijoins can also be computed locally in

parallel. In the following, we want to sketch a parallel algorithm for join computation.

Just like aggregation, joins can be computed based on hash tables. The algorithm is de-

picted in Figure 6. The columns with the dashed lines contain row numbers. Row numbers

are not physically stored in SanssouciDB. They are calculated on the fly when required.

In the preparation phase depicted at the left hand side, the values of the smaller input re-

lation’s join attributes and their corresponding row numbers are inserted into a hash table.

This insertion is executed in parallel by concurrently running join threads. Again, each

thread has a private cache-sized hash table that is placed into the buffer when a certain

threshold is reached. The buffer is occasionally merged into part hash tables. The result

consists of a set of part hash tables with key-list pairs. The pair’s key corresponds to a

value from a join column, and the pair’s list is the list of row numbers indicating the posi-
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Figure 6: Parallel Join

tion of the value’s occurrence in the input relation. Again, the keys in the part hash tables

are disjoint.

In the second phase, the algorithm probes the join columns of the larger input relation

against the part hash tables. Probing works as follows:

1. Private cache-sized hash tables for the larger input relation are created and populated

by a number of concurrently running threads as described above. When a hash table

reaches a certain threshold, it is placed in the buffer.

2. When the buffer is full, the join threads sleep and probing threads are notified. In

Figure 6, we copied the resulting part hash tables from the preparation phase for

simplicity. Each probing thread is responsible for a certain partition. Because the

same partitioning criterion is used during the first phase of the algorithm, all join

candidates are located in a certain part hash table. If the probing thread finds a

certain value in a part hash table, it combines the rows and appends them to the

output table.

3. When all hash tables in the buffer have been processed, the join threads are notified.

4. The algorithm terminates when the buffer is empty and the larger input relation has

been consumed. The result is the joined table.

This algorithm can be improved by materializing the join result as late as possible. For

example, the result of the join can be a virtual table, that contains references to the original

tables by keeping a list of row pairs. Furthermore, the join algorithm has to be aware of

the columnar data layout. This is also true for the aggregation algorithm. As described so

far, when processing a partition, an aggregation or join thread reads values from the partic-

ipating columns row by row. Row-wise access is expensive in a column-oriented database
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system, because row-wise access provokes many cache misses. To remedy this situation,

we can use a special hash-table implementation that allows column-wise insertion. The

details are however beyond the scope of this paper.

5.3 Business Analytics on Transactional Data

Good aggregation performance is one of the main objectives in data warehouses. One

approach to achieve the necessary performance in disk-based relational data warehouses

is to consolidate data into cubes, typically modeled as a star or snowflake schemas. In

a cube, expensive joins and data transformations are pre-computed and aggregation is

reduced to a mere scan across the central relational fact table. Due to the possibly large

size of fact tables in real-world scenarios (a billion rows and more are not unusual), further

optimizations such as materialized aggregates, became necessary.

With the introduced aggregation and join algorithms that exploit modern hardware, re-

dundant data storage using cubes and materialized aggregates are not necessary anymore.

Executing business analytics on transactional data that is stored in its original, normalized

form becomes possible with SanssouciDB. Avoiding materialized aggregates and the need

for the star schema dramatically reduces system complexity and TCO, since cube main-

tenance becomes obsolete. Calculations defined in the transformation part of the former

ETL process are moved to query execution time. Figure 7 shows an example of an ar-

chitecture that uses views that can be stacked in multiple layers. Any application on the

presentation layer can access data from the virtually unified data store using views. Views

store no data but only transformation descriptions such as computations, possibly retriev-

ing data from several sources, which might again be views. Virtual cubes are similar to

views but provide the same interface as real cubes.

Our architecture enables the instant availability of the entire data set for flexible report-

ing. Moreover, this approach fulfills many of the ideas mentioned in the context of BI

2.0 discussions, where BI is “becoming proactive, real-time, operational, integrated with

business processes, and extends beyond the boundaries of the organization” [Rad07]. In

the next section, we will showcase some sample applications that make use of our new

architecture.

6 Application Examples

We have extensively used SanssouciDB in enterprise application prototypes to leverage

its technological potential. In the following, we want to discuss our findings by showing

how SanssouciDB can be used to implement the dunning and the availability-to-promise

applications.
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6.1 Dunning

The dunning business process is one of the most cost-intensive business operations. Dun-

ning computes the balance between incoming payments and open invoices for all cus-

tomers. Depending on the amount and the delay of an outstanding payment, different

dunning levels are assigned to customers. Depending on the dunning level, pre-defined

actions are triggered, e.g., service blacklisting. Performing dunning runs in current en-

terprise systems has an impact on OLTP response times, because of the large number of

invoices and customers accounts that must be scanned. To reduce the impact on the re-

sponse time of the operational system, dunning runs are typically performed at the night

or over tge weekend. Our field study at a German mobile phone operator revealed that

dunning runs in current enterprise applications can only be performed at daily or weekly

intervals for all customers.

The dunning process is mainly a scan of a long table containing millions of entries. In a

prototype, we adapted dunning algorithms that were formerly implemented in the appli-

cation layer and re-implemented them using stored procedures in our new storage engine.

To join invoice data with customer data and to calculate the amounts due, our implementa-

tion makes heavy use of the join and aggregation algorithms introduced in Section 5. Our

results show that SanssouciDB is able to improve the execution time of the dunning run

from more than 20 minutes to less than one second.This outcome shows that in-memory

technology is capable of improving the response time of existing applications by orders of

magnitude.
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As a consequence, the former batch-oriented dunning run could be transformed into an

interactive application. For example, a check of the current dunning status over all cus-

tomers can now be performed instantaneously. This enables managers to query the top

ten overdue invoices and their amount on their personal cellular phone, notebook, or any

mobile device with an Internet connection at any time.

6.2 Availability-To-Promise

ATP provides a checking mechanism to obtain feasible due dates for a customer order. This

is done by comparing the quantities of products which are in stock or scheduled for pro-

duction against the quantities of products which are assigned to already promised orders.

A common technique in current Supply Chain Management systems is to use materialized

aggregates to keep track of stock quantities, which results in having a separate aggre-

gate for each product. This means that a new shipment would increase the value of each

shipped product’s aggregate, while the assignment of products to a confirmed customer

order would decrease it. We analyzed an existing ATP implementation and found the fol-

lowing: Although the use of aggregates reduces the necessary amounts of I/O operations

and CPU cycles for the single ATP check itself, it introduces the following disadvantages:

• Redundant Data: One problem that arises in association with materialized aggre-

gates is the need to maintain them. To preserve a consistent view on the data across

the whole system, every write operation has to be propagated to the materialized

aggregates. Even if the updates are triggered immediately, they still imply delays

causing temporary inconsistencies. Additionally, even if the amount of I/O opera-

tions and CPU cycles is reduced to a minimum for the check itself by using aggre-

gates, the overall sum of required operations might be higher due to synchronization

as well as maintenance and costly back calculation of the aggregates.

• Exclusive Locking: All modifications to an aggregate require exclusive access to

the respective database entity and block concurrent read and write processes. The

downside of locking is obvious, as it queues the incoming requests and affects the

performance significantly in case of a highly parallel workload.

• Inflexible Data Querying: Materialized aggregates are tailored to a predefined set

of queries. Unforeseeable operations referring to attributes that were not considered

at design time cannot be answered with these pre-aggregated quantities. Those at-

tributes include, for example, the shelf life, product quality, customer performance,

and other random characteristics of products, orders, or customers. Additionally,

due to the use of materialized aggregates, the temporal granularity of the check

is fixed. Once the aggregates are defined and created, based on, for example, the

available quantities per day, it is not possible to perform ATP checks on an hourly

granularity.

• Inflexible Data Schema Extensions: The previously mentioned inflexibility of not

being able to change the temporal granularity of a single check indicates another
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related disadvantage: the inability to change the data schema, once an initial defini-

tion has been done. The change of the temporal check granularity or the inclusion

of a previously unconsidered attribute is only possible with a cumbersome reorgani-

zation of the existing data.

• No Data History: Maintaining aggregates instead of recording all transactions en-

riched with information of interest means to lose track of how the aggregates have

been modified. In other words, no history information is available for analytics or

for rescheduling processes.

As we have outlined in Section 5.3, SanssouciDB can execute business analytics on op-

erational data. No star schema or materialized aggregates are required. To leverage this

advantage for our ATP implemenation, we developed a prototype that was designed with

the following aspects in mind: Pre-aggregated totals were completely omitted by storing

stock data at the finest granularity level in SanssouciDB. For an ATP check, this up-to-date

list is scanned. Removing the materialized aggregates allowed us to implement a lock-free

ATP check algorithm. Eliminating locks has the advantage of concurrent data process-

ing, which works especially well in hotspot scenarios, when multiple users perform ATP

checks concurrently.

For the prototype implementation, we used anonymized customer data from a Fortune 500

company with 64 million line items per year and 300 ATP checks per minute. Analysis of

the customer data showed that more than 80 % of all ATP checks touch no more than 30 %

of all products. A response time of 0.7 s per check was achieved using serial checking.

In contrast, we were able to execute ten concurrently running checks with our adapted

reservation algorithm in a response time of less than 0.02 s per check.

Our approach eliminates the need for aggregate tables, which reduces the total storage de-

mands and the number of inserts and updates required to keep the totals up to date. Because

insert load in SanssouciDB could be reduced, the spare capacity can be used by queries

and by instant aggregations. Since all object instances are traversed for aggregation, fine-

grained checks on any product attribute are possible. The old ATP implementation was

kept lean by focusing on a minimum number of attributes per product. For example, print-

ers of a certain model with a German and an English cable set are grouped together or both

cable sets are added to improve performance. With the help of SanssouciDB, fine product

attributes could be managed in a fine-grained manner. Thus, printers including different

cable sets could be considered as individual products during ATP checks.

7 Conclusion

With SanssouciDB, we have presented a concept that we believe is the ideal in-memory

data management engine for the next generation of real-time enterprise applications. Its

technological components have been prototypically implemented and tested individually

in our research. To conclude this paper, we present a few cases where the application of

the concepts of SanssouciDB has already led to promosing results.
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SAP’s latest solution for analytical in-memory data management called HANA (High-

Performance Analytical Appliance) uses many of the concepts of SanssouciDB, and is

currently being rolled out to pilot customers in different industries. HANA’s performance

impact on common reporting scenarios is stunning. For example, the query execution

times on 33 million customer records of a large financial service provider dropped from

45 minutes on a traditional DBMS to three seconds on HANA. The speed increase fun-

damentally changes the company’s opportunities for customer relationship management,

promotion planning, and cross selling. Where once the traditional data warehouse infras-

tructure has been set up and managed by the IT department to pre-aggregate customer data

on a monthly basis, HANA now enables end users to run live reports directly against the

operational data and to receive the results in seconds.

In a similar use case, a large vendor in the construction industry is using HANA to analyze

its nine million customer records and to create contact listings for specific regions, sales

organizations, and branches. Customer contact listing is currently an IT process that may

take two to three days to complete. A request must be sent to the IT department who

must plan a background job that may take 30 minutes and the results must be returned

to the requestor. With HANA, sales people can directly query the live system and create

customer listings in any format they wish, in less than 10 s.

A global producer of consumer goods was facing limitations with its current analytical

system in that it was not able to have brand and customer drilldowns in the same report,

which is no possible since joins are no longer pre-computed. Finally, the query execu-

tion times for a profitability analysis application of the same customer were reduced from

initially ten minutes to less than ten seconds.
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The Web as the development platform of the future 

Nelson Mattos 

Google EMEA 
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Abstract: The pace the world of computing has evolved since mainframes has 
been amazing, dramatically changing the way we design applications and creating 
opportunities for new players to enter the market. The Web is no longer just a 
collection of pages anymore and becomes a vital platform for today's most 
innovative web applications. The explosion of the use of the Internet from mobile 
devices and applications require powerful backends: this emphasizes how 
important designing and deploying cloud infrastructure has become. This talk will 
advocate that the development platform of the future is the web with its browsers 
and will give you insights into Google's vision in this space and showcase some 
exciting applications that leverage those technologies to solve incredible tasks.  
Hopefully I will be able to inspire you to take advantage of the incredible 
opportunities at hand! 
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Abstract: As advanced analytics has become more mainstream in enterprises, 
usability and system-managed performance optimizations are critical for its wide 
adoption. As a result, there is an active interest in the design of declarative 
languages in several analytics areas. In this talk I will describe the efforts in IBM 
around three areas namely Information Extraction, Entity Resolution and Machine 
Learning. I will detail these efforts, at some length, and also explain the motivation 
behind some of the design choices made while implementing declarative solutions 
for the individual areas. I will end with results that demonstrate multiple 
advantages of the declarative approaches as compared with existing solutions. 

23



 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 
 

Wissenschaftliches 
Programm 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



MapReduce and PACT - Comparing Data Parallel
Programming Models

Alexander Alexandrov, Stephan Ewen, Max Heimel, Fabian Hueske,
Odej Kao, Volker Markl, Erik Nijkamp, Daniel Warneke

Technische Universität Berlin, Germany
Einsteinufer 17

10587 Berlin, Germany
firstname.lastname@tu-berlin.de

Abstract: Web-Scale Analytical Processing is a much investigated topic in current
research. Next to parallel databases, new flavors of parallel data processors have re-
cently emerged. One of the most discussed approaches is MapReduce. MapReduce is
highlighted by its programming model: All programs expressed as the second-order
functions map and reduce can be automatically parallelized. Although MapReduce pro-
vides a valuable abstraction for parallel programming, it clearly has some deficiencies.
These become obvious when considering the tricks one has to play to express more
complex tasks in MapReduce, such as operations with multiple inputs.

The Nephele/PACT system uses a programming model that pushes the idea of
MapReduce further. It is centered around so called Parallelization Contracts (PACTs),
which are in many cases better suited to express complex operations than plain
MapReduce. By the virtue of that programming model, the system can also apply
a series of optimizations on the data flows before they are executed by the Nephele
runtime system.

This paper compares the PACT programming model with MapReduce from the per-
spective of the programmer, who specifies analytical data processing tasks. We discuss
the implementations of several typical analytical operations both with MapReduce and
with PACTs, highlighting the key differences in using the two programming models.

1 Introduction

Today’s large-scale analytical scenarios face Terabytes or even Petabytes of data. Because
many of the early large-scale scenarios stem from the context of the Web, the term Web-
Scale Analytical Processing has been coined for tasks that transform or analyze such
vast amounts of data. In order to handle data sets at this scale, processing tasks run in
parallel on large clusters of computers, using their aggregate computational power, main
memory, and I/O bandwidth. However, since developing such parallel programs bottom-up
is a cumbersome and error-prone task, new programming paradigms which support the
automatic parallelization of processing jobs have gained a lot of attention in recent years.

The MapReduce paradigm [DG04] is probably the best-known approach to simplify the
development and parallel execution of data processing jobs. Its open-source implementation
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Hadoop [Had] is very popular and forms the basis of many parallel algorithms that have
been published in the last years ([VCL10, Coh09, Mah]). Compared to parallel relational
databases, which have been been the predominant solution to parallel data processing,
MapReduce proposes a more generic data and execution model. Based on a generic
key/value data model, MapReduce allows programmers to define arbitrarily complex user
functions which then are wrapped by second-order functions map or reduce. Both of
these second-order functions provide guarantees on how the input data is passed to the
parallel instances of the user–defined function at runtime. That way, programmers can rely
on the semantics of the second-order functions and are not concerned with the concrete
parallelization strategies.

However, even though the two functions Map and Reduce have proven to be highly expres-
sive, their originally motivating use-cases have been tasks like log-file analysis or web-graph
inverting [DG04]. For many more complex operations, as they occur for example in re-
lational queries, data-mining, or graph algorithms, the functions Map and Reduce are a
rather poor match [PPR+09]. A typical example is an operation that matches key/value
pairs with equal keys from two different inputs. Such an operation is crucial for many
tasks, such as relational joins and several graph algorithms [YDHP07]. To express it in
MapReduce, a typical approach is to form a union of the inputs, tagging the values such
that their originating input is known. The Reduce function separates the values by tag again
to re-obtain the different input sets. That is not only an unintuitive procedure, programmer
must also make explicit assumptions about the runtime parallelization while writing the
user code. In fact, many implementations exploit the fact that MapReduce systems, like
Hadoop, implement a static pipeline of the form split-map-shuffle-sort-reduce. The shuffle
and sort basically exercise a parallel grouping to organize the data according to the Reduce
function’s requirements. Because all operations are customizable, many tasks are executed
with appropriate custom split or shuffle operations. That way, MapReduce systems become
a parallel process runtime that execute hard-coded parallel programs [DQRJ+10].
This clearly conflicts with the MapReduce’s initial design goals. While highly customizing
the behavior allows to run more complex programs, it destroys the idea of a declarative
specification of parallelism, preventing any form of optimization by the system. Especially
the incorporation of runtime adaptation to the parallelization methods (such as broadcast-
ing or partitioning) requires a clear specification of the user function’s requirements for
parallelization, rather than a hard-coding of the method.

To overcome those shortcomings, we have devised a programming model that offers the
same abstraction level as MapReduce but pushes its concepts further. It is centered around
so called Parallelization Contracts (PACTs), which can be considered a generalization
of MapReduce [BEH+10]. The PACT programming model eases the expression of many
operations and makes it more intuitive. Moreover, its extended expressiveness also enables
several optimizations to be applied automatically, resulting in more efficient processing.

In this paper, we give a short introduction to both programming models and compare them
from the perspective of the developer writing the data analysis tasks. We present tasks from
the domains of relational queries, XQuery, data mining, and graph algorithms and present
their implementations using MapReduce and PACT. We discuss the differences of the two
programming models and the implications for the programmer. The remainder of the paper
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is structured as follows: Section 2 discusses the MapReduce and the PACT programming
model in detail, highlighting key differences. Section 3 describes five typical analytical
tasks and compares their MapReduce and PACT implementations. Section 4 discusses
related work, Section 5 concludes the paper.

2 Parallel Programming Models

This section contrasts the parallel programming models MapReduce and PACT. Since
the PACT programming model is a generalization of MapReduce, we start with a short
recapitulation of MapReduce before introducing the extensions in the PACT programming
model. A more thorough description of the PACT programming model can be found
in [BEH+10].

2.1 The MapReduce Programming Model

The MapReduce programming model was introduced in 2004 [DG04]. Since then, it has
become very popular for large-scale batch data processing. MapReduce founds on the
concept of data parallelism. Its data model is key/value pairs, where both keys and values
can be arbitrarily complex. A total order over the keys must be defined.

The key idea of MapReduce originates from functional programming and is centered around
two second-order functions, Map and Reduce. Both functions have two input parameters, a
set of key/value pairs (input data set) and a user-defined first-order function (user function).
Map and Reduce apply the user function on subsets of their input data set. Thereby, all
subsets are independently processed by the user–defined function.
Map and Reduce differ in how they generate those subsets from their input data set and pass
them to the attached user function:

• Map assigns each individual key/value pair of its input data set to an own subset.
Therefore, all pairs are independently processed by the user function.

• Reduce groups the key/value pairs of its input set by their keys. Each group becomes
an individual subset which is then processed once by the user-defined function.
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Figure 1 depicts how Map and Reduce build independently processable subsets. Each
subset is processed once by exactly one instance of the user-defined function. The actual
functionality of the Map and Reduce operations is largely determined by their associated
user functions. The user function has access to the provided subset of the input data and
can be arbitrarily complex. User functions produce none, one, or multiple key/value pairs.
The type of the produced keys and values may be different from those of the input pairs.
The output data set of Map and Reduce is the union (without eliminating duplicates) of the
results of all evaluations of the user function.

A MapReduce program basically consists of two stages which are always executed in a
fixed order: In the first stage the input data is fed into the Map function that hands each
key/value pair independently to its associated user function. The output of the Map function
is repartitioned and then sorted by the keys, such that each group of key/value pairs with
identical keys can be passed on to the Reduce function in the second stage. The user
function attached to the Reduce can then access and process each group separately. The
output of the Reduce function is the final output of the MapReduce program. As complex
data processing tasks do often not fit into a single MapReduce program, many tasks are
implemented using a series of consecutive MapReduce programs.

Since all invocations of the user functions are independent from each other, processing jobs
written as MapReduce programs can be executed in a massively parallel fashion. In theory
Map can be parallelized up the the number of input key/value pairs. Reduce’s maximum
degree of parallelism depends on the number of distinct keys emitted in the map stage.

A prominent representative of a MapReduce execution engine is Apache’s Hadoop [Had].
This paper focuses on the abstraction to write parallelizable programs. Therefore, we do
not discuss the execution of MapReduce programs. Details can be found in [DG04].

2.2 The PACT Programming Model

The PACT programming model [BEH+10, ABE+10] is a generalization of MapReduce
[DG04] and is also based on a key/value data model. The key concept of the PACT
programming model are so-called Parallelization Contracts (PACTs). A PACT consists of
exactly one second-order function which is called Input Contract and an optional Output
Contract. Figure 2 visualizes the aspects of a PACT. An Input Contracts takes a first-order
function with task-specific user code and one or more data sets as input parameters. The
Input Contract invokes its associated first-order function with independent subsets of its

Figure 2: Parallelization Contract (PACT)
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input data in a data-parallel fashion. In the context of the PACT programming model,
MapReduce’s Map and Reduce functions are Input Contracts. The PACT programming
model provides additional Input Contracts that complement Map and Reduce, of which we
will use the following three in this paper:

• Cross operates on multiple inputs of key/value pairs and builds a Cartesian product
over its input sets. Each element of the Cartesian product becomes an independent
subset.

• CoGroup groups each of its multiple inputs along the key. Independent subsets are
built by combining the groups with equal keys of all inputs. Hence, the key/value
pairs of all inputs with the same key are assigned to the same subset.

• Match operates on multiple inputs. It matches key/value pairs from its input data
sets with the same key. Each possible two key/value pairs with equal key form
an independent subset. Hence, two pairs of key/value pairs with the same key are
processed independently by possibly different instances of the user function, while
the CoGroup contract assigns them to the same subset and guarantees to process
them together.

Figure 3 illustrates how Cross, Match, and CoGroup build independently processable
subsets.

Input A

Input B

Independent

Subsets

Input A

Input B

Independent

Subsets

Input A

Input B

Independent

Subsets

Figure 3: a) Cross | b) Match | c) CoGroup

In contrast to Input Contracts, which are a mandatory component of each PACT, Output
Contracts are optional and have no semantic impact on the result. Output contracts give
hints about the behavior of the user code. To be more specific, they assert certain properties
of a PACT’s output data. An example of such an output contract is the SameKey contract.
When attached to a Map function, it states that the user code will not alter the key, i.e. the
type and value of the key remain after the user code’s invocation and are the same in the
output as in the input. Those hints can be exploited by an optimizer that generates parallel
execution plans. The aforementioned SameKey contract can frequently help to avoid
unnecessary repartitioning and therefore expensive data shipping. Hence, Output Contracts
can significantly improve the runtime of a PACT program. Currently, developers must
manually annotate user functions with Output Contracts. However, automatic derivation
based on static code analysis, or suggestions inferred from runtime observations, are worth
exploring.

In contrast to MapReduce, multiple PACTs can be arbitrarily combined to form more
complex data processing programs. Since some PACTs naturally expect multiple input data
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sets, the resulting data processing program is not necessarily a strict pipeline like in the
MapReduce case but can yield arbitrarily complex data flow graphs. In order to implement
the program, each PACT in the data flow graph must be provided with custom code (the
user function). Furthermore, at least one data source and data sink must be specified.

2.3 Comparing MapReduce and PACT

For many complex analytical tasks, the mapping to MapReduce programs is not straight-
forward and requires working around several shortcomings of the programming model.
Such shortcomings are for example the limitation to only one input, the restrictive set of
two primitive functions Map and Reduce, and their strict order. The workarounds include
the usage of auxiliary structures, such as the distributed cache, and custom partitioning
functions. However, the necessity to apply such tricks destroys the desired property of
transparent parallelization.

The PACT programming model has been explicitly designed to overcome the problems
with more complicated analytical tasks. It is based on the concept of Input Contracts, which
are a generalizations of the Map and Reduce functions. Compared to MapReduce, it offers
several additions: First, it offers a richer set of parallelization primitives (which also include
Map and Reduce). The generic definition of Input Contracts allows to extend this set with
more special contracts. Second, with the concept of Output Contracts it is possible to
declare certain properties of the user functions to improve efficiency of the task’s execution.
Thirdly, PACTs can be freely assembled to data flows, in contrast to MapReduce’s fixed
order of Map and Reduce. Hence, PACT avoids identity mapper or reducer which are
frequently required within MapReduce implementation. All those features of the PACT
programming model significantly ease the implementation of many complex data processing
tasks, compared to the MapReduce approach.

MapReduce programs are always executed with a fixed strategy. The input data is read
from a distributed filesystem and fed to the Map function. The framework repartitions
and sorts the output of the Map function by the key, groups equal keys together and calls
the Reduce function on each group. Due to the declarative character of Input Contracts,
PACT programs can have multiple physical execution plans with varying performance.
For example, the definition of the Match contract is such that a parallel execution of the
attached user function can choose among the following strategies: 1) repartition and sort
both inputs by the key (in the same way as MapReduce), or 2) broadcast one of the inputs
to all instances and not transferring data from the other input between parallel instances.
The choice of the execution strategy is made by the PACT compiler, which translates PACT
programs to parallel schedules for the Nephele runtime. The compiler uses an optimizer in
a similar fashion as a relational database and selects the strategies that minimize the data
shipping for the program. We refer to [BEH+10] for details.
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3 Comparing Common Task Implementation

In this section we present a selection of common data analysis tasks. The tasks are taken
from the domains of relational OLAP queries, XQuery, data mining, and graph analysis
algorithms. For each task we give a detailed description and implementations for both
programming models, MapReduce and PACTs, pointing out key differences and their
implications. All of the presented PACT implementations were designed manually. While
Nephele/PACT takes away much work from the programmer, the actual process of defining
a given problem as a PACT program still has to be done manually. The automatic generation
of PACT programs from declarative languages like SQL or XQuery is a field of research.

3.1 Relational OLAP Query

Task Even though relational data is traditionally analyzed through parallel relational
database management systems, there is increasing interest to process it with MapReduce and
related technologies [TSJ+09]. Fast growing data sets of semi-structured data (e.g. click-
logs or web crawls) are often stored directly on file systems rather than inside a database.
Many enterprises have found an advantage in a central cheap storage that is accessed by
all of their applications alike. For the subsequent analytical processing, declarative SQL
queries can be formulated as equivalent MapReduce or PACT programs. Consider the SQL
query below. The underlying relational schema was proposed in [PPR+09] and has three
tables: Web-page documents, page rankings, and page-visit records. The query selects the
documents from the relation Documents d containing a set of keywords and joins them with
Rankings r, keeping only documents where the rank is above a certain threshold. Finally,
the anti-join (the not exists subquery) reduces the result set to the documents not visited at
the current date.

1: SELECT *
2: FROM Documents d JOIN Rankings r
3: ON r.url = d.url
4: WHERE CONTAINS(d.text, [keywords])
5: AND r.rank > [rank]
6: AND NOT EXISTS
7: (SELECT * FROM Visits v
8: WHERE v.url = d.url AND v.visitDate = CURDATE());

MapReduce To express the query in MapReduce, we intuitively need two successive jobs,
which are shown on the left-hand side of Figure 4: The first MapReduce job performs an
inner-join (lines 1-5 of the sample query), the second one an anti-join (lines 6-8). The first
Map task processes the input relations Documents d, Rankings r and carries out the specific
selection (line 4-5) based on the source relation of the tuple. To associate a tuple with its
source relation, the resulting value is augmented with a lineage tag. The subsequent reducer
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collects all tuples with equal key, forms two sets of tuples based on the lineage tag and
forwards all tuples from r only if a tuple from d is present. The second mapper acts as an
identity function on the joined intermediate result j and as a selection on the relation Visits
v. Finally, the second reducer realizes the anti-join by only emitting tuples (augmented
with a lineage tag ’j’) when no Visits tuple (augmented with a lineage tag ’v’) with an
equal key is found.
The implementation can be refined to a single MapReduce job. Since the key is the same
for the join and anti-join, both operations can be done together in a single reduce operation.
As before, the mapper forms a tagged union of all three inputs and the reducer separates the
values for each key, based on their lineage. The reduce function concatenates the values
from the d and r, if no value from v is found. The advantage of this implementation is that
all inputs are repartitioned (and hence transferred over the network) only once.
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Figure 4: OLAP query as MapReduce (left) and PACT program (right).

PACT The corresponding PACT program for the query is illustrated on the right-hand side
of Figure 4. The selections on the relations d, r, v are implemented by three separate user
functions attached to the Map contract. The first Reduce task of the original MapReduce
implementation is replaced by a Match task. Since the Match contract already guarantees to
associate all key/value pairs with the same key from the different inputs pairwise together,
the user function only needs to concatenate them to realize the join. The SameKey output
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contract is attached to the Match task, because the URL, which has been the key in the input,
is still the key in the output. Ultimately, the CoGroup task realizes the anti-join by emitting
the tuples coming from the Match task, if for the current invocation of the CoGroup’s user
function the input of selected tuples from relation v is empty.
With the SameKey output contract attached to the Match, the compiler infers that any
partitioning on the Match’s input exists also in its output1. If the Match is parallelized by
partitioning the inputs on the key, the system reuses that partitioning for the CoGroup and
only partitions the visits input there. That yields the same efficient execution as the hand-
tuned MapReduce variant that uses only a single job. However, the PACT implementation
retains the flexibility to parallelize the Match differently in case of varying input sizes.
In future versions, even dynamic adaption at runtime based on observed behavior of the
user-code might be possible.

3.2 XQuery

Task XML is a popular semi-structured data model. It has been adopted by many web-
related standards (e.g. XHTML, SVG, SOAP) and is widely used to exchange data between
integrated business applications. Because XML is self-describing, it is also a frequent
choice for storing data in a format that is robust to application changes. XML data is
typically analyzed by evaluating XQuery statements. As the volume of the data stored in
XML increases, so does the need for parallel XQuery processors.

The following example shows an XML file describing employees and departments. The
XQuery on the right-hand side finds departments with above-average employee count and
computes their average salaries.

<company>
<departments>
<dep id="D1" name="HR"

active="true"/>
[...]

</departments>
<employees>
<emp id="E1" name="Kathy"
salary="2000" dep="D1"/>

[...]
</employees>

</company>

let $avgcnt := avg(
for $d in //departments/dep
let $e := //employees/emp[@dep=$d//@id]
return count($e) )
for $d in //departments/dep
let $e :=//employees/emp[@dep=$d//@id]
where count($e)>$avgcnt

and data($d//@active)="true"
return
<department>{
<name>{data($d//@name)}</name>,
<avgSal>{avg($e//@salary)}</avgSal>

}</department>

a) XML data excerpt | b) XQuery example

1Omitting Match’s output contract prevents reusing its partitioning. If the Match is parallelized through the
partitioning strategy, the execution is similar to that of the original MapReduce implementation with two jobs.
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Figure 5: XQuery implementation for MapReduce (left) and PACT (right).

MapReduce Implementing the above XQuery requires in total three MapReduce jobs,
as depicted on the left-hand side of Figure 5. The individual jobs are described in the
following:

• The first MapReduce job (top) projects employee tuples from the XML file and
aggregates the number of employees and their average salary per department. While
the mapper performs the projection, the reducer consumes the employee tuples per
department and takes care of the aggregations.

• The second job (middle) computes the average number of employees per department.
The mapper consumes the result of the first job. Since a global aggregate needs to be
computed, a NULL-key is assigned. The reducer performs the global aggregation.
The output is a single number that is written to the distributed filesystem.
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• The last job combines the departments with the results of the first two jobs. As an
initialization step, the result from the second job is added to an auxiliary structure
called Distributed Cache. Values in the distributed cache are copied to each node
so that they are locally accessible to each instance of the mapper. In the actual job,
the mapper takes both the original XML file and the result from the first job as input.
For records from the original XML file, it selects the active departments. For records
from the result of the first job, it compares the employee count against the value
from the distributed cache and selects only those with a larger count. It uses the
same method of augmenting the key/value pairs with a lineage tag, as described
in Section 3.1. The reducer then performs the join in the same fashion as the first
reducer for the query given in Section 3.1.

PACT For the PACT implementation of the XQuery, we can make use of the more flexible
set of operators (right-hand side of Figure 5). We first use two Map contracts to project
employee and active department tuples from the XML file. The CoGroup contract groups
employees by their department and compute the number of employees as well as the average
salary in the department. Furthermore, an activity flag is set to true if the department is
active. Subsequently a Reduce contract is used to compute the average number of employees
across all departments. The resulting average number is joined with all tuples via a final
Cross contract that filters for those departments which are active and have more than average
employees.

3.3 K-Means Clustering Iteration

Task K-Means is a widely used data mining procedure to partition data into k groups,
or clusters, of similar data points. The algorithm works by iteratively adjusting a set of k
random initial cluster centers. In each iteration data points are assigned to their nearest2

cluster center. The cluster centers are then recomputed as the centroid of all assigned data
points. This procedure is continued until a convergence property is met.

The following pseudo code sketches the K-Means algorithm:

1: initialize k random initial centers
2: WHILE NOT converged
3: FOR EACH point
4: assign point to most similar center
5: FOR EACH center
6: center = centroid of assigned points
7: END

For the parallel implementations we will look at how to implement one iteration of K-Means.
This single iteration can then be started as many times as needed from a control program.

2According to a specified distance measure, for example the Euclidean distance.
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One iteration includes the following two steps:

1. Assigning each data point to its nearest center.

2. Recomputing the centers from the assigned data points.

We will assume that data is stored in two files within a distributed file system - the first
containing the data points in the form of point-id/location pairs (pID/pPoint), the second
one containing the cluster centers in the form of cluster-id/location pairs (cID/cPoint). For
the first iteration, the cluster centers will be initialized randomly. For any subsequent one,
the result file written by the previous iteration will be used. The actual point data is not of
interest for us and can be of arbitrary format, as long as a distance measure and a way of
computing the centroid is specified.

MapReduce The MapReduce implementation of a K-Means iteration is illustrated on
the left-hand side of Figure 6. As a preparation, we need to give the mapper access to all
cluster centers in order to compute the distance between the data points and the current
cluster centers. Similar as in the XQuery implementation (c. f. Section 3.2), we use the
distributed cache as an auxiliary structure. By adding the file containing the cluster centers
to the distributed cache, the centers are effectively broadcasted to all nodes. That way the
programmer “hardcodes” the join strategy between cluster centers and data points into the
MapReduce program.

The Map function is invoked for each data point and computes the pairwise distance to
each cluster center. As a result, it emits for each point a (cID/pPoint) pair where cID is the
ID of nearest cluster center and pPoint is the location of the point. The Reduce function
processes all pairs of the same cluster center and computes its new location as the centroid
from all assigned points. If the distance metric permits it, a Combine function can be
introduced to pre-aggregate for each center the centroid on the local machine. Since only
the pre-aggregated data is then transferred between nodes, the total volume of data transfer
can be significantly reduced.

PACT The PACT implementation of K-Means is depicted on the right-hand side of Fig-
ure 6. Instead of having to rely on a distributed cache, the PACTs allows us to directly
express the “join” between clusters and points via the Cross contract. The user function
attached to the Cross contract computes the pairwise distances between data points and
clusters, emitting (pID/pPoint,CID, distance) tuples. The PACT compiler can choose be-
tween broadcasting one of the inputs or using a symmetric-fragment-and-replicate strategy
to build the distributed Cartesian product of centers and data points as required for the
Cross contract. Here, the common choice will be broadcasting the cluster centers, since
they form a very small data set compared to the set of data points.
After the Cross function, the program uses a Reduce contract to find the minimum cluster
distance for each data point and emit a (cID/pPoint) tuple for the nearest cluster. The final
step is similar to the MapReduce implementation: A Reduce contract computes the new
center locations, with an optional Combine function pre-aggregating the cluster centroids
before the partitioning.
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Figure 6: K-Means Iteration for MapReduce (left) and PACT (right)

The correct use of the output contracts speeds up this program significantly. Note that in
Figure 6, the “data points” source is annotated with a UniqueKey output contract, declaring
that each key/value pair produced by this source has a unique key. An implicit disjoint
partitioning exists across globally unique keys. The function implementing the Cross
contract declares via its output contract that it preserves the key of its left input - the data
points. If the center points are broadcasted3 and the data points remain on their original
node, the partitioning still exists after the cross function. Even more, all tuples for the same
data point occur contiguously in the result of the Cross function. The Reduce contract
needs hence neither partition nor sort the data - it is already in the correct format.

This example illustrates nicely the concept of declaring the requirements for parallelization,
rather than explicitly specifying how to do it. In MapReduce, the usage of a Reduce function
always implies a partitioning and sort step. For PACT, the Reduce contract merely describes
that the key/value pairs need to be processed group-wise by distinct key. The compiler can
infer for this program that the data is already in the required form. It directly passes the
data from the output of the Cross function to the Reduce function without any intermediate
processing by the system.

3This is the common strategy chosen by the optimizer
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3.4 Pairwise Shortest Paths

Task In graph theory, the pairwise shortest path problem is the determination of paths
between every pair of vertices such that the sum of the lengths of its constituent edges
is minimized. Consider a directed graph G = (V,E, s, t, l) where V and E are the sets
of vertices and edges, respectively. Associated with each edge e ∈ E is a source vertex
vs = s(e), a target vertex vt = t(e) and a length le = l(e). The Floyd-Warshall algorithm
(also commonly known as Floyd’s algorithm) is an efficient algorithm for simultaneously
finding the pairwise shortest paths between vertices in such a directed and weighted graph.

1: for k = 1:n
2: for i = 1:n
3: for j = 1:n
4: D(i,j)=min(D(i,j),D(i,k)+D(k,j));

The algorithm takes the adjacency matrix D of G and compares all possible paths through
the graph between each pair of vertices. It incrementally improves the candidates for
the shortest path between two vertices, until the optimal is found. A parallel variant can
be achieved by iteratively performing the following 4 steps until a termination criterion
(number of iterations or path updates) is satisfied:

1. Generate two sets of key/value pairs:
PS = {(p.source, p)|p ∈ Ik}, PT = {(p.target, p)|p ∈ Ik)}

2. Perform an equi-join on the two sets of pairs:
PJ = PT ./end=start PS

3. Union the joined set of paths with the intermediate result of the previous iteration:
PU = PJ

⋃
Ik

4. For all pairwise distances keep the paths with minimal length:
Ik+1 = {mini,j

length

({(a, b) ∈ PU |a = i ∧ b = j})}

Here Ik is the set of the shortest paths in the k-th iteration.

MapReduce The proposed MapReduce variant of Floyd-Warshall algorithm consists of
a driver program which initiates iterations until a termination criterion is satisfied and
two successive MapReduce jobs which alternately join the intermediate shortest paths and
determine the paths of minimal length. The MapReduce jobs are shown on the left-hand
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Figure 8: Implementation of the Shortest Paths Algorithm with MapReduce (left) and PACT (right)

side in Figure 8.
We assume that the input data set Ik is structured the following way: Source and target
vertex of a path build a composed key, whereas the hops and length of the path from the
source to the target vertex are stored in the value. For the initial iteration (k = 0), these
paths are the edges from the original graph.

The first Map task processes the inputs set Ik and generates the sets PS and PT by emitting
each path twice: The paths emitted into PS use the source vertex of the path as key, the
paths emitted into PT use the target vertex of the path as key. The value is in both cases a
description of the path containing the length and the hops. Since the mapper has only one
output, a lineage tag is added to each path, describing the set it belongs to (c. f. Section 3.1).
The subsequent reducer collects all paths sharing the same key and separates them into the
subsets of PT and PS . It concatenates the paths of each element in PT with each element
in PS , thereby effectively joining the paths and creating new candidates for the path that
starts at the beginning of the path described by the element from PT and ending at the end
of the path described by the element from PS . The reducer emits those paths in the same
format as the input data, using the source and target vertex together as the key.
The mapper of the second job is basically an identity function. It takes the union of
the original input Ik and the result of the first reducer as its inputs and re-emits it. The
subsequent reducer receives all paths that start and end at the same vertices in one group.
It keeps only the paths with minimal length and emits the set Ik+1 as result of the k-th
iteration.
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PACT The right-hand side of Figure 8 shows the PACT variant of the same algorithm.
The first mapper of the MapReduce job is substituted by two individual map tasks: the
first one emits the source vertex of the path as key, the second one the target vertex. The
Match performs the same task as reducer in the MapReduce variant - the join of the sets
PS and PT , although in a more natural fashion. Finally, the CoGroup contract guarantees
that all pairs (with the same key) from two different inputs are supplied to the minimum
aggregation. It does so by grouping the output of the Match by individually, selecting the
shortest of the new paths for each pair of vertices. Lastly, it compares the length of that
path with the original shortest path’s length and returning the shorter.

3.5 Edge-Triangle Enumeration

Task Identifying densely-connected subgraphs or trusses [Coh08] within a large graph is
a common task in many use-cases such as social network analysis. A typical preprocessing
step is to enumerate all triangles (3-edge cycles) in the graph. For simplicity, we consider
only undirected graphs, although the algorithm can be extended to handle more complex
graph structures (like multigraphs) with the help of a simplifying preprocessing step. The
algorithm requires a total order over the vertices to be defined, for example a lexicographical
ordering of the vertex IDs. The graph is stored in the distributed filesystem as a sequence
of edges (pairs of vertices). When generating the key/value pairs from the file, each edge
will be its own pair. Inside the pair, both the key and value will consist of both the edge’s
vertices, ordered by the defined ordering.

MapReduce The MapReduce approach to solve the edge-triangle enumeration problem
was proposed by Cohen [Coh09]. It requires the graph to be represented as a list of edges,
augmented with the degrees of the vertices they connect. The implementation is depicted on
the left-hand side of Figure 9 and comprises two successive MapReduce jobs that enumerate
and process the so-called open triads (pairs of connected edges) of the graph. The first
Map task sets for each edge the key to its lower degree vertex. The subsequent reducer
works on groups of edges sharing a common lower-degree vertex and outputs each possible
subset consisting of two edges, using the vertex pair defined by the ordering of the two
corresponding higher-degree vertices as the key. The mapper of the second job takes two
inputs – the original augmented edge list and the open triads from the preceding reducer.
It sets the edge’s vertices (in order) as the key for the original edges and leaves the open
triads unchanged. The technique of adding a lineage tag to each record is used, allowing
the second reducer to separate its inputs again into sets of open triads and edges. Hence, it
works on groups consisting of zero or more open triads and at most one single edge which
completes the triads forming a closed 3-cycle.

PACT The edge-triangle enumeration algorithm can be expressed as a PACT program as
shown on the right-hand side of Figure 9. The first MapReduce job, enumerating all open
triads, can be reused without any further change. The second MapReduce job is replaced
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Figure 9: Enumerating triangles with MapReduce (left) and PACT (right)

by a Match contract with two inputs – the Reduce contract’s result and the original edge
list. Open triads and closing edges are matched by their key. The Match function closes the
triad and outputs the three edges as a closed triangle.

4 Related Work

In recent years a variety of approaches for web-scale data analysis have been proposed. All
of those efforts base on large sets of shared-nothing servers and a massively-parallel job
execution. However, their programming abstractions and interfaces differ significantly.

The MapReduce programming model and execution framework [DG04] are among the
first approaches for data processing on the scale of several thousand machines. The idea
of separating concerns about parallelization and fault tolerance from the sequential user
code made the programming model popular. As a result, MapReduce and its open source
implementation Hadoop [Had] have evolved as a popular parallelization platform for both
industrial [TSJ+09, ORS+08, BERS] and academic research [YDHP07, VCL10].
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Due to the need for ad-hoc analysis of massive data sets and the popularity of Hadoop, the
research and open-source communities have developed a number of higher-level languages
and programming libraries for Hadoop. Among those approaches are Hive [TSJ+09],
Pig [ORS+08], JAQL [BERS], and Cascading [Cas]. Those projects have a similar goals
in common, such as to ease the development of data parallel programs and to enable the
reuse of code. Data processing tasks written in any of these languages are compiled into
one or multiple MapReduce jobs which are executed on Hadoop. However, all approaches
are geared to different use-cases and have considerably varying feature sets.
The Hive system focuses on data warehousing scenarios and is based on a data model which
is strongly influenced by the relational data model. Its language for ad-hoc queries, HiveQL,
borrows heavily from SQL. Hive supports a subset of the classical relational operations,
such as select, project, join, aggregate, and union all. Pig’s data and processing model
is less tightly coupled to the relational domain. The query language Pig Latin is rather
designed to fit in a sweet spot between the declarative style of SQL, and the low-level,
procedural style of MapReduce [ORS+08]. JAQL is a query language for the JSON data
model. Its syntax resembles UNIX pipes. Unlike HIVE or Pig, JAQL’s primary goal is the
analysis of large-scale semi-structured data.
All of the three languages apply several optimizations to a given query that the PACT
compiler applies as well. The key difference is, that they deduce their degrees of freedom
from the algebraic specification of their data model and its operators. In contrast, PACT’s
compiler deduces them from the input and output contracts, thereby maintaining schema-
freeness, which is one of the main distinction between MapReduce systems and relational
databases. Another important difference is that HIVE, JAQL, and Pig realize their decisions
within the user code, which is nontransparent to the execution platform. The PACT
compiler’s decisions are known to the execution framework and hence could be adapted at
runtime. All aforementioned languages could be changed to compile to PACT programs
instead of MapReduce jobs, automatically benefiting from the PACT compiler optimizations.
Therefore, those works are orthogonal to our.
Cascading is based on the idea of pipes and filters. It provides primitives to express for
example split, join, or grouping operations as part of the programming model. Cascading’s
abstraction is close to the PACT programming model. However, like the declarative
languages discussed above, Cascading translates its programs by directly mapping them
into a sequence of MapReduce jobs. It performs only simple rewrite optimizations such
as chaining map operations. Given the more flexible execution engine Nephele, the PACT
compiler considers several alternative plans with different execution strategies (such as
broadcasting vs. repartitioning) for a given program.

Despite the success of the MapReduce programming model, its ability to efficiently sup-
port complex data processing tasks, e.g. join-like operations, has been a major con-
cern [YDHP07, PPR+09, BEH+10]. As a remedy, Yang et al. [YDHP07] proposed to
extend the classic Map and Reduce cycle by a third, so-called Merge phase. The additional
Merge phase can process data from two separate input sets and therefore enables a more
natural and efficient implementation of join-like operators. Several strategies for efficient
domain-specific join operations based on the unmodified version of MapReduce exist, e.g.
set similarity joins [VCL10]. Other work focuses on improving Hadoop’s support for
iterative tasks [BHBE10].
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SCOPE [CJL+08] and DryadLINQ [YIF+08] are declarative query languages and frame-
works, designed to analyze large data sets. Both approaches differ from the already dis-
cussed approaches, as they do not build upon MapReduce. Instead, queries are compiled to
directed acyclic graphs (DAGs) and executed by the Dryad system [IBY+07]. In that sense,
SCOPE and DryadLINQ are similar to the PACT programming model, which is compiled
to a DAG-structured Nephele schedule. However, SCOPE and DryadLINQ are higher-level
languages and not offer an abstraction that enables dynamic parallelization. In contrast
to MapReduce-based query languages or the Nephele/PACT system, both languages omit
an explicit, generalized parallelization model. Instead, they consider parallelization on a
language-specific level.

5 Conclusions

We presented a comparison of several analytical tasks in their MapReduce and PACT
implementations. The PACT programming model is a generalization of MapReduce,
providing additional second-order functions, and introducing output contracts. While the
performance benefits of the PACT programming model were shown in previous work
[BEH+10], this paper focused on the perspective of the programmer.

We have shown that the extended set of functions suits many typical operations very well.
The following points clearly show PACTs advantages over MapReduce: 1) The PACT
programming model encourages a more modular programming style. Although often
more user functions need to be implemented, these have much easier functionality. Hence,
interweaving of functionality which is common for MapReduce can be avoided. 2) Data
analysis tasks can be expressed as straight-forward data flows. That becomes in particular
obvious, if multiple inputs are required. 3) PACT frequently eradicates the need for auxiliary
structures, such as the distributed cache which ”brake” the parallel programming model.
4) Data organization operations such as building a Cartesian product or combining pairs
with equal keys are done by the runtime system. In MapReduce such functionality must
be provided by the developer of the user code. 5) Finally, PACT’s contracts specify data
parallelization in a declarative way which leaves several degrees of freedom to the system.
These degrees of freedom are an important prerequisite for automatic optimization - both
a-priori and during runtime.
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Abstract: Cloud infrastructures enable the efficient parallel execution of data-intensive
tasks such as entity resolution on large datasets. We investigate challenges and possi-
ble solutions of using the MapReduce programming model for parallel entity resolu-
tion. In particular, we propose and evaluate two MapReduce-based implementations
for Sorted Neighborhood blocking that either use multiple MapReduce jobs or apply
a tailored data replication.

1 Introduction

Cloud computing has become a popular paradigm for efficiently processing data and com-

putationally intensive application tasks [AFG+09]. Many cloud-based implementations

utilize the MapReduce programming model for parallel processing on cloud infrastructures

with up to thousands of nodes [DG08]. The broad availability of MapReduce distributions

such as Hadoop makes it attractive to investigate its use for the efficient parallelization of

data-intensive tasks.

Entity resolution (also known as object matching, deduplication, or record linkage) is such

a data-intensive and performance-critical task that can likely benefit from cloud comput-

ing. Given one or more data sources, entity resolution is applied to determine all entities

referring to the same real world object [HS95, RD00]. It is of critical importance for data

quality and data integration, e.g., to find duplicate customers in enterprise databases or to

match product offers for price comparison portals.

Many approaches and frameworks for entity resolution have been proposed [BS06, EIV07,

KR10, KTR10b]. The standard (naive) approach to find matches in n input entities is to

apply matching techniques on the Cartesian product of input entities. However, the result-

ing quadratic complexity of O(n2) results in intolerable execution times for large datasets

[KTR10a]. So-called blocking techniques [BCC03] thus become necessary to reduce the

number of entity comparisons whilst maintaining match quality. This is achieved by se-

mantically partitioning the input data into blocks of similar records and restricting entity

resolution to entities of the same block. Sorted neighborhood (SN) is one of the most pop-

ular blocking approaches [HS95]. It sorts all entities using an appropriate blocking key

and only compares entities within a predefined distance window w. The SN approach thus

reduces the complexity to O(n · w) for the actual matching.

In this study we investigate the use of MapReduce for the parallel execution of SN block-
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ing and entity resolution. By combining the use of blocking and parallel processing we

aim at a highly efficient entity resolution implementation for very large datasets. The pro-

posed approaches consider specific partitioning requirements of the MapReduce model

and implement a correct sliding window evaluation of entities. Our contributions can be

summarized as follows:

• We demonstrate how the MapReduce model can be applied for the parallel execu-

tion of a general entity resolution workflow consisting of a blocking and matching

strategy.

• We identify the major challenges and propose two approaches for realizing Sorted

Neighborhood Blocking on MapReduce. The approaches (called JobSN and RepSN)

either use multiple MapReduce jobs or apply a tailored data replication during data

redistribution.

• We evaluate both approaches and demonstrate their efficiency in comparison to the

sequential approach. The evaluation also considers the influence of the window size

and data skew.

The rest of the paper is organized as follows. In the next section we introduce the MapRe-

duce programming paradigm. Section 3 illustrates the general realization of entity res-

olution using MapReduce. In Section 4, we describe how the SN blocking strategy can

be realized based on MapReduce. Section 5 describes the performed experiments and

evaluation. Related work is discussed in Section 6 before we conclude.

2 MapReduce

MapReduce is a programming model introduced by Google in 2004 [DG04]. It supports

parallel data-intensive computing in cluster environments with up to thousands of nodes. A

MapReduce program relies on data partitioning and redistribution. Entities are represented

by (key, value) pairs. A computation is expressed with two user defined functions:

map : (keyin, valuein) → list(keytmp, valuetmp)

reduce : (keytmp, list(valuetmp)) → list(keyout, valueout)

These functions contain sequential code and are executed in parallel across many nodes

utilizing present data parallelism. MapReduce nodes run a fixed number of mapper and/or

reducer processes. Mapper processes scan disjoint input partitions in parallel and trans-

form each entity in a (key, value)-representation before the map function is executed.

The output of a map function is sorted by key and repartitioned by applying a partitioning

function on the key. A partition may contain different keys but all values with the same key

are in the same partition. The partitions are redistributed, i.e., all (key, value) pairs of a

partition are sent to exactly one node. The receiving node hosts a fixed number of reducer
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Figure 1: Example of a MapReduce program for counting word occurrences in documents

(similar to [LD10])

processes whereas a single reducer is responsible for handling the map output pairs from

all mappers that share the same key. Since the number of keys within a dataset is in gen-

eral much higher than the number of reducers, a reducer merges all incoming (key, value)
pairs in a sorted order by their intermediate keys. In the reduce phase the reducer passes

all values with the same key to a reduce call.

An exemplary data flow of a MapReduce computation is shown in Figure 1. The MapRe-

duce program counts the number of term occurrences across multiple documents which is

a common task in information retrieval. The input data (list of documents) is partitioned

and distributed to the m = 2 mappers. In the simple example of Figure 1, two documents

are assigned to each of the two mappers. However, a mapper usually processes larger

partitions in practice. Instances of the map function are applied to each partition of the

input data in parallel. In our example, the map function extract all words for all documents

and emits a list of (term, 1) pairs. The partitioning assigns every (key,value) pair to one

reducer according to the key. In the example of Figure 1 a simple range partitioning is

applied. All keys (words) starting with a letter from a through m are assigned to the first

reducer; all other keys are transferred to the second reducer. The input partitions are sorted

for all reducers. The user-defined reduce function then aggregates the word occurrences

and outputs the number of occurrences per word. The output partitions of reduce can then

easily be merged to a combined result since two partitions do not share any key.

There are several frameworks that implement the MapReduce programming model. Hadoop

[Fou06] is the most popular implementation throughout the scientific community. It is

free, easy to setup, and well documented. We therefore implemented and evaluated our

approaches with Hadoop. Most MapReduce implementations utilize a distributed file sys-

tem (DFS) such as the Hadoop distributed file system [Bor07]. The input data is initially

stored partitioned, distributed, and replicated across the DFS. Partitions are redistributed

across the DFS in the transition from map to reduce. The output of each reduce call is

written to the DFS.
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Figure 2: Simplified general entity resolution workflow

3 Entity resolution with MapReduce

In this work we consider the problem of entity resolution (deduplication) within one

source. The input data source S = {ei} contains a finite set of entities ei. The task is

to identify all pairs of entities M = {(ei, ek) | ei, ek ∈ S} that are regarded as duplicates.

Figure 2 shows a simplified generic entity resolution workflow. The workflow consists of

a blocking strategy and a matching strategy. Blocking semantically divides a data source

S into possibly overlapping partitions (blocks) bi, with S =
⋃

bi. The goal is to restrict

entity comparison to pairs of entities that reside in the same block. The partitioning into

blocks is usually done with the help of blocking keys based on the entities’ attribute values.

Blocking keys utilize the values of one or several attributes, e.g., product manufacturer (to

group together all products sharing the same manufacturer) or the combination of manu-

facturer and product type. Often, the concatenated prefixes of a few attributes form the

blocking key. A possible blocking key for publications could be the combination of the

first letters of the authors’ last names and the publication year (similar to the reference list

in this paper).

The matching strategy identifies pairs of matching entities of the same block. Matching

is usually realized by pairwise similarity computation of entities to quantify the degree

of similarity. A matching strategy may also employ several matchers and combine their

similarity scores. As a last step the matching strategy classifies the entity pairs as match or

non-match. Common techniques include the application of similarity thresholds, the incor-

poration of domain-specific selection rules, or the use of training-based models. Our entity

resolution model abstracts from the actual matcher implementation and only requires that

the matching strategy returns the list of matching entity pairs.

The realization of the general entity resolution workflow with MapReduce is relatively

straightforward by implementing blocking within the map function and by implementing

matching within the reduce function. To this end, map first determines the blocking key

for each entity. The MapReduce framework groups entities with the same blocking key to

blocks and redistributes them. The reduce step then matches the entities within one block.

Such a procedure shares similarities with the join computation in parallel database systems

[DG92]. There, the join key (instead of the blocking key) is used for data repartitioning to

allow a subsequent parallel join (instead of match) computation. The join (merge) results

are disjoint by definition and can thus easily merged to obtain the complete result.
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Figure 3: Example of a general entity resolution workflow with MapReduce (n = 9 input

entities, m = 3 mappers, r = 2 reducers)

Figure 3 illustrates an example for n=9 entities, a-i, of an input data source S using m=3

mappers and r=2 reducers. First, the input partitioning (split) divides the input source S
into m partitions and assigns one partition to each mapper. Then, the individual mappers

read their (preferably) local data in parallel and determine a blocking key value K for

each of the input entities.1 For example, entity a has blocking key value 1. Afterwards all

entities are dynamically redistributed by a partition function such that all entities with the

same blocking key value are sent to the same reducer (node). In the example of Figure 3,

blocking key values 1 and 3 are assigned to the first reducer whereas key 2 is assigned

to the second node. The receivers group the incoming entities locally and identify the

duplicates in parallel. For example, the first reducer identifies the duplicate pairs (a, d)
and (c, i). The reduce outputs can finally be merged to achieve the overall match result.

Unfortunately, the sketched MapReduce-based entity resolution workflow has several lim-

itations:

Disjoint data partitioning: MapReduce uses a partition function that determines a sin-

gle output partition for each map output pair based on its key value. This approach

is suitable for many blocking techniques but complicates the realization of block-

ing approaches with overlapping blocks. For example, the sorted neighborhood

approach does not only compare entities sharing the same blocking key.

Load balancing: Blocking may lead to partitions of largely varying size due to skewed

key values. Therefore the execution time may be dominated by a single or a few

reducers. Load balancing and skew handling is a well-known problem in parallel

database systems [DNSS92]. The adaptation of those techniques to the MapReduce

paradigm is beyond the scope of this paper and left as a subject for future work.

1Figure 3 omits the map input keys for simplicity.
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Figure 4: Example execution of sorted neighborhood with window size w = 3

Memory bottlenecks: All entities within the same block are passed to a single reduce

call using an iterator. The reducer can only process the data row-by-row similar

to a forward SQL cursor. It does not have any other options for data access. On

the other hand, the matching requires that all entities within the same reduce block

are compared with each other. The reducer must therefore store all entities in main

memory (or must make use of other external memory) which can lead to serious

memory bottlenecks. The memory bottleneck problem is partly related to the load

balancing problem since skewed data may lead to large blocks which tighten the

memory problem. Possible solutions have been proposed in [VCL10]. However,

memory issues can also occur with a (perfect) uniform key distribution.

In this work we focus on the first challenge and propose two approaches how the popular

and efficient Sorted Neighborhood blocking method SN can be realized within a MapRe-

duce framework. As we will discuss, the SN approach is less affected by load balancing

problems. Moreover, the risk for memory bottlenecks is reduced since the row-by-row

process matches the SN’s sliding window approach very well.

4 Sorted Neighborhood with MapReduce

Sorted neighborhood (SN) [HS95] is a popular blocking approach that works as follows. A

blocking key K is determined for each of n entities. Typically the concatenated prefixes of

a few attributes form the blocking key. Afterwards the entities are sorted by this blocking

key. A window of a fixed size w is then moved over the sorted records and in each step all

entities within the window, i.e., entities within a distance of w − 1, are compared.

Figure 4 shows a SN example execution for a window size of w = 3. The input set consists

of the same n = 9 entities that have already been employed in the example of Figure 3.

The entities (a-i) are first sorted by their blocking keys (1, 2, or 3). The sliding window

then starts with the first block (a, d, b) resulting in the three pairs (a, d), (a, b), and (d, b)
for later comparisons. The window is then moved by one step to cover the block (d, b, e).
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This leads to two additional pairs (d, e) and (b, e). This procedure is repeated until the

window has reached the final block (c, g, i). Figure 4 lists all pairs generated by the sliding

window. In general, the overall number of entity comparisons is (n− w/2) · (w − 1).

The SN approach is very popular for entity resolution due to several advantages. First, it

reduces the complexity from O(n2) (matching n input entities without blocking) to O(n)+
O(n·log n) for blocking key determination and sorting and O(n·w) for matching. Thereby

matching large datasets becomes feasible and the window size w allows for a dedicated

control of the runtime. Second, the SN approach is relatively robust against a suboptimal

choice of the blocking key since it is able to compare entities with a different (but similar)

blocking key. The SN approach may also be repeatedly executed using different blocking

keys. Such a multi-pass strategy diminishes the influence of poor blocking keys (e.g.,

due to dirty data) whilst still maintaining the linear complexity for the number of possible

matches. Finally the linear complexity makes SN more robust against load balancing

problems, e.g., if many entities share the same blocking key.

The major difference of SN in comparison to other blocking techniques is that a matcher

does not necessarily only compare entities sharing the same blocking key. For example,

entities d and b have different blocking keys but need to be compared according to the

sorted neighborhood approach (see Figure 4). On the other hand, one of the key concepts

of MapReduce is that map input partitions are processed independently. This allows for a

flexible parallelization model but makes it challenging to group together entities within a

distance of w since a mapper has no access to the input partition of other mappers.

Even if we assume that a mapper can determine the relevant entity sets for each entity2,

the general approach as presented in Section 3 is not suitable. This is due to the fact

that the sliding window approach of SN leads to heavily overlapping entity sets for later

comparison. In the example of Figure 4, the sliding window produces the blocks {a, d, b}
and {d, b, e} among others. The general MapReduce-based entity resolution approach is,

of course, applicable, but would expend unnecessary resources. First of all, almost all

entities appear in w blocks and would therefore appear w times in the map output. Finally,

the overlapping blocks would cause the generation of duplicate pairs in the reduce step,

e.g., (d, b) in the above mentioned example.

We therefore target a more efficient MapReduce-based realization of SN and, thus, adapt

the approach described in Section 3. The map function determines the blocking key for

each input entity independently. The map output is then distributed to multiple reducers

that implement the sliding window approach for each reduce partition. For example, in the

case of two reducers one may want to send all entities of Figure 4 with blocking key ≤ 2
to the first reducer and the remaining entities to the second reducer. The analysis of this

scenario reveals that we have to solve mainly two challenges to implement a MapReduce-

based SN approach.

Sorted reduce partitions: The SN approach assumes an ordered list of all entities based

on their blocking keys. A repartitioning must therefore preserve this order, i.e., the

map output has to make sure that all entities assigned to reducer Rx have a smaller

(or equal) blocking key than all entities of reducer Rx+1. This allows each reducer

2For example, this could be realized by employing a single mapper only.
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Figure 5: Example execution of sorted data partitioning with a composite key consisting of

a blocking key and a partition prefix. The composite key ensures that the reduce partitions

are ordered. If the sliding window approach (w = 3) is applied to both reduce partitions,

it is only able to identify 12 out of the 15 SN correspondences (as shown in Figure 4).

The pairs (f, c), (h, c), and (h, g) can not be found since the involved entities reside in

different reduce partitions.

to apply the sliding window approach on its partition. We will address the sorted

data repartitioning by employing a composite key approach that relies on a partition

prefix (see Section 4.1).

Boundary entities: The continuous sliding window of SN requires that not only entities

within a reduce partition but also across different reduce partitions have to be com-

pared. More precisely, the highest v < w entities of a reduce partition Rx need to

be compared with the w − v smallest entities of the succeeding partition Rx+1. In

the following, we call those entities boundary entities. For simplicity we assume

that there is no partition that holds less than w entities. Therefore it is sufficient to

only compare entities of two succeeding reducers what is surely the common case.

We propose two approaches (JobSN and RepSN) that employ multiple MapReduce

computation steps and data replication, respectively, to process boundary entities

and, thus, to map the entire SN algorithm to a MapReduce computation (Sections 4.2

and 4.3).

4.1 Sorted Reduce Partitions

We achieve sorted reduce partitions (SRP) by utilizing an appropriate user-defined function

p for data redistribution among reducers in the map phase. Data redistribution is based on
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the generated blocking key k, i.e., p is a function p : k → i with 1 ≤ i ≤ r and r is

the number of reducers. A monotonically increasing function p (i.e., p(k1) ≥ p(k2) if

k1 ≥ k2) ensures that all entities assigned to reducer i have a smaller or equal blocking

key than any entity processed by reducer i+ 1.

The range of possible blocking key values is usually known beforehand for a given dataset

because blocking keys are typically derived from numeric or textual attribute values. In

practice simple range partitioning functions p may therefore be employed.

The execution of SRP is illustrated in Figure 5 for m = 3 mappers and r = 2 reducers.

It uses the same entities and blocking keys as the example of Figure 4. In this example

the function p is defined as follows: p(k) = 1 if k ≤ 2, otherwise p(k) = 2. The

map function first generates the blocking key k for each input entity and adds p(k) as a

prefix. In the example of Figure 5, the blocking key value for c is 3 and p(k) = 2. This

results in a combined key value 2.3. The partitioning then distributes the (key,value)

pairs according to the partition prefix of the key. For example, all keys starting with 2 are

assigned to the second reducer. Moreover, the input partitions for each reducer are sorted

by the (combined) key. Since all keys of reducer i start with the same prefix i, the sorting

of the keys is practically done based on the actual blocking key.

Afterwards the reducer can run the sliding window algorithm and, thus, generates the

correspondences of interest. Figure 5 illustrates the resulting correspondences as reduce

output (B=Blocking). For entity resolution the reduce function will apply a matching

approach to the correspondences. Reduce will therefore likely return a small subset of B.

However, since we investigate in blocking techniques we leave B as output to allow for

comparison with other approaches (see Section 4.2 and 4.3).

The sole use of SRP does not allow for comparing entities with a distance ≤ w that spread

over different reducers. For example, standard SN determines the correspondence (h, c)
(see Figure 4) that can not be generated since h and c are assigned to different reducers.

For r reducers and a window size w, SRP misses (r − 1) · w · (w − 1)/2 boundary corre-

spondences. We therefore present two approaches, JobSN and RepSN, that build on SRP

but are also able to deal with boundary entities.

4.2 JobSN: Sorted Neighborhood with additional MapReduce job

The JobSN approach utilizes SRP and employs a second MapReduce job afterwards that

completes the SN result by generating the boundary correspondences. JobSN makes

thereby use of the fact that MapReduce provides sorted partitions to the reducer. A re-

ducer can therefore easily identify the first and the last w− 1 entities during the sequential

execution. Those entities have counterparts in neighboring partitions, i.e., the last w − 1
entities of a reducer relate to the first w − 1 entities of the succeeding reducer. In general,

all reducers output the first and last w − 1 entities with the exception of the first and the

last reducer. The first (last) reducer only returns the last (first) w − 1 entities.

The pseudo-code for JobSN is shown in the appendix in Algorithm 1. Figure 6 illustrates

a JobSN execution example. It uses the same data of Figure 5. The map step of the first
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Figure 6: Example execution of SN with additional MapReduce job (JobSN, w = 3).

The far left box is the reduce step of the first job. Its output is the input to the second

MapReduce job.

job is identical with SRP of Figure 5 and omitted in Figure 6 to save space. The reduce

step is extended by an additional output. Besides the list of blocking correspondences B,

the reducer also emits the first and last w − 1 entities.

JobSN realizes the assignment of related boundary elements with an additional boundary

prefix that specifies the boundary number. Since the last w − 1 entities of reducer i < r
refer to the ith boundary, the keys of the last w−1 entities are prefixed with i. On the other

hand, the first w−1 entities of the succeeding reducer i+1 also relate to the ith boundary.

Therefore the keys of the first w − 1 entities of reducer i > 1 are prefixed with i− 1. The

first reducer in the example of Figure 6 prefixes the last entities (f and h) with 1 and the

second reducer prefixes the first entities (c and g) with 1, too. Thereby the key reflects data

lineage: The actual blocking key of entity c is 3 (see, e.g., Figure 4), it was assigned to

reducer number 2 during the SRP (Figure 5), and it is associated with boundary number 1

(Figure 6).

The second MapReduce job of JobSN is straightforward. The map functions leaves the

input data unchanged. The map output is then redistributed to the reducers based on the

boundary prefix. The reduce function then applies the sliding window but filters corre-

spondences that have already been determined in the first MapReduce job. For example,

(f, h) does not appear in the output of the second job since this pair is already determined

by SRP. As mentioned above, this knowledge is encoded in the lineage information of the

key because those entities share the same partition number.

The JobSN approach generates the complete SN result at the expense of an additional
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Figure 7: Example execution of sorted neighborhood with entity replication (RepSN, w =
3). Entities are replicated within in the map function (below solid line). Replicated entities

are written in italic type.

MapReduce job. We expect the overhead for an additional job to be acceptable and we

will evaluate JobSN’s performance in Section 5.

4.3 RepSN: Sorted Neighborhood with entity replication

The RepSN approach aims to realize SN within a single MapReduce job. It extends SRP

by the idea that each reducer i > 1 needs to have the last w − 1 entities of the preceding

reducer i − 1 in front of its input. This would ensure that the boundary correspondences

appear in the reducer’s output. However, the MapReduce paradigm is not designed for

mutual data access between different reducers. MapReduce only provides options for

controlled data replication within the map function.

The RepSN approach therefore extends the original SRP map function so that map repli-

cates an entity that should be send to both the respective reducer and its successor. For

all but the last reduce partition r, the map function thus identifies the w − 1 entities with

the highest blocking key k. It first outputs all entities and adds the identified boundary

entities afterwards. Similar to SRP, an entity key is determined by the blocking key k plus

a partition prefix p(k). To distinguish between original entities and replicated boundary

entities, RepSN adds an additional boundary prefix. For all original entities this boundary

prefix is the same as the partition number, i.e., the composite key is p(k).p(k).k. The
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boundary prefix for replicated entities is the partition number of the succeeding reducer,

i.e., the composite key is (p(k) + 1).p(k).k.

RepSN is described in the appendix in Algorithm 2. Figure 7 illustrates an example execu-

tion of RepSN. The example employs r = 2 reducers and window size w = 3. Therefore

all mappers identify the w − 1 = 2 entities with the highest key of partition 1. The output

of each map function is divided into two parts. The upper part (above the solid line) is

equivalent to the regular map output of SRP. The only (technical) difference is that the

partition prefix is duplicated. The lower part (below the solid line) of the map output con-

tains the replicated entities. Consider the second map function: All three entities (d, e, and

f ) are assigned to the partition 1 and e and f are replicated because they have the highest

keys. The keys of the replicated data start with the succeeding partition 2. This ensures

that e and f are send to both reducer 1 and reducer 2.

The map output is then redistributed to the reduce functions based on the boundary prefix.

Furthermore, MapReduce provides a sorted list as input to the reduce functions. Due

to the structure of the composite key, the replicated entities appear at the beginning of

each reducer input. Replicated entities share the same boundary prefix but have a smaller

partition prefix. The reduce function then applies the sliding window approach but only

returns correspondences involving at least one entity of the actual partition.

In the example of Figure 7, input and output of the first reducer are equivalent to SRP (see

Figure 5). The second reducer receives a larger input partition. It ignores all replicated

entities but the w− 1 = 2 highest (f and h). The output is the union of the corresponding

SRP output and the corresponding boundary reduce output of JobSN.

RepSN allows for an entire sorted neighborhood computation within a single MapReduce

job at the expense of some data replication. Since the MapReduce model does not provide

any global data access3 during the computation, it is not possible to identify only the

necessary entities for processing the boundary elements. Rather each map function has to

identify and replicate possibly relevant entities based on its local data. Each mapper has

to replicate w− 1 entities for all but the last partition. The maximum number of replicated

entities is therefore m·(r−1)·(w−1). This number is independent from the size n of input

entities and may therefore be comparatively small for large datasets. We will evaluate the

overhead of data replication and data transfer in Section 5. In particular we will compare

it against the JobSN overhead for scheduling and executing an additional MapReduce job.

5 Experiments

We conducted a set of experiments to evaluate the efficiency of the proposed approaches.

After a description of the experimental setup we study the scalability of our Sorted Neigh-

borhood approaches. Afterwards we will discuss the effects of data skew and show its

influence on execution time.

3Hadoop as the most popular implementation MapReduce offers a so called distributed cache. However, the

primary purpose of this mechanism is to upfront copy read-only data (like files or archives) needed by the job to

the particular nodes.
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5.1 Experimental setup

We run our experiments on up to four nodes with two cores. Each node has an In-

tel(R) Core(TM)2 Duo E6750 2x2.66GHz CPU, 4GB memory and runs a 64-bit Debian

GNU/Linux OS with a Java 1.6 64-bit server JVM. On each node we run Hadoop 0.20.2.

Following [VCL10] we made the following changes to the Hadoop default configuration:

We set the block size of the DFS to 128MB, allocated 1GB to each Hadoop daemon and

1GB virtual memory to each map and reduce task. Each node was configured to run at most

two map and reduce tasks in parallel. Speculative execution was turned off. Both master

daemons for managing the MapReduce jobs and the DFS run on a dedicated server. We

used Hadoop’s SequenceFileOutputFormat with native bzip2 block compression to serial-

ize the output of mappers and reducers that was further processed. Sequence files can hold

binary (key, value) pairs what conceptually allowed us to deal with (String, String[])
instead of (String, String) pairs. Hence, we could directly access the ith attribute value

of an entity during matching in comparison to split a string at runtime.

The input dataset4 for our experiments contains about 1.4 Mio. publication records. To

compare two publications we executed two matchers (edit distance on title, TriGram on

abstract) and calculated the average of the two results. Pairs of entities with an average

similarity score of at least 0.75 were regarded as matches. We applied an internal optimiza-

tion by skipping the execution of the second matcher if the similarity after the execution of

the first matcher was too low (i.e., ≤ 0.5) for reaching the combined similarity threshold.

To group similar entities into blocks we used the lowercased first two letters of the title as

blocking key.

5.2 Sorted Neighborhood

We evaluate the absolute runtime and the relative speedup using two window sizes of

10 and 1000. The additional MapReduce job of JobSN was executed with one reducer

(r = 1). To ensure comparability for different numbers of mappers and reducers we used

the same manually defined function in each experiment. It partitions the set of entities into

10 blocks and targets to assign the same number of entities to each block. The resulting 10

reduce tasks are executed by at most 8 reducers (see Section 5.3 for further discussion).

Figure 8 shows execution times and speedup results for up to 8 mappers and 8 reducers

for the two proposed implementations. The configurations with m = r = 1 refers to

sequential execution on a single node, the one with m = r = 2 refers to the execution on

a single node utilizing both cores and so on. For the small window size w = 10, RepSN

slightly outperforms JobSN due to the scheduling overhead of JobSN for the additional

MapReduce job. The execution time of both RepSN and LocSN could be reduced from

approximately 10.5 to about 2.5-3 minutes resulting in a relative speedup of up to 4 for 8

cores. For the larger window size w = 1000, the execution times scale almost linearly, for

instance the execution time for RepSN could be reduced from approximately 9 to merely

4http://asterix.ics.uci.edu/data/csx.raw.txt.gz
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(a) window size w = 10 (b) window size w = 1000

Figure 8: Comparison of the two Sorted Neighborhood implementations

1.5 hours. We observe a nearly linear speedup for the entire range of up to 4 nodes and 8

cores. The runtime of the different implementations differ only slightly. Differences can

only be observed for a small amount of parallelism, i.e., RepSN was 10 minutes slower

for w = 1000 in the sequential case. Beginning with m = r = 4 RepSN completed

faster than JobSN. The reasons for the suboptimal speedup values (about 6 for 8 cores)

are caused by design and implementation choices of MapReduce/Hadoop to achieve fault

tolerance, e.g., materialization of (intermediate) results between map and reduce.

5.3 Data skew

We finally study the effects of data skew and use RepSN for this experiment. Practical

data skew handling has been studied in the context of parallel DBMS [DNSS92] but has

not yet been incorporated in our implementation. Similar to the hash join computation

in parallel DBMS, the application of any partitioning (hash) function p as described in

Section 4.1 is susceptible to data skew and resulting load imbalances. This is because

the combination of blocking key skew together with key-based partitioning may lead to

partitions of largely varying size so that the total execution time is dominated by a single

or few reduce task. One can, of course, reduce the impact of the key skew by choosing a

good partitioning function that assigns a different number of keys to the individual reduce

tasks and, thus, tries to balance the number of entities per reduce task.5 However, the

impact of a partitioning function is limited due to the following two restrictions. First, an

arbitrary assignment of blocking keys to reduce tasks is not possible because SN requires

sorted reduce partitions. Second, processing (very) large blocks can not be distributed to

multiple reduce tasks because the MapReduce paradigm requires entities sharing the same

blocking key to be processed within the same reduce task.

We ran our experiments on all 4 nodes (8 mappers and 8 reducers) with a window size

5Hadoop comes with features (InputSampler and TotalOrderPartitioner) that allows to sample the output of a

MapReduce job and to estimate a suitable partitioning function p that avoids varying sized map output partitions

and ensures totally ordered keys.
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p g
Manual 0.13

Even10 0.30

Even8 0.32

Even8 40 0.42

Even8 55 0.54

Even8 70 0.63

Even8 85 0.76

Table 1: Partitioning functions

and resulting data skew

Figure 9: Execution time of RepSN for var-

ious degrees of data skew (w = 100)

Figure 10: Influence of data skew (m = r = 8)

w = 100. To quantify the inequality of the key distribution in the dataset we utilize the

Gini coefficient g =
2·∑n

i=1 i·yi

n·∑n
i=1 yi

− n+1
n , whereas yi is the number of entities in partition i

and yi ≤ yi+1. A value of 0 expresses total equality and a value of 1 maximal inequality.

We evaluated the partition strategies shown in Table 1 exhibiting different degrees of data

skew as indicated by their Gini coefficient. In addition to the manually defined partitioning

function used in Section 5.2 with almost equally-sized partitions we evenly partitioned the

key space into 10 and 8 intervals (Even10, Even8). Finally we used Even8 but modified

the blocking keys so that 40%, 55%, 70% and 85%, respectively, of all entities fall in the

last partition. The runtime results for the different partitioning strategies are illustrated

in Figure 9. The manual partitioning strategy that was tuned for equally-sized partitions

performed best, while the most skewed configuration suffered from a more than threefold

execution time. Even10 completed slightly (one minute) faster than Even8 because of

its smaller partitions allowing the 8 reducers processing several small partitions while a

large partition is matched (improved load balancing potential). For Even8 40 - Even8 85

we observe significant increases of the execution time with a rising degree of data skew.

Clearly the influence of data skew will increase for larger window sizes since more entities

within a partition have to be compared bye one reducer.

The observed problems are MapReduce-inherent because the programming model de-

mands that all values with the same key are processed by the same reducer. A majority of

values for one or a small subset of the dataset’s keys does not allow effective parallel data

processing. There is no skew handling mechanism in MapReduce except the redundant

execution of outstanding map or reduce task at the end of a job (speculative execution).

However, this helps only to deal with partially working or misconfigured stragglers. There-

fore it becomes necessary to investigate in load balancing mechanisms for the MapReduce

paradigm.
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6 Related work

Entity resolution is a very active research topic and many approaches have been proposed

and evaluated as described in recent surveys [EIV07, KR10]. Surprisingly, there are only

a few approaches that consider parallel entity resolution. First ideas for parallel matching

were described in the Febrl system [CCH04]. The authors show how the match compu-

tation can be parallelized among available cores on a single node. Parallel evaluation of

the Cartesian product of two sources considering the three input cases (clean-clean, clean-

dirty, dirty-dirty) is described in [KL07].

[KKH+10] proposes a generic model for parallel processing of complex match strategies

that may contain several matchers. The parallel processing is based on general partitioning

strategies that take memory and load balancing requirements into account. Compared to

this work [KKH+10] allows the execution of a match workflow on the Cartesian product

of input entities. This is done by partitioning the set of input entities and generating match

tasks for each pair of partitions. A match task is then assigned to any idle node in a

distributed match infrastructure with a central master node. The advantage of this approach

is the high flexibility for scheduling match tasks and thus for dynamic load balancing. The

disadvantage is that only the matching itself is executed in parallel. Blocking is done

upfront on the master node. Furthermore in this work we rely on an widely used parallel

processing framework that hides the details of parallelism and therefore is less error-prone.

We are only aware of one previous approach for parallel entity resolution on a cloud infras-

tructure [VCL10]. The authors do not investigate Sorted Neighborhood blocking but show

how a single token-based string similarity function can be realized with MapReduce. The

approach is based on a complex workflow consisting of several MapReduce jobs. This ap-

proach suffers from similar load balancing problems as observed in Section 5.3 because all

entities that share a frequent token are compared by one reducer6. In contrast to our Sorted

Neighborhood approach large partitions for frequent tokens that do not fit into memory

must be handled separately. This is because all entities that contain a specific token have

to be compared with each other instead of comparing only entities with a maximum dis-

tance of less than w. Compared to [VCL10], we are not limited to a specific similarity

function but can apply a complex match strategy for each pair of entities within a window.

Furthermore as explained in Section 3 Sorted Neighborhood can be substituted with other

blocking techniques, e.g., Standard Blocking or N-gram indexing.

7 Conclusions and outlook

We have shown how entity resolution workflows with a blocking strategy and a match

strategy can be realized with MapReduce. We focused on parallelizing Sorted neighbor-

hood blocking and proposed two MapReduce-based implementations. The evaluation of

our approaches demonstrated their efficiency and scalability in comparison to sequential

6The authors could slightly reduce the data skew by redistributing data based on the infrequent prefix tokens

of a record’s attribute value.
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entity resolution. We also pointed out the need for incorporating load balancing and skew

handling mechanisms with MapReduce.

There are further limitations of MapReduce and the utilized implementation Hadoop such

as insufficient support for pipelining intermediate data between map and reduce jobs.

There are other parallel data processing frameworks like [WK09] that support different

types of communication channels (file, TCP, in-memory) and provide a better support for

different input sets. Furthermore there are concepts like [YDHP07] that propose to adapt

and extend MapReduce to simplify set operations (Cartesian product) on heterogeneous

datasets.

In future work we plan to investigate load balancing and data partitioning mechanisms for

MapReduce.
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Rahm. Data Partitioning for Parallel Entity Matching. In 8th International Workshop
on Quality in Databases, 2010.

[KL07] Hung-Sik Kim and Dongwon Lee. Parallel linkage. In CIKM, pages 283–292, 2007.
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A Algorithms

Algorithm 1 and Algorithm 2 show the pseudo-code for the two proposed Sorted Neigh-

borhood implementation JobSN and RepSN introduced in sections 4.2 and 4.3. For sim-

plicity, we use a function StandardSN that implements the standard Sorted Neighbor-

hood approach, i.e., that moves the window of size w over a sorted list of entities and

outputs matching entity pairs (Algorithm 1 line 9, 26 and Algorithm 2 line 31).

Throughout the two algorithms r denotes the configured number of reducers for the MapRe-

duce job. The partitioning function p : k → i with 1 ≤ i ≤ r determines the reducer ri
to which an entity with the blocking key value k is repartitioned. A key of the form x.y
denotes a composed key of x and y. Composed keys are compared component-wise. The

comments indicate which parts of the composite keys are used for map-side repartitioning

and reduce-side grouping of entities.

For simplicity, the pseudo-code of Algorithm 1 does not filter correspondences that have

been already determined in the first phase. This can be easily achieved by comparing only

entities whose second component of the composed key differ. In Algorithm 2 we use two

extra functions in addition to map and reduce. The function map configure is executed

before a mapper executes a map task and map close before termination of a map task,

respectively.
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Algorithm 1: JobSN

1 // --- Phase 1 ---
2 map(keyin=unused, valuein=entity)
3 k ← generate blocking key for entity;

4 ri ← p(k) ; // reducer to which entity is assigned by p
5 // Use composite key to partition by ri

6 output(keytmp=ri.k, valuetmp=entity)

7 // group by ri, order by composed key
8 reduce(keytmp=ri.k, list(valuetmp)=list(entity))
9 StandardSN(list(entity), w);

10 first ← first w − 1 entities of list(entity);
11 last ← last w − 1 entities of list(entity);
12 if ri > 1 then
13 bound ←ri-1;

14 foreach entity ∈ first do
15 output(keyout=bound.ri.k, valueout=entity)

16 if ri < r then
17 bound ← ri;
18 foreach entity ∈ last do
19 output(keyout=bound.ri.k, valueout=entity)

20 // --- Phase 2 ---
21 map(keyin=bound.ri.k, valuein=entity)
22 // Use composite key to partition by bound
23 output(keytmp=bound.ri.k, valuetmp=entity)

24 // group by bound, order by composed key
25 reduce(keytmp=bound.ri.k, list(valuetmp)=list(entity))
26 StandardSN(list(entity), w);
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Algorithm 2: RepSN

1 map configure
2 // list of the entities with the w-1 highest
3 // blocking keys for each partition i<r
4 foreach i ∈ {1, . . . , r − 1} do
5 rep i ← [];

6 map(keyin=unused, valuein=entity)
7 k ← generate blocking key for entity;

8 ri ← p(k) ; // reducer to which entity is assigned by p
9 bound ← ri;

10 if ri < r then
11 if sizeOf(rep ri )<w-1 then
12 append(rep ri , entity);

13 else
14 min ← determine entity from rep ri with smallest blocking key;

15 kmin ← blocking key of min;

16 if k >kmin then
17 replace(rep ri , min, entity);

18 // Use composite key to partition by bound
19 output(keytmp=bound.ri.k, valuetmp=entity)

20 map close
21 foreach i ∈ {1, . . . , r − 1} do
22 ri ← i;
23 bound ← ri +1;

24 foreach entity ∈ rep i do
25 // prefix key with ri+1 to assign replicated
26 // entities to succeeding reducer
27 output(keytmp=bound.ri.k, valuetmp=entity)

28 // group by bound, order by composed key
29 reduce(keytmp=bound.ri.k, list(valuetmp)=list(entity))
30 remove all entities with bound �= ri from the head of list(entity) except the last w − 1;

31 StandardSN(list(entity), w);
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Abstract: Dieser Beitrag untersucht die effiziente Auswertung von SPARQL-

Anfragen auf großen RDF-Datensätzen. Zum Einsatz kommt hierfür das Apache 

Hadoop Framework, eine bekannte Open-Source Implementierung von Google's 

MapReduce, das massiv parallelisierte Berechnungen auf einem verteilten System 

ermöglicht. Zur Auswertung von SPARQL-Anfragen mit Hadoop wird in diesem 

Beitrag PigSPARQL, eine Übersetzung von SPARQL nach Pig Latin, vorgestellt. 

Pig Latin ist eine von Yahoo! Research entworfene Sprache zur verteilten Analyse 

von großen Datensätzen. Pig, die Implementierung von Pig Latin für Hadoop, 

übersetzt ein Pig Latin-Programm in eine Folge von MapReduce-Jobs, die 

anschließend auf einem Hadoop-Cluster ausgeführt werden. Die Evaluation von 

PigSPARQL anhand eines SPARQL spezifischen Benchmarks zeigt, dass der 

gewählte Ansatz eine effiziente Auswertung von SPARQL-Anfragen mit Hadoop 

ermöglicht. 

1 Einleitung 

Die Menge der Daten im Internet und damit auch das potentiell zur Verfügung stehende 

Wissen nimmt schnell zu. Leider können große Teile dieses Wissens nicht automatisiert 

erfasst und verarbeitet werden, da sich die Aufbereitung und Darstellung an einem 

menschlichen Betrachter orientiert. Das Ziel des Semantic Web [BHL01] ist die 

Erschließung und automatisierte Verarbeitung dieses Wissens. Zu diesem Zweck wurde 

das Resource Description Framework (RDF) [MMM04] entwickelt, ein Standard zur 

Repräsentation von Daten in einem maschinenlesbaren Format. SPARQL [PS08] ist die 

vom W3C
1
 empfohlene Anfrage-Sprache für RDF. 

Die zunehmende Größe von Datensätzen erfordert die Entwicklung neuer Konzepte zur 

Datenverarbeitung und Datenanalyse. Google entwickelte hierfür 2004 das sogenannte 

MapReduce-Modell [DG04], das es dem Anwender erlaubt, parallele Berechnungen auf 

sehr großen Datensätzen verteilt auf einem Computer-Cluster durchzuführen, ohne sich 

um die Details und die damit verbundenen Probleme eines verteilten Systems Gedanken 

machen zu müssen. Die bekannteste frei verfügbare Implementierung des MapReduce-

                                                           
1 World Wide Web Consortium – siehe [http://www.w3.org/] 
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Modells ist das Hadoop Framework
2
, das maßgeblich von Yahoo! weiterentwickelt wird. 

Da die Entwicklung auf MapReduce-Ebene trotz aller Vorzüge dennoch recht technisch 

und anspruchsvoll ist, entwickelten Mitarbeiter von Yahoo! eine Sprache zur Analyse 

von großen Datensätzen mit Hadoop, Pig Latin [Ol08], die dem Anwender eine einfache 

Abstraktionsebene zur Verfügung stellen soll. Pig, die Implementierung von Pig Latin 

für Hadoop, ist mittlerweile ein offizielles Subprojekt von Hadoop. 

Da insbesondere auch die Menge der verfügbaren RDF-Datensätze stetig zunimmt
3
, 

müssen auch hier neue Konzepte zur Auswertung solcher Datensätze entwickelt werden. 

Dabei sind klassische, auf nur einem Computer ausgeführte, Systeme aufgrund der 

begrenzten Ressourcen zunehmend überfordert. Die grundlegende Idee dieser Arbeit ist 

es daher, die Mächtigkeit von Hadoop zur Auswertung von SPARQL-Anfragen auf 

großen RDF-Datensätzen zu nutzen. Hierfür wurde eine Übersetzung von SPARQL nach 

Pig Latin entwickelt und implementiert, die eine SPARQL-Anfrage in ein äquivalentes 

Pig Latin-Programm überführt. Dieser Ansatz hat den Vorteil, dass die Übersetzung 

direkt von bestehenden Optimierungen bzw. zukünftigen Weiterentwicklungen von Pig 

profitiert. Die wesentlichen Beiträge unserer Arbeit sind wie folgt: Zunächst definieren 

wir für ein ausdrucksmächtiges Fragment von SPARQL eine Übersetzung in ein 

äquivalentes Pig Latin-Programm. Das betrachtete Fragment deckt dabei insbesondere 

einen Großteil der Anfragen ab, die in der offiziellen Dokumentation [PS08] enthalten 

sind. Nach unserem Kenntnisstand ist diese Arbeit die erste umfassende Darstellung 

einer Übersetzung von SPARQL nach Pig Latin. Darüber hinaus untersuchen wir 

Optimierungsstrategien für die Übersetzung und bestätigen deren Wirksamkeit. 

Abschließend zeigen wir anhand eines SPARQL spezifischen Performance Benchmarks, 

dass die von uns entwickelte Übersetzung eine effiziente Auswertung von SPARQL-

Anfragen auf sehr großen RDF-Datensätzen ermöglicht. 

Der weitere Verlauf dieser Arbeit ist wie folgt strukturiert. In Kapitel 2 werden die 

nötigen Grundlagen von RDF, SPARQL, MapReduce und Pig Latin kurz dargestellt. 

Kapitel 3 erläutert die von uns entwickelte Übersetzung von SPARQL nach Pig Latin. In 

Kapitel 4 folgt die Evaluation der Übersetzung mit einem SPARQL spezifischen 

Performance Benchmark und Kapitel 5 gibt einen Überblick über verwandte Arbeiten. 

Abschließend werden die Ergebnisse der Arbeit in Kapitel 6 zusammengefasst. 

2 Grundlagen 

Dieses Kapitel stellt die Grundlagen der von uns verwendeten Technologien kurz dar. 

2.1 RDF 

Das Resource Description Framework (RDF) ist ein vom World Wide Web Consortium 

(W3C) entwickelter Standard zur Modellierung von Metainformationen über beliebige 

Ressourcen (z.B. Personen oder Dokumente). Eine ausführliche Darstellung von RDF 

                                                           
2 siehe [http://hadoop.apache.org] 
3 siehe [http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics] 
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findet sich in [MMM04]. Im Folgenden werden nur die grundlegenden Konzepte von 

RDF kurz vorgestellt. 

RDF-Tripel. Grundlage der Wissensrepräsentation in RDF sind Ausdrücke der Form 

<Subjekt, Prädikat, Objekt>. Ein RDF-Tripel lässt sich folgendermaßen interpretieren: 

<Subjekt> hat die Eigenschaft <Prädikat> mit dem Wert <Objekt>. 

RDF-Tripel können URIs, Blank Nodes und RDF-Literale enthalten. URIs (Uniform 

Resource Identifier) sind weltweit eindeutige Bezeichner für Ressourcen (z.B. 

http://example.org/Peter), Blank Nodes sind lokal eindeutige Bezeichner (z.B. _:address) 

und RDF-Literale sind atomare Werte (z.B. "27"). 

RDF-Graph. Ein RDF-Dokument besteht im Wesentlichen aus einer Abfolge von RDF-

Tripeln und lässt sich als gerichteter Graph interpretieren. Jedes Tripel entspricht dabei 

einer beschrifteten Kante (Prädikat) von einem Knoten im Graph (Subjekt) zu einem 

anderen Knoten (Objekt). 

    

Abbildung 1: RDF-Dokument mit entsprechendem RDF-Graph 

2.2 SPARQL 

SPARQL
4
 ist die vom W3C empfohlene Anfragesprache für RDF. Die folgende kurze 

Darstellung beruht auf der offiziellen Dokumentation von SPARQL aus [PS08]. Eine 

formale Definition der Semantik von SPARQL findet sich ebenfalls in der offiziellen 

Dokumentation oder in [PAG09]. 

Graph Pattern. Eine SPARQL-Anfrage definiert im Wesentlichen ein Graph Pattern 

(Muster), das auf dem RDF-Graph G, auf dem die Anfrage operiert, ausgewertet wird. 

Dazu wird überprüft, ob die Variablen im Graph Pattern durch Knoten aus G ersetzt 

werden können, sodass der resultierende Graph in G enthalten ist (Pattern Matching). 

Grundlage jedes Graph Patterns bilden die Basic Graph Patterns (BGP). Ein BGP 

                                                           
4 SPARQL ist ein rekursives Akronym und steht für SPARQL Protocol and RDF Query Language. 

@prefix ex: <http://example.org/> . 

@prefix foaf: <http://xmlns.com/foaf/0.1/> . 

 

ex:Peter  foaf:mbox  "peter@abc.de" . 

ex:John  foaf:knows  ex:Bob .  

ex:John  foaf:knows  ex:Sarah .  

ex:John  foaf:knows  ex:Peter .  

ex:John  foaf:age   "27" .  

ex:Bob  foaf:knows  ex:Peter .  

ex:Bob  foaf:age   "32" .  

ex:Bob  foaf:mbox  "bob@abc.de" .  

ex:Sarah  foaf:knows  ex:Peter .  

ex:Sarah  foaf:age   "17" . 

ex:Peter ex:John 

ex:Sarah ex:Bob 

knows 

"17" "32" 

age 

"peter@abc.de" 

"bob@abc.de" 

mbox 

"27" 

67



besteht aus einer endlichen Menge an Triple-Patterns, die mittels AND (.) verkettet 

werden. Ein Triple-Pattern ist ein RDF-Tripel, wobei Subjekt, Prädikat und Objekt mit 

einer Variablen (?var) belegt sein können (z.B. ?s :p ?o). Ein Graph Pattern lässt sich 

dann rekursiv definieren: 

 Ein Basic Graph Pattern ist ein Graph Pattern. 

 Sind P und P' Graph Pattern, dann sind auch {P} . {P'}, P UNION {P'} und  

P OPTIONAL {P'} Graph Pattern. 

 Ist P ein Graph Pattern und R eine Filter-Bedingung, dann ist auch  

P FILTER (R) ein Graph Pattern. 

Mit Hilfe des FILTER-Operators lassen sich die Werte von Variablen im Graph Pattern 

beschränken und der OPTIONAL-Operator erlaubt das optionale Hinzufügen von 

Informationen zum Ergebnis einer Anfrage. Sollten die gewünschten Informationen 

nicht vorhanden sein, so bleiben die entsprechenden Variablen im Ergebnis ungebunden, 

d.h. es wird ihnen kein Wert zugeordnet. Mit Hilfe des UNION-Operators lassen sich 

zwei alternative Graph Patterns in einer Anfrage definieren. Ein Anfrage-Ergebnis muss 

dann mindestens eines der beiden Patterns erfüllen. Darüber hinaus gibt es in SPARQL 

auch einen GRAPH-Operator, der die Referenzierung mehrerer RDF-Graphen in einer 

Anfrage ermöglicht. Im Folgenden beschränken wir uns allerdings auf Anfragen, die 

sich nur auf einen RDF-Graph beziehen. 

 

Abbildung 2: SPARQL-Anfrage mit FILTER und OPTIONAL 

Die Anfrage aus Abbildung 2 ermittelt alle Personen, die "Peter" kennen und mindestens 

18 Jahre alt sind. Sollte außerdem eine Mailbox-Adresse bekannt sein, so wird diese zum 

Ergebnis der Anfrage hinzugefügt. Tabelle 1 zeigt das Ergebnis der Anfrage auf dem 

RDF-Graph aus Abbildung 1. 

?person ?age ?mb 

ex:John 27  

ex:Bob 32 bob@abc.de 

Tabelle 1: Auswertung der Anfrage 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

SELECT * 

WHERE { 

  ?person foaf:knows ex:Peter . 

  ?person foaf:age ?age 

  FILTER (?age >= 18) 

  OPTIONAL { 

    ?person foaf:mbox ?mb 

  } 

} 
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2.3 MapReduce 

MapReduce ist ein von Google im Jahr 2004 vorgestelltes Modell für nebenläufige 

Berechnungen auf sehr großen Datenmengen unter Einsatz eines Computer-Clusters 

[DG04]. Inspiriert wurde das Konzept durch die in der funktionalen Programmierung 

häufig verwendeten Funktionen map und reduce. Ausgangspunkt für die Entwicklung 

war die Erkenntnis, dass viele Berechnungen bei Google zwar konzeptuell relativ 

einfach sind, jedoch zumeist auf sehr großen Datensätzen ausgeführt werden müssen. 

Eine parallelisierte Ausführung ist daher oftmals unerlässlich, weshalb selbst einfache 

Berechnungen eine komplexe Implementierung erforderten, um mit den Problemen einer 

parallelisierten Ausführung umgehen zu können. Bei der Entwicklung von MapReduce 

standen daher insbesondere eine gute Skalierbarkeit und Fehlertoleranz des Systems im 

Mittelpunkt, da bei großen Computer-Clustern immer mit Ausfällen gerechnet werden 

muss. 

 

Abbildung 3: MapReduce-Datenfluss 

Im Prinzip muss der Entwickler bei der Erstellung eines MapReduce-Jobs lediglich eine 

Map- und eine Reduce-Funktion implementieren, die vom Framework parallelisiert auf 

den Eingabe-Daten ausgeführt werden. Abbildung 3 zeigt den schematischen Ablauf 

eines MapReduce-Jobs mit drei Mappern und zwei Reducern. Technisch gesehen 

berechnet ein MapReduce-Job aus einer Liste von Schlüssel-Wert-Paaren (Eingabe) eine 

neue Liste von Schlüssel-Wert-Paaren (Ausgabe): 

[(     )   (     )]  [(       )   (       )] 

Beispiel. Angenommen es soll für eine Menge von Dokumenten berechnet werden, 

welche Wörter mit welcher Häufigkeit darin vorkommen. Eine Vorverarbeitung habe 

bereits eine Liste an Paaren (docID, word) ergeben, wobei docID eine Referenz auf ein 

Dokument und word ein Wort aus dem entsprechenden Dokument repräsentieren. Diese 

Vorverarbeitung lässt sich ebenfalls mit Hilfe eines MapReduce-Jobs berechnen. Ein 

mögliches Ergebnis der Auswertung könnte dann so aussehen: 

[(           ) (         ) (           ) (          h)]  [(       ) (     ) (    h  )] 

Eine wichtige Eigenschaft des MapReduce-Modells ist das sogenannte Lokalitätsprinzip. 

Um das Netzwerk zu entlasten wird dabei ausgenutzt, dass die Daten verteilt auf den 

Computern im Cluster abgespeichert sind. Das System versucht die Mapper so auf die 

Rechner zu verteilen, dass möglichst viele Daten lokal gelesen werden können und nicht 

über das Netzwerk übertragen werden müssen. 

input1 

input2 

input3 

Map 

Map 

Map 

Reduce 

Reduce 

output1 

output2 

Shuffle & Sort 
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2.4 Pig Latin 

Pig Latin ist eine von Yahoo! entworfene Sprache zur Analyse von großen Datenmengen 

[Ol08], die für den Einsatz im Hadoop Framework entwickelt wurde, einer Open-Source 

Implementierung von Google's MapReduce. Die Implementierung von Pig Latin für 

Hadoop, Pig, übersetzt ein Pig Latin-Programm in eine Folge von MapReduce-Jobs und 

ist mittlerweile ein offizielles Subprojekt von Hadoop. 

Datenmodell. Pig Latin besitzt ein vollständig geschachteltes Datenmodell und erlaubt 

dem Entwickler damit eine größere Flexibilität als die von der ersten Normalform 

vorgeschriebenen flachen Tabellen von relationalen Datenbanken. Das Datenmodell von 

Pig Latin kennt vier verschiedene Typen: 

 Atom: Ein Atom beinhaltet einen einfachen, atomaren Wert wie eine 

Zeichenkette oder eine Zahl. Beispiel: 'Sarah' oder 24 

 Tupel:  Ein Tupel besteht aus einer Sequenz von Feldern, wobei jedes Feld 

 einen beliebigen Datentyp besitzen kann. Jedem Feld in einem Tupel 

 kann zudem ein Name (Alias) zugewiesen werden, über den das Feld 

referenziert werden kann. 

Beispiel: ('John','Doe') mit Alias-Namen (Vorname,Nachname) 

 Bag: Eine Bag besteht aus einer Kollektion von Tupeln, wobei ein Tupel 

 auch mehrfach vorkommen darf. Darüber hinaus müssen die Schemata 

der Tupel nicht übereinstimmen, d.h. die Tupel können eine 

unterschiedliche Anzahl von Feldern mit unterschiedlichen Typen 

aufweisen. 

Beispiel: {
(             )

( P      (                  ))
} 

 Map: Eine Map beinhaltet eine Kollektion von Datenelementen. 

Jedes Element kann dabei über einen zugeordneten Schlüssel 

referenziert werden. 

Beispiel: [
        J    

        {
(       )
(     )

}] 

Operatoren. Ein Pig Latin-Programm besteht aus einer Sequenz von Schritten, wobei 

jeder Schritt einer einzelnen Daten-Transformation entspricht. Da Pig Latin für die 

Bearbeitung von großen Datenmengen mit Hadoop entwickelt wurde, müssen die 

Operatoren gut parallelisierbar sein. Daher wurden konsequenterweise nur solche 

Operatoren aufgenommen, die sich in eine Folge von MapReduce-Jobs übersetzen und 

damit parallel ausführen lassen. Im Folgenden werden die für die Übersetzung 

wichtigsten Operatoren in aller Kürze vorgestellt. Für eine genauere Darstellung sei auf 

die offizielle Dokumentation von Pig Latin [Ap10] verwiesen. 

 LOAD: Für die Bearbeitung mit Pig Latin müssen die Daten deserialisiert und 

in das Datenmodell von Pig Latin überführt werden. Hierfür kann eine User 

Defined Function (UDF) implementiert werden, die vom LOAD-Operator 

verwendet werden soll und das tupelweise Laden beliebiger Daten ermöglicht. 

Beispiel: persons = LOAD 'file' USING myLoad() AS (name,age,city); 
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 FOREACH: Mit Hilfe des FOREACH-Operators lässt sich eine Verarbeitung 

auf jedes Tupel in einer Bag anwenden. Insbesondere lassen sich damit Felder 

eines Tupels entfernen oder neue Felder hinzufügen. 

Beispiel: result1 = FOREACH persons GENERATE 
           name, age>=18? 'adult':'minor' AS class; 

persons  result1 

name age city  name class 

Sarah 17 Freiburg  Sarah minor 

Bob 32 Berlin  Bob adult 

 FILTER: Der FILTER-Operator ermöglicht das Entfernen ungewollter Tupel 

aus einer Bag. Dazu wird die Bedingung auf alle Tupel in der Bag angewendet. 

Beispiel: result2 = FILTER persons BY age>=18; 

result2 

name age city 

Bob 32 Berlin 

 [OUTER] JOIN: Equi-Joins lassen sich in Pig Latin mit Hilfe des JOIN-

Operators ausdrücken. Eine Besonderheit von Pig Latin ist darüber hinaus, dass 

sich ein JOIN auch auf mehr als zwei Relationen beziehen kann (Multi-Join). 

Über die Schlüsselwörter LEFT OUTER bzw. RIGHT OUTER können auch 

Outer Joins in Pig Latin realisiert werden. 

Beispiel: result3 = JOIN result1 BY name LEFT OUTER, 

                result2 BY name; 

result3 

result1:: 

name 

result1:: 

class 

result2:: 

name 

result2:: 

age 

result2:: 

city 

Bob adult Bob 32 Berlin 

Sarah minor    

 UNION: Zwei oder mehr Bags können mit Hilfe des UNION-Operators zu 

einer Bag zusammengeführt werden, wobei Duplikate (mehrfach vorkommende 

Tupel) erlaubt sind. Im Gegensatz zu relationalen Datenbanken müssen die 

Tupel dabei nicht das gleiche Schema und insbesondere nicht die gleiche 

Anzahl an Feldern besitzen. Im Regelfall ist es allerdings nicht besonders 

empfehlenswert, Bags mit unterschiedlichen Schemata zu vereinigen, da die 

Schema-Informationen (speziell die Alias-Namen für die Felder der Tupel) 

dabei verloren gehen. 
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3 Übersetzung von SPARQL nach Pig Latin 

Die direkte Übersetzung einer SPARQL-Anfrage in ein Pig Latin-Programm wäre 

aufgrund der komplexen Syntax und der datenorientierten Struktur von SPARQL äußerst 

schwierig. Deshalb wird die Anfrage zunächst nach dem offiziellen Schema des W3C in 

einen SPARQL Algebra-Baum überführt und anschließend in ein Pig Latin-Programm 

übersetzt. Abbildung 4 zeigt das grundlegende Konzept der Übersetzung, wie sie in 

dieser Arbeit vorgestellt wird. Die modulare Vorgehensweise bietet mehrere Vorteile, so 

können beispielsweise Optimierungen auf der Algebra-Ebene durchgeführt werden, ohne 

die Übersetzung der Algebra in ein Pig Latin-Programm verändern zu müssen. 

 

Abbildung 4: Schematischer Ablauf der Übersetzung 

3.1 SPARQL Algebra 

Zur Auswertung einer SPARQL-Anfrage wird die Anfrage zunächst in einen Ausdruck 

der SPARQL Algebra überführt, da die Semantik einer Anfrage auf der Ebene der 

SPARQL Algebra definiert ist. Ein solcher Ausdruck lässt sich in Form eines Algebra-

Baums repräsentieren. Tabelle 2 stellt die Operatoren der SPARQL Algebra ihren 

Entsprechungen in der SPARQL Syntax gegenüber. 

Algebra SPARQL Syntax 

BGP Menge von Triple-Patterns (verkettet über Punkt-Symbol) 

Join V  knüpfung zw i   G upp n ({…}.{…}) 

LeftJoin OPTIONAL 

Filter FILTER 

Union UNION 

Graph GRAPH 

Tabelle 2: Zusammenhang zwischen SPARQL Algebra und Syntax 

SELECT * 

WHERE { 

 ?x name ?n . 

 FILTER (…) 

 OPTIONAL { 

  ?x mail ?m . 

  ... 

Filter 

A = LOAD …  

  = FILTER A …  

C = FILTER A …  

D = JOIN    Y …  

    C  Y …  

E = FOREACH D …  

... 

... 

SPARQL-Anfrage SPARQL Algebra-Baum Pig Latin-Programm 

 

LeftJoin 

BGP 
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3.2 Abbildung der RDF-Daten in das Datenmodell von Pig 

Ein RDF-Datensatz besteht im Wesentlichen aus einer Menge von RDF-Tripeln und ein 

RDF-Tripel setzt sich aus URIs, RDF-Literalen und Blank Nodes zusammen. URIs sind 

nach ihrer Syntax spezielle ASCII-Zeichenfolgen und lassen sich daher im Datenmodell 

von Pig als Atome repräsentieren (<URI>). RDF unterscheidet des Weiteren zwischen 

einfachen und getypten Literalen. Einfache Literale sind Unicode-Zeichenfolgen und 

können daher ebenfalls als Atome repräsentiert werden. Getypte Literale haben entweder 

einen zusätzlichen Language-Tag oder einen Datentyp und lassen sich durch einen 

zusammengesetzten Wert ("literal"@lang bzw. "literal"^^datatype) repräsentieren. 

Bei der Auswertung von arithmetischen Ausdrücken werden die Literale zur Laufzeit in 

den entsprechenden Typ umgewandelt. Hierfür wurden für die bei RDF gebräuchlichen 

Datentypen (z.B. xsd:integer) spezielle Umwandlungen definiert. Die RDF-Syntax 

macht keine näheren Angaben zur internen Struktur von Blank Nodes, sie müssen 

lediglich von URIs und Literalen unterscheidbar sein. Um dies zu gewährleisten, kann 

eine Darstellung der Form _:nodeID verwendet werden. Ein RDF-Tripel lässt sich somit 

als Tupel aus drei atomaren Feldern mit dem Schema (s:chararray, p:chararray, 

o:chararray) darstellen. 

3.3 Übersetzung der SPARQL Algebra 

Im Folgenden werden für die Operatoren der SPARQL Algebra Vorschriften zur 

Übersetzung in eine Folge von Pig Latin-Befehlen angegeben. Hierfür muss zunächst die 

benötigte Terminologie eingeführt werden, die analog zu [PAG09] definiert wird: Sei V 

die unendliche Menge an Anfrage-Variablen und T die Menge der gültigen RDF-Terme 

(URIs, RDF-Literale, Blank Nodes). 

Definition 1. Ein (Solution) Mapping µ ist eine partielle Funktion      . Die Domain 

von µ, dom(µ), ist die Teilmenge von V, wo µ definiert ist. Im Folgenden wird ein 

Solution Mapping umgangssprachlich auch als Ergebnis bezeichnet. 

Definition 2. Zwei Solution Mappings    und    sind kompatibel, wenn für alle 

Variablen       (  )     (  ) gilt, dass   (  )    (  ). Es folgt, dass       

wieder ein Solution Mapping ergibt und zwei Mappings mit disjunkten Domains immer 

kompatibel sind. 

Probleme bei der Auswertung von SPARQL mit Pig Latin bereiten ungebundene 

Variablen, die durch die Anwendung des OPTIONAL-Operators entstehen können. Im 

Gegensatz zu einem NULL-Wert in der relationalen Algebra führt eine ungebundene 

Variable in SPARQL bei der Auswertung eines Joins nicht dazu, dass das entsprechende 

Tupel verworfen wird [Cy05]. Da sich Joins in Pig Latin an der relationalen Algebra 

orientieren und ungebundene Variablen als NULL-Werte in Pig Latin dargestellt 

werden, führt dies zu unterschiedlichen Ergebnissen bei der Auswertung. Aus diesem 

Grund betrachten wir bei der Übersetzung nach Pig Latin schwach wohlgeformte Graph 

Pattern, die in Anlehnung an wohlgeformte Graph Pattern nach Pérez et al. [PAG09] 

definiert werden aber weniger restriktiv sind. Insbesondere sind die meisten Anfragen 

aus der offiziellen SPARQL Dokumentation [PS08] schwach wohlgeformt. 
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Definition 3. Ein Graph Pattern P ist schwach wohlgeformt, wenn es kein GRAPH 

enthält, UNION nicht in einem anderen Operator enthalten ist und für jedes Sub-Pattern 

P' = (P1 OPTIONAL P2) von P und jede Variable ?X aus P gilt: Falls ?X sowohl in P2 

als auch außerhalb von P' vorkommt, dann kommt sie auch in P1 vor. 

Ist das Graph Pattern einer Anfrage schwach wohlgeformt, so treten keine Joins über 

NULL-Werte auf, da dies nur der Fall ist, falls eine Variable in P2 und außerhalb von P‘ 

vorkommt aber nicht in P1 oder nach einem UNION noch weitere Operatoren folgen. 

Anfragen, die nicht schwach wohlgeformt sind und somit bei der Auswertung zu einem 

NULL-Join führen, werden von unserem Übersetzer erkannt. 

Basic Graph Pattern (BGP). BGPs bilden die Grundlage jeder SPARQL-Anfrage und 

werden direkt auf dem entsprechenden RDF-Graph ausgewertet. Sie liefern als Ergebnis 

eine Menge von Solution Mappings, die als Eingabe für die weiteren Operatoren dienen. 

Genauer gesagt handelt es sich dabei um eine Multi-Menge, da ein Solution Mapping 

mehrfach vorkommen kann. 

Beispiel: P1 = BGP(?A knows Bob . ?A age ?B . ?A mbox ?C) 

Das BGP ermittelt alle Personen, die Bob kennen und für die sowohl das Alter als auch 

eine Mailbox-Adresse bekannt sind. Solution Mappings lassen sich in Pig in Form einer 

Relation (flache Bag) repräsentieren. Jedes Tupel der Relation entspricht einem Solution 

Mapping und die Felder des Tupels entsprechen den Werten für die Variablen. Das 

Schema der Relation bilden die Namen der Variablen ohne führendes Fragezeichen, da 

diese bei Alias-Namen in Pig nicht erlaubt sind. Abbildung 5 zeigt die Übersetzung von 

P1 in eine Folge von Pig Latin-Befehlen. 

 

Abbildung 5: Übersetzung eines BGPs 

(1) Das Laden der Daten erfolgt mit Hilfe des LOAD-Operators. Hierfür muss eine 

spezielle Loader-UDF implementiert werden. Anschließend stehen die Daten im 

Format aus Abschnitt 3.1 zur Verfügung. 

(2) Für jedes Triple-Pattern im BGP wird ein FILTER benötigt, der diejenigen RDF-

Tripel selektiert, die das Triple-Pattern erfüllen (Pattern Matching). 

(3) Die Ergebnisse der FILTER werden dann sukzessive mit Hilfe des JOIN-

Operators verknüpft. In jedem Schritt wird dabei ein weiteres Triple-Pattern zur 

berechneten Lösung hinzugenommen. Besteht das BGP aus n Triple-Patterns, so 

sind folglich n-1 Joins erforderlich. Das Prädikat des Joins ergibt sich jeweils aus 

graph = LOAD 'pathToFile' USING rdfLoader() AS (s,p,o) ; (1) 

t1 = FILTER graph BY p == 'knows' AND o == 'Bob' ;       (2) 

t2 = FILTER graph BY p == 'age' ; 

t3 = FILTER graph BY p == 'mbox' ; 

j1 = JOIN t1 BY s, t2 BY s ;                             (3) 

j2 = JOIN j1 BY t1::s, t3 BY s; 

P1 = FOREACH j2 GENERATE                                 (4) 

     t1::s AS A, t2::o AS B, t3::o AS C ; 
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den gemeinsamen Variablen der beiden Argumente. Der Join verknüpft damit die 

kompatiblen Solution Mappings der beiden Argumente und erzeugt daraus neue 

Solution Mappings. Sollte es keine gemeinsamen Variablen geben, so muss das 

Kreuzprodukt der beiden Argumente berechnet werden. 

(4) Durch ein abschließendes FOREACH werden die überflüssigen Spalten der 

Relation mit den berechneten Solution Mappings entfernt und das Schema der 

Relation an die Variablennamen angepasst. 

Filter. Der Filter-Operator der SPARQL Algebra dient dazu, aus einer Multi-Menge an 

Solutions Mappings diejenigen Mappings zu entfernen, welche die Filter-Bedingung 

nicht erfüllen. 

Beispiel: P2 = Filter(?B >= 30 && ?B <= 40, P1) 

Aus den Ergebnissen (Solution Mappings) für das Pattern P1 sollen diejenigen Personen 

entfernt werden, die jünger als 30 oder älter als 40 Jahre sind. Ein Filter lässt sich in Pig 

Latin mit Hilfe des FILTER-Befehls ausführen. Nicht alle Filter-Bedingungen in 

SPARQL lassen sich allerdings direkt in Pig Latin ausdrücken. So ist z.B. die Syntax 

von regulären Ausdrücken in SPARQL und Pig Latin verschieden
5
. 

 

Abbildung 6: Übersetzung eines Filters 

Join. Der Join-Operator der SPARQL Algebra bekommt als Eingabe zwei Multi-

Mengen von Solution Mappings. Er kombiniert die kompatiblen Solution Mappings aus 

beiden Mengen und erzeugt so eine neue Multi-Menge an Solution Mappings für das 

zusammengesetzte Pattern. 

Beispiel: P3 = Join(BGP(?A knows ?B), BGP(?A age ?C . ?B age ?C)) 

Das linke Pattern (P) liefert alle Personen, die eine andere Person kennen und das rechte 

Pattern (P') liefert alle Personen-Paare, die das gleiche Alter haben. Über den Join-

Operator werden die beiden Mengen von Solution Mappings zu einer Menge verknüpft. 

Das Ergebnis der Anfrage sind somit alle Paare von Personen, die sich kennen und 

gleich alt sind. Ein Join lässt sich in Pig Latin analog zum BGP mit Hilfe des JOIN-

Befehls realisieren. Das Prädikat des Joins ergibt sich auch hier aus den gemeinsamen 

Variablen der beiden Eingabe-Relationen (Multi-Mengen von Solution Mappings). 

Sollte es keine gemeinsamen Variablen geben, so muss das Kreuzprodukt der beiden 

Relationen berechnet werden. Abschließend werden mit FOREACH die überflüssigen 

Spalten entfernt und das Schema der Ergebnis-Relation angepasst. 

 

Abbildung 7: Übersetzung eines Joins 

                                                           
5 SPARQL unterstützt reguläre Ausdrücke wie in XPath 2.0 oder XQuery 1.0 während Pig Latin die 

umfangreicheren regulären Ausdrücke von Java unterstützt (vgl. [Ol08]). 

P2 = FILTER P1 BY (B >= 30 AND B <= 40) ; 

j1 = JOIN BGP1 BY (A,B), BGP2 BY (A,B) ; 

P3 = FOREACH j1 GENERATE 

     BGP1::A AS A, BGP1::B AS B, BGP2::C AS C ; 
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LeftJoin. Mit Hilfe des LeftJoin-Operators können zusätzliche Informationen zum 

Ergebnis hinzugenommen werden, falls diese vorhanden sind. Konzeptionell entspricht 

der LeftJoin damit einem klassischen Left-Outer Join. Der LeftJoin kann auch eine 

Filter-Bedingung beinhalten, die als Bedingung für den Outer Join interpretiert werden 

kann. Eine Darstellung der Übersetzung eines LeftJoins mit Filter ist im Rahmen dieses 

Beitrags nicht möglich. Hierfür sei auf die vollständige Ausarbeitung [Sc10] verwiesen. 

Beispiel: P4 = LeftJoin(BGP(?A age ?B), BGP(?A mbox ?C), true) 

Enthält der LeftJoin keinen Filter, so wird dies wie in P4 durch eine Filter-Bedingung 

ausgedrückt, die immer erfüllt ist (true). Der LeftJoin aus P4 liefert alle Personen, für die 

das Alter bekannt ist. Sollte außerdem noch eine Mailbox-Adresse bekannt sein, so wird 

auch diese zum Ergebnis hinzugenommen. Ohne Filter lässt sich der LeftJoin als 

normaler OUTER JOIN in Pig Latin auf den gemeinsamen Variablen der beiden 

Eingabe-Relationen realisieren. Gibt es keine gemeinsamen Variablen, so muss auch hier 

das Kreuzprodukt der beiden Relationen berechnet werden. Ein abschließendes 

FOREACH entfernt die überflüssigen Spalten und passt das Schema der Ergebnis-

Relation an. 

 

Abbildung 8: Übersetzung eines LeftJoins ohne Filter 

Union. Der Union-Operator der SPARQL Algebra fasst zwei Multi-Mengen von 

Solution Mappings zu einer Multi-Menge zusammen. Damit lassen sich folglich die 

Ergebnisse von zwei Graph Patterns vereinigen. 

Beispiel: P5 = Union(BGP(?A knows Bob . ?A mbox ?B), BGP(?A knows John)) 

Das linke Pattern (P) liefert alle Personen, die Bob kennen und deren Mailbox-Adresse 

bekannt ist. Das rechte Pattern (P') hingegen liefert alle Personen, die John kennen, 

unabhängig von einer Mailbox-Adresse. Obwohl der Union-Operator zunächst relativ 

unproblematisch wirkt, ist die Übersetzung mit einigen Problemen verbunden. Das liegt 

daran, dass für zwei Mappings     und       gelten kann, dass    ( )     (  ), 

wie es beispielsweise bei P5 der Fall ist. In diesem Fall müssen zunächst die Schemata 

der beiden Relationen mit Hilfe von FOREACH aneinander angepasst werden, indem für 

ungebundene Variablen Null-Werte eingeführt werden. Andernfalls gehen die Schemata 

der beiden Relationen verloren, da die Ergebnis-Relation weder das Schema der einen 

noch das Schema der anderen Relation übernehmen kann. Da die Variablen-Namen der 

Solution Mappings allerdings im Schema der Relation definiert sind, wäre dies äußerst 

problematisch. Im Beispiel von P5 muss z.B. zunächst das Schema der rechten Relation 

an das Schema der linken Relation angepasst werden (Abbildung 9). 

 

Abbildung 9: Übersetzung eines Unions 

lj = JOIN BGP1 BY A LEFT OUTER, BGP2 BY A ; 

P4 = FOREACH lj GENERATE 

     BGP1::A AS A, BGP1::B AS B, BGP2::C AS C ; 

BGP2 = FOREACH BGP2 GENERATE A, null AS B ; 

P5   = UNION BGP1, BGP2 ; 
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Eine vollständige Darstellung der entwickelten Übersetzung ist im Rahmen dieses 

Beitrags leider nicht möglich. Der interessierte Leser sei hierfür auf die vollständige 

Darstellung in [Sc10] verwiesen. 

3.4 Optimierungen 

Die Optimierung von SPARQL-Anfragen ist Gegenstand aktueller Forschung [HH07, 

St08, SML10]. Im Folgenden werden einige von uns untersuchte Optimierungsstrategien 

für die entwickelte Übersetzung kurz dargestellt. Bei den ersten Evaluationen hat sich 

gezeigt, dass eine Optimierung vor allem die Reduktion des Datenaufkommens 

(Input/Output, I/O) zum Ziel haben sollte. Das beinhaltet zum einen die Daten, welche 

innerhalb eines MapReduce-Jobs von den Mappern zu den Reducern übertragen werden 

und zum anderen die Daten, welche zwischen zwei MapReduce-Jobs in das verteilte 

Dateisystem von Hadoop, HDFS, übernommen werden müssen. 

(1) SPARQL Algebra. Zur Reduktion der erzeugten Zwischenergebnisse einer 

Anfrage wurden Optimierungen des Filter- und des BGP-Operators betrachtet. 

Ziel dieser Optimierungen ist die möglichst frühzeitige Auswertung von Filtern 

sowie die Neuanordnung der Triple-Patterns in einem BGP entsprechend ihrer 

Selektivität [St08]. Dabei werden die Triple-Patterns nach der Anzahl und 

Position ihrer Variablen geordnet, da ein Triple-Pattern mit zwei Variablen als 

weniger selektiv angesehen wird wie ein Triple-Pattern mit nur einer Variablen 

und Subjekte im Allgemeinen selektiver sind als Prädikate. 

(2) Übersetzung der Algebra. Es hat sich als äußerst wirksam erwiesen, unnötige 

Daten so früh wie möglich aus einer Relation zu entfernen ("Project early and 

often"). Darüber hinaus spielt die effiziente Auswertung von Joins [NW09] eine 

entscheidende Rolle. Hier hat sich insbesondere die Verwendung von Multi-

Joins in Pig Latin bei bestimmten Anfragen bewährt, da dadurch die Anzahl der 

benötigten Joins reduziert werden kann. Ein Multi-Join ist dann möglich, wenn 

sich mehrere aufeinander folgende Joins auf die gleichen Variablen beziehen. 

Betrachten wir folgendes Beispiel: Angenommen es sollen drei Relationen (A, 

B, C) über die Variable ?x zusammengeführt werden. Normalerweise sind 

hierfür zwei Joins und somit zwei MapReduce-Phasen erforderlich (1). In Pig 

Latin lassen sich die beiden Joins allerdings zu einem Multi-Join und somit 

auch zu einer MapReduce-Phase zusammenfassen (2). 

 

Abbildung 10: Multi-Join in Pig Latin 

Bei der Übersetzung eines BGPs in eine Folge von Joins in Pig Latin wird die 

Reihenfolge der Triple-Patterns daher so angepasst, dass möglichst viele Joins 

zu einem Multi-Join zusammengefasst werden können, auch wenn dadurch das 

Selektivitäts-Kriterium aus (1) verletzt wird. 

j1 = JOIN A BY x, B BY x ;         (1) 

j2 = JOIN j1 BY A::x, C BY x ; 

j1 = JOIN A BY x, B BY x, C BY x ; (2) 
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(3) Datenmodell. Betrachtet man eine typische SPARQL-Anfrage genauer, so sind 

die Prädikate in den Triple-Patterns in den meisten Fällen gebunden. Eine 

vertikale Partitionierung der RDF-Daten nach Prädikaten [Ab07] reduziert 

daher oftmals die Menge an RDF-Tripeln, die zur Auswertung einer Anfrage 

geladen werden müssen. Bei einem ungebundenen Prädikat muss allerdings 

weiterhin der komplette Datensatz geladen werden. 

3.5 Übersetzung einer Beispiel-Anfrage 

Im Folgenden wird die Übersetzung einer SPARQL-Anfrage in ein entsprechendes Pig 

Latin-Programm anhand eines kleinen Beispiels dargestellt. Abbildung 11 zeigt eine 

SPARQL-Anfrage mit dem entsprechenden Algebra-Baum. Der Baum wird von unten 

nach oben traversiert und in eine Folge von Pig Latin-Befehlen übersetzt (Abbildung 

12), wobei eine vertikale Partitionierung der Daten unterstellt wird. Dabei werden 

unnötige Daten mit Hilfe von FOREACH so früh wie möglich entfernt, was die Menge 

an Daten reduziert, die über das Netzwerk übertragen werden müssen. 

 

Abbildung 11: SPARQL Algebra-Baum 

 

Abbildung 12: Übersetzung des Algebra-Baums 

SELECT * 

WHERE { 

  ?person knows Peter . 

  ?person age ?age 

  FILTER (?age >= 18) 

  OPTIONAL { 

    ?person mbox ?mb 

  } 

} 

BGP (1) 

?person knows Peter . 

?person age ?age 

BGP (3) 

?person mbox ?mb 

LeftJoin (4) 

Filter (2) 

?age >= 18 

knows = LOAD 'pathToFile/knows' USING rdfLoader() AS (s,o) ;        (1) 

age   = LOAD 'pathToFile/age' USING rdfLoader() AS (s,o) ; 

f1   = FILTER knows BY o == 'Peter' ; 

t1   = FOREACH f1 GENERATE s AS person ; 

t2   = FOREACH age GENERATE s AS person, o AS age ; 

j1   = JOIN t1 BY person, t2 BY person ; 

BGP1 = FOREACH j1 GENERATE t1::person AS person, t2::age AS age ; 

F1 = FILTER BGP1 BY age >= 18 ;                                     (2) 

mbox = LOAD 'pathToFile/mbox' USING rdfLoader() AS (s,o) ;          (3) 

BGP2 = FOREACH mbox GENERATE s AS person, o AS mb ; 

lj  = JOIN F1 BY person LEFT OUTER, BGP2 BY person ;                (4) 

LJ1 = FOREACH lj GENERATE 

      F1::person AS person, F1::age AS age, BGP2::mb AS mb ; 

STORE LJ1 INTO 'pathToOutput' USING resultWriter(); 
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4 Evaluation 

Für die Evaluation wurden zehn Dell PowerEdge R200 Server mit jeweils einem Dual 

Core Intel Xeon E3120 3,16 GHz Prozessor, 4 GB DDR2 800 MHz Arbeitsspeicher, 1 

TB SATA-Festplatte mit 7200 U/min und einem Dual Port Gigabit Ethernet Adapter 

verwendet. Die Server wurden über einen 3Com Baseline Switch 2824 zu einem 

Gigabit-Netzwerk zusammengeschaltet und auf den Servern wurde Ubuntu 9.10 Server 

(x86_64), Java in der Version 1.6.0_15 und Cloudera's Distribution for Hadoop 3 

(CDH3)
6
 installiert. Zum Zeitpunkt der Evaluation beinhaltete CDH3 unter anderem 

Hadoop in der Version 0.20.2 sowie Pig in der Version 0.5.0. Insgesamt standen knapp 8 

TB an Festplattenspeicher zur Verfügung, was bei einem Replikationsfaktor von drei des 

verteilten Dateisystems von Hadoop (HDFS) ungefähr 2,5 TB an Nutzdaten entspricht. 

Als Kennzahlen wurden neben der Ausführungszeit einer Anfrage auch die Menge an 

Daten ermittelt, die aus dem HDFS gelesen (HDFS Bytes Read), in das HDFS 

geschrieben (HDFS Bytes Written) sowie von den Mappern zu den Reducern übertragen 

(Reduce Shuffle Bytes) wurden. Für die Evaluation wurde der SP
2
Bench [Sc09] 

verwendet, ein SPARQL spezifischer Performance Benchmark. Der Datengenerator des 

SP
2
Bench erlaubt das Erzeugen beliebig großer RDF-Dateien auf der Grundlage der 

DBLP-Bibliothek von Michael Ley [Le10]. Er berücksichtigt dabei insbesondere die 

charakteristischen Eigenschaften und Verteilungen eines DBLP-Datensatzes und liefert 

somit ein realistisches Datenmodell. Im Folgenden wird die Auswertung von zwei 

charakteristischen Anfragen des SP
2
Bench präsentiert. Weitere Evaluationsergebnisse 

finden sich in der vollständigen Ausarbeitung [Sc10]. 

 

 

Abbildung 13: Auswertung von Q3a 

Abbildung 13 zeigt die Auswertung von Q3a des SP
2
Bench. Die Anfrage benötigt zur 

Auswertung zwar nur einen Join, dieser berechnet aber sehr viele Zwischenergebnisse, 

                                                           
6 siehe [http://www.cloudera.com/hadoop/] 

SELECT ?article 

WHERE { 

  ?article rdf:type bench:Article . ?article ?property ?value  

  FILTER (?property = swrc:pages)  

} 
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da alle RDF-Tripel in der Eingabe das zweite Triple-Pattern erfüllen. Das spiegelt sich 

auch in den erzeugten Reduce Shuffle Bytes wieder, die bei der Berechnung des Joins 

anfallen. Da die Filter-Variable ?property allerdings nicht in der Ausgabe enthalten sein 

soll, lässt sich die Anfrage auf Algebra-Ebene durch eine Filter-Substitution optimieren. 

Dabei wird die Variable durch ihren entsprechenden Filter-Wert ersetzt, wodurch der 

ursprüngliche Filter überflüssig wird. Durch diese Optimierung lässt sich die 

Ausführungszeit der Anfrage (a) beim größten Datensatz um über 70% verringern (Q3a 

opt), was auf eine signifikante Reduktion der Reduce Shuffle Bytes (b) zurückzuführen 

ist. Ein positiver Nebeneffekt der Optimierung ist die Eliminierung des ungebundenen 

Prädikats im zweiten Triple-Pattern, wovon insbesondere die Auswertung auf einem 

vertikal partitionierten Datensatz profitiert (Q3a opt+part). Da dadurch nur noch die 

beiden Prädikate rdf:type und swrc:pages betrachtet werden müssen, wird die Menge 

der Daten, die aus dem HDFS gelesen werden, deutlich reduziert. Durch Anwendung der 

Filter-Optimierung und der vertikalen Partitionierung lässt sich die Ausführungszeit der 

Anfrage auf dem größten Datensatz somit insgesamt um über 97% reduzieren. 

 

 

Abbildung 14: Auswertung von Q2 

Abbildung 14 zeigt die Auswertung von Q2 des SP
2
Bench. Dabei handelt es sich um 

eine komplexe Anfrage, die viele Joins erfordert und zudem ein OPTIONAL enthält. Die 

Ergebnisse sollen darüber hinaus in sortierter Reihenfolge ausgegeben werden. Das linke 

BGP der Anfrage besteht aus neun Triple-Patterns, weshalb zur nativen Auswertung 

insgesamt acht Joins und ein Outer Join erforderlich sind. Durch das frühzeitige 

Entfernen unnötiger Spalten (Projektion, Q2 opt1) lässt sich die Ausführungszeit (a) der 

Anfrage auf dem größten Datensatz bereits um mehr als 30% verkürzen, was sich auch 

in den ermittelten Daten-Kennzahlen (b) niederschlägt. Darüber hinaus lässt sich bei der 

Übersetzung von Q2 die Multi-Join-Fähigkeit von Pig Latin ausnutzen. Da sich alle acht 

SELECT * 

WHERE { 

  ?inproc rdf:type bench:Inproceedings . ?inproc dc:creator ?author . 

  ?inproc bench:booktitle ?booktitle . ?inproc dc:title ?title . 

  ?inproc dcterms:partOf ?proc . ?inproc rdfs:seeAlso ?ee . 

  ?inproc swrc:pages ?page . ?inproc foaf:homepage ?url . 

  ?inproc dcterms:issued ?yr  

  OPTIONAL { ?inproc bench:abstract ?abstract } 

} ORDER BY ?yr 
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Joins auf die Variable ?inproc beziehen, können sie in Pig Latin zu einem einzigen Join 

zusammengefasst werden (Q2 opt2). Dadurch reduziert sich auch die benötigte Anzahl 

an MapReduce-Jobs zur Auswertung von Q2 von ursprünglich zwölf bei iterierten Joins 

auf fünf bei Verwendung eines Multi-Joins. Da alle Prädikate in der Anfrage gebunden 

sind, wirkt sich auch eine vertikale Partitionierung der Daten nach Prädikaten (Q2 

opt2+part) vorteilhaft aus, was sich in den Daten-Kennzahlen ganz deutlich zeigt. Durch 

die Anwendung aller Optimierungen lässt sich die Ausführungszeit der Anfrage auf dem 

größten Datensatz folglich insgesamt um fast 90% reduzieren. 

4.1 Erkenntnisse der Evaluation 

Durch die Evaluation konnte die ursprüngliche Vermutung bestätigt werden, dass die 

Ausführungszeit einer Anfrage stark mit dem erzeugten Datenaufkommen korreliert, was 

in den betrachteten Kennzahlen deutlich zum Ausdruck kommt. Darüber hinaus konnte 

auch die Wirksamkeit der untersuchten Optimierungen bestätigt werden, die einen 

großen Einfluss auf die Ausführungszeiten hatten, was primär auf eine Reduktion des 

erzeugten Datenaufkommens zurückgeführt werden konnte. Ermutigend für zukünftige 

Weiterentwicklungen des gewählten Ansatzes zur Auswertung von SPARQL-Anfragen 

sind auch die beobachteten, linearen Skalierungen der Ausführungszeiten sowie die auf 

Anhieb erreichten Datensatz-Größen von bis zu 1600 Millionen RDF-Tripeln, selbst 

ohne vertikale Partitionierung der Daten. Es ist anzunehmen, dass durch die vertikale 

Partitionierung und eine feinere Optimierung des Hadoop-Clusters dieser Wert noch 

gesteigert werden kann, von einer Vergrößerung des Clusters ganz abgesehen. 

In [Hu10] wird ebenfalls die Auswertung von SPARQL-Anfragen mit Hadoop 

betrachtet, wobei im Gegensatz zu unserem Ansatz eine Anfrage direkt in eine Folge von 

MapReduce-Jobs übersetzt wird. Dabei werden auch Evaluations-Ergebnisse für die 

SP
2
Bench-Anfragen Q1, Q2 und Q3a mit unterschiedlichen Datensatz-Größen gezeigt, 

die auf einem Hadoop-Cluster aus zehn Knoten erzielt wurden, das unserem Cluster sehr 

ähnlich ist. Ein Vergleich der Ergebnisse zeigt, dass die beiden Ansätze eine ähnliche 

Performance aufweisen, wobei unser Ansatz bei Q3a um bis zu 40% bessere Werte 

erzielt, was wahrscheinlich auf die Optimierung des enthaltenen Filters zurückzuführen 

ist. Das zeigt, dass unser Ansatz einer Übersetzung von SPARQL nach Pig Latin eine 

effiziente Auswertung ermöglicht, die mit der Performance einer direkten Auswertung in 

MapReduce mithalten kann und zudem von der schnellen Weiterentwicklung von Pig 

profitiert [Ga09]. 

5 Verwandte Arbeiten 

Die Übersetzung von Anfrage-Sprachen in andere Sprach-Konstrukte ist eine übliche 

Vorgehensweise, insbesondere im Bereich der relationalen Algebra [Bo05, Cy05]. Da 

die Semantik von Pig Latin stark an der relationalen Algebra orientiert ist, treten bei der 

Übersetzung von SPARQL nach Pig Latin die gleichen Probleme mit NULL-Werten bei 

Joins auf, wie sie auch bei der Übersetzung von SPARQL in die relationale Algebra zu 

finden sind [Cy05]. In [MT08] wurde bereits von einer Übersetzung von SPARQL nach 
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Pig Latin berichtet, zu der allerdings keine genaueren Angaben gemacht wurden. Nach 

unserem Kenntnisstand ist die in diesem Beitrag beschriebene Übersetzung die erste 

vollständige und detaillierte Darstellung einer Übersetzung von SPARQL nach Pig 

Latin, die darüber hinaus auch effiziente Optimierungen betrachtet und mit einem 

SPARQL spezifischen Benchmark evaluiert wurde. 

Die Auswertung von SPARQL-Anfragen spielt im Bereich des semantischen Webs eine 

wichtige Rolle. Sesame [BKH02], Jena [Mc01], RDF-3X [NW08] und 3store [HG03] 

sind in diesem Zusammenhang bekannte Beispiele für die Auswertung von SPARQL-

Anfragen auf Einzelplatz-Systemen. Mit der Zunahme an verfügbaren semantischen 

Daten
7
 rückt auch die Auswertung von großen RDF-Datensätzen zunehmend in den 

Blickpunkt wissenschaftlicher Forschung. [HBF09] und [QL08] betrachten in diesem 

Zusammenhang die Auswertung von SPARQL-Anfragen auf mehreren verteilten RDF-

Datensätzen. Die meisten Ansätze zur Verwaltung und Auswertung von sehr großen 

RDF-Datensätzen mit mehreren Milliarden RDF-Tripeln setzen auf den Einsatz von 

Computer-Clustern. [Hu10] und [MYL10] befassen sich ebenfalls mit der Auswertung 

von SPARQL-Anfragen in einem MapReduce-Cluster. Im Gegensatz zu dem von uns 

vorgestellten Ansatz wird eine SPARQL-Anfrage dabei direkt in eine Folge von 

MapReduce-Jobs übersetzt, wobei allerdings größtenteils nur Basic Graph Patterns 

unterstützt werden. Die von uns vorgestellte Übersetzung nach Pig Latin unterstützt 

hingegen alle Operatoren der SPARQL Algebra (mit Ausnahme des GRAPH-Operators) 

und profitiert zudem von Optimierungen und Weiterentwicklungen von Pig. SHARD 

[RS10] ist ein RDF-Triple-Store für Hadoop, der auch SPARQL-Anfragen unterstützt. 

Experimentelle Ergebnisse liegen allerdings nur für den allgemeinen LUBM-Benchmark 

[GPH05] vor, der wichtige Eigenschaften von SPARQL-Anfragen nicht berücksichtigt. 

Die Autoren machen hier leider auch keine genauen Angaben zum unterstützen 

Sprachumfang. SPIDER [Ch09] verwendet HBase zur Speicherung von RDF-Daten in 

Hadoop in Form von flachen Tabellen und  unterstützt auch grundlegende SPARQL-

Anfragen, wobei auch hier keine genaueren Angaben zum unterstützten Sprachumfang 

gemacht werden. In [RDA10] wird die Verwendung von UDFs zur Reduzierung der I/O-

Kosten bei der Auswertung von analytischen Anfragen auf RDF-Graphen mit Pig Latin 

untersucht. Dabei wurde gezeigt, dass durch die Verwendung spezieller UDFs die I/O-

Kosten in einigen Situationen gesenkt werden können, weshalb sich eine Übertragung 

des Ansatzes auf die hier vorgestellte Übersetzung als vorteilhaft erweisen könnte. 

Neben dem Einsatz eines allgemeinen MapReduce-Clusters setzen einige Systeme auch 

auf spezialisierte Computer-Cluster. Virtuoso Cluster Edition [Er10] und Clustered TDB 

[Ow09] sind Cluster-Erweiterungen der bekannten Virtuoso und Jena RDF-Stores. 

4store [HLS09] ist ein einsatzbereiter RDF-Store, bei dem das Cluster in Storage und 

Processing Nodes unterteilt wird. YARS2 [Ha07] setzt auf die Verwendung von Indexen 

zur Anfrage-Auswertung und MARVIN [Or10] verwendet einen Peer-to-Peer-Ansatz 

zur verteilten Berechnung von RDF Reasoning. Die Verwendung von spezialisierten 

Clustern hat allerdings den Nachteil, dass hierfür eine eigene Infrastruktur aufgebaut 

werden muss, wohingegen unser Ansatz auf der Verwendung eines allgemeinen Clusters 

beruht, das für verschiedene Zwecke verwendet werden kann. 

                                                           
7 siehe [http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics] 
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6 Zusammenfassung 

In diesem Beitrag wird ein neuer Ansatz zur effizienten Auswertung von SPARQL-

Anfragen auf großen RDF-Datensätzen unter Verwendung des Hadoop MapReduce-

Frameworks vorgestellt. Dazu wurde für schwach wohlgeformte SPARQL-Anfragen 

eine Übersetzung nach Pig Latin entwickelt und implementiert. Schwach wohlgeformte 

Anfragen sind ein ausdrucksmächtiges Fragment von SPARQL, die in der Praxis sehr 

häufig vorkommen. Es wurden für die Operatoren der SPARQL Algebra entsprechende 

Übersetzungsvorschriften entwickelt und eine Abbildung des RDF-Datenmodells in das 

Datenmodell von Pig definiert. Das resultierende Pig Latin-Programm wird von Pig, der 

Implementierung von Pig Latin für Hadoop, in eine Folge von MapReduce-Jobs 

überführt und verteilt auf einem Hadoop-Cluster ausgeführt. Die Evaluationsergebnisse 

haben gezeigt, dass die Verwendung von Pig Latin ein geeigneter und effizienter Ansatz 

zur Auswertung von SPARQL-Anfragen auf großen RDF-Datensätzen mit Hadoop ist. 

Dabei konnte der vermutete Zusammenhang zwischen der Ausführungszeit einer 

Anfrage und dem von der Anfrage erzeugten Datenaufkommen bestätigt werden. 

Besonders deutlich wurde dies durch die untersuchten Optimierungen, mit deren Hilfe 

die Ausführungszeit einer Anfrage teilweise deutlich reduziert werden konnte. Die 

verwendeten Datensatz-Größen von bis zu 1600 Millionen RDF-Tripeln übertreffen die 

Möglichkeiten von Systemen, die nur auf einem Computer ausgeführt werden, bereits 

um ein Vielfaches, was der Vergleich in [Sc09] belegt. Bedenkt man die Tatsache, dass 

für die Evaluation nur ein kleiner Hadoop-Cluster zum Einsatz kam (Yahoo! betreibt 

z.B. einen Hadoop-Cluster mit mehreren tausend Computern) und Pig sich in einer 

relativ frühen Entwicklungsphase befunden hat (die Evaluation wurde mit Pig 0.5.0 

durchgeführt), wird das Potential des Ansatzes deutlich. Die vorgestellte Übersetzung 

bietet somit eine einfache und zugleich effiziente Möglichkeit, die Leistungsfähigkeit 

eines Hadoop-Clusters zur verteilten und parallelisierten Auswertung von SPARQL-

Anfragen auf großen RDF-Datensätzen zu nutzen. 
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Abstract: Kontextsensitive Anwendungen benötigen ein möglichst exaktes Modell
der Umgebung. Zur Ermittlung und regelmäßigen Aktualisierung dieses Kontextmo-
dells werden typischerweise Sensordaten verwendet. Datenstrommanagementsysteme
(DSMS) bilden die ideale Basis, um mit den durch die Sensoren generierten, potenti-
ell unendlichen Datenströmen umzugehen. Leider bieten bisherige DSMS keine nati-
ve Unterstützung für dynamische Kontextmodelle. Insbesondere die bei der Aktuali-
sierung entstehenden Zyklen im Anfrageplan bedürfen einer besonderen Koordinati-
on, um Aktualität und Konsistenz des Kontextmodells zu gewährleisten. Diese Arbeit
präsentiert eine Lösung, die einen Broker zur Koordination der verschiedenen Zugriffe
auf das Kontextmodell als neuen Operator im DSMS einführt. Wir zeigen dazu eine
semantische Beschreibung und eine abstrakte Implementierung des Brokers.

1 Einleitung

Zur effektiven Verwendung von Sensoren in kontextsensitiven Anwendungen ist die Ver-
waltung eines Kontextmodells notwendig. Im Bereich der Fahrerassistenzsysteme (FAS)
beispielsweise spiegelt das Kontextmodell die derzeitige Umgebung des Fahrzeugs wider.
Sensoren erzeugen dabei in einer hohen Rate eine große Menge an Daten, die zeitnah
verarbeitet werden muss. Zur zeitnahen Verarbeitung solcher Daten können Datenstrom-
managementsysteme (DSMS) eingesetzt werden. Diese adaptieren Anfrageverarbeitungs-
mechanismen, wie sie aus Datenbankmanagementsystemen (DBMS) bekannt sind und
ermöglichen so eine flexible Verarbeitung potentiell unendlicher Datenströme [See04].

Bei der Umsetzung kontextsensitiver Anwendungen wie FAS muss jedoch das Kontextmo-
dell verwaltet werden. Insbesondere die koordinierte Aktualisierung durch mehrere Sen-
soren spielt hier eine entscheidende Rolle. Hierbei entstehen mehrere Zyklen, indem das
aktuelle Kontextmodell gelesen, durch einen Sensormesswert aktualisiert und dann wieder
gespeichert wird. Diese zyklischen Kontext-Aktualisierungen müssen zeitlich korrekt aus-
geführt werden, sodass das Kontextmodell fortlaufend und nicht beliebig aktualisiert wird
und damit Aktualität und Konsistenz des Kontextmodells gewährleistet werden. Dabei ist
jedoch nicht die zeitliche Reihenfolge des ersten Zugriffs eines Zyklus auf das Kontextmo-
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dell wichtig, sondern die zeitliche Reihenfolge, in der die Sensormesswerte erfasst worden
sind. Da Zyklen jedoch parallel verarbeitet werden und verschiedene Latenzen besitzen
können, ist die Reihenfolge der Zugriffe auf das Kontextmodell nicht zwingend synchron
mit der Reihenfolge der Messwerterfassung. Obwohl im ersten Ansatz DBMS und deren
Transaktionskontrolle für die Koordinierung sinnvoll erscheinen, beruht die Transaktions-
kontrolle auf der zeitlichen Reihenfolge des ersten Zugriffs auf das Kontextmodells und
nicht wie gewünscht auf die zeitliche Reihenfolge der Messwerterfassung, also der Da-
ten selbst. Aus diesem Grund sind sowohl die – ohnehin nicht für kontinuierliche Daten
adäquaten – klassischen DBMS als auch die schnelleren Hauptspeicher-DBMS für dieses
Problem nicht geeignet.

Alle lesenden und schreibenden Zugriffe müssen anhand der Daten koordiniert werden.
Insbesondere stellen zyklische Aktualisierungen eine besondere Herausforderung dar, da
ein Zyklus komplett beendet sein muss, bevor ein neuer Zugriff gestattet werden darf.
Die hochdynamische Verwaltung eines Kontextmodells in flexiblen DSMS wurde bisher
nicht betrachtet. Aus diesem Grund stellen wir in dieser Arbeit einen Broker vor, der als
Datenstrom-Operator das Speichern, sowie den koordinierten und zeitlich korrekten Zu-
griff auf das Kontextmodell erlaubt. Dazu stellt Kapitel 2 zunächst verwandte Arbeiten
vor. Kapitel 3 führt das verwendete Modell und System des Datenstrommanagements ein.
Im Anschluss werden in Kapitel 4 die Motivation und Anforderungen an eine Umsetzung
erläutert. Darauf aufbauend beschreibt Kapitel 5 die Realisierung des Broker-Operators,
indem zum einen ein logischer Operator für die Semantik und zum anderen ein physi-
scher Operator für eine abstrakte Implementierung vorgestellt wird. Wir betrachten den
Ansatz in Kapitel 6 in einem Experiment und geben in Kapitel 7 eine Übersicht und ein
abschließendes Fazit.

2 Verwandte Arbeiten

Die Verarbeitung von Datenströmen auf Basis von Anfrageverarbeitungsmechanismen, die
ähnlich zu denen in DBMS sind, wurde bisher unter anderem in Prototypen wie Aurora
[ACc+03], Borealis [AAB+05], STREAM [ABB+03], PIPES [KS05] oder auch inzwi-
schen in kommerziellen Produkten wie RTM [Rea10] oder SPADE [GAW+08] umgesetzt.
Auch für die Verwaltung von Kontextmodellen in kontextsensitiven Anwendungen exis-
tieren Middlewares, wie z.B. Gaia [RHC+02], MAIS [CCMP06] oder Nexus [CEB+09].
Dabei integriert Nexus auch Datenstrommanagement (DSM)-Konzepte, auch wenn hier
aufgrund der geringen Datenrate ein korrekter Zugriff auf das Kontextmodell auch dann
gewährleistet werden kann, wenn dies in einem DBMS gespeichert wird. Das hier vor-
gestellte Konzept betrachtet jedoch eine hohe Datenrate und verwaltet das Kontextmodell
daher direkt im DSMS.

Die hier als Motivation dienende Objektverfolgung wurde im Projekt STREAM erprobt,
indem mehrere Datenstrom-Elemente den Bewegungsverlauf eines Objektes beschreiben
[PS04]. Weitere Arbeiten beschäftigen sich ebenfalls mit kontextbezogenen Daten, wie
beispielsweise [HJ04] mit ortsbasierten Anfragen oder [MA08] mit spatio-temporalen Da-
ten. Hierbei wurden jedoch keine Kontextmodelle verwaltet. Die Betrachtung von Zyklen
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in Datenströmen wurde unter anderem von [WRML08], [DS00] oder [GADI08] behan-
delt. Hier wurden aber lediglich rekursive Vereinigung, rekursiv verschachtelte XML-
Fragmente oder Kleenesche Hüllen betrachtet, bei denen keine koordinierte Verarbeitung
verschiedener Zyklen notwendig war. Des Weiteren führt [CGM09] einen neuen Operator
ein, um zu erkennen wann eine transitive Hülle bei einer rekursiven Vereinigung abge-
schlossen ist. Allerdings wird auch hier keine Koordinierung der zeitlichen Reihenfolge
der Daten durchgeführt. [GBz06] beschäftigen sich mit Synchronisation und Konfliktse-
rialisierbarkeit beim Einfügen neuer Elemente innerhalb eines Fensters, während Daten
aus dem Fenster noch gelesen werden und zeigen hierzu eine entsprechende Scheduling-
Strategie. Hierbei werden bereits geordnete lesende und geordnete schreibende Zugriffe
betrachtet. In dieser Lösung werden jedoch zum einen unsortierte Zugriffe und zum ande-
ren Zyklen berücksichtigt. Abschließend spielen hier auch Konzepte der Transaktionskon-
trolle in DBMS eine Rolle (s. [EN09] für eine Einführung).

3 Datenmodell und Anfrageverarbeitung

Ein Datenstrom ist eine potentiell unendliche Folge von Daten, die in der Regel als rela-
tionale Tupel repräsentiert werden. Ein Datenstrommanagementsystem (DSMS) erlaubt
eine flexible und effiziente Verarbeitung solcher kontinuierlich auftretenden Daten, in-
dem ähnlich zu Datenbankmanagementsystemen (DBMS) deklarative Anfragen verwen-
det werden. Zurzeit gibt es diverse Umsetzungen von DSMS, die meist in der Forschung
als Prototyp eingesetzt werden oder aus einem solchen hervorgegangen sind (vgl. Ab-
schnitt 2). Neben den genannten Systemen gibt es mit Odysseus [BGJ+09] ein Frame-
work für DSMS, welches leicht erweiterbar und anpassbar ist. Dies erlaubt unter ande-
rem eine einfache und flexible Evaluation neuer Forschungskonzepte. Die Architektur von
Odysseus besteht, wie Abbildung 1 zeigt, aus mehreren Komponenten, die jeweils fes-
te Funktionen (Fixpunkt) besitzen, die um sogenannte Variationspunkte erweitert werden
[BGJ+09].

Die Anfrageverarbeitung kann in vier Phasen betrachtet werden. Zunächst sorgt die Über-
setzungskomponente (Translate) dafür, dass eine deklarative Anfrage in einen Anfrageplan
übersetzt wird. Hierzu bedient sich die Übersetzungskomponente einer logischen Algebra,
die Semantik und Aufbau des Anfrageplans definiert. Der daraus entstandene logische
Anfrageplan wird im nächsten Schritt durch die Restrukturierungskomponente (Rewri-
te) unter Verwendung von Rewrite-Regeln optimiert. Dieser Plan wird in einem weiteren
Schritt der Transformationskomponente (Transform) übergeben. Diese übersetzt den Plan
auf Grundlage von Transform-Regeln und einer physischen Algebra in einen physischen
Anfrageplan. Der physische Anfrageplan wird dann der Ausführung (Execute) übergeben
und gegebenenfalls mit vorhandenen Anfrageplänen verbunden. Die linke Seite in Abbil-
dung 1 zeigt einen gesamten Anfrageplan, wobei die Operatoren als Pipe dargestellt wer-
den. Die zuvor genannten Variationspunkte sind beispielsweise durch die Möglichkeit ge-
geben, dass die Übersetzungskomponente um neue Sprachen erweitert werden kann. Des
Weiteren können Übersetzung und Transformation um neue Algebra-Operatoren erwei-
tert werden. Analog können auch die Restrukturierungs- und Transformationskomponente
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Abbildung 1: Architektur von Odysseus [BGJ+09]

um neue Regeln ergänzt werden. Außerdem lassen sich zum Beispiel neue Datenmodelle,
Metadaten oder auch neue Scheduling-Strategien integrieren.

Der genannte Anfrageplan basiert auf einer Verknüpfung von Operatoren, die auf der lo-
gischen bzw. physischen Algebra basieren und daher entsprechend einen logischen bzw.
physischen Anfrageplan darstellen. Hierbei dient die logische Algebra i. A. lediglich da-
zu, die genaue Semantik der einzelnen Operatoren festzulegen und auf Grundlage der er-
weiterten relationalen Algebra Optimierungen zu ermöglichen. Dabei betrachtet die logi-
sche Algebra alle Datenströme als temporale Multimengen und Operatoren stellen Abbil-
dungen zwischen diesen Multimengen dar. Da hierbei die gesamte Menge bekannt sein
muss, würden Operatoren entsprechend unendlich warten und blockieren. Daher hat die
physische Algebra eine andere Sicht auf die Datenströme. Hier unterscheidet man zwi-
schen nicht-blockierenden und blockierenden Operatoren. Nicht-blockierende Operatoren
müssen ihre Eingabe nicht komplett konsumieren, um eine Ausgabe zu erzeugen. So kann
z.B. eine Selektion direkt auf ein Element angewendet werden, indem es entweder wei-
tergeleitet oder verworfen wird. Blockierende Operatoren hingegen sind meist zustands-
behaftete Operatoren, die zunächst die ganze Eingabe benötigen, um ein Ergebnis pro-
duzieren zu können. Beispielsweise kann eine Aggregation erst berechnet werden, wenn
alle nötigen Elemente vorliegen. Um dieses blockierende Verhalten zu lösen, gibt es unter
anderem den hier verwendeten Fenster-Ansatz, bei dem lediglich endliche Ausschnitte –
in der Regel die aktuellsten Elemente – des Datenstroms betrachtet werden. Hierbei be-
kommt jedes Datenstromelement eine Gültigkeit, die entweder durch das Anheften eines
Gültigkeitsintervall [KS05] oder durch Markierung mit einem positiven bzw. negativen
Marker [GAE06] umgesetzt wird. Blockierungen können nun dadurch aufgelöst werden,
dass in den einzelnen Operatoren nur noch Elemente gemeinsam betrachtet werden, die
gleichzeitig gültig sind, sich also im selben Fenster befinden.
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4 Motivation und Anforderungen

Kontextsensitive Anwendungen treffen ihre Entscheidung typischerweise auf Grundlage
eines Kontextmodells, das die derzeitige Umgebung widerspiegelt. Dazu ist es notwendig,
dass die aktuell gültige Instanz des Kontextmodells gespeichert und durch neue Messdaten
fortlaufend aktualisiert und der Anwendung zu Verfügung gestellt wird. Hierzu zeigt Ab-
bildung 2 eine beispielhafte Architektur, in der mit zwei Sensoren kontinuierlich Objekte
in der Umgebung erfasst werden. Angenommen ein Fahrzeug sei mit einem Radarsensor

Kontextmodell
(Pos | rel. Geschw. | Breite)

Radarsensor
(Pos | rel. Geschw.)

Laserscanner
(Pos | Breite)

Zustand 
aktualisieren

Zustand 
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bei jeder Änderung 

auslesen

Anwendung

Abbildung 2: Beispielarchitektur

und einem Laserscanner ausgestattet. Der Radarsensor liefert die Position sowie die rela-
tive Geschwindigkeit detektierter Objekte. Der Laserscanner dagegen liefert die Position
sowie die Breite detektierter Objekte. Anhand dieser Daten wird ein Kontextmodell mit
allen drei Eigenschaften, Position, relative Geschwindigkeit und Breite aufgebaut. Wenn
neue Objektdetektionen im System eintreffen, wird das aktuelle Kontextmodell aus dem
Speicher gelesen. Daraufhin wird das Kontextmodell anhand der neuen Objektdetektionen
im entsprechenden Teil des Anfrageplans (links Radar oder rechts Laserscanner) aktuali-
siert und anschließend wieder zurück in den Speicher geschrieben. Dabei ist die zeitliche
Reihenfolge der Aktualisierungen an der zeitlichen Reihenfolge der erfassten Daten auszu-
richten. Werden bspw. Objekte vom Radarsensor zum Zeitpunkt t1 und vom Laserscanner
zum Zeitpunkt t2 mit t1 < t2 erfasst, so ist das Kontextmodell zunächst mit den Objekten
aus dem Radarsensor und anschließend mit denen aus dem Laserscaner zu aktualisieren.
Andernfalls können Informationen verloren gehen oder bspw. in Vorhersagefunktionen
falsch berechnet werden. Ist es in einer Anwendung möglich, dass Objekte von mehreren
Sensoren gleichzeitig erkannt werden, so muss das Kontextmodell in diesem Fall durch
einen speziellen Aktualisierungs-Operator, der mehrere Messwerte gleichzeitig verarbei-
ten kann, in einem eigenen Zyklus aktualisiert werden. Bei unsynchronisierten Sensoren
tritt dieser Fall jedoch i. d. R. nicht auf, so dass er im Folgenden nicht näher betrachtet
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wird. Da Sensoren nicht zwangsläufig synchronisiert sind, kann über die Reihenfolge des
Erfassens der Daten im Vorfeld keine Aussage getroffen werden. Damit benötigt man für
die zeitlich koordinierte Aktualisierung des Kontextmodells eine Art Transaktionskontrol-
le, die dynamisch anhand der eintreffenden Daten entscheiden kann, welcher Zyklus zur
Aktualisierung des Kontextmodells genutzt wird. Die Transaktionskontrolle eines klassi-
schen oder eines Hauptspeicher-DBMS kann hierzu, wie bereits erwähnt, nicht eingesetzt
werden, da das entsprechende DBMS keine Kenntnis über die zeitliche Reihenfolge der
Daten erhalten würde. Man benötigt also eine native Transaktionskontrolle für das Kon-
textmodell innerhalb des eingesetzten DSMS. Das in Abbildung 2 gezeigte Beispiel kann
dabei als Anfrageplan in einem DSMS umgesetzt werden, wie Abbildung 3 zeigt. Dabei

Anwendung

Position | 
rel. Geschw.

Position | 
Breite

Abbildung 3: Umsetzung des Beispiels als Anfrageplan

wird das Kontextmodell durch einen Broker-Operator (ζ) verwaltet und jeweils durch
Aktualisierungs-Operatoren (α) aktualisiert. Die Aktualisierungen werden dabei nicht von
dem Broker selbst übernommen sondern in zusätzlichen Aktualisierungs-Operatoren aus-
gelagert, da für jeden Sensor gegebenenfalls verschiedene Aktualisierungs-Algorithmen
von einfachen Berechnungen bis zur Verwendung von Prädiktionsfunktionen existieren.
Die Verwendung von Aktualisierungs-Operatoren schafft somit eine höhere Flexibilität
und erlaubt es u.a. auch, dass zwischen Broker-Operator und Aktualisierungs-Operator
ggf. weitere Operatoren existieren, die das übertragene Kontextmodell u.U. modifizieren.
Aus diesen Gründen sei an dieser Stelle von der konkreten Funktionalität von α abstra-
hiert, um lediglich auf die genaue Funktionsweise des Brokers einzugehen.

Anforderungen und Konzepte

Wird die Verwaltung eines Kontextmodells wie oben beschrieben durch ein DSMS umge-
setzt, so ergeben sich dadurch Anforderungen an den Broker. Zum einen muss der Broker
Mechanismen bereitstellen, die einen lesenden und schreibenden Zugriff auf das Kontext-
modell erlauben. Zum anderen muss der Broker Eigenschaften eines DSMS, insbesondere
die zeitliche Ordnung und die push-basierte Verarbeitung, berücksichtigen. Im Folgenden
werden daher die Anforderungen und die jeweiligen Konzepte anhand der verschiedenen
Zugriffsmöglichkeiten beschrieben und entsprechende Konzepte vorgestellt, die eine Inte-
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gration in ein DSMS erlauben.

Schreibender Zugriff Ein schreibender Zugriff ist über eingehende Datenströme, den so-
genannten Update Streams, mit dem Broker Operator möglich. Ein Update Stream
liefert Datenelemente, die im Kontextmodell gespeichert werden sollen. Solche Ele-
mente können zum einen Aktualisierungen des Kontextmodells zum anderen aber
auch neue Elemente sein, die noch nicht im Kontextmodell vorhanden sind. Beim
Eintreffen neuer Daten über einen Update Stream wird der aktuelle Zeitfortschritt
festgestellt und alte, nicht mehr gültige Daten aus dem Kontextmodell entfernt.
Neue Elemente werden einfach hinzugefügt. Aktualisierungen ersetzen jeweils ihre
Vorgängerversion.

Lesender Zugriff Der lesende Zugriff auf den Broker kann in zwei unterschiedliche Zu-
griffsarten unterteilt werden. Zum einen gibt es den kontinuierlich lesenden Zu-
griff, der über sogenannte Observation Streams realisiert wird. Jede Änderung des
Kontextmodells wird über diese Observation Streams bspw. an nachfolgende An-
wendungen weitergeleitet. Zum anderen gibt es aber auch den einmalig lesenden
Zugriff, der bei Vorliegen neuer Messwerte am Aktualisierungs-Operator das je-
weils aktuelle Kontextmodell zurückliefern soll. Da dieses Kontextmodell jedoch
am Aktualisierungs-Operator vorliegt, kann der Broker nicht wissen, wann das ak-
tuelle Kontextmodell ausgeliefert werden soll. Daher werden für diese Art des Zu-
griffs zwei Arten von Datenströmen eingeführt. Über sogenannte Request Streams
kann bei Vorliegen neuer Messwerte aus den Sensoren das jeweils aktuelle Kontext-
modell beim Broker angefragt werden. Dieses wird dann über sogenannte Response
Streams an den Aktualisierungs-Operator weitergeleitet.

Für einen Aktualisierungszyklus erhält man damit die in Abbildung 4 gezeigten Daten-
ströme. Trifft hier ein neuer Messwert bei dem Aktualisierungs-Operator ein, so kann die-

Update Stream

Response Stream

Request Stream

Observation 
Stream

Abbildung 4: Stromtypen

ser einen Request an den Broker schicken, indem er ein entsprechendes Element über den
Request Stream übergibt. Dann kann der Broker diesen Request bearbeiten und schickt
entsprechend das aktuelle Kontextmodell über den zugehörigen Response Stream an den
Aktualisierungs-Operator. Dieser kann nun das Kontextmodell anhand des Messwertes

91



und des aktuellen Kontextmodells aktualisieren. Danach wird das Kontextmodell zurück
an den Broker übergeben. Da sich hier nun noch andere, gegebenenfalls nicht mehr gültige,
Elemente im Broker befinden, wird das gespeicherte Kontextmodell im Broker zunächst
anhand der Aktualisierung bereinigt. Danach wird dann die Aktualisierung dem Kontext-
modell hinzugefügt. Der Broker beinhaltet danach entsprechend wieder das gültige Kon-
textmodell. Erst jetzt kann ggf. ein anderer Zyklus vom Broker bedient werden.

Ein hier verwendeter Request über den Request Stream besteht nur aus einem Zeitstem-
pel, da nur der Zeitpunkt des zugehörigen Messwertes im Aktualisierungs-Operator und
nicht die Daten des Requests selbst für eine zeitliche Sortierung der Requests notwen-
dig sind. Hierbei wäre es ebenso denkbar, dass neben dem Zeitstempel zusätzliche Daten
übertragen werden, um bspw. nur einen Teil des Kontextmodells auszuwählen, der vom
Broker als Antwort an den Aktualisierungs-Operator geschickt wird. Da dies jedoch stark
von der Anwendung und den genutzten Aktualisierungs-Algorithmen abhängt und hier
davon abstrahiert wird, wird das Kontextmodell als ein Gesamtes betrachtet.

5 Realisierung

Die Realisierung des Broker-Operators, der die im vorherigen Abschnitt genannten An-
forderungen und Konzepte umsetzt, wird in zwei Ebenen betrachtet. Die Umsetzung als
logischer Operator erlaubt eine semantisch korrekte Formulierung des Brokers und erlaubt
dadurch u.a. Optimierungen auf Grundlage einer Algebra. Das logische Konzept kennt je-
doch alle Daten im Voraus, was jedoch nicht effizient implementiert werden könnte, so
dass der physische Broker-Operator eine abstrakte Implementierung auf Grundlage eines
erweiterten Konzeptes darstellt.

5.1 Logischer Operator

Zur Definition der Semantik des Brokers wird ein logischer Broker-Operator auf Basis
der logischen Algebra aus [Krä07] formal beschrieben. Sei dazu Sl die Menge aller logi-
schen Datenströme. Dann ist ein Datenstrom Slτ ∈ Sl als eine Multimenge von Elementen
(e, t, n) definiert, wobei e ∈ Ωτ ein Tupel vom Typ τ ist. Des Weiteren ist n ∈ N mit n > 0
die Anzahl des Tupels e zum Zeitpunkt t ∈ T . Hierbei ist T die Menge aller Zeitstempel in
einem diskreten und total geordneten Wertebereich T = (T,≤). Somit gibt beispielsweise
ein Element (a, 4, 3) an, dass das Tupel a zum Zeitpunkt 4 dreimal vorkommt.

Sei der Broker ζ : (Slτ )k × Fnext → (Slτ )m mit k,m ∈ N, k,m ≥ 1 als eine Abbildung
von k logischen Datenströmen und einer Auswahlfunktion auf m logische Datenströme
definiert. Entsprechend wird ein Update Stream oder ein Request Stream mit Slin ∈ (Slτ )k

und analog ein Observation oder Response Stream mit Slout ∈ (Slτ )m bezeichnet. Des
Weiteren beschreibt eine Auswahlfunktion fnext ∈ Fnext mit fnext : T → P(Slout) ei-
ne Abbildung von einem Zeitstempel auf eine Menge von ausgehenden Datenströmen. Sie
entspricht der Umsetzung der Request Streams, indem sie zu einem Zeitpunkt t die Menge
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von Response Streams oder Observation Streams liefert, die zu diesem Zeitpunkt bedient
werden müssen. Hierzu sei Slreq ⊆ Slin die Menge der Request Streams aus allen einge-
henden Datenströmen. Dann ist R : Slreq → Slout eine Abbildung, die jedem eingehenden
Request Stream einen Ausgangsdatenstrom zuordnet. Dann wäre

fnext(t) := {Ŝ ∈ Slout|∀S ∈ R−1(Ŝ) : ∃(e, t, n) ∈ S} (1)

eine Auswahlfunktion, die eine Menge von Response Streams Ŝ liefert, zu denen im zu-
gehörigen Request Stream R−1(Ŝ) ein Tupel (e, t, n) und damit ein Request vorliegt.

Seien S1 bis Sk logische eingehende Datenströme und Ŝ1 bis Ŝm logische ausgehende
Datenströme. Dann ist der Broker definiert durch

ζfnext
(S1, ..., Sk) :=(Ŝ1, ..., Ŝm) mit

Ŝj := {(e, t̂, n̂)|∃X ⊆ S.
X 6= ∅ ∧
X = {(e, t, n) ∈ S|n(t) = n(t̂)} ∧

n̂ =
∑

(e,t,n)∈X

n ∧

S := {(e, t̂, n)|((e, t̂, n1) ∈ S1 ∧ S1 /∈ Slreq ∨ n1 = 0) ∧ ...∧
((e, t̂, nk) ∈ Sk ∧ Sk /∈ Slreq ∨ nk = 0) ∧
n > 0 ∧

n =
k∑
i=1

ni} ∧

Ŝj ∈ fnext(t̂)}
(2)

wobei n(t) die Anzahl der Elemente des Datenstromes bis zum Zeitpunkt t ist, welche
durch

n(t) = |{(e, t̃, n) ∈ S|t̃ ≤ t}| (3)

definiert ist.

Zu einem Zeitpunkt t̂ werden alle eingehenden Datenströme S1, ..., Sk zu einem Daten-
strom S zusammengefasst, sofern es kein Tupel (Si, S̃) ∈ R gibt, sodass es sich bei Si
nicht um einen Request Stream handelt. n gibt an, dass gleiche Tupel in unterschiedli-
chen Eingangsströmen aufsummiert werden. Aus diesem zusammengeführten Datenstrom
S nimmt der Broker das Element (e, t, n), das mit n(t) dieselbe Anzahl an Vorgängern hat,
wie es zum aktuellen Zeitpunkt mit n(t̂) gibt. Hiermit wird zeitlich betrachtet das letzte
Element genommen, das vor t̂ gültig ist. Dadurch erhält man in Bezug auf das Kontextmo-
dell den letzten gültigen Zustand zum Zeitpunkt t̂. Das so ausgewählte Tupel wird an alle
ausgehenden Datenströme Ŝj übergeben, die von der Auswahlfunktion fnext bestimmt
worden sind. Somit bekommen zum Zeitpunkt t̂ alle Datenströme Ŝj die Tupel, die zuletzt
gültig waren.
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Beispiel

Im Folgenden hat der Broker drei eingehende Datenströme S1, S2, S3 und S4, sowie drei
ausgehende Datenströme Ŝ1, Ŝ2 und Ŝ3. Seien die eingehenden Datenströme wie folgt
definiert:
S1 := {(c, 1, 1), (a, 2, 3), (a, 3, 3), S3 := {(b, 2, 2), (b, 3, 2), (a, 4, 1),

(b, 3, 1), (a, 4, 3), (b, 4, 1), (b, 4, 1), (c, 4, 1), (a, 5, 2),
(c, 4, 1), (b, 5, 2), (b, 6, 2)} (b, 5, 1), (a, 6, 1), (c, 6, 2)}

S2 := {(c, 1, 1), (a, 2, 1), (a, 5, 1), S4 := {(b, 3, 1), (b, 6, 1)}
(b, 6, 1)}

Dann zeigt Tabelle 1 den jeweiligen Zustand der vier Eingangsdatenströme S1, S2, S3 und
S4 zu einem Zeitpunkt t.

t S1 S2 S3 S4

1 < c > < c > <> <>
2 < a, a, a > < a > < b, b > <>
3 < a, a, a, b > <> < b, b > < b >
4 < a, a, a, b, c > <> < a, b, c > <>
5 < b, b > < a > < a, a, b > <>
6 < b, b > < b > < a, c, c > < b >

Tabelle 1: Beispiele für vier logische Datenströme

Seien weiter S2 und S4 Request Streams für die Ausgangsdatenströme Ŝ1 und Ŝ2, sodass
nachfolgende Zuordnungen existieren: R(S2) = Ŝ1 und R(S4) = Ŝ2.

Dann kann unter Verwendung der Auswahlfunktion fnext der Broker-Operator auf die
Eingangsdatenströme S1, S2, S3 und S4 und entsprechend auf die drei Ausgangsdaten-
ströme Ŝ1, Ŝ2 und Ŝ3 angewendet werden. Tabelle 2 zeigt entsprechend zu den Eingaben
das Ergebnis von ζfnext

(S1, S2, S3, S4).

t Ŝ1 Ŝ2 Ŝ3

1 < c > <> < c >
2 < a, a, a, b, b > <> < a, a, a, b, b >
3 <> < a, a, a, b, b, b > < a, a, a, b, b, b >
4 <> <> < a, a, a, a, b, b, c, c >
5 < a, a, b, b, b > <> < a, a, b, b, b >
6 < a, b, b, c, c > < a, b, b, c, c > < a, b, b, c, c >

Tabelle 2: Broker-Operation über die logischen Datenströme S1, S2, S3, S4

Wie zu sehen ist, vereinigt der Broker alle Elemente, die nicht aus einem Request Stream
kommen. Zum Zeitpunkt t = 2 werden daher nur die Elemente < a, a, a > aus dem
Datenstrom S1 und die Elemente < b, b > aus dem Datenstrom S3 zusammengeführt.
Da zu diesem Zeitpunkt eine Anforderung < a > von dem Request Stream S2 vorliegt,
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muss das Ergebnis < a, a, a, b, b > auch an den Ausgangsdatenstrom R(S2) = Ŝ1 ge-
liefert werden. Daher ist die Auswahlfunktion zu diesem Zeitpunkt wie folgt definiert:
fnext(2) = {Ŝ1, Ŝ3}. Hierbei kann man unter anderem erkennen, dass die Nutzdaten von
Elementen aus Request Streams ignoriert werden, da lediglich die Zeitstempel von Inter-
esse sind. Wie bereits in Abschnitt 4 genannt, wird dann entsprechend auch das ganze
Kontextmodell wiedergegeben, indem keine Auswahl für einen Teil des Kontextmodells
als Nutzdaten mitgegeben wird.

5.2 Physische Algebra

Eine direkte Implementierung des logischen Algebra-Operators ist nicht praktikabel, da
sonst für jeden Zeitpunkt ein eigenes Element im Datenstrom verarbeitet werden müsste.
Die physische Algebra (vgl. [Krä07]) betrachtet daher eine kompaktere Sichtweise auf
Datenströme. Sei dazu Sp die Menge aller physischen Datenströme und Spτ ∈ Sp ein
physischer Datenstrom. Dann ist Spτ eine Menge von Elementen (e, [ts, te)), wobei e ∈ Ωτ
ein Element vom Typ τ ist und [ts, te) ein rechts-halboffenes Zeitintervall mit ts, te ∈ T
ist. Hierbei ist ts der Startszeitstempel und gibt den Zeitpunkt eines atomar auftretenden
Messwertes an. Ferner ist te der Endzeitstempel, der das Gültigkeitsende eines Messwertes
angibt, welches i.d.R. durch ein Fenster zugewiesen wurde. Hierbei ist T die Menge aller
Zeitstempel mit T = (T,≤).

5.2.1 Kontextmodell-Speicher

Der Kontextmodell-Speicher stellt im Prinzip nur einen Ausschnitt der schreibenden Da-
tenströme dar. Da ein ähnliches Verhalten auch bei anderen Operatoren zu finden ist, wurde
durch [DSTW02] eine SweepArea definiert, die es erlaubt Ausschnitte eines Datenstroms
effizient zu speichern, zu durchsuchen und zu aktualisieren. Die SweepArea bietet da-
zu unter anderem die Methoden insert zum Hinzufügen, iterator zum sortierten
Durchlaufen (bzgl. ≤ts ) und purgeElements zum Bereinigen an. purgeElements
bereinigt den Inhalt der SweepArea anhand eines Prädikats premove, indem die Metho-
de nur solche Elemente entfernt, die sich über das Prädikat qualifiziert haben. Damit die
SweepArea zum Löschen und zum Aktualisieren verwendet werden kann, wird folgendes
Prädikat verwendet:

pζremove(s, ŝ) :=

{
true wenn (ts ≥ t̂s ∧ pequal(s, ŝ)) ∨ ts ≥ t̂e
false sonst

Jedes neue Element s wird mit jedem Element ŝ aus der SweepArea geprüft, ob sie zusam-
men das Prädikat erfüllen. Dabei wird geprüft, ob es sich bei s um eine neuere Version
handelt. Das ist der Fall, wenn es einen größeren Startzeitstempel als ŝ besitzt und sie
gemeinsam das Gleichheitsprädikat pequal erfüllen. Ist das nicht der Fall, wird geprüft,
ob das Element ŝ nicht mehr gültig ist. Dies ist der Fall wenn der Startzeitstempel von s
größer als der Endzeitstempel von ŝ ist. Da das Gleichheitsprädikat pequal abhängig vom
Kontextmodell ist, wird es hier nicht explizit aufgeführt.
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5.2.2 Auswahlfunktion

Um die Auswahlfunktion umzusetzen, wie sie im vorigen Abschnitt als fnext beschrieben
ist, wird zunächst die Abbildung R benötigt. Hierzu sei ein abstrakter Datentyp (ADT)
Metadatenverzeichnis definiert, der folgende Methoden bereitstellt:

getObservationStreams() Liefert alle Observation Streams zurück.

getResponseStream(Datenstrom S) Liefert den Response Stream Ŝ ∈ Slout zu
dem Request Stream S ∈ Slreq.

isRequestStream(Datenstrom S) Liefert wahr zurück, wenn es sich bei S um
einen Request Stream handelt.

getRequests() Liefert eine Prioritätsqueue bzgl. eines Zeitstempels, die alle Request
Streams enthält, zu denen noch Anfragen ausstehen.

Die Methode getResponseStream setzt dabei die Abbildung R und isRequest-
Stream den Term S ∈ Slreq um. Ferner liefert getRequests eine Prioritätsqueue, die
alle Requests liefert. Hierbei sind alle Requests aus den Request Streams anhand ihres
Startzeitstempels einsortiert. Durch die Prioritätsqueue wird unter anderem die in Defi-
nition 2 verwendete Bedingung n(t) = n(t̂) umgesetzt, indem nur das letzte Element
ausgegeben wird, welches zum aktuellen Zeitpunkt t an der Reihe ist. Des Weiteren bein-
haltet getRequests bereits nur noch Request Streams, so dass statt der Abbildung R−1

direkt die Abbildung R verwendet werden kann. Unter Verwendung dieses Metadatenver-
zeichnisses kann die Auswahlfunktion wie folgt umgesetzt werden:

Algorithm 1 getNext(Metadatenverzeichnis M , Zeitstempel t)

Require: Metadatenverzeichnis M , Zeitstempel t
Ensure: Eine Menge O aus physischen Datenströmen Sp

1: O ←M.getObservationStreams()
2: loop
3: r := (Ŝ, t̂)←M.getRequests().peek()
4: if t̂ ≤ t then
5: M.getRequests().poll()
6: S = M.getResponseStream(Ŝ)
7: O.insert(S)
8: else
9: break

10: end if
11: end loop
12: return O

Algorithmus 1 zeigt eine abstrakte Implementierung der Auswahlfunktion. Hierzu benötigt
die Methode das genannte Metadatenverzeichnis, sowie den Parameter t, wie er auch in
Definition 1 angegeben ist.
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5.2.3 Physischer Operator

Um die Semantik des Brokers umzusetzen, wie sie in Definition (2) als logischer Broker-
Operator beschrieben ist, muss bei der physischen Umsetzung noch der zeitliche Verlauf
berücksichtigt werden. Ein physischer Operator konsumiert alle Elemente nur nachein-
ander. Daraus resultiert, dass auch der Broker zu einem Zeitpunkt t nicht wissen kann,
ob noch Elemente folgen, dessen Zeitstempel kleiner als t sind. Im Falle der Request-
Datenströme bedeutet dies, dass der Broker erst eine Anforderung bedienen darf, wenn
er sicher gehen kann, dass nicht noch eine Anforderung eintrifft, die davor liegt. Um die-
ses blockierende Verhalten aufzulösen, bedient man sich einer Grundvoraussetzung von
Datenströmen, bei der alle Elemente eines Datenstroms zeitlich anhand des Startzeitstem-
pels sortiert sind, da dieser den eigentlichen atomaren Zeitpunkt eines Datenstromele-
ments festlegt. Kommt demnach ein Element (e, [ts, te)) am Operator an, so kann dieser
davon ausgehen, dass aus demselben Eingang nur noch Elemente folgen werden, deren
Startzeitstempel größer oder gleich ts sind. Für ein Element muss der Broker also auf al-
le Eingänge entsprechend warten, bis er sichergehen kann, dass keine jüngeren Elemente
mehr ankommen. Hierzu verwendet der Broker einen Zeitstempelmints , bei dem der Bro-
ker sichergehen kann, dass aus keinem Eingang mehr Elemente kleiner als mints folgen.
Dieses Minimum kann dadurch gebildet werden, dass der Broker sich zu jedem Eingang
i merkt, welchen Startzeitstempel tini das letzte Element hatte. Das Minimum aller tini

ergibt entsprechend das globale Minimum , sodass mints := min(tin1
, ..., tink

), wobei
k der Anzahl der Eingangsdatenströme entspricht. Durch Berücksichtigung dieses Mini-
mums, der zuvor beschriebenen SweepArea und der Auswahlfunktion getNext kann der
Broker, wie im folgenden Algorithmus umgesetzt werden:

Algorithm 2 Broker-Operator

Require: Physische Datenströme Sin1
, ..., Sink

Ensure: Physische Datenströme Sout1 , ..., Soutm
1: Sei M ein Metadatenverzeichnis mit den Datenströmen Sin und Sout, sowie einer

Zuordnung von Request-Datenströmen zu Ausgangsdatenströmen
2: tin1

, ..., tink
,mints ∈ T ∪ {⊥};tini

← ⊥ mit 1 ≤ i ≤ k; mints ← ⊥
3: Sei SA eine leere SweepArea(≤ts , pζremove)
4: Sei buf eine Prioritätsqueue für Elemente (e, [ts, te)) mit Ordnungsrelation ≤ts
5: for s := (e, [ts, te))←↩ Sinj do
6: tinj

← ts
7: mints ←min(tin1

, ..., tink
)

8: if M.isRequestStream(Sinj
) then

9: M.getRequests().offer((Sinj , ts))
10: else
11: buf.offer(s)
12: end if
13: if mints not ⊥ then
14: while not buf.isEmpty() do
15: ŝ := (ê, [t̂s, t̂e))← buf.peek()
16: if t̂s ≤ mints then
17: ŝ← buf.poll()
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18: SA.purgeElements(ŝ)
19: SA.insert(ŝ)
20: else
21: break
22: end if
23: end while
24: Iterator it = getNext(M,mints)
25: while not it.hasNext() do
26: n := (So, to)← it.next()
27: for all s̃←↩ SA.iterator() do
28: s̃ ↪→ So
29: end for
30: end while
31: end if
32: end for

Der Algorithmus wird für jedes ankommende Element s ausgeführt. Dabei wird zunächst
das Minimum für den zugehörigen Eingsangsdatenstrom gesetzt und danach das globale
Minimum berechnet (Zeile 6–7). Darauf folgend wird geprüft, ob es sich um einen Request
Stream handelt. Wenn dem so ist, wird dem Metadatenverzeichnis eine neue Anforderung
übergeben. Falls nicht, wird das ankommende Element zunächst in einem Puffer abgelegt
(Zeile 8–12). Ist in einem weiteren Schritt dann mints 6= ⊥, sodass mindestens aus jedem
Eingangsdatenstrom ein Zeitstempel tin vorliegt, dann wird zunächst der Puffer behan-
delt. Hierzu werden nacheinander die Elemente ŝ aus dem Puffer geholt. Diese werden
dann mit purgeElements benutzt, um die SweepArea SA zu bereinigen. Hierbei wer-
den, wie oben beschrieben, alle Elemente aus der SweepArea entfernt, die laut pζremove
nicht mehr gültig sind. Anschließend wird das Element ŝ der SweepArea hinzugefügt. Der
Inhalt der SweepArea entspricht somit dem aktuellen Zustand des Kontextmodells (Zei-
le 13–18). Ist jedoch ein Element ŝ zeitlich vor mints , dann darf es noch nicht aus dem
Puffer geholt werden, da eventuell erst andere Eingaben und Requests abgearbeitet wer-
den müssen (Zeile 16 bzw. 21). Somit dient dies auch der zeitlich korrekten Aktualisierung
des Kontextmodells. Wenn alle aktuell gültigen Daten aus dem Puffer geholt wurden, dann
werden mit getNext alle Ausgangsdatenströme bestimmt, die zum Zeitpunktmints aus-
geführt werden müssen. Anschließend wird der gesamte Inhalt der SweepArea, also das
gesamte aktuell gültige Kontextmodell, an die vorher ausgewählten Ausgangsdatenströme
geschickt (Zeile 24–30).

5.2.4 Optimierungen

Aus der relationalen Algebra sind Optimierungsregeln bekannt, die es erlauben einen An-
frageplan für eine effizientere Ausführung umzustellen, ohne dabei die Ergebnisse zu
verändern. Ähnliche Regeln existieren auch für die relationale Algebra auf Datenströmen.
Bei diesen Optimierungsregeln werden jedoch nur azyklische Anfragepläne betrachtet.
Mit der Einführung des Broker-Operators werden jedoch Zyklen in Anfragepläne inte-
griert, die sich in gewissen Anwendungsszenarien nicht vermeiden lassen. Dennoch lassen
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sich auch hier Teile entsprechender Anfragepläne unter gewissen Umständen optimieren.
Hierzu muss ein Anfrageplan mit Zyklen jeweils am Broker geteilt werden. Die dabei ent-
stehenden Teilpläne sind azyklisch und lassen sich mit den gleichen Optimierungsregeln
umstrukturieren, wie es auch in [Krä07] der Fall ist. Selbst eine Optimierung über den
Broker hinweg ist möglich. So kann bspw. eine Selektion in einem Teilplan, der einen Ob-
servation Stream darstellt, vor den Broker gesetzt werden, wenn die Selektion nur Objekte
herausfiltert, die nicht zur Aktualisierung anderer Objekte des Kontextmodells benötigt
werden. Ein Beispiel könnte wie folgt sein. Sensoren am Fahrzeug detektieren auf einer
Autobahn alle Objekte vor dem eigenen Fahrzeug inklusive der Fahrspur, auf der sich die
Objekte befinden. Wenn eine Anwendung jedoch nur die Objekte auf der eigenen Fahrspur
benötigt, würde sie einen Observation Stream, also eine Anfrage am Broker registrieren,
in der eine Selektion auf die entsprechende Fahrspur enthalten ist. Wenn keine anderen
Anwendungen existieren, die auch Fahrzeuge auf anderen Fahrspuren benötigen, dann
können die Fahrzeuge, die sich nicht auf der eigenen Fahrspur befinden, bereits heraus-
gefiltert werden, bevor sie im Kontextmodell abgespeichert werden. Damit reduziert sich
dann der Aufwand für die Aktualisierung des Kontextmodells.

6 Experimente

Die Funktionsweise des Brokers wurde durch Experimente geprüft, da keine vergleich-
baren Algorithmen bzw. Operatoren in DSMS für eine sinnvolle Evaluation existieren.
Ferner erfolgte eine Implementierung in das Datenstrom Management Framework Odys-
seus [BGJ+09]. Hierbei wurde der im vorigen Abschnitt beschriebene physische Operator
umgesetzt und integriert. Aufbauend auf diesem Operator wurde ein beispielhafter An-
frageplan in Anlehnung an die in Abschnitt 4 Motivation im System installiert, wie er in
Abbildung 5 gezeigt wird. Dieser Plan beinhaltet zwei Datenquellen (A und B), die je-
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α α

B

ω ω

1000 µs500 µs

Abbildung 5: Anfrageplan der Experimente

weils einen Sensor simulieren sollen. Diese haben beide eine feste Frequenz und schicken
immer abwechselnd, ebenfalls in einer festen Frequenz, neue Elemente in aufsteigender
Reihenfolge bzgl. der Startzeitstempel an Odysseus. Die Elemente gelangen zunächst in
einen Fenster-Operator ω, das jedem Element eine Gültigkeitsdauer zuweist, sodass Ele-
mente später auch vom Broker entfernt werden können. Anschließend gelangen die Daten
in die Aktualisierungs-Operatoren α. Diese fordern daraufhin mit einem Request die Daten
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beim Broker an. Wenn der Broker auf Grundlage seiner Semantik den Request bedienen
kann, liefert er das aktuell gültige Kontextmodell an den Aktualisierungs-Operator. Die-
se aktualisieren anhand des Elements und des übergebenen Kontextmodells den aktuellen
Zustand. Um hierbei die Verarbeitungsdauer einer solchen Aktualisierung zu simulieren,
wird auf der linken Seite 500 µs und auf der rechten Seite 1000 µs gewartet, bis das Ergeb-
nis wieder dem Broker übergeben wird. Damit ist entsprechend ein Aktualisierungsschritt
im Zyklus abgeschlossen. Ferner wird dazu die linke Aktualisierung als Zyklus A und die
rechte als Zyklus B bezeichnet. Dies bedeutet, dass sowohl ein Zyklus als auch ein Sen-
sor feste Frequenzen haben. Aus diesem Grund wurde in der Evaluation zwischen zwei
Fällen unterschieden. Zum einen ist es möglich, dass die Sensorfrequenz niedriger als die
Frequenz der Zyklen ist und zum anderen ist es möglich, dass die Frequenz des Sensors
höher als die der Zyklen ist. Als Messpunkt wurde hierbei die Zeit gewählt, die ein neues
Element warten muss, bis es das Kontextmodell bekommt und aktualisieren kann. Diese
ergibt sich jeweils pro Aktualisierungs-Operator von dem Abschicken eines Requests bis
zur Antwort durch den Broker anhand des Kontextmodells.

Die Tests fanden auf einem Intel Core 2 Duo mit 2 CPUs bei 2.20 GHz und 4 GB Ar-
beitsspeicher statt. Als Betriebssystem wurde Windows 7 mit 64 Bit verwendet.

6.1 Niedrigere Sensorfrequenz

Wie zuvor beschrieben beträgt die Verarbeitungszeit von Zyklus A 500 µs und von Zyklus
B 1000 µs. Dementsprechend wurde für die Sensoren eine kleinere Frequenz genommen,
sodass die Sensoren jede 2000 µs ein neues Element erzeugen. Die Ergebnisse des Ex-
periments zeigt Abbildung 6. In der Abbildung ist zu sehen, dass die durchschnittliche
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Abbildung 6: Wartezeit bei einem niedriger frequenten Sensor

Wartezeit eines Elements bei etwas über 2000 µs liegt. Die Verarbeitungsgeschwindigkeit
wird demnach von dem Sensor, also der kleineren Frequenz, vorgegeben. Da die Zyklen
mit einer größeren Frequenz arbeiten, ist die Aktualisierung bereits beendet bevor ein neu-
es Element das System erreicht. Der Broker muss bei einem Request von Zyklus A erst
warten, bis ein Request von Zyklus B eingegangen ist. Dies ist nötig, damit der Broker
weiß, dass nicht eventuell der Request von Zyklus B vor dem von Zyklus A abgearbeitet
werden müsste. Entsprechend richtet sich die Wartezeit eines Elements nach der höchsten
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Frequenz der Sensoren. Da hier die Frequenz der Sensoren konstant ist, ist auch die War-
tezeit aller Elemente konstant. Diese schwankt lediglich ein wenig auf Grund des Sche-
dulings und der momentanen Auslastung des Gesamtsystems. Um hierbei nicht von der
Frequenz einer Datenquelle abhängig zu sein, kann ein Heartbeat-Mechanismus in Form
von Punctuations [TMSF03] verwendet werden. Punctuations sind in der Regel einfache
Zeitstempel, die den zeitlichen Fortschritt in einem Datenstrom angeben. Ein Operator
kann dann davon ausgehen, dass nach einer Punctuation nur noch Elemente folgen, die
einen größeren Zeitstempel als den Zeitstempel der letzten Punctuation haben. Da dies der
Semantik des Minimum-Zeitstempels entspricht, wie er in Abschnitt 5.2 verwendet wird,
ist es mit einer Punctuation möglich, den Minimum-Zeitstempel bereits vor einem neuen
Messwert zu berechnen und somit die Wartezeit für einen anderen wartenden Messwert zu
verkürzen.

6.2 Höhere Sensorfrequenz

Im Gegensatz zum vorherigen Test, wurde des Weiteren der Fall betrachtet, in dem die
Sensorfrequenz höher ist. Indem die Sensoren in einem Abstand von 100µs neue Ele-
mente erzeugen, wurde eine größere Frequenz als die der Zyklen gewählt. Abbildung 7
zeigt die Messergebnisse. Hierbei ist zu erkennen, dass die Wartezeit einzelner Elemente
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Abbildung 7: Wartezeit bei einem höher frequenten Sensor

bei jedem weiteren Element zunimmt. Dies begründet sich dadurch, dass neue Elemen-
te wesentlich schneller beim System ankommen, als sie vom System verarbeitet werden
können. Da die Frequenz der Sensoren konstant ist, nimmt auch die Wartezeit je Element
mit einem konstanten Faktor zu, sodass die entsprechend konstante Steigung entsteht. Die
ansteigende Wartezeit entspricht ebenfalls der Aktualität des Kontextmodells. Je länger ein
Element auf die Aktualisierung warten muss, desto mehr weicht auch das aktuell gültige
Kontextmodell von der tatsächlichen Welt ab. Um hierbei ein möglichst aktuelles Kon-
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textmodell zu gewährleisten, ist es sinnvoll, dass für die Sensoren im Vergleich zu der
Verarbeitungsfrequenz der Zyklen eine kleinere Frequenz gewählt wird.

Die Experimente zeigten demnach die erwarteten Ergebnisse, indem bei niedrigerer Fre-
quenz eine bestimmte Zeit gewartet werden muss. Hierbei kann man u.a. beobachten, dass
ein Messwert aus Sensor A erst bedient werden kann, wenn ein weiteres Element aus Sen-
sor B vorhanden ist. Denn erst zu diesem Zeitpunkt kann der Broker sicher gehen, dass aus
Sensor B nicht eventuell noch Messwerte folgen, die zuerst ausgeführt werden müssten.
Demnach entstehen zusätzliche Latenzen, die auf Grund der Transaktionskontrolle des
Brokers entstehen und bei einer nicht-transaktionssicheren Implementierung mit einem
(Hauptspeicher-)DBMS entsprechend nicht vorhanden wären. Des Weiteren entsprechen
die Ergebnisse bei einer höheren Sensorfrequenz ebenso den Erwartungen, indem es einen
Systemüberlauf gibt, da wie beschrieben zusätzliche Latenzen entstehen.

7 Fazit

Obwohl sich die Verwendung eines DSMS im Bereich kontextsensitiver Anwendungen
anbietet, werden für die Verarbeitung von Sensordaten in der Regel feste Programme ein-
gesetzt. Möchte man jedoch solche Konzepte in einem DSMS umsetzen, muss man auch
die aktuelle Umgebung in einem Kontextmodell abbilden. Hierbei muss unter anderem
eine möglichst effiziente Speicherung berücksichtigt werden. Bei den Aktualisierungen
des Kontextmodells, die jeweils periodisch durch ein neu ankommendes Element angesto-
ßen werden, müssen die verschiedenen lesenden und schreibenden Zugriffe auf das Kon-
textmodell berücksichtigt werden, damit Aktualität und Konsistenz des Kontextmodells
sichergestellt werden. Wir haben dazu den Broker-Operator auf Grundlage einer festen
Semantik eingeführt und eine abstrakte Implementierung gezeigt. Dieser Operator erlaubt
es, das Kontextmodell transaktionssicher im Hauptspeicher zu verwalten, ohne dass da-
bei die temporale Ordnung der Daten vernachlässigt wird. Die Umsetzung des Brokers
erfolgte in dem komponentenbasierten Datenstrom Management Framework Odysseus.
Diese Umsetzung wurde ebenso für Experimente genutzt. Hierbei wurde das Verhalten
bei verschiedenen Frequenzen von Datenquelle und Zyklen beobachtet. Bei einem lang-
sameren Sensor erfolgen Aktualisierung innerhalb einer konstanten Zeit, die auf Grund
der Transaktionkontrolle nicht nur vom eigenen Sensor sondern auch von allen Sensoren
beeinflusst wird. Werden die Daten jedoch schneller erzeugt, als sie im Zyklus verarbeitet
werden können, so entsteht ein Datenstau, wodurch Aktualität des Kontextmodells und die
tatsächliche Umgebung mit der Zeit immer mehr auseinander laufen.

Zukünftig wird der Broker-Operator in einem DSMS-basierten Framework für FAS ein-
gesetzt. Dabei werden neben der zeitlichen Koordination insbesondere auch anwendungs-
spezifische Löschstrategien für das Kontextmodell entwickelt, um ungültige Elemente aus
dem Kontextmodell zu entfernen. Außerdem werden Anfragepläne mit zwei oder mehr
Broker-Operatoren entwickelt, um neben dem eigentlichen Kontextmodell auch temporäre
Kontextmodelle zuzulassen. Dies ist insbesondere deswegen wichtig, weil auf Grund mö-
glicher Fehlmessungen nicht jedes Objekt direkt in das eigentliche Kontextmodell aufge-
nommen werden soll, sondern erst nachdem es mehrmalig erkannt worden ist.
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Abstract: The rise of the Web 2.0 has made content publishing easier than ever. Yes-
terday’s passive consumers are now active users who generate and contribute new data
to the web at an immense rate. We consider evaluating data driven aggregation queries
which arise in Web 2.0 applications. In this context, each user action is interpreted as
an event in a corresponding stream e.g., a particular weblog feed, or a photo stream.
The presented approach continuously tracks the most popular tags attached to the in-
coming items and based on this, constructs a dynamic top-k query. By continuous
evaluation of this query on the incoming stream, we are able to retrieve the currently
hottest items. To limit the query processing cost, we propose to pre-aggregate index
lists for parts of the query which are later on used to construct the full query result. As
it is prohibitively expensive to materialize lists for all possible combinations, we se-
lect those tag sets that are most beneficial for the expected performance gain, based on
predictions leveraging traditional FM sketches. To demonstrate the suitability of our
approach, we perform a performance evaluation using a real-world dataset obtained
from a weblog crawl.

1 Introduction

The world has turned into one large-scale interconnected information system with mil-
lions of users. End users, with the advent of Web 2.0, are now content generators who
actively contribute to the Web. User generated data is usually in form of semi-structured
text like personal blog entries with categorization 1 or images and videos annotated with
tags [Fli, You]. Each user action, for example uploading a picture, tagging a video or
commenting on a blog, could be interpreted as an event in a corresponding stream. Data
stream processing has gained a lot of attention in the recent years (see [BBD+02, Mut05]
for surveys), since many of today’s applications are best captured in this model. Data items
in different formats stream in to a processing unit where each item has the chance of being

� This work is partially supported by NCCR-MICS (grant number 5005-67322), the FP7 EU Project
OKKAM (contract no.ICT-215032), and the German Research Foundation (DFG) Cluster of Excellence “Multi-
modal Computing and Interaction” (MMCI).

1http://google.blogspace.com/, http://www.weblogs.com/, http://www.blogger.com/
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seen once before being archived for later uses. While this model has been successfully
applied in scenarios such as sensor networks, traffic monitoring and financial data feeds,
Web 2.0 generated data has less frequently been treated as streams. Most data mining
approaches on this ever growing source of data run their analysis algorithms in an offline
fashion [KNRT05, Kle02, HJSS06], hence disregarding the live nature of the web.

Given the immense volume of data being published on the web and the desire of consuming
newly published data, there is an increasing need for processing this information in real
time in efficient ways. All this gives rise to considering this data in a streaming model.

As an example of temporal streams of information in a Web 2.0 application consider pub-
lished content in form of news articles or posts on personal weblogs (blogs). Explicit
temporal annotations (i.e. written at, uploaded at) of the content of weblogs or news por-
tals makes them natural items of a temporal stream. Mechanisms such as RSS and atom are
used to notify users of newly published data on their favored weblogs or news portals. The
items in a blog feed stream are generated at distributed sources depending on the subscrip-
tions which are made by the user. The large body of information retrieval techniques can
be used in order to extract categories or topics from the published text [APL98, ACD+98].

We consider online processing of aggregation queries over streaming data where each data
item carries a particular set of tags with it. We aim at monitoring the hottest items at
each time by defining a top-k query of currently popular tags. Hot items are subsequently
defined as those items which have high score with regard to the defined query.

1.1 Problem Statement and Contribution

We consider a stream S of tagged items where each item has the following format:

d =< itemId, time, Td >

itemId is a unique identifier specifying the object this item is describing, i.e. URL of an
image or post, and time represents the time when d was produced. Let T = {t1, ..., tn}
be the global set of tags which are used to annotate items. Td ⊂ T is the set of tags with
which d is annotated. The number of tags an item carries is usually very small (e.g., around
5) compared to standard document retrieval where a text document contains lots of terms.
For each tag we assume a given score score(d, t) that reflects the relatedness of the item
to the tag.

We further assume in-order streams; items arrive in the same order that they are generated.
In most streaming scenarios, as well as ours, recent items are of more interest than old
ones. This is captured by the sliding window model. A sliding window (W ) is assumed
over the stream and items are considered valid while they belong to this window. Sliding
windows can be either count or time based, i.e., bounding the number of items either by
count or focusing only on those that occurred in a particular time interval.

At each point in time we can compute statistics over the tags used in items currently in
the sliding window W or compute aggregation queries over these items. This view forms
the basis of our approach, which builds on statistics on tag usages to determine a set of
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popular tags. This tag set is then interpreted as a continuous and dynamic keyword query
which is executed against the sliding window as time evolves. We call this query dynamic
as it is re-build with evolving time due to changes in tag popularities.

Definition 1 Hot Tags and Hot Items: At each timestamp τ , the set of hot tags (Hτ )
consists of the c tags with the highest popularity.

The set of hot tags defines the query we use to rank the valid items, i.e., the query is data-
driven and changes with time as the popularity of tags changes. For a valid item, we define
its current score as the sum of scores of the hot tags it carries. More formally,

s(d,Hτ ) :=
∑

t∈Hτ∩Td

score(d, t)

The task is to continuously compute the top-k items as the query changes. In contrast to
standard top-k query processing over text (or XML) documents, here, the query is sup-
posed to be rather big to capture not only a few but many hot topics for diversity reasons.
In summary, the considered tags (features, in standard IR terminology) is small whereas
the query is long, which is in clear contrast to traditional query processing techniques.

In this work we focus on efficiency aspects and the potential of pre-aggregations and how
to decide which subqueries to pre-compute. For the actual decision which tags should be
considered in as query terms, one can think of other measures than the pure popularity
count based methods we use in our work, e.g., methods that aim at identifying trending
(hot) topics.

In this paper we make the following contributions. We show how to continuously com-
pute the set of hot items over social (Web 2.0) data streams by defining a dynamic top-k
aggregation query and show how pre-aggregations of popular sub queries can be used to
efficiently process the query. We evaluate our proposed methods on a real-world dataset
of blog posts showing the suitability of our approach.

This paper is organized as follows. Section 2 presents the related work. Section 3 briefly
describes the general structure that we consider in this paper together with a baseline
algorithm. Section 4 describes the problem of pre-aggregating groups of index lists for
efficient query processing and presents next to an offline problem definition an efficient
and effective approximation for online processing. Section 5 presents the experimental
evaluation. Section 6 concludes the paper.

2 Related Work

Data stream processing has been a hot topic in the past years as many of todays appli-
cations require real-time processing of dynamic data. For comprehensible surveys of this
topic in general see [BBD+02, Mut05]). Early works mostly consider one-pass algorithms
in limited space over the whole stream where all tuples are considered valid at all times.
A related problem to ours is reporting on quantiles or heavy hitters in streams. The goal
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is to report on most repeated items in the stream, when the number of items is so high
that keeping statistics for each is not possible. Approximate solutions to this problem ex-
ist which make use of techniques such as the famous AMS sketches [AGMS02], or more
recently group testing, see for example [CCFC04, CM03] and the references within. In
our work, the number of tags we consider and desire to know the hottest amongst is small
enough such that exact statistics could be kept for each.

Another line of research in stream processing is dedicated to top-k query answering in
data streams. Mouratidis et al. [MBP06] maintain a skyline [BKS01] which represents
the possible top-k candidates. Their solution is optimized for fixed queries and they focus
on changes introduced by items timing out or new items arriving in. In a more general
setting, [DGKS07] proposes indexing methods for answering adhoc top-k queries based
on arrangements. While our queries can not be considered as fixed (as the set of hot tags
changes over time with new items arriving) they are not completely adhoc either. We
exploit this fact to pre-aggregate parts of the query which can be used several times in
future queries. Jin et el. [JY+08] consider top-k queries on uncertain streams where the
data items are associated with existential probabilities. In our envisioned applications all
items are certain.

Mainly motivated by the wealth of news feeds and other online information streams, an-
other related problem is Topic Detection and Tracking (TDT) which has been extensively
studied in the past few years [APL98, ACD+98, HCL07]. The goal here is to detect new
events appearing in the data stream and tracking those events in order to later identify data
which further discuss the same event. Another related topic is mining frequent itemsets
in a data stream. In a recent work Calders et al [CDG07] define a new measure as the
frequency of an itemset and propose an incremental algorithm that allows for reporting the
exact frequencies of frequent itemsets. The problem of itemset mining is orthogonal to our
problem and can be used to improve the quality of our choice of pre-aggregation queries.
In another line of research related to Web 2.0 applications with temporal considerations,
Hotho et al. [HJSS06] consider discovering topic-specific trends in folksonomies which
are collections of resources tagged by users (such as Flickr or del.icio.us 2 ). Their analy-
sis is based on the famous PageRank algorithm. They perform the algorithm in an offline
manner and assume the whole corpus of data to be available. Weblog evolution is con-
sidered in [KNRT05], where time graphs are introduced and used for community tracking
again in an offline mode. In [MK09], the goal is to identify weblogs defined as starters
and followers specified by certain linking relations in an efficient way. In contrast to the
above, we continuously evaluated the data as it arrives in an online manner. For a survey
of temporal data analysis methods see [Kle06] and the references within.

Keeping the query results updated as data streams in with high rates requires high per-
formance evaluation of top-k queries. One way to improve the performance of expensive
queries is to maintain their results as materialized views. In order to avoid reprocessing a
top-k query in face of updates in the database, such as insertions or deletions, authors in
[YYY+03] suggest maintaining a top-k′ view, where k′ > k and show how to choose k′

dynamically to adapt to the system workload. In [HKP01] authors investigate answering a
top-k query based on the materialized results of another top-k query where the preference

2http://del.icio.us
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function is a linear combination of all attributes of tuples. It is shown how to decide given
a preference function and it’s top-l results if the top-1 result of another preference function
can be found in these materialized l tuples. In [DGKT06], the TA algorithm is adapted
to the case where a set of views, not necessarily the single inverted lists, are available.
The views are visited in a lock-step manner and in each iteration the maximum score of
unseen tuples are calculated by a linear programming optimization, given the preference
functions of each of the views. Given a set of views, the best subset for answering a query
is chosen based on a process simulating the TA utilizing the data distributions in each
view. In the same line, [KPSV09], investigate top-k query processing when intersection of
single inverted lists are also available. A combinatorial solution is proposed to solve the
specific linear program appearing when the set of lists consist of only single or intersec-
tion of two single lists. A very interesting result of the paper is that in order to guarantee
instance optimality all available lists should be investigated. In a streaming scenario how-
ever, maintaining the intersection of all pairs of single lists is not possible due to memory
constraints. In this work we propose to maintain the intersection of several lists instead
of just pairs of them and we chose the intersections based on the benefits they potentially
have for future data-driven top-k queries.

3 System Model and Structure

In this section we briefly describe the general structure that we consider. As mentioned
in Section 1.1 we consider one data stream as the input to our system where the items in
this stream contain a list of tags and they are considered valid while belonging to a sliding
window.

We assume all valid items are sorted in a first-in-first-out list. This provides an efficient
mechanism for evicting expired items. Newly arriving items in the stream are placed at the
head of this list and old items are dropped from the tail. In addition to the time sorted list,
we maintain a hash index on the valid items that point to the set of their tags. Furthermore,
for each tag, we keep a sorted list of items that have been annotated with this tag. Let li
represent the list maintained for tag ti. li is sorted based on ti’s score for each item in
descending order. When an item expires, it is also removed from the sorted list it belongs
to. Considering newly arriving items is easily achievable as it causes only insertions to a
few lists plus one insertion to the hash index and the time sorted list, as described above.
Note that as opposed to standard top-k processing where each document has potentially
very many features (terms), here, the average number of tags per item is rather small. As
a result updating the structures with new arrivals does not incur high cost.

For basic query execution we employ the threshold algorithm (TA) [Fag02], which works
as follows. It reads in parallel from the index lists, which are sorted by score in descending
order. For each item observed it looks up its score in all other lists it has not been observed
so far, which is done in our case with one lookup to the hash map as described in the
previous paragraph. The aggregated scores of the items at the current sequential access
scan depth define the stopping condition. The computation can be stopped if there are at
least k items with a score better than the aggregated score at the sequential scan lines. We
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employ the TA algorithm over the single term index lists as our baseline algorithm.

The top-k query needs to be re-evaluated in two cases: first, when an item which was part
of the top-k results expires. The second case happens when the set of top tags changes
and causes a change in the query aggregation function. In order to avoid re-computations
from scratch when a hot item expires, a k-skyband over the score-time space can be kept
[MBP06]. The k-skyband of a query contains only those items which have a chance of be-
coming a top-k result during their life time. When an item which was part of the top-k re-
sults expires, it is enough to evaluate the query on the k-skyband, instead of the entire valid
items, to fill in the top-k results. This dramatically decreases the cost of re-evaluations,
however, it is only useful when the query remains unchanged. For the rest of this paper
we do not consider possible optimizations when the top-k query is not changing, as this is
a well addressed problem [MBP06, DGKS07], rather, we will focus on solutions for the
changing query issue. In the next section we describe our approach for pre-aggregating
stable parts of the top-k query in order to decrease the cost of evaluations when the query
changes.

4 Grouping for Pre-Aggregation

Observing the changes in the top-k query itself, which is considered to be quite large
(∼ 100 tags), shows that although the query itself changes more or less every time, there
is a fraction of tags that remain as part of the query for a long duration of time. These
consists of those tags which are popular most of the time and represent current long-lived
events. Observing stable sub-queries, motivates us to maintain pre-aggregations for those
sub-queries which can later be used to evaluate the complete query more efficiently.

In this section we propose to group lists corresponding to “stable” tags together to reuse
their aggregated results. More precisely, we pre-aggregate certain lists and try to assemble
at query time the final top-k result given the pre-aggregated values.

4.1 Optimal Solution

To better understand the complexity of the problem, in this section we formulate an offline
algorithm. The offline algorithm assumes a finite stream and complete knowledge over
incoming data. Therefore the set of different top-k queries for a given time period is
known to the offline algorithm.

Given a set of queries Q = {Q1, Q2, ..., Qn}, the goal is to find an optimal set of sub-
sets of tags S that can answer all queries in Q efficiently, re-using pre-aggregations in
S. Each member of S is a subset of tags and if its cardinality is larger than one, rep-
resents a pre-aggregation of the lists maintained for the tags it contains. For example
S 3 Si = {tj , tk} means we are maintaining a sorted list for tj ∨ tk. Let Li represent
the list corresponding to Si. Items in Li are sorted based on their score with regard to
Si:s(d, Si) :=

∑
t∈Si∩Td score(d, t).
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In case of ties, more recent items are preferred. Li is created utilizing the simple lists we
maintain for tags which are members of Si. Assuming equal length l for all simple lists,
the cost of aggregating k such lists is k ∗ l.
Now assume a query Qy . Recall that each query is specified by a set of tags. We say a
subset S′

y ⊂ S exactly covers Qy if members of S′
y are pairwise disjoint and

⋃
Si∈S′

y
Si =

Qy . If a subset exactly covers a query, a standard TA algorithm can use it to evaluate that
query. The effectiveness of a list Li depends on the co-occurrences of tags in Si in the
stream of items. We assume the percentage of items likely to be read before TA can stop
is known for a list Li and we denote it by ci. Note that ci depends on the query and other
available lists, but for simplicity we consider it as an independent fixed value. The cost of
evaluating a query Qy using S′

y can be estimated by:
∑
Si∈S′

y
ci.

Let P be the powerset of
⋃
Qi. Given the above cost functions, we can formulate our goal

as an optimization problem which aims at minimizing the following cost function with
regard to the boolean variables xij :∑

Si∈P
yi ∗ |Si| ∗ l +

∑
Qj∈Q

xij ∗ ci

and the following constrains:{
yi =

∨
i xij (C1)

∀Qj∀t ∈ Qj
∑
i:t∈Si xij = 1 (C2)

xij = 1 shows that Si is used in evaluating Qj . yi = 1 if Si is used in evaluating at least
one query. The first constraint (C1) assures this. The first summation in the cost function
accounts for the pre-aggregation expenses while the second part shows the evaluation cost.
The second constraint (C2) ensures that the set of Si’s used for evaluating each query
exactly cover that query.

The above optimization problem is not a standard linear programming problem, as the
variables yi depend on xij’s. However, even if we ignore the first part of the cost function
(the query evaluation cost), we face a 0-1 linear programming problem which is known to
be NP-hard (cf., e.g., [MS08]).

4.2 Efficient Grouping

Given the complexity of the problem described above and the fact that the set of future top-
k queries is actually not known in advance, we address the problem with an approximate
approach.

Clearly it is beneficial to pre-aggregate sets of tags which frequently appear in the future
top-k queries: Aggregating the corresponding lists of a set of tags pays off only when the
resultant list can be used enough number of times in future queries. For each observed
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tag we maintain the number of times it has appeared in the set of hot tags and predict its
probability of being part of the aggregation query based on this past information.

Assume the number of single tags with probability of appearing in future queries larger
than a specific threshold is r. These tags have to be grouped together to form a pre-
aggregated list. However, grouping all of them together may not be beneficial, as to be
able to use such a pre-aggregation all involved tags should be part of the query. The prob-
ability that a pre-aggregation of m single lists is usable in future queries, decreases with
increasing m: if p is the probability of the most frequent tag, and assuming tags appear
independent of one another, pm is an upper bound of the probability that this aggregation
list is usable. We should therefore, pre-aggregate subsets of the r candidate tags.

Grouping those tags which co-occur together in the streaming items is highly beneficial
for the overall performance as they have higher chances of appearing together in future
queries. Given the data-driven nature of the query, the query evaluation using the TA
algorithm can be done more efficiently due to the already pre-aggregated partial queries. A
pre-aggregation of tags which do not co-occur together and aggregating them creates a list
of size of sum of the sizes of single lists with non-aggregated scores. On the other hand,
aggregating single lists which have high correlation, i.e., their corresponding tags occur
together, results in a list with more score variations (in case of ties in the original list) and
higher scores, which is more effective in decreasing the threshold value maintained by the
TA algorithm and causing it to stop reading more entries.

As a measure of tag co-occurrence we calculate the resemblance value for two index lists,
which is defined as the fraction of the size of their intersection over the size of their union.
Based on the given intuitions above, in the next section we describe our proposed algorithm
for selecting tag sets to be materialized.

4.3 Tag Set Generation

To actually compute the tag sets to be materialized our algorithm considers all tags that
frequently occurring in the queries with a probability above a parameter α. Since the
cardinality of the set of tags is not large, we can maintain exact statistics for the number of
occurences of each tag in a query. We normalize the number of occurences and use it as
the probability of tag’s occurance in future queries.

Based on this group of tags we generate the tag sets of interest in the following way,
illustrated in Figure 1:

1. each tag is considered to be a node of a graph

2. for each pair of tags the resemblance is calculated

3. each pair of tags with resemblance ≥ ρ is treated as an edge in a graph

4. the connected components of the graph are sets of tags to be materialized
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Figure 1: Illustration (showing a subset of all cases to be considered) of the process of determining
tag sets of interest for pre-aggregation for ρ = 0.3. Given the top re-occurring tags as the nodes in
a graph, we connect those nodes whose index lists have a resemblance of at least 0.3. All resulting
connected components are then selected and the corresponding index lists pre-aggregated.

This technique favors those frequently reoccurring parts of the query that also frequently
appear together in the data stream.

4.4 FM Sketches for Resemblance Calculation

As the computation of the exact resemblance is extremely expensive we employ a sketch-
ing technique that can efficiently estimate the resemblance value independent of the size
of the involved index lists. In addition, as even exact resemblance numbers cannot guar-
antee the optimal pre-aggregation, the effect of slightly inaccurate resemblance numbers
are negligible.

We make use of the well known Flajolet-Martin sketches (FM sketches) [FM85], which
are compact and precise estimators of the cardinality of a multi-set. Given two sets S1

and S2 and their corresponding synopses in form of FM sketches, once can determine
the size of the intersection by combining the sketches in an extremely efficient bit-wise
fashion. More precisely, one obtains actually the size of the union given the bit-wise OR
operation of the bit-sets of the two sketches. Then, the size of the intersection is given by
the inclusion-exclusion principle (|S1 ∪ S2| = |S1| + |S2| − |S1 ∩ S2|), hence we can
estimate the resemblance value.

As we keep index lists for the tags we observe, there is only the small overhead of main-
taining a sketch for each of these lists. When enumerating the candidate tag sets we es-
timate their suitability to the query processing based solely on the sketches. There is no
need to compute the aggregation and assess its size as the size is directly given by the
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sketch combinations, which is very efficient.

Due to the inherently approximate nature of the sketches, the resemblance values are not
exact, which leads to decisions of which tag sets to materialize that varies from the algo-
rithm employing the true resemblance numbers.

5 Experiments

We have implemented our algorithm in Java 1.6 and executed on a Windows 2003 server
with a quad core 2.33 GHz Intel Xeon CPU, 16GB RAM, and a 800GB RAID-5 disk.

We have obtained the ICWSM 2009 Spinn3r Blog Dataset3. It consists of 44 million blog
posts between the time period of August 1st and October 1st, 2008. Each blog entry (post)
consists of plain text, a timestamp, a set of tags, and other meta information such as the
blog’s homepage URL etc. The data is formatted in XML and is further arranged into
tiers approximating to some degree search engine ranking. We have parsed the blog posts
for the highest tier levels resulting in 11, 395, 571 (timeStamp, postId, tags)-entries, with
2, 444, 780 distinct postIds, hence, an average of ∼ 2.2 tags per blog entry. For the score
of a document w.r.t. a particular tag we simply consider score 1 if the tag is attached to the
document, 0 otherwise. While in principle a measure like tag frequency would be more
suitable, the way the dataset is generated limits us to the boolean values.

Algorithms

We consider the performance of three algorithms in this experimental evaluation. All are
based on the TA algorithm [Fag02]. The difference stems from the index lists they can
involve in the query processing. More precisely, we run the following algorithms:

• plain: This is the plain algorithm involving only accesses to single-tag index lists.

• comb: This algorithm uses pre-aggregation of tag sets that are supposed to help the
query execution. The set of tags to be pre-aggregated are chosen using the algorithm
described in Section 4.3. True resemblance values are calculated by merging lists
and measuring the resultant size.

• combsketch: This algorithm also uses pre-aggregation tag sets as described in Sec-
tion 4.3. However, the resemblance values are estimated using sketches as described
in Section 4.4.

Note that the comb algorithm is in fact impractical, as it incurs huge costs just for measur-
ing the resemblance values. However we ignore this cost and use this algorithm to show
the best achievable performance using our proposed set aggregation method.

3http://www.icwsm.org/2009/data/
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Measures of Interest

We will report on several measures as part of our performance study. Note that we do
not report on accuracy measure as all algorithms report the exact top-k results to the
query described above. We consider the number of entry accesses as the main cost to
assess the suitability of the methods under comparison. We split this measure up in several
ingredients to better understand the strong and weak points of the approaches. In particular
for the algorithms that use pre-aggregation, the cost for materializing lists for sets of tags
does not occur in each query processing step. We measure:

• eval cost: This measure reports on the average number of entry accesses the thresh-
old algorithm makes to calculate the results.

• pre-aggregation cost: With this measure we provide an insight on how costly the
pre-aggregation operation is, that means, how many entries on average need to be
accessed when materializing the index lists for sets of tags, determined by the selec-
tion algorithm. The plain algorithm does not incur any pre-aggregation cost.

• total cost: In addition to the measures described above we also report on the total
cost which consists of the total (non-averaged) cost for all query evaluations plus
the overall cost for doing the pre-aggregation. We ignore the cost for calculating the
resemblance values.

Results

We run the mentioned three algorithms for different parameter settings averaging over
45 query evaluations for each setting. The query evaluation is fired at every 500 items.
The tag set generation algorithm (described in Section 4.3) is run periodically at every 20
evaluations. Unless otherwise stated we use a time-based sliding window of size W =
10, 000, 000 milliseconds. The default number of desired top-k items denoted by kdocs
is 100. The number of tags used in defining the query is denoted by ctags and its default
value is set to 75.

We first observe the effects that parameters α and ρ have on the costs incurred by our
proposed algorithms. Figures 2,3, and 4 shows the different cost values while varying the
parameter α and fixing all other parameters. As explained in Section 4.3, α denotes the
threshold for considering a tag for the subsequent tag set generations. Figure 2 presents
the evaluation cost with changing α. Small α values causes the algorithm to consider tags
which actually do not occur later in the query. These tags may have high enough resem-
blance with other tags to be part of a connected component. The tag set corresponding
to such a component is however, useless, since it contains a tag which does not actually
appear in the query. As a result, both comb and combsketch have total costs close to plain
with small α values. On the contrary, for large enough values of α a large fraction of
materialized lists are actually reusable, therefore the evaluation cost of comb and combs-
ketch is much smaller than plain. For too high values of α, less than necessary number of
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Figure 2: Eval cost values when varying the α parameter. W=10,000,000ms, kdocs=100, ctags=75,
ρ = 0.6
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Figure 3: Pre-aggregation cost values when varying the α parameter. W=10,000,000ms, kdocs=100,
ctags=75, ρ = 0.6

tags are actually considered, lowering the total benefits of them in evaluating the queries.
The pre-aggregation cost is shown in Figure 3. We see that for α = 0.85 both comb and
combsketch have high pre-aggregation cost which actually pays off very well, as the total
cost at this value has a minimum for both methods.

Figure 7 shows the total costs when varying the parameter ρ, which specifies whether or
not an edge should be considered between two nodes in the tag set generation algorithm.
In our experiments ρ is not an absolute value, as the resemblance values estimated by
combsketch and sketch are very different in the absolute sense but they usually hold the
same ordering: if a list l1 has higher true resemblance to l2 than l3 this likely holds also
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Figure 4: Total cost values when varying the α parameter.W=10,000,000ms, kdocs=100, ctags=75,
ρ = 0.6
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Figure 5: Eval cost values when varying the ρ parameter. W=10,000,000ms, kdocs=100, ctags=75,
α = 0.8

in the estimated values by combsketch. So we calculate the highest resemblance value
resmax and ρ ∗ resmax is the threshold considered. We repeat the same procedure for
ρ+ step, each time increasing the resemblance threshold until it reaches 1. This way, we
produce smaller tag sets which have high resemblances. So, as observed also in Figure
6 the pre-aggregation cost decreases by increasing ρ. Note that the ρ value were the pre-
aggregation cost is actually paid off in evaluations is different for comb and combsketch.

After discovering good parameters for our algorithms, we evaluate our methods by fixing

117



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

pr
e-

ag
gr

eg
at

io
n 

co
st

 (
#e

nt
ry

 a
cc

es
se

s)

ρ

comb
combsketch

Figure 6: Pre-aggregation cost when varying the ρ parameter. W=10,000,000ms, kdocs=100,
ctags=75, α = 0.8
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Figure 7: Total cost when varying the ρ parameter. W=10,000,000ms, kdocs=100, ctags=75, α =
0.8

those parameters to the best found, and changing the system variables. Figure 8 shows the
total cost incurred by the three algorithms when changing the size of the sliding window.
Clearly the cost for all three methods increases, as more items are valid at each instance of
time, therefore the lists to be accessed are longer. However our algorithms incur much less
cost than the plain algorithm. Figure 9 shows the same measure when changing kdocs. As
expected the TA algorithm can stop earlier for smaller values of kdocs. Figure 10 finally,
shows the total cost when varying ctags. Since this number defines the number lists we
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Figure 8: Total cost when varying the window size, α = 0.8, kdocs =100 and ctags =75
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Figure 9: Total cost when varying kdocs, α = 0.8, W=10,000,000ms and ctags=75

should consider in the evaluation, it has a direct effect on total cost. In all three cases, our
proposed algorithms incur less cost than the plain method. Although combsketch has only
estimates of the true resemblances, its performance gains is very close to comb which has
the true resemblance values.
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Figure 10: Total cost when varying ctags, α = 0.8, W=10,000,000ms and kdocs=75

6 Conclusion

We addressed the problem of continuous monitoring of top-k hottest items over a stream of
tagged items such as blog entries or images. We have defined the property of being hot as
a top-k aggregation query where the query itself is characterized by the set of most popular
tags in a given time period. This causes the top-k query to change over time, hence requires
the system to re-evaluate the top-k query from scratch. Our approach is based on the
observation that parts of the top-k query are stable for certain time intervals, therefore, do
not have to be re-computed in each evaluation phase. As materializing pre-computations of
all possible subsets is impractical, we have presented an approximate algorithm to identify
the most promising tag subsets (i.e., top-k query ingredients) leveraging FM sketches to
predict the suitability of these tag sets. The presented generation method itself gives an
easy to use mean to control the amount of pre-aggregated lists.
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Abstract: The integration of various sensor data into existing software systems is be-
coming increasingly important for companies and even private users. As the number of
embedded devices of all sorts (sensors, mobile phones, cameras etc.) also constantly
increases, the development of flexible sensor applications gets more and more diffi-
cult. These applications have to handle a large number of sensors transmitting their
data in various formats using different protocols. Middleware technologies are a good
way to hide the complexity of communication protocols and data processing from the
application. However, integrating efficient sensor data processing into a middleware
requires several design choices which depend on the planned applications. Usually
such systems are either efficient, allowing the processing of large numbers of data
streams, or flexible, allowing the easy modification of the processing during runtime.
In this paper a hybrid approach is introduced combining the benefits of two popular
processing technologies, Service Oriented Architectures (SOA) and Data Stream Man-
agement Systems (DSMS), and by that enable the processing of large numbers of data
streams while at the same time the system can be flexibly modified. Therefore these
two technologies are analyzed to identify the benefits and disadvantages depending on
their flexibility and efficiency.

1 Introduction

Today, many low cost and easy to install sensors are available, many more in the future.
However, to realize even simple sensor-based applications, the effort is quite high: there
are many different interfaces and standards to communicate with the sensor systems. The
data read from the sensors is of variable quality and has often to be interpreted, aggregated
or otherwise preprocessed before being usable by applications. Since the heterogeneity
of sensor systems is so high, applications are bound to certain vendors or proprietary so-
called standards. Hence, even if more and more sensor systems are already installed, it is
hard to re-use the effort of pre-processing for other applications. Thus, future middleware
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architectures for sensor-based applications have to fulfill two major requirements that are
often contradicting: flexibility and efficiency. One solution for the flexible orchestration
of reusable sensor processing services could be a service-oriented architecture using the
Sensor Web Enablement [Ope] framework. Web service technology has many benefits re-
garding extensibility and standardization. They mostly rely on an event driven processing
paradigm, where active services push business events on a service bus and other services
subscribe to these basic events to provide higher level information (like complex event pro-
cessing engines). Finally, the end-user application receives only those events it is really
interested in.

When dealing with raw sensor data, this paradigm gets to its limits. Not every sensor
measurement is a meaningful event, and the throughput of event buses is not suited for high
loads of input data, as we can show in our evaluation. Hence, to close the gap between the
high level service oriented world and the low level sensor network world we introduce an
hybrid approach: for pre-processing high loads of sensor data, a data stream management
system is used which acts as a configurable service within a service oriented architecture.
Our evaluation shows that this approach dramatically increases the possible amount of
incoming sensor data. The remainder of this paper is organized as follows: Section 2
discusses the related work. In Section 3 two popular sensor data processing technologies
are analyzed followed by the description of our hybrid approach in Section 4. Section 5
contains a performance evaluation of the approach. Finally, section 6 draws a resume.

2 Related Work

Sensor data processing has been integrated into several middlewares like the Oracle Sen-
sor Edge Server [Ora10b], the SensWeb platform [Mic08, SNL+06], the WISE platform
[PHHL04] or the FireEagle platform [Yah07]. These systems use service oriented archi-
tectures (SOA) to realize the sensor data processing. This allows the developers to process
the incoming sensor data using services and after that provide it to the application. SOA
based processing systems are very flexible as they allow the simple integration of applica-
tion specific services and can easily be orchestrated. User access administration can also
be easily integrated, as every service is able to check the access permissions. However,
a SOA based system usually cannot handle high-volume streams of incoming sensor data
because of the administration overhead that goes along with service oriented architectures.

Other sensor middlewares like the Nexus platform [GBH+05], SStreaMWare [GRL+08]
or the GSN middleware [SA07] are based on Data Stream Management Systems (DSMS).
A DSMS is able to process high-volume streams of data in a fast and efficient way. There-
fore those systems provide the same extended relational algebra operators like database
management systems (DBMS). This algebra is extended through a temporal algebra to
perform aggregation and joins on datastreams. In the OpenSource Community there ex-
ist a wide range of DSMS implementations like Esper [Esp08] from Espertech, IEP [iep]
from the OpenESB community or TelegraphCQ [CCC+03]. As there is no public standard
for DSMS query languages, all these implementations are using their own query language
which are usually based on SQL. However, integrating application specific operators into
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DSMS can be extremely complicated as every new operator has not only to be integrated
into the DSMS but also into the query language. Adding user access administration to
a DSMS can also be very complicateted, as most DSMS are not designed to handle user
access permissions.

3 Sensor Data Processing

In this section, two popular data processing technologies, Service Oriented Architectures
(SOA) and Data Stream Management Systems (DSMS), are analyzed. This is done by
evaluating existing open source systems which are based on one of these technologies. As
DSMS and SOA based processing technologies are significantly different from each other
the evaluation is separated for each of these. Finally, the features of both technologies are
compared to each other.

3.1 Service Oriented Architectures (SOA)

SOA based data processing systems are analyzed by identifying the benefits and disadvan-
tages of three popular open source SOA based systems. These are Service Mix 4 [Apa10]
developed by Apache Group, OpenESB [Ora10a] developed by Sun and PEtALS [OW210]
developed by OW2. As all of these systems are based on a service oriented architecture,
they all allow the simple definition of data processing. Therefore, the developer chooses
the services she needs to process the incoming sensor data. These can be services executed
inside of the SOA but also external services that run on a different server. After that she
defines in which order these services are used by linking them logically together. How-
ever, there are several features making SOA based systems extremely flexible. As they
usually follow the ”publish, find, bind” principle using a service broker they are able to
discover additional services at runtime. SOA systems usually can be clustered. This makes
it possible to run services with high memory or CPU usage on more powerful machines.
The deployment of new services without interacting with the running systems (hot deploy-
ment) is not supported by some systems. Some systems can be integrated into application
servers . This can be very useful when building web based sensor applications. Other sys-
tems are able to run as a standalone application which makes it easy to integrate them into
ordinary applications. The orchestration of services is often done using BPEL [WCL+05]
which is a widely accepted standard. Some systems are able to handle access permissions
to single services.

However, not all of these features are supported by every SOA implementation. Tab. 1
shows an overview of analyzed systems and the features they support.

The service oriented approach brings a lot of flexibility but it also slows down the process-
ing speed because of the administrative overhead. This is caused by the service broker,
which has to decide what service to use next. The use of external services also slows
down the system because of the communication overhead. If services are using different
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ServiceMix 4 OpenESB PEtALS
Clustering + + +
Service Broker + + +
Hot Deployment + - +
Standalone + - +
Embedded - + -
Access Perm. + - +
Orchestration Camel, EIP BPEL BPEL

Table 1: SOA based Systems - Feature Overview

communication protocols, the conversion also increases the processing time. Beyond that,
external services can not be controlled as the developer has no influence on their behavior.

3.2 Data Stream Management Systems (DSMS)

Data Stream Management Systems (DSMS) are designed to process high-volume streams
of data in a fast and efficient way. Therefore those systems provide the same extended
relational algebra operators like database management systems (DBMS) extended through
a temporal algebra to perform aggregation and joins on data streams. However, DSMS
still differ from each other by features and algebra. In this section three popular open
source DSMS are analyzed: TelegraphCQ [CCC+03] developed by the Berkeley Uni-
versity, Odysseus [JBG+09] developed by the University Oldenburg and Esper [Esp08]
developed by EsperTech. As mentioned before, DSMS are usually controlled using a re-
lational algebra. This algebra is translated into a logical operator graph which is deployed
by the system. This graphs can be optimized by the system to make the processing more
efficient. Some DSMS support the static optimization of operator graphs, which is done
before the graph is deployed. Other systems are able to dynamically optimize the graph
while the system is running. Clustering is also supported by some of the systems, but
the implementations differ from each other. Odysseus for example realizes this by shar-
ing operators on multiple Odysseus instances using a P2P network, while TelegraphCQ
technically builds up a shared database which makes it possible to process the operator
graph on different instances of the system. DSMS can use different scheduling strategies
to optimize the memory and CPU usage. Some systems are able to use graph scheduling,
which means that every operator graph runs as an own thread and operators are processed
sequentially. Other systems allow operator scheduling, where every operator runs in its
own thread. There are also systems that allow hybrid scheduling in which case the single
operators or groups of operators run in an own thread. Another important feature is the
prioritization of operations inside the system. This can be handled by allowing to pri-
oritize a request to the system or allowing the prioritized processing of selected data by
adding a priority to the data tuples. Complex Event Processing (CEP) is used to analyze
data streams and search for patterns. As there is no public standard for DSMS, query lan-

126



guages like SQL for DBMS all the analyzed systems use their own query language which
are based on SQL. TelegraphCQ uses the Continues Query Language (CQL), Esper the
Event Pattern Language (EPL) and Odysseus SPARQL (for RDF tuple streams) and sSQL
(for relational tuple streams). Tab. 1 shows an overview of analyzed systems and the
features they support.

TelegraphCQ Odysseus Esper
Static Opti. - + -
Dynamic Opti. + - -
Clustering + + -
G. Scheduling + + +
O. Scheduling + + -
H. Scheduling - + -
Prioritization - + +
CEP - + +
Query Language CQL sSQL EPL

Table 2: DSMS Systems - Feature Overview

The data stream management approach brings a lot of efficiency when filtering and aggre-
gating data but also lacks the possibility to extend the available operators. This is caused
by the underlying system which is designed to process data while minimizing memory
and CPU usage. As the system has to know each operator at start time to be able to opti-
mize the operator graph and choose the right optimization strategy, the integration of new
operators is very complicated.

3.3 Service Oriented Architectures vs. Data Stream Management Systems

The previous sections show that depending on their features SOA based systems and
DSMS are primarily different. However, they still share the same application purpose
which is processing incoming data using predefined operators. Because of the underlying
architecture, SOA systems are extremely flexible. The main benefits of this architecture
are the flexible orchestration of services using accepted standards like BPEL, that services
can easily be added and modified, that the integration of external services is very easy and
that access permissions to services can be handled. The main disadvantage is that the SOA
slows down the processing time. Also an optimization of the operator graph is not possible
in a way comparable with the optimization inside a DSMS. External operators are easy to
integrate but they are also hard to control. This can effect the data processing as they may
stop working or change their behavior.

DSMS on the other side are extremely efficient. The main benefits of this architecture are
that it is possible to process data in a memory and CPU usage efficient way, that operator
graphs can be optimized, that the processing can be optimized using different scheduling
strategies, that queries can be prioritized and that complex events can be recognized. The
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main disadvantages are that the integration of new operators is difficult, that operators can
not be deployed during runtime, that the integration of external operators usually is not
possible, that no standard query language exists and that access permissions to operators
can not be handled.

However, sensor data processing for applications which have to be flexible and at the same
time handle a huge amount of sensor data in a memory and CPU usage efficient way should
still be possible. Thats why we introduce our hybrid approach, which is explained in detail
in the next section.

4 Hybrid Approach

In this section, a hybrid system is introduced which is based on a SOA system and uses a
DSMS for efficient processing of sensor data. The basic idea is to reduce the number of
data the SOA system has to handle by processing standard operations inside of a DSMS. A
pure DSMS can not be used as it can not provide the flexibility that comes along with the
SOA system. A schematic view of the system can be found in Fig. 1. To realize this hybrid
system, the DSMS is integrated into the SOA system. Therefore a service container is built
around the DSMS. The service container is bidirectional connected with a bus system that
connects all services in the SOA. This allows the integration of the DSMS into the SOA
system as one of its services. To enable the communication between the SOA services
and the DSMS operators the sinks and sources of the DSMS are mapped as provider and
consumer endpoints for other services of the SOA. A provider endpoint receives sensor
data from other services. Each incoming message is transformed into the internal format
and pushed into the physical processing plan of the DSMS. Thereby the timestamp of
the messages are preserved for usage in timewindow operators. A consumer endpoint
publish the processed sensor data on the bus system for other services. Therefore a new
message that includes the processed measurements is generated every time the DSMS
produce a new output. This means that other services can not request older values. If
they are subscribed to the consumer endpoint they get the newest values from the bus
system instead. The service container creates those endpoints when a new sink or source is
registered through a processing query and publishes these endpoints for other services. The
container is also responsible for the conversation of messages from a provider endpoint to
a DSMS source and from a DSMS sink to a consumer endpoint. Sensor data can still
be sent directly to the DSMS. Therefore the system allows the communication with the
DSMS using a TCP/IP connection. This makes it possible to pre-process data even before
the SOA has to handle any of it.

As it now has to be possible to deploy a shared operator graph, which includes operators
of the SOA and the DSMS, a framework is built around the system which allows the
description, storage and deployment of shared operator graphs.

The description of the shared operator graphs is realized using XML. Operators are always
based on operator types which are predefined by the system. One of these operator types is
the “DSMS operator”. Every other operator type represents an operator of the SOA. When
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Figure 1: Schematic View of the Hybrid System

creating an operator based on an operator type using the XML interface the operator is first
saved in a database. The system also allows the creation of inputs and outputs. Inputs have
to define the ID of a sensor data stream and are used to transmit data into the processing
framework. Outputs have to define a unique name and are used to receive processed data
out of the processing framework. The user then has to orchestrate the inputs, outputs and
operators by linking them together. After all operators and links are saved in the database,
the user can use the XML interface to deploy the operator graph. The “Admin Service”
of the processing framework then accesses the database and creates the orchestration for
the SOA system and the DSMS. If the user decides to change the operator graph she can
always change its database representation. After that the graph has to be redeployed. After
the operator graph is deployed, the incoming sensor data is received by the SOA or the
DSMS. The incoming data then is processed by the SOA and DSMS operators depending
on the deployed orchestration. After the sensor data is processed it can be accessed by the
application using the “Virtual Sensor Service”.

5 Performance Evaluation

In this section a SOA based system, a DSMS and the hybrid approach are compared using
a performance evaluation. As the evaluation implementation of the hybrid approach is
based on Esper and ServiceMix 4 these systems are also used as stand alone systems for
the evaluation.
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5.1 Evaluation scenario

The evaluation scenario is based on a community web application that allows the users to
monitor the position of their pet.

PetPositionOwnerPosition

PositionFilterPositionFilter

ObserverCheck MovementCheckSecureAreaCheck

LogicFilterLogicFilter

PetInDanger

lat,lnglat,lng

lat,lnglat,lng lat, lng

boolean boolean booleanboolean

boolean boolean

Figure 2: Schematic View of Petfinder Processing

Fig. 2 shows a schematic view of the processing for the petfinder application. Position
information is transmitted from the pet and the owner. The position filter (PositionFilter)
is used to filter invalid data. After that the valid position data is transmitted to opera-
tors which check if the pet is in danger. They check if the pet is in a secure area (Se-
cureAreaCheck), if it is observed by its owner (ObserverCheck) and if it has moved over
the last time (MovementCheck). After that, these operators transmit a boolean value that
indicates if the pet may be in danger or not to logic filters (LogicFilter). The logic filters
make sure that no alarm is sent while the pet is observed. They also check if the events
occurred at the same time. If the “PetInDanger” operator receives “true” from one of these
filters the pet is in danger and a alarm message has to be sent.

The evaluation is done using a worst case scenario. Pets are never observed, never in a
secure area and do not move. This forces the processing system to handle a huge amount
of sensor data as every incoming sensor value has to be processed by every operator. It
starts with 100 owners monitoring 100 pets. Owners and pets send a new position every
five seconds. All data is received during one second giving the system 4 seconds to process
the data before new data is transmitted. The number of owners and pets is increased by
100 every 50 seconds. 50% of the incoming pet and owner positions are illegal and have
to be filtered. The performance of each system is detected by measuring the average
time between transmitting and receiving a single data value. The test system consist of a
Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz running Linux Debian with 2.6.32-3-
amd64 Kernel and 4GB RAM. The Java(TM) SE Runtime Environment version 1.6.0 20
is used.
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Figure 3: Performance Evaluation of Single Systems

5.2 ServiceMix 4

ServiceMix 4 is tested using the release version (4.0.0). As ServiceMix 4 does not have any
operators needed for the application scenario the operators are self implemented. Because
ServiceMix provides the developer with a simple interface structure when programming
operators and the integration is as simple as putting a jar file into a folder, the necessary
operators can be programmed and integrated within one day.

The results of the performance evaluation can be found in Fig. 3a. The peak at the begin-
ning is a result of the binding procedure of the services when the first message is processed.
But it shows that ServiceMix 4 is easily able to handle about 700 incoming data streams
within 1 seconds processing time. At that point every sensor value is processed in about
2ms. As soon as the number of data streams comes near to 1.000, the systems is no longer
able to handle them without extremely slowing down. The system now needs about 30ms
to handle one data stream. When more than 2.000 data streams are processed, ServiceMix
4 is no longer able to handle the amount of data and stops processing. This is caused by
the bus of ServiceMix which is only able to handle a fixed number of data streams. Fig. 3a
also shows the processing time of each operator. However, the evaluation shows that most
of the processing time is needed for the communication between the operators, as the sum
of the processing time of all operator is often about 10 ms below the total processing time.

5.3 Esper

Esper is evaluated using the release version 2.2.0. All needed operators are already inte-
grated into Esper. The orchestration is done by writing a EPL request. The results of the
performance evaluation can be found in Fig. 3b. It shows that Esper can easily handle up
to 5.000 in 1 seconds processing time. Every sensor value is processed in about 1ms what
is far below the time that ServiceMix 4 needed. Because of the closed system approach of

131



PetPositionOwnerPosition

PositionFilterPositionFilter

ObserverCheck MovementCheckSecureAreaCheck

LogicFilterLogicFilter

PetInDanger

DSMS

SOA

SOA

(a) Evaluation Scenario 1

PetPositionOwnerPosition

PositionFilterPositionFilter

ObserverCheck MovementCheckSecureAreaCheck

LogicFilterLogicFilter

PetInDanger

DSMS

SOA

(b) Evaluation Scenario 2

Figure 4: Evaluation Scenarios

Esper it is not possible to monitor the processing time of a single operator without spoiling
the evaluation results. However, as the implementation of the ServiceMix operators does
not differ too much from the implementation of the Esper operators it should be clear that
the time benefit is achieved by the missing communication overhead.

5.4 Hybrid Approach

The hybrid approach is tested using the basic architecture described in section 4. Therefore
the operator graph is split into parts. These parts are either processed by the ServiceMix
4 or Esper. The communication between these parts is handled by the ServiceMix 4. Two
different shared operator graphs are evaluated. The first one can be found in Fig. 4a.

In this evaluation scenario, the “SecureAreaCheck” operator, “ObserverCheck” opera-
tor, “MovementCheck” operator and the two “LogicFilter” operators are handled by the
DSMS. The processing of these operators should be much faster than the rest, because
of the missing administrative overhead. The PositionFilter operators are still part of the
SOA system and can therefore easily be changed or replaced during runtime. The second
evaluation scenario can be found in Fig. 4b. The SOA is only used for the “LogicFilter”
operators. Everything else is handled by the DSMS. In this scenario the SOA only has to
handle a minimum of data streams as the DSMS already reduces their number using the
“PositionFilter” operators. The results of both evaluations can be found in Fig. 5a. The
result of the first evaluation scenario shows, that the processing of a part of the operator
graph inside a DSMS reduces the average processing time of every data stream. However,
the processing still gets pretty slow when more than 2.000 data streams are processed.
This is exactly the point where ServiceMix 4 stopped working in the prior evaluation.
The second evaluation scenario shows that even more data streams can be processed if the
DSMS is used to filter data streams, which do not have to be processed by the SOA. As
the “PositionFilter” operators which reduce the amount of data streams by 50% are now
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Figure 5: Performance Evaluations

processed by Esper, ServiceMix only has to process a minimum of data streams. This
reduces the communication overhead and allows the complete system to process about
4.500 data streams before slowing down. The average processing time is also extremely
low at about 2 ms. The results of all tests can be found in Fig. 5b. The evaluation proves
that using a hybrid system, which combines the benefits of a SOA system and a DSMS,
is a good way to build a flexible and efficient data processing system. The hybrid system
caused a drastically performance rise in both evaluation scenarios in comparison to SOA
system. However, a pure DSMS seems to be the fastest system, but using the hybrid sys-
tem operators can still be implemented inside of the SOA allowing them to benefit from
the flexibility that comes along with those systems. At the same time selected operators
can be integrated into a DSMS to reduce the communication overhead and increases the
efficiency of the processing.

6 Conclusion

In this paper two popular data processing technologies, Service Oriented Architectures
(SOA) and Data Stream Management Systems (DSMS), are analyzed. Their benefits and
disadvantages have been identified and analyzed. Based on this evaluation a hybrid sys-
tem has been developed that increases the performance of a SOA system by integrating a
DSMS into it. As the DSMS dos not have to be used for all operations the hybrid system
still provides all the flexibility that comes along with the SOA. The positive effects of this
hybrid approach are proven by a performance evaluation.
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Abstract: Graph structures are utilized to represent a wide range of objects including
naturally graph-like objects such as molecules and derived graph structures such as
connectivity graphs for region-based image retrieval. This paper proposes to extend
the applicability of the Earth Mover’s Distance [RTG98] (EMD) to graph objects by
deriving a similarity model with a representation of structural graph features that is
compatible with the feature signatures of the EMD. The aim is to support the search
for a graph in a database from which the query graph may have originated through
limited structural modification. Such query graphs with missing or additional vertices
or edges may be the result of natural processes of decay or mutation or may stem from
measuring methods that are inherently error-prone, to name a few examples.

1 Introduction and Related Work

Graphs are widely used data structures for modeling complex objects. For example, in
computer vision and pattern recognition graphs are extracted from complex objects, stored
in databases, and are used for graph-based shape recognition [SKK04] or for object recog-
nition in general [HHEW04]. In the biomedical field, Takahashi investigates the structural
similarity of chemicals with similar biological activity by using graphs to represent the
structure of the chemicals [Tak04]. These applications exemplify the need for graph simi-
larity measures that allow for the clustering of graphs in a database, or for finding graphs
in a graph database that are similar to a query graph.

In the absence of a canonical representation of graphs, deciding if two graphs are isomorph
(i.e., identical but for a renaming of the vertices) is a computationally expensive task. Its
generalization, the subgraph isomorphism problem, is known to be NP-complete. When
attempting to find all graphs in a database that contain a subgraph that is isomorph to some
query graph, it is possible to use lower-bounding filtering techniques to quickly rule out
some candidates and refine the rest with the computationally expensive exact matching.
For example, the GraphGrep approach indexes labels along paths within a graph to perform
the filtering [SWG02].

For similarity search, deciding whether (sub)graphs are isomorph does not suffice. In the
case of the two graphs not being identical, similarity search requires an assessment of the
degree to which the graphs in question differ from another such that graphs in a database
can be sorted by similarity to a query graph.
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The comparison of two graphs can be performed by directly considering the structure of
the graphs. This approach is, for example, taken by the graph edit distance [BA83] that
calculates how many transformations have to be performed to turn one graph into the other,
and also by measures that consider common subgraphs or the size of the largest common
subgraph [BS98]. While these measures are suitable for small graphs and for graphs with
limitations regarding their structure and/or the operations that may be performed (e.g., the
degree-2 edit distance for connected, undirected, acyclic trees [ZWS96]), even medium-
sized general graphs quickly lead to a query processing time that is bound to overburden
the patience of the user.

Akin to content-based image retrieval, feature-based graph similarity models instead de-
rive (approximate) structural information from the graphs and assess the similarity of
the graphs based on these features. For example, so-called spectral approaches [Ume88,
LWH03] compare graphs based on an eigen-decomposition of the adjacency matrix. The
model presented in [PM99] compares two graphs by computing the difference in the num-
ber of nodes that have a given connectivity degree. The latter is the basis for the general-
ized approach described in this short paper. We collected connectivity information along
paths in graphs and represent the information in a way that allows graphs to be flexibly
compared using the EMD. In a recent related approach, graphs derived from images have
been compared using the EMD [GXTL08]. However, the approach uses the EMD to com-
pare the direction of edges/lines that occur in the graph and thus requires the vertices to
have a spatial position. The approach described here is devised in a more general way as
it does not make such an assumption.

2 Preliminaries

The basic graph-related definitions for concepts used in the rest of the paper are given in
this section.

A general graph with at most one edge from one vertex to another is defined via its set of
vertices and its edge relation.

Definition 1 (Graph)
A graph G of size m is a tuple G = (V,E) with vertices V = {v1, . . . , vm} and edges
E ⊆ V × V .

If a graph does not have single-vertex loops (i.e., the edge relation is irreflexive) and is
undirected (i.e., the edge relation is symmetric), it is called simple.

Definition 2 (Simple Graph)
Given a graph G = (V,E), G is simple iff for all v, w ∈ V

(v, w) ∈ E ⇔ (w, v) ∈ E and (v, w) ∈ E ⇒ v 6= w.

All graphs examined in the remainder of this paper are assumed to be simple.
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v4 v3

v5 v2

v1

(a) Graph G1

v1 v2 v3 v4 v5

v1 0 1 0 0 1
v2 1 0 1 0 1
v3 0 1 0 1 0
v4 0 0 1 0 1
v5 1 1 0 1 0

(b) Adjacency matrix of G1

v4 v3

v5 v2

v1

(c) Graph G2

Figure 1: Example graphs

If all vertices of a graph are connected to all other vertices of the graph by a series of
edges, it is called connected.

Definition 3 (Connected Graph)
Given a graph G = (V,E), G is connected iff for all v, w ∈ V :

(v 6= w)⇒ (v, w) ∈ E
∨
(
∃vi1 , . . . , vim′ ∈ V : (v, vi1) ∈ E ∧ (vim′ , w) ∈ E

∧∀1 ≤ j ≤ m′ − 1 : (vij , vij+1
) ∈ E

)
.

The graphs in the database are assumed to be connected in this paper. A query graph with
missing vertices or edges may however break down into several non-connected compo-
nents.

The degree of a vertex in a graph is the number of other vertices it is directly connected to.

Definition 4 (Vertex Degree Function)
Given a graph G = (V,E), the outgoing vertex degree function δG : V → N0 for G is
defined by

δG(v) = |{w ∈ V |(v, w) ∈ E}|.

The ingoing vertex degree function can be defined analogously. For the simple graphs of
this paper, the two functions are identical and thus do not have to be differentiated here.

The example graph G1 in Figure 1(a) is a simple, connected graph with 5 vertices and
6 edges. Figure 1(b) gives the adjacency matrix of G1 where an entry of 1 indicates
the existence of an edge while an entry of 0 indicates the absence of an edge between
two vertices. As a result of Definition 2, the diagonal entries are all zero and the matrix is
symmetric. The degree of a vertex equals the row sum in the adjacency matrix. Vertices v1,
v3, and v4 have degree 2 while vertices v2 and v5 have degree 3. The graph G2 is neither
simple (due to the loop at v5) nor connected (due to having two separate components).
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3 Graph Similarity Model

In order to find graphs in a database that might be related to a query graph through a
process of decay, mutation or generally structural change, a representation of statistical
graph features is proposed in Section 3.1 and distance measures suitable for the feature
representation are given in Section 3.2. The similarity of two graphs can be assessed by
combining these two parts.

3.1 Graph Feature: Degree Co-Occurrence Multisets

A representation of graph features that encodes structural information is required for de-
tecting small structural changes between graphs in a feature-based approach. In this sec-
tion, statistical features of the vertices that occur in the graphs and their connectivity rela-
tionship are discussed. In the simplest form, a graph can be represented by the distribution
of the degrees of its vertices as in [PM99]. However, by looking at each vertex separately,
one of the core concepts of graphs is ignored. Graphs are useful as they model relationship
information between the vertices. Thus, this section proposes to utilize statistical informa-
tion on the co-occurrence of vertices. In this way, the feature representation encodes which
kinds of vertices are connected within a graph – and how frequent this coupling occurs.
The co-occurrence concept can be generalized by looking at occurrences along paths in
the graph and noting which kinds of vertices occur close to each other / in sequence. In
the following definitions, the generalized co-occurrence concept is formally introduced on
the basis of vertex degrees as this information is common to all graphs. If other categor-
ical information (e.g., vertex class labels) is available, the approach could be adapted to
incorporate that information.

Definition 5 (Simple Vertex Path)
With G = (V,E) as a graph, the (m + 1)-tuple (vi0 , . . . , vim) ∈ V m+1 is a simple
(non-looping) vertex path of length m in G iff

∀0 ≤ j < j′ ≤ m : vij 6= vij′

and
∀0 ≤ j < m : (vij , vij+1

) ∈ E.
The set of all simple paths of length m in G is denoted as PG

m .

For the cases of path lengthsm = 0 andm = 1, sets PG
0 and PG

1 equal the set of vertices V
and the set of edgesE. Using the set of simple paths of lengthm, a co-occurrence multiset
of degree m captures the frequencies of vertex class (here, vertex degree) sequences.

Definition 6 (Vertex Degree Co-occurrence Multisets)
With G = (V,E) as a graph, the Vertex Degree Co-Occurrence Multiset DG

m of degree m
for graph G is defined as a tuple

DG
m =

(
DSG

m, f
G
m

)
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Figure 2: Visualization for the multiset feature representation of a graph G

where
DSG

m = {(δG(vi0), . . . , δG(vim)) | (vi0 , . . . , vim) ∈ PG
m}

is the set of all vertex degree sequences occurring on paths of length m in G and

fGm(dg0, . . . , dgm) =
∣∣{(vi0 , . . . , vim) ∈ PG

m | ∀0 ≤ j ≤ m : dgj = δG(vij )}
∣∣

the frequency function of such sequences in G.

The set DSG
m abstracts from individual vertices by only considering their type (i.e., vertex

degree in this example). The degree m of the multiset is not related to the degree of the
vertices in the graphs but only to the length of the examined paths.

As an example, the graph G1 in Figure 1(a) has five paths of length m = 0 (i.e., PG1
0 =

V = {v1, . . . , v5}). The occurring vertex degrees are DSG1
0 = {(2), (3)} with frequen-

cies fG1
0 (2) = 3 and fG1

0 (3) = 2. For m = 1, there are twelve paths (i.e., two per edge).
The combinations of vertex degrees occurring along those paths are DSG1

1 = {(2, 2), (2,
3), (3, 2), (3, 3)}. The frequencies of those paths are fG1

1 (2, 2) = 2, fG1
1 (2, 3) = 4,

fG1
1 (3, 2) = 4, and fG1

1 (3, 3) = 2. The set of vertex degree sequences DSG1
2 is of cardi-

nality 6 and DSG1
3 of cardinality 8. The experiments in Section 4 show good results for

m as low as 2. For greater lengths, techniques such as random path sampling could be
applied to speed up the feature extraction process.

Figure 2 shows a visualization of the co-occurrence multisets DG
1 (on the far left) and DG

2

(on the far right) in the form of bubble charts. The x, y, and z axes denote the degree of
the first, second, and third vertex on a path in G. The size of the bubbles is proportional
to the frequency of the according vertex degree sequences that is also denoted inside the
bubble. For m = 1, the short arrows next to the graph in the middle of the figure show all
paths (i.e., edges) that contribute to the multiset DG

1 . The long arrow in the upper section
of the graph shows a path that contributes to the bubble at coordinate 3-2-3 in the far right
of the figure representing DG

2 .
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3.2 Similarity Measure

With the above definitions, a co-occurrence multiset can be associated with each graph in
the database and with the query graph. Graph similarity can then be assessed in terms of
co-occurrence multisets that capture statistical information on the structure of the graphs.
Next, we describe how this feature representation can be compared via distance measures.

3.2.1 Element-Wise Multiset Comparison

A first approach is to treat the multisets as sparse representations of high-dimensional vec-
tors. Since the multisets are finite, norm-based distance measures such as the Lp distances
can be adapted to compare two graphs represented by such multisets.

Definition 7 (Lp Distance on Vertex Degree Co-Occurrence Multisets)
Given two graphsG1 andG2 with associated vertex degree co-occurrence multisetsDG1

m =
(DSG1

m , fG1
m ) and DG2

m = (DSG2
m , fG2

m ) according to Definition 6, the Lp distance be-
tween the two multisets is defined as

dLp
(DG1

m , DG2
m ) =

 ∑
ds∈(DS

G1
m ∩DS

G2
m )

|fG1
m (ds)− fG2

m (ds)|p

+
∑

ds∈(DS
G1
m −DS

G2
m )

|fG1
m (ds)|p

+
∑

ds∈(DS
G2
m −DS

G1
m )

|fG2
m (ds)|p

1/p

.

In the case of m = 0 and p = 1, the similarity model reflects the one of [PM99] where
graphs are compared using simple vertex degree histograms and the Manhattan distance.

3.2.2 Transformation-Based Multiset Comparison

Another possibility is to employ similarity measures that can inherently cope with weighted
feature sets instead of just feature vectors such as the EMD [RTG98]. For this purpose,
we first introduce the feature signatures used as an input for the EMD, followed by the
definition of the EMD.

Definition 8 (Feature Signatures)
Given an object o represented by features f1, ..., fk in a feature space FS, and an n-
clustering C1, ..., Cn of these features, the feature signature so of the object o is defined
as a finite set of tuples from FS × R:

so = {(ro1, wo
1), ..., (r

o
n, w

o
n)}
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where roi ∈ FS represents the feature cluster Ci and wo
i = |Ci|

k is the relative cardinality
or weight/mass of the according cluster.

The EMD itself is defined as a linear optimization problem. The similarity between two
signatures so and sq is defined as the minimal cost for transforming the signature so into
the signature sq where a ground distance gd determines the cost of transforming/moving
a unit of mass from a cluster of the first signature to a cluster of the second signature.
Linear constraints on the movement of mass describe the set of feasible combinations of
transformations.

Definition 9 (Earth Mover’s Distance (EMD)
Given two signatures so, sq , and a ground distance gd, the EMD between so and sq is
defined as the minimum over feasible transformations F ∈ R|so|×|sq|:

EMDgd(s
o, sq) = min

F

{
1

w̃

∑
i

∑
j

F [i, j] · gd(rqi , r
o
i )

}

under linear constraints
∀i, j : F [i, j] ≥ 0

∀i :
∑
j

F [i, j] ≤ wq
i

∀j :
∑
i

F [i, j] ≤ wo
j∑

i

∑
j

F [i, j] = w̃

with w̃ = min{
∑n

i=1 w
o
i ,
∑m

i=1 w
q
i }.

Intuitively, the first group of constraints ensures that earth is only moved from clusters of
so to clusters of sq , the second and third group of constraints ensures that no more mass
is removed from or moved to the clusters than their respective weight permits and the last
constraint ensures that in total as much mass as possible is moved.

The similarity of two graphs can be assessed using the EMD by defining a transformation
from the multisets to the signatures of the EMD. The co-occurrence multisets are a close
match to the signatures that the EMD takes as its input.

Definition 10 (Feature Signatures of Graphs)
Given a graphGwith an associated vertex degree co-occurrence multisetDG

m = (DSG
m, f

G
m),

the feature signature sGm of G for comparison with the Earth Mover’s Distance is defined
as

sGm =

{
(r, w) | r ∈ DSG

m ∧ w =
fGm(r)

|DSG
m|

}
.
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Figure 3: Adding/deleting edges at random; |DB| = 1000

The cost for transforming one degree sequence into another one can be defined via a
ground distance function. In the simplest case, the sequences can be treated as vectors
from N0

m and compared using Minkowsi distance measures dLp
. In this way, a degree

sequence that deviates from another for example by starting with a degree of 3 instead of
4 will induce a lower transformation cost than one that starts with 1 instead of 4. Distance
measures such as the Edit Distance, which take the sequential character of the represen-
tatives r into account, could also be employed. For undirected graphs, the fact that each
sequence of vertex degrees appears twice in both directions should be accounted for by
adjusting either the signature definition or the ground distance.

4 Preliminary Experimental Results

For the preliminary experiments shown here, a number of synthetic graph databases of dif-
fering cardinalities were created using the method detailed in [VL05] based on sequences
of vertex degrees following a power-law distribution with modifications to ensure that the
graphs are connected and simple. All graphs randomly generated in this fashion had 100
vertices and 150 edges. The average vertex degree was set to 3, resulting in power-law
graphs with a relatively large number of low degree vertices and a relatively low number
of high degree vertices.

In the first set of experiments, 100 graphs were randomly chosen from the database as
the basis for 15 query graphs each that represent different levels of structural deviation
regarding the edge relation. For each of the 15 levels, a random edge was either inserted
or deleted with equal probability. Not accounting for edges that may have been deleted
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Figure 4: Adding/deleting edges at random; 10 edges added/deleted

and consecutively been added again, up to 10% of the the edge relation may have been
changed in this process.

The vertical axis of Figure 4 shows how often the graph on which the query graph was
based was identified as the most similar one out of all 1000 graphs in the database. A
greater path length (denoted as PL in the figure) for the vertex degree co-occurrence mul-
tisets results in a similarity model that is more robust with regard to the structural change
for this experiment. The greater the structural difference, the more can the multisets based
on longer paths distinguish themselves from those of lower degree. The Manhattan dis-
tance on simple vertex degree histograms (cf. [PM99]) is always outperformed by the
multisets of higher degree (i.e., based on longer paths) in this experiment. The EMD with
a Manhattan ground distance slightly outperforms the Manhattan distance for equal path
lengths. The EMD for path length zero is not plotted here, as the results equal those of the
Manhattan distance in the case of a one-dimensional feature space and Manhattan ground
distance.

Figure 4 shows that the higher degree multisets are also less influenced by the cardinality
of the database. Even though the database size on the right is four times the size of the
database on the left, the number of times that the original graph from the database is not
identified as the most similar one to the query graph only slightly increases from 9 out of
100 to 14 out of 100 for the EMD with path length two. The degree histogram approach
jumps from 10 out of 100 to 28 out of 100 for the same increase in database size.

The two figures 4 and 4 show the results of according experiments when considering struc-
tural change that is not limited to the edge relation. Instead, random vertices were removed
together with their adjacent edges. As is to be expected due to the greater level of struc-
tural change, all approaches show a faster decrease of the precision with which they can
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identify the original graph in the database. Greater path lengths still produced better re-
sults in these experiments while the EMD with a Manhattan ground distance was only able
to outperform the normal Manhattan distance for more severe levels of structural change
in this case.

5 Conclusion and Outlook

In this short paper, we showed how complex data objects in the form of graphs can be com-
pared using the EMD by defining a suitable representation of graph features that capture
statistical information regarding the structure of the graphs. In this way, it is possible to
identify graphs that resulted from some other graph through a process of structural change
without having to resort to typically very expensive similarity measures that directly take
the graph structure into account.

The general viability of the approach was shown using a Manhattan ground distance for the
EMD together with vertex degrees as the sole information regarding the vertices. For this
ground distance a projection-based lower bound for the EMD [CG97] can be applied in a
filter step in order to gain efficiency, especially for higher degrees of the multiset. Also
the EMD-L1 algorithm from [LO07] can be employed to speed up retrieval. While the
preliminary results using this simple ground distance were generally good, the Manhattan
ground distance potentially limits the benefits of longer co-occurrence sequences that are
used as signature component representatives for the EMD. Other ground distances that
take the sequence character of the feature representatives (i.e., sequences of vertex degrees
in this case) into account may present an opportunity to further improve the technique.
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Abstract: Buffer memory allocation is one of the most important, but also one of the
most difficult tasks of database system administration. Typically, database manage-
ment systems use several buffers simultaneously for various reasons, e.g., disk speed,
page size, access behavior. As a result, available main memory is partitioned among
all buffers within the system to suit the expected workload, which is a highly complex
optimization problem. Even worse, a carefully adjusted configuration can become
inefficient very quickly on workload shifts. Self-tuning techniques automatically ad-
dress this allocation problem using periodic adjustments of buffer sizes. The tuning
itself is usually achieved by changing memory (re-)allocations based on hit/miss ratios,
thereby aiming at minimization of I/O costs. All techniques proposed so far observe
or simulate the buffer behavior to make forecasts whether or not increased buffer sizes
are beneficial. However, database buffers do not scale uniformly (i.e., in a linear fash-
ion) and simple extrapolations of the current performance figures can easily lead to
wrong assumptions. In this work, we explore the use of lightweight extensions for
known buffer algorithms to improve the forecast quality by identifying the effects of
varying buffer sizes using simulation. Furthermore, a simple cost model is presented
to optimize dynamic memory assignments based on these forecast results.

1 Introduction

Dynamic database management gained a lot of attention and visibility during recent years
and led to various self-tuning approaches. As I/O reduction is one of the most important
aspects, automatized buffer memory management has always been one of the building
blocks for (self-)tuning of database systems. Data placement decisions but also variations
in access patterns, page sizes, access speed, read/write characteristics, or prices of storage
devices suggest the support of multiple buffers to optimally exploit existing I/O band-
width. Memory partitioning, however, frequently entails memory waste, because some
buffers may be underused while others are overused. Here, only continuous monitoring of
system performance may assure adequate usage of the total memory budget and regular
adjustment of buffer allocations at runtime, thereby enabling minimization of waste.

The decision when and which buffers have to be resized requires a cost-based model to-
gether with buffer techniques (i.e., page mapping, propagation algorithm) that are self-
tunable at runtime. The quality of a decision depends on the cost model itself and the
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accuracy of forecasts. However, database buffers typically scale non-uniformly (i.e., in
a non-linear fashion) and simple extrapolations of current performance figures can easily
lead to wrong assumptions. In the worst case, the redistribution of buffer memory results
in unintended buffer sweeps followed by excessive I/O thrashing, which again increases
the time to pour oil on troubled waters. In our opinion, self-tuning components should
therefore follow a strict “Don’t be evil” policy.

Most tuning approaches aim at maximum speedup, i.e., they focus on the identification of
the greatest profiteer when more buffer memory can be assigned. Accordingly, they usu-
ally shift memory from buffers having low I/O traffic and/or low potential for performance
gains to more promising ones. We believe that a sole focus on buffer growth is dangerous,
because the risk of wrong decisions comes mainly from the inaccuracy of forecasts con-
cerning smaller buffers. Once a buffer is shrunk too much, it may cause a lot of I/O and,
in this way, also affect the throughput of all remaining buffers. Thus, reliable estimations
for buffer downsizing are obviously as important as estimations for buffer upsizing. Good
forecast quality is further urgently needed in dynamic environments which have to cope
with many or intense workload shifts. Here, too cautious, i.e., too tiny adjustments, even
when they are incrementally done, are not good enough to keep the system in a well per-
forming state. Reliable forecasts help to justify more drastic reconfigurations which may
be necessary to keep up with workload shifts.

1.1 Forecast of Buffer Behavior

Proposed forecast models for the performance of a resized buffer can be divided into two
groups: The first group uses heuristics-based or statistical indicators to forecast buffer
hit ratios, whereas the second group is based on simulation. Using heuristics-based ap-
proaches, the forecast quality is hard to determine. As a consequence, their use comes
with the risk of wrong tuning decisions which may heavily impact system performance.
Simulation-based approaches allow trustworthy estimations, but usually only limited to the
simulated buffer size. Outside already known or simulated ranges, hit ratios may change
abruptly. For this reason, we need forecasts for growing and shrinking buffers.

The performance of a buffer does not scale linearly with its pool size, because mixed
workloads containing scans and random I/O can cause abrupt jumps in the hit-ratio trend
line as ilustrated in Figure 1. These jumps may also lead to differing speed-ups for varying
buffer sizes, which again may cause wrong assumptions and decisions.

Performance prediction is always based on information gathered by monitoring, taking
samples or (user) hints into account. Hit/miss ratios are the standard quality metrics for
buffers, because they are cheap and express the actual goal of buffer use: I/O reduction.
Unfortunately, they are useless for performance forecasts, i.e., they even do not allow to
make simple extrapolations for growing or shrinking buffer sizes. To illustrate this fact, let
us assume the following scenario for a given buffer size of 5 and LRU-based replacement.
At the end of a monitoring period, we observed 5 hits and 10 misses. At least two different
access patterns may have led to these statistics:
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Figure 1: Buffer speed-up trend for different access patterns.

Scenario 1: 1, 2, 3, 4, 5, 1, 1, 1, 1, 1, 6, 7, 8, 9, 10, ...

Scenario 2: 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, ...

In the first scenario, 5 hits are attributed to repeated accesses of page 1, whereas, in the
second scenario, the hits are attributed to 5 different pages (1, 2, 3, 4, 5). For the same
scenarios and a buffer of size 2, we get completely different hit (h) and miss (m) statistics:

Scenario 1: m, m,m, m, m,m, h, h, h, h,m, m, m,m, m, ...

Scenario 2: m, m,m, m, m,m, m, m,m, m, m,m, m, m,m, ...

Obviously scenario 1 obtains a better hit rate with 4 hits to 11 misses than scenario 2
without any hit. If we increase the buffer instead to hold 6 pages in total, the picture turns
again:

Scenario 1: m, m,m, m, m, h, h, h, h, h,m, m, m,m, m, ...

Scenario 2: m, m,m, m, m, h, h, h, h, h, h, h, h, h, h, ...

Now we observe 5 hits to 10 misses for scenario 1 and 10 hits to 5 misses for scenario 2.
This example shows that hit/miss numbers or page/benefit metrics do not allow for cor-
rect extrapolations, because the order of page requests and the hit frequency distribution
are important. Thus, self-tuning relies on monitoring and sampling of data where current
buffer use is taken as an indicator for the future. Information relevant for resizing fore-
casts such as re-use frequencies, working set size, or noise generated by scans cannot be
expressed in single numbers.

Instead, the ideal starting point for buffer forecasts is the replacement algorithm used for
a buffer. Its statistics incorporate a lot more information about these relevant aspects than
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any other performance marker. Today, substantial research has already been performed
to develop adaptive replacement algorithms, hence, it is safe to assume that such algo-
rithms are “optimally” operating for the available memory. The question is now how to
leverage this implicit knowledge for performance forecasts. As we will demonstrate in
the remainder of this paper, it is difficult but not impossible to get accurate estimates for
buffer downsizing. In combination with already known simulation methods for the esti-
mation of buffer upsizing, we can then build a lightweight framework for dynamic buffer
management.

1.2 Related Work

Optimal buffer management has been a key aspect in database system research since the
very early days. Thus, various aspects such as the underlying disk model, search strategies
within a buffer, replacement algorithms, concurrency issues and the implications of the
page layout have been intensely studied [EH84]. Nevertheless, the complexity of buffer
management did not allow to distill an optimal configuration for all different kinds of
workloads and system environments. Instead, self-tuning mechanisms were explored to
resolve performance bottlenecks at runtime.

One early self-tuning approach hints at specific access patterns like scans or index traver-
sals to the buffer to optimize victim selection [JCL90]. This allows to outperform standard
LRU-based algorithms but addresses only a single aspect of dynamic buffer management.
In [NFS95], the authors give a theoretical base for the combined analysis of buffer sizing
decisions and the influence of access patterns. [Dia05] models buffer load balancing as
a constrained optimization problem and investigates the application of control theory and
optimization theory.

In [SGAL+06], control theory, runtime simulation, and cost-benefit analysis are integrated
into a self-tuning framework. The presented forecast technique SBPX serves also as our
baseline and is introduced in detail in Section 2. Some heuristic forecast techniques are
presented in [BCL93, MLZ+00]. The analytical work in [THTT08] derives an equation
to relate miss probability to buffer allocation. Finally, [DTB09] proposes a brute-force
step-by-step approach to determine the optimal configuration for an entire DBMS.

1.3 Contribution

In this work, we study two major prerequisites for self-tuning buffer memory allocation:
cost determination and decision making. As the main objective of buffer tuning is I/O
reduction and main memory management, decisions based on I/O costs are required to
efficiently distribute available memory among all buffer pools. In particular, we look at
overhead and quality for buffer undersizing and oversizing forecasts to estimate I/O costs
for alternative configurations.
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We present ideas to integrate low-overhead forecast capabilities for several common buffer
algorithms and assess their feasibility in experiments. Furthermore, we show how these
forecasts can be used for nearly riskless self-tuning decisions. Eventually, a short evalua-
tion is revealing prospects of simulation-based buffer tuning as well as its limitations.

The remainder of this paper is organized as follows: Sections 2 and 3 discuss forecast
techniques for buffer upsizing and downsizing, respectively. In Section 4, we present a
decision model for a self-tuning component. The results of our experiments are shown in
Section 5. Finally, Section 6 concludes the paper.

2 Forecast of Buffer Upsizing

The obvious way of accounting I/O costs for alternative buffer sizes is to fully simulate
each of them for the same page reference string, i.e., page request sequence. Of course, a
simulation of the propagation behavior for page numbers is sufficient; the actual payload
data need not be kept in memory. Nevertheless, this approach requires additional data
structures, such as hash maps for lookup, lists for the replacement algorithm, and virtual
pages. Moreover, each buffer request has to be processed multiple times, i.e., page lookup
and replacement maintenance for each simulated configuration. Obviously, the overhead
of such a solution is prohibitive. In contrast, cheaper solutions may be less accurate, but
still achieve meaningful results for resizing decisions.

Our buffer self-tuning refinements are inspired by the SBPX framework [SGAL+06],
which approximates the benefit of a larger buffer through “buffer extension”. This ex-
tension is simply an overflow buffer for the page identifiers of the most recently evicted
pages. The overflow buffer must, of course, have its own strategy for victimization. The
authors of SBPX recommend here a strategy ”similar to that of the actual buffer pool”
[SGAL+06].

When a page miss in the actual buffer occurs, the extension checks if the page identifier
is found in the overflow buffer, i.e., if the page would have been present in a larger buffer.
In that case, we can account a “savings” potential for upsizing. Further, we must now
maintain the overflow buffer. The page identifier of the actual evicted page is promoted
to the overflow buffer, which in general requires to evict another page identifier from the
overflow buffer. This replacement is not exactly the same as a real miss in the simulated
larger buffer. The identifier of the requested page causing the miss could have been present
in the larger buffer. In the course of continuous requests, however, also a larger buffer must
evict pages. Thus, a replacement in the overflow buffer can be regarded as a “delayed”
replacement effect. In the case of a page hit in the actual buffer, no further bookkeeping is
required, because the locality principle suggests that the replacement strategy in a larger
buffer holds a superset of the pages present in a smaller one. Listing 1 shows a sketch of
the modified page fix routine.

The problem of this approach is that replacement decisions for two separate buffers in
combination are not necessarily the same as for a single large buffer. Thus, the forecast
quality of upsizing simulations depends on one aspect: When a page is evicted from the
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actual buffer and promoted to the overflow area, we must be able to transfer “state” in-
formation (e.g., hit counters, chain position, etc.) from the actual replacement strategy
into the overflow strategy (lines 17 and 20). Otherwise, the overflow strategy behaves
differently.

Listing 1: Modified page fix algorithm for upsize simulation
1Frame fix(long pageNo) {
2 Frame f = mapping.lookup(pageNo);
3 if (f != null) {
4 strategy.refer(f); // update replacement strategy
5 ... // and statistics
6 } else {
7 Frame of = overflowMapping.lookup(pageNo);
8 if (of != null) {
9 overflowMapping.remove(of.pageNo);

10 ... // update overflow hit statistics
11 } else {
12 of = overflowStrategy.victim();
13 overflowBuffer.remove(of.pageNo);
14 ... // update overflow miss statistics
15 }
16

17 Frame v = strategy.chooseVictim();
18 strategy.copyStateTo(overflowStrategy);
19

20 v.copyStateTo(of); // transfer page identifier to overflow
21 overflowMapping.put(of.pageNo, of);
22

23 mapping.remove(v.pageNo);
24 ... // replace page in frame v
25 strategy.referAsNew(v); // update replacement strategy
26 ... // and statistics
27 mapping.put(pageNo, v);
28 }
29}

3 Forecast of Buffer Downsizing

As shown above, knowledge about the performance gain through a larger buffer is use-
ful to determine the greatest profiteer of more memory among several buffers. However,
the question for the buffer(s), which may be safely shrunk without suffering from severe
penalties, remains unanswered. The authors of SBPX extrapolated downsizing costs as the
inverse of savings potential gained through upsizing [SGAL+06]. For buffer sizes close
to the unknown (!) borders of working set sizes, however, this bears the risk of wrong de-
cisions. Therefore, we developed a simple mechanism to find out if page hits would have
been also page hits in a smaller buffer. In combination, the SBPX technique allows us now
to determine which buffer profits the most from additional memory, while our approach
helps us to determine which buffer suffers least from downsizing.

The goal of buffer replacement algorithms is the optimized utilization of data access local-
ity, i.e., to keep the set of the currently hottest pages that fits into memory. Accordingly, a
small buffer is assumed to keep an “even hotter subset” of the pages that would be present
in the actual buffer. Based on this assumption, we denote a subset of the pages in a buffer
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of size n as hotsetk, if it would be kept in a smaller buffer of size k. The key idea of
our approach is to keep track of this hotset during normal processing. When a page is
found in the buffer and belongs to the hotset, it would have been a hit in the smaller buffer,
too. However, if a requested page is in the current buffer but not in the hotset, the smaller
buffer would need to evict another page, which must be, of course, part of the current hot-
set and load the requested page from disk. Here, we only have to maintain the hotset. The
page that would have been evicted from the smaller buffer is removed from the hotset and
the requested page is added to the hotset. Each swap is accounted as a page miss for the
simulated smaller buffer.

Of course, a page miss in the current buffer would also be a page miss in a smaller buffer.
Accordingly, we have to select a replacement victim for both the current buffer and the
(simulated) smaller buffer. The real victim page is now replaced with the new page and
swapped with the virtual victim of the smaller buffer into the hotset. The modified page
fix algorithm is shown in Listing 2.

Listing 2: Modified page fix algorithm for downsize simulation
1Frame fix(long pageNo) {
2 Frame f = mapping.lookup(pageNo);
3 if (f != null) {
4 if (!f.hotSet) {
5 Frame v = strategy.chooseHotSetVictim();
6 f.hotset = true; // swap frame to hotset
7 v.hotset = false;
8 strategy.swapHotset(f, v);
9 ... // update simulated statistics

10 }
11 strategy.refer(f); // update replacement strategy
12 ... // and statistics
13 } else {
14 Frame v = strategy.chooseVictim();
15 mapping.remove(v.pageNo);
16 ... // replace page in frame v
17 if (!v.hotset) {
18 Frame hv = strategy.chooseHotSetVictim();
19 hv.hotSet = false; // swap frame to hotset
20 v.hotSet = true;
21 strategy.swapHotset(f, v);
22 }
23 strategy.referAsNew(v); // update replacement strategy
24 ... // and statistics
25 mapping.put(pageNo, v);
26 }
27}

Note that a real replacement victim is generally not expected to be part of the current
hotset, because this would imply that the replacement strategy evicts a page more recently
accessed. In some algorithms, however, such counter-intuitive decisions might be desired,
e.g., to explicitly rule out buffer sweeps through large scans. Then, we must not maintain
the hotset at all.

Obviously, the overhead of this approach is very small. We only need a single bit per buffer
frame to flag the hotset membership and must determine a swap partner, when a new page
enters the hotset. Furthermore, the simulation does not influence the quality of the current
buffer, i.e., the strength of the replacement strategy is fully preserved. As said, the choice
of the hotset victim is dependent on the used replacement strategy to reflect the behavior of
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Figure 2: LRU-based buffer simulation with overflow extension

the strategy in a smaller buffer correctly. In the following, we will investigate hotset victim
determination for four popular families of replacement algorithms. In particular, we want
to know if it is possible to predict replacement decisions for a smaller buffer based on the
implicit knowledge present.

3.1 LRU

The LRU algorithm embodies a very simple, yet effective replacement strategy. It evicts
always the least recently used page from a buffer. Typically, it is implemented as a doubly-
linked list as shown in Figure 2.

On request, a page is simply put to the head of the chain. Thus, LRU finds its replacement
candidate always at the tail. Accordingly, the last k pages of the LRU chain in a larger
buffer of size n are identical with the k pages in the simulated smaller buffer of size k
and the hotset victim page is found at the k-th position from the head. The overhead of
pointer dereferencing to position k can be avoided with marker pointer, which is cheap
to maintain. Hence, the hotset victim is guaranteed to be identical to the victim as in the
smaller buffer and the simulation is fully precise. Evidently, the simplicity of LRU even
allows to easily simulate at the same time the effects when the current buffer would be
reduced to different smaller sizes, which is especially useful for precise step-wise tuning
decisions. It is sufficient to place a marker at each desired position.

3.2 LRU-K

The LRU-K algorithm [OOW99] follows a more general idea of LRU and takes the last K
references of a page into account. By doing so, it is “scan-resistant” and less vulnerable
to workloads where frequently re-used pages mix with those having hardly any rerefer-
ence. For each page, LRU-K maintains a history vector with the last K references and the
timestamp of its last reference. Furthermore, history vectors of already evicted pages are
retained for re-use if an evicted page is requested again within the so-called retained infor-
mation period (RIP ). The replacement victim is only searched among those pages that
have been buffered for at least a predefined correlated reference period (CIP ). The ratio-
nale behind this idea is to prevent a drop of pages immediately after their first reference.
For further details on CIP , history maintenance, etc., we refer to the original paper.
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The victim page is determined by the maximum backward K-distance, i.e., the page with
the earliest reference in the history vector. Thus, although implemented differently, LRU-
K behaves for K = 1 the same as LRU. The hotset victim is chosen accordingly as shown
in Listing 3. Note that implementations of LRU-K usually maintain a search tree for
that. For simplicity, we present here the modification of the unoptimized variant as in the
original paper.

Due to the history update algorithm described in [OOW99], more than one victim can-
didate can exist. This could become a problem for our simulation, because a real buffer
might choose a different victim than simulated. Therefore, we simply evict the candidate
with the least recent reference (line 12). As the timestamp of the last access is unique,
our simulation will be accurate here. Instead, the choice of RIP turns out to become a
problem. If the garbage collection for history entries is not aligned, pages that re-enter the
smaller buffer will be initialized differently than in simulation, which may affect future
replacement decisions.

Listing 3: LRU-K hotset victim selection
1Frame hotSetVictim() {
2 long min = t;
3 long minLast = Long.MAX_VALUE;
4 Frame v = null;
5 for (int i = 0; i < pages.length; i++) {
6 Frame p = pages[i];
7 History h = p.history;
8 if ((p.hotSet) && (t - last > CIP)) {
9 long last = h.last;

10 long dist = h.vector[k - 1];
11 if ((dist < min)
12 || ((dist == min) && (last < minLast))) {
13 victim = p;
14 min = hist.vector[k -1];
15 }
16 }
17 }
18 return v;
19}

3.3 GCLOCK

The third strategy is GCLOCK [NDD92], which stands for generalized clock algorithm.
Like LRU-K, it takes the reference history of a page into account. In contrast to LRU-K,
however, it is likely to degrade through scans but can be implemented with less computa-
tional and space overhead. The buffer itself is modeled as a circle of buffer frames, i.e.,
the clock. Each frame also maintains a simple reference counter, which is incremented for
each reference to that specific page. For victim selection, the “clock hand” circles over
all frames and decrements the reference counters. The clock hand stops at the first frame
where the reference counter drops below zero. So, frequently referenced pages remain
longer in the buffer, because they have higher reference counts.
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The determination of a hotset victim is straightforward: We simply have to circle over the
frames and look for the first hotset page whose reference counter would first drop below
zero. Obviously, this is the page with the minimum reference counter. The algorithm is
sketched in Listing 4.

Listing 4: GCLOCK hotset victim selection
1Frame chooseHotSetVictim()
2{
3 Frame v = null;
4 int h = clockHand;
5 for (int i = 0; i < size; i++) {
6 Page p = circle[(++h % size)];
7 if (p.hotSet) {
8 if (p.count == 0) {
9 return v;

10 } else if ((v == null) || (p.count < v.count)) {
11 v = p;
12 }
13 }
14 }
15 return v;
16}

Again, this only approximates the behavior of a smaller buffer with GCLOCK. There are
two reasons: First, the angular velocity of the clock hand in a smaller buffer is higher
because there are less frames. Second, the circular arrangement of buffer frames makes
the algorithm inherently dependent on the initial order. Thus, victim selection is not only
a matter of the page utilization, but also a matter of clock-hand position and neighborship
of frames. Using a second clock hand (i.e., pointer) walking solely over the hotset frames
is necessary to address differing round trips. However, swapping of frame positions when
the hotset is maintained would impact behavior of GCLOCK in the actual buffer – a cir-
cumstance, we want to avoid. To improve forecast quality, we implemented the smaller
circle, i.e., the hotset, with forward pointers for hotset pages that point to the logical next
one. In case of swapping (see lines 8 an 21 in Listing 2), only the forward pointer and a
hotset counter for that page need to be maintained. In Section 5, we will show that these
minor efforts can lead to almost perfect estimations.

3.4 2Q

The 2Q algorithm [JS94] is a simplified way of imitating LRU-2, which is noted for deliv-
ering good hit ratios but often poor performance due to its complex algorithm. In essence,
2Q is a combination of FIFO and LRU. On the first reference, 2Q places a page in a FIFO
queue (denoted a1). The first re-reference of a page in the a1 queue promotes it to the
LRU chain (denoted am). The effect of these two “stages” is that only hot pages are pro-
moted to the LRU chain, which tends to keep cold pages longer than necessary. These cold
pages, i.e., pages that are accessed only once within a longer time period are now dropped
earlier by the FIFO queue. An extended version of 2Q splits the FIFO queue to keep track
of rereferences to pages evicted from the FIFO queue [JS94]. The effect is similar to the
history caching of LRU-K and comes with queue sizing problems for forecasts, too.
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Sizing problems also arise for the FIFO queue and the LRU chain in the standard algo-
rithm. Therefore, we used a simplified variation of 2Q where all buffer frames are assigned
to the LRU chain and the FIFO queue only stores references to the pages in the LRU chain.
So, it serves like an index for the LRU chain to identify pages referenced only once so far.
Victims are primarily selected from the FIFO queue to replace those pages earlier. A sub-
tlety of 2Q is here that the FIFO queue must not be drained to give new pages a chance
for rereference and promotion to the LRU chain. The minimum fill degree of the FIFO
queue is a configurable threshold. For simulation, we must therefore count the number of
hotset entries in the queue, to be able to decide when a smaller buffer would pick a victim
from the FIFO queue and not from the LRU chain. Also, the threshold must be the same
for both sizes. Although this results in uniform retention times within the FIFO queue for
differing LRU chain sizes, it is acceptable to some degree, because the threshold models
the granted window for references of new pages. The hotset victim selection is sketched
in Listing 5.

Listing 5: 2Q hotset victim selection
1Frame chooseHotSetVictim()
2{
3 Frame v;
4 if ((a1.numberOfHotsetEntries() > threshold)) {
5 v = a1.head();
6 while (!v.hotSet) v = v.a1Next; // Follow FIFO queue to first hotset page
7 } else {
8 v = am.head();
9 while (!v.hotSet) v = v.amNext; // Follow LRU chain to first hotset page

10 }
11 return v;

4 Buffer Tuning

The crucial point in database tuning is the difficulty to precisely predict how a tuning de-
cision will affect system performance. Even experienced database administrators with a
deep knowledge of the workload and the database product itself regularly face this chal-
lenge. They rely on the assistance of sophisticated monitoring tools to prevent negative
effects of their tuning decisions on the production system. Often they also run several
observe-analyze-adjust cycles with reference workloads beforehand on dedicated test sys-
tems. Of course, this is time-consuming and expensive. Built-in self-monitoring and tun-
ing components can ease this dilemma and reduce the risk of wrong decisions through
rather small but continuous and incremental adjustments. In dynamic environments, how-
ever, those mechanisms may react too slow to keep up with the rate of workload shifts or
short-term resource allocation for higher-level tuning decisions like auto-indexing. There-
fore, we aim towards a re-formulation of the central question of automatic tuning from
“Which adjustment certainly will give the greatest performance benefit?” to “Which ad-
justment most likely will give a performance benefit but certainly not result in a perfor-
mance penalty?”. In other words, when we know that our reconfigurations will not harm,
we get the freedom to try quicker and more aggressive tuning options.
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In general, the total amount of buffer memory is limited and so the decision to assign more
memory to a certain buffer is directly coupled with the decision of taking this memory
from one or several others. Fortunately, the performance optimization heuristics for I/O-
saving buffers (e.g. data pages, sorting) is straightforward: The more main memory can
be used the better. Even an oversized buffer, i.e., a buffer larger than the actual data to be
buffered, is less likely to become a performance bottleneck due to bookkeeping overhead.
It is just a waste of main memory. The downsizing of a buffer, however, comes along with
severe risks: the buffer’s locality may drastically decrease and even turn into thrashing
causing excessive I/O, which also influences throughput of other buffers. Accordingly, we
concentrate on the forecast of the negative effects of memory reallocations and base our
tuning decisions not only, as common, on the estimated benefits, but also on vindicable
forecasts of additional costs.

4.1 Cost Model

Automatic tuning needs to derive costs from system state or from system behavior to
quantify the quality of the current configuration. Additionally, it also needs to estimate the
costs of alternative configurations to allow for comparison. Ideally, these costs comprise
all performance-relevant aspects including complex dependencies between system com-
ponents and future workload demands in a single number to allow for perfect decisions.
Clearly, such a perfect cost model does not exist in practice. Instead, costs are typically
derived from a mixture of cheaply accounted runtime indicators and heuristics-based or
experience-based weight factors. The hope is to reflect at least the correct relationship
between alternative setups w.r.t. to performance. The more precise this much weaker re-
quirement can be met, the easier we can identify hazardous tuning decisions before they
boomerang on the system.

In contrast to computational costs of a specific algorithm, costs expressing the quality of a
buffer are inherently dependent on the current workload. Buffering 5% of the underlying
data, for example, can be an optimal use of main memory at one moment, but become
completely useless a few moments later. Therefore, each cost value is a snapshot over a
window at a certain point in time with limited expressiveness for at most few periods ahead
in the future. We define the general goal function for our tuning component: At a given
point in time t with a configuration c, find a configuration c′ that has less accumulated I/O
costs over the next n periods. The optimal window size and the number of forecast periods
again depend on the actual workload; slowly changing workloads enable more precise cost
estimations for longer periods, while rapidly changing workloads also decrease accuracy
of future costs.

For simplicity, our cost model only considers buffer service time, i.e., the time needed
to handle a page fix request. Of course, costs assigned to a specific buffer are dominantly
determined by the number of I/Os performed. On a buffer miss (denoted m), a victim page
has to be selected for replacement and flushed, if necessary, before the requested page is
fetched from disk. Accordingly, a buffer miss causes at least one read operation, but may
also cause several writes for flushing write-ahead log and victim page. The ratio between
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reads and synchronous writes is reflected by a weight factor fdirty, which may vary over
time and from buffer to buffer.

Depending on the characteristics of the underlying devices or blocking times under con-
current access, I/O times can also vary between various buffers. Hence, the costs of all
buffers must be normalized to a common base to become comparable. We use here a
second weight factor wbuffer for each buffer. As the time needed for a single I/O opera-
tion is easy to measure, these factors can be derived and adjusted at runtime causing low
overhead. Finally, the cost of a buffer at the end of time period t is expressed as:

cbuffer(t) = wbuffer(t)· (1 + fdirty(t))·m(t)

Note, we assume that CPU costs can be safely ignored, either because they are indepen-
dent of whether an operation can be performed on buffered data or requires additional I/O,
or because additional CPU cycles for search routines in larger buffers are negligible com-
pared to an I/O operation. In the remainder of this paper, we also assume that read and
write operations have symmetric costs and a low variance. However, it should be evident
that the presented basic model can be easily extended to take asymmetric read/write costs
(e.g. for solid state drives), different costs for random and sequential I/O, and also the
apportionment of preparatory, asynchronous flushes of dirty pages into account.

4.2 Decision Model

Our buffer balancing is based on the cost model of Section 4.1. In certain intervals, the
buffer configuration is analyzed and optimized if main memory reallocations are promising
reduced I/O costs for the entire system.

After each monitoring period, the buffer pools are ranked by their cost estimations as
follows. The higher a buffer pool is ranked in the save list, the more costs can be saved (i.e.,
this equals to providing a higher benefit) by referring to the simulated buffer oversize. On
the other hand, buffer pools are also ranked by their cost estimations for undersize figures,
whereas the minimum cost increase is ranked top in the rise list. Using a greedy algorithm,
buffer pool pairs are picked from the top of both lists as long as the cost reduction on the
save list is higher than the increase on the rise list. Note, a buffer may occur in both
lists, which typically indicates a “jump” and is thereby easily recognized. Finally, resize
mechanisms are employed to perform the memory “shifts”. The selected buffer from the
save list is increased to allow more frames and references to be cached. A buffer chosen
from the rise list, however, is shrunken, which may also include to flush victims to achieve
a smaller buffer size. Note, an optimal solution is always achievable, but certainly requires
more efforts. Therefore, we use greedy optimization because it is fast, cheap, and fairly
good.

Oversize and undersize simulations for several buffer pools do not necessarily have the
same size in bytes, which complicates memory shifts. However, fine-grained assignments
may be required, which are also possible by extrapolating the buffer scaling figures be-
tween its real size and the simulated sizes.
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To avoid thrashing, buffers chosen for resizing are removed from both ranking lists. The
simulated undersize and oversize areas have to be adjusted as well, which is similar to the
“regular” buffer resize. For instance, the number of hotset pages is reduced by selecting
victims out of this subset and by switching their flags. Obviously, oversize areas can be
kept or resized as desired.

Although resize decisions are sometimes heavy-weight operations (e.g., flushing pages),
they only occur at the end of each monitoring period and are only performed as long as
expected benefits justify them.

Period Refinements for Simulated Buffer Sizes

Accounting hit/miss numbers for multiple simulated and real buffer sizes over a certain
period of time induces estimations errors. For instance, a smaller buffer causing more
misses requires more time to process the same amount of buffer requests as the real one.
On the other hand, a larger buffer having an improved hit ratio may require less time
to process the requests, which are considered during this simulation and tuning period.
Therefore, simulation-based cost accounting has to reuse the cost model’s I/O weights
for read and write operations to adjust the (simulation) periods. That means, undersize
simulation has to limit I/O accounting as soon as the I/O budget that is physically possible
is consumed and vice-versa for SBPX extensions.

Switchable Propagation Algorithms

Adjusting memory assignments for buffer pools is also limited to the scalability prospects
of a specific buffer algorithm. However, different buffer algorithms may perform differ-
ently and exchange of an algorithm would be an alternative tuning option without actually
shifting memory. But different algorithms tend to use manifold figures such as access
counters, timestamps, or history queues. The major problem is to carry over the current
information when switching to a new algorithm. A poor alternative is to reset the entire
propagation strategy. However, a practical way is to initialize the new algorithm by evict-
ing all the “old” pages into the new algorithm and continue to use the new algorithm. The
decision to switch the algorithm can only be based on a full simulation of an alternative
propagation algorithm relying on a similar cost model as presented in Section 4.1.

5 Evaluation

Here, we want to evaluate the accuracy of our extensions as well as the decision quality
for buffer balancing. But first, we have to describe our benchmark scenarios and their
workloads.

As already stated in the introduction, buffers do not scale uniformly; thus, we generated
reference strings for various (common) scenarios including random and sequential access
of varying sizes.
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(c) multiple scans
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Figure 3: Buffer scalability for various workloads and replacement algorithms

5.1 Workload

In Figure 3(a)-3(d), we analyze the critical buffer size ranges for various access patterns
whose characteristics are summarized in Table 1. Note, the total number of DB pages
is equal to the first column’s object size figure of each scenario in this table. The only
uniformly scaling buffer is measured for workloads dominated by random I/O (see Fig-
ure 3(a)), where the overall hit ratio is – as expected – quite low. In this case, re-sizing
extrapolations will work properly, but such an access behavior is unusual in databases.
Dominating scans mixed with random access are modeled and measured in Figure 3(b).
Although scan resistance is addressed by replacement algorithms, scan effects easily pro-
voke “jumps” in the buffer performance. In such cases, the buffer hit rate dramatically
increases as soon as often occurring scans entirely fit into the buffer. Such “jumps” re-
main undetected if monitoring happens only at one side of the “jump”. The third workload
shown in Figure 3(c) is a mixture of multiple scans and random accesses in a single buffer.
This scenario may represent a more typical buffer usage pattern which exhibits a realistic
buffer scaling. In Figure 3(c), several areas can be identified having different slopes, where
each area boundary may cause uncertainty for extrapolations. In the last sample workload
shown in Figure 3(d), a mixture of high-locality scans and some share of random accesses
is analyzed. This typical workload scenario causes several (small) “jumps” resulting in a
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Table 1: Workload characteristics
workload Figure 3(a) (random) Figure 3(b) (scan) Figure 3(c) (jumps)
request share in % 50 50 25 75 10 65 25P

object size (pages) 150k 22k 150k 7k 150k 7k 13k
access type rnd rnd rnd seq rnd seq seq
workload Figure 3(d) (real)
request share in % 10 10 10 20 10 20 10 10P

object size (pages) 250k 5k 10k 10k 500 500 1k 2k
access type rnd rnd seq seq seq seq seq seq
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Figure 4: Estimation accuracy for workload random (buffer calls ×100.000 on x-axis)

stair-case pattern. In this case, fine-grained extrapolations necessary for buffer tuning may
quickly fail, although the slope in the average is quite similar.

We want to show in the subsequent sections that our algorithms are capable of identifying
and handling all of these (more or less) typical workload scenarios.

5.2 Accuracy

The quality of buffer balancing is based on the estimation quality of our extended buffer
algorithms. Therefore, we need to evaluate the estimation accuracy for the differing work-
loads. For the following experiments, the gray-shaded areas in Figures 3(a)–3(d) specify
the simulated ranges centered around the actual buffer sizes indicated by the black lines.
For simplicity, we always use a fixed range of ±2 % of the total DB size. For each work-
load, we measure the undersize and oversize estimation accuracy. Each of the Figures 4–7
contains the results of five algorithms using the same workload and up to 1.2 Mio buffer
calls. The lines marked with an asterisk (*) illustrate the simulation-based hit ratios and,
to enable comparison, the others show those of real buffers having the same sizes.

The first graphs are always showing the standard LRU behavior, which is always delivering
perfect estimation accuracy; however, its hit ratio performance is not the best. But its
lightweight simulation is definitely a plus. In contrast, the LRU-K results (second graphs)
constantly indicate top hit ratios but show weaknesses in forecast quality. Especially, the
downsize simulation of the scan workload fails with a dramatic overestimation.
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Figure 5: Estimation accuracy for workload scan (buffer calls ×100.000 on x-axis)
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Figure 6: Estimation accuracy for workload jumps (buffer calls ×100.000 on x-axis)

The results for GCLOCK in Figure 5 and 7 (third graphs) reveal its sensitivity to page
order and clock-hand position for hotset simulations. By adding a second clock hand and
forward pointers to simulate a separate clock for the hotset pages, we achieve considerably
better accuracy (fourth graph), but its performance is always behind all other strategies.

On the right-hand side, we measure the forecast quality provided by the simplified 2Q
algorithm. In all scenarios, it delivers top results while only requiring low maintenance
overhead. However, forecast quality is disappointing in some scenarios. Similar to LRU-
K, it fails for workload scan, but in the opposite direction with underestimation. Further,
we observe a suddenly degrading forecast quality for the workloads jumps and real. Even
worse, oversize estimations as well as undersize estimations are affected. Even the use of
a separate policy for the oversize buffer does not lead to better results.

The experiments reveal that our simulations based on the locality principle lead to trust-
worthy estimations in many cases. On one side, simple algorithms like LRU and GCLOCK
fit well into our framework. On the other side, more advanced algorithms such as LRU-K
and 2Q also allow lightweight estimations, but suffer from unpredictable estimation er-
rors in some scenarios. The reasons are built-in mechanisms to achieve scan-resistancy,
which are hard to model in simulations. Further, these algorithms do not allow logical
composition of individual buffers.
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Figure 7: Estimation accuracy for workload real (buffer calls ×100.000 on x-axis)
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Figure 9: Buffer balancing jump vs. real

5.3 Buffer Balance

In Figure 8, the self-tuning mechanism presented in Section 4.2 automatically tunes two
buffers, where buffer 0 was fed with random workload from Figure 3(a) and buffer 1 with
scans shown in Figure 3(b). Buffer sizes (i.e., simulation and real) are chosen as described
in Section 5.2. Due to space limitation, we present the results only for the improved
GCLOCK and a fixed memory shift granularity of 2 % of the DB size. After the buffers
were warmed up (i.e., after 1.2 Mio buffer calls), the cost model triggers all memory shifts.
The random workload buffer was shrunken according to its hotset simulation, whereas
buffer 1 was increased. Although the hit ratio of buffer 0 slightly descends, the overall I/O
performance improves, because the hit ratio of buffer 1 increases considerably.

Because the self-tuning decisions are based on a cost model, they are applicable for ar-
bitrary scenarios. In our second example, we again use two buffers, one that is fed from
the jumps workload generator and the other from the real workload generator as shown in
Figure 3(c) and Figure 3(d). In this setting, SBPX fails because its does not recognize that
the size of buffer 0 is close to a “jump” boundary. However, as indicated by Figure 9, our
downsizing simulation detects the pitfall and prevents buffer performance penalties.
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Figure 10: Balancing of four buffers under different workloads

Resizing two buffers is obviously simple. Therefore, we combine both experiments in a
single setup shown in Figure 10. The cut-out shows two memory shifts leading to minor
descends of the hit ratio on the one side but clear improvements on the other side resulting
in a steadily improved buffer performance.

In summary, we could experimentally prove that buffer balancing can be achieved at low
cost, but it heavily depends on accurate and lightweight forecasts for both directions –
upsize and downsize.

6 Conclusions

Even after decades of research on buffer management and optimization, the problem of a
reliable, dynamic adaptation of buffer memory allocation is not fully solved. In this work,
we studied opportunities to forecast buffer resizing effects to support harm-free self-tuning
decisions. As downsizing a buffer is accompanied with severe risks of thrashing, we ar-
gued that reliable prediction of downsizing effects is a key point for self-tuning decisions.
Furthermore, we argued that additional overhead for these forecasts must not add notice-
able overhead to normal processing. Therefore, we focused on lightweight techniques
to exploit knowledge from the buffer replacement strategies for forecasts and presented
possible solutions for four families of replacement algorithms.

In our experiments, we could show that forecast quality is heavily dependent on the actual
strategy. It seems that sophisticated strategies like LRU-K and 2Q make it hard or even
impossible to get reliable forecasts for either upsizing, downsizing, or both. We found
that there are two reasons for this: First, such algorithms use history-recording techniques,
which are very costly to emulate for varying sizes. Second, they are extremely sensible
to configuration parameters, which cannot be easily negotiated between differing buffer
sizes. However, simpler, yet widely-used strategies like LRU and GCLOCK turned out
to allow for cheap and highly accurate or even perfect forecasts. In conjunction with a

165



simple cost model and a greedy algorithm, we demonstrated the use of forecasts to improve
buffer hit ratios without the risk of severe performance penalties. Following the idea of
differing “stages” in 2Q to improve buffer behavior, our findings suggest to think about
further partitioning of buffers with complex replacement strategies into several distinct
buffers with simpler but more predictable strategies. This way, forecasts would generally
become reliable and fragmentations issues were automatically resolved by the self-tuning
capabilities.
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Abstract: Forecasting of time series data is crucial for decision-making processes in
many domains as it allows the prediction of future behavior. In this context, a model
is fit to the observed data points of the time series by estimating the model param-
eters. The computed parameters are then utilized to forecast future points in time.
Existing approaches integrate forecasting into traditional relational query processing,
where a forecast query requests the creation of a forecast model. Models of continued
interest should be deployed only once and used many times afterwards. This however
leads to additional maintenance costs as models need to be kept up-to-date. Costs can
be reduced by choosing a well-defined subset of models and answering queries using
derivation schemes. In contrast to materialized view selection, model selection opens
a whole new problem area as results are approximate. A derivation schema might
increase or decrease the accuracy of a forecast query. Thus, a two-dimensional opti-
mization problem of minimizing the model cost and model usage error is introduced
in this paper. Our solution consists of a greedy enumeration approach that empirically
evaluates different configurations of forecast models. In our experimental evaluation,
with data sets from different domains, we show the superiority of our approach over
traditional approaches from forecasting literature.

1 Introduction

In many domains, gathered data constitutes time series, e.g., sales per month, system load

per hour, energy supply per minute. This is especially valid in data warehouse systems,

where the time dimension is virtually guaranteed to be present [KR02]. This data is often

used as a basis of decision-making processes. Forecasting is a fundamental prerequisite for

such decisions, otherwise all decisions rely on the history only and might not be valid. One

important use case is forecasting of energy supply. Many renewable energy sources (e.g.,

solar panels) pose the challenge that production depends on external factors (e.g., amount

of sunlight). Hence, available power can only be predicted but not planned, which makes it

rather difficult for energy distributors to efficiently include renewable energy sources into

their daily schedules. This problem addresses the MIRACLE project [BBD+10] that pre-

dicts the energy demand and supply of customers and suppliers and balances accordingly.

This poses the challenge of high query and update intervals (15-minutes or less), where

forecast queries need to be answered as fast and accurate as possible.

There are existing approaches that integrate time series forecasting into traditional rela-

tional query processing in DBMS [DB07, Ora10, Pre10]. In contrast to exporting the data

to an external statistical program, these approaches allow for joint query processing and
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exploit database specific optimization techniques. In this context, a forecast query is spec-

ified like a traditional query extended with a forecast horizon, which specifies the number

of values to forecast or a future point in time [DB07, FRBL10]. A forecast query uses a

model of the time series at hand to calculate the expected future behavior of the time se-

ries. In general, model-based forecasting involves two phases, model creation and model
usage. Model creation tries to fit a model (e.g., represented by the parameters of a contin-

uous function) to the observed data points of the original time series (Figure 1 left). Model

creation is typically computationally expensive, often involving numerical optimization

schemes to estimate the d model parameters that span a d-dimensional search space. In

contrast, model usage utilizes the parameters calculated in the first step to forecast future

points of the observed time series. It is cheap as only a few simple operations are neces-

sary. Due to the high model creation costs, query processing can be sped up if models are

only built once and kept in a model pool. Subsequent queries are answered by choosing a

fittable model from this pool [FRBL10, ACL+10, GZ08].

However, as a data-warehouse might contain a high number of individual time series,

building a model for each single time series is expensive. In addition, time series char-

acteristics change over time, requiring maintenance in form of parameter re-estimation.

Only a few forecast methods however allow updating the parameters analytically by using

just the new time series values, most approaches require access to the complete historical

time series for parameter re-estimation. Parameter re-estimation might be as expensive as

model creation. Therefore, in domains like energy supply, where minute-by-minute data

is stored and forecasted, we do not have enough time to keep all models up-to-date until

the next query arrives. One solution to this problem is to choose a well-defined subset of

forecast models. Forecast queries can then be answered by specific derivation schemes.

There are two main derivation schemes in the area of forecasting – aggregation and dis-

aggregation [Fli01]. Aggregation calculates the forecast values of a time series by using
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forecast values of subset time series, while disaggregation uses the forecast values of an-

other time series representing a superset, e.g., by using the historical fraction. In the center

of Figure 1 a simplified hierarchy for forecasting energy supply in Germany (abbr. DE) is

presented. Here, the energy supply of single cities is recorded at level one. The supply is

then aggregated according to different regions (level two) and to the supply over the whole

country (level three). Now, the forecast values for the region Bavaria could be either cal-

culated by disaggregation from the forecast values of the total time series over Germany

or by aggregation over the forecast values of the single cities Selb and Hof.

However, the accuracy of a forecast value calculated from a model specifically created for

a given query might be different from the accuracy of a forecast value derived from models

at different aggregation levels of the time series. Interestingly, some derivation schemes

might even improve the accuracy. Therefore, in addition to model usage and maintenance

cost, we need to minimize the forecast error of queries using this model, resulting in a two-

dimensional optimization problem. However, the error of a model cannot be determined

without actually building the concerning model [DWD76, ACL+10]. As a result, any

solution to this problem requires the empirical comparison of alternative configurations.

In general, this problem seems similar to materialized view selection and usage. However,

model selection requires a second metric, the forecast accuracy, while materialized view

selection focuses on minimizing query and maintenance cost only. For model usage, fore-

cast queries always output approximated tuples, so we can exploit additional derivation

schemes, i.e., disaggregation. On the other hand, forecast models are always created at

instance level of the data, so we can not apply compensation queries, e.g., it is impossible

to calculate a selection on top of a model while this is a valid usage of materialized views.

To summarize, our offline design tuning algorithm takes as input a workload and a user

preference regarding execution time and accuracy. It creates different configurations of

models and empirically analyzes their forecast error and maintenance cost (Figure 1 right).

As a result, the best configuration for the given workload is provided to the model pool.

This configuration leads to a reduction of query processing times as models are already

present in the database, a possible higher forecast accuracy as aggregation dependencies

are taken into account and less maintenance costs as only necessary models are stored.

Contributions and Outline In summary, we make the following contributions:

• First, we introduce the fundamentals of physical design of forecast models in a data-

warehouse schema with multiple defined hierarchies (Section 2.1 and 2.2).

• We then define our two-dimensional optimization problem, i.e., increase forecast

accuracy and reduce maintenance cost (Section 2.3).

• Third, we present our greedy enumeration approach to reduce the space of possible

configurations (Section 3.1) and present heuristics, which might reduce the number

of forecast models considered (Section 3.2).

• Finally, we show the applicability of our approach in an experimental evaluation

(Section 4).
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We will finish with related work in Section 5 and conclude in Section 6.

2 Multi-Hierarchical Forecasting

In this section, we first sketch the basics of a multi-hierarchical forecasting system. Subse-

quently, we explain the notion of physical design in such a context. We finish by discussing

conflicting optimization challenges and by formulating our general optimization goal.

2.1 Multi-Hierarchical Forecasting System

Hierarchical forecasting is based on grouping time series into groups, group families and

so on [Fli01]. Each level results from the aggregation of the child elements one level

below. The top level is the total aggregate of all elementary time series. If we transfer

the hierarchical forecasting approach to a data-warehouse environment, where multiple

hierarchies exists in parallel, merged by foreign keys to dimensions in the fact table, we get

a multi-hierarchical forecasting system. This generalization also contains different levels

of aggregation, where a parent element is calculated by aggregation of corresponding child

elements on an arbitrary level below. However, as we have multiple hierarchies, a child

might contribute to several parents. In addition, it might be possible to calculate parents’

values from multiple sets of child nodes on the same level.

Definition 1 Multi-Hierarchical System: In a multi-hierarchical system, the value Sij(t)
at time t of the time series Sij with index j at level i is calculated as follows:

Sij(t) = AGGl∈GpijS(i−1)l(t),

where Gpij contains a list of child indexes of group p at level i−1, which contribute to the
aggregate of element Sij . AGG is an aggregation function, e.g., SUM. Elements at level 1
are the elementary time series, while the element at level h is the total aggregate over all
time series. The total number of elements |S| is calculated by the Cartesian product over
the number of elements per hierarchy.

Example 1 An example multi-hierarchical forecasting systems is shown in Figure 2. Re-
call our running example of forecasting energy supply. The energy supply can also be dis-
tinguished according to different energy sources, e.g. solar energy. Therefore, in addition
to the location hierarchy (Figure 2 left), the energy supply can be aggregated according
to different products (Figure 2 right). In the center of Figure 2, these two hierarchies
are combined into a multi-hierarchical structure, where a single element represents an
instance from both hierarchies (e.g., the supply of wind energy in Hof). Child elements
are additionally annotated with an index p (at the top), where elements at level i with the
same index can be used to calculate the corresponding parent. For example, the element
S31 = R1 can be either calculated by aggregating elements S21 = C1 and S24 = C2 or
by aggregating elements S22 = R1P1 and S23 = R1P2.
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Figure 2: Multi-Hierarchical Forecasting Structure

Note that the multi-hierarchical structure is based on the instance-level of the data. In

contrast to the aggregation lattice on attribute level, we include additional functional de-

pendencies that might be given by information assurances (ORACLE) or derived from the

underlying data. For example, in Figure 2 instances of the grouping (R,C, P ) are not

considered, as R directly depends on C and therefore (R,C, P ) is equal to (C,P ).

Forecasting Having this structure in mind, for each element Sij , we can calculate the

forecast value of the corresponding time series by three different ways:

Forecast Model: First, we can create a forecast model Mij directly from the time series

Sij . We can then use this model to directly calculate a forecast value for element Sij .

Aggregation: Second, we can create forecast models for all child elements with the same

group index p at level k, where k < i. We then forecast using each model in the group and

aggregate the forecast values to get the forecast value of the parent element. We denote

this strategy as Aij(kp). In addition, we can aggregate recursively.

Disaggregation: Third, we can create a forecast model for one parent element p at level k
and disaggregate the forecast value. The disaggregation strategy requires the calculation

of a disaggregation key Dij(kp). A simple, but quite successful disaggregation strategy

(assuming SUM as aggregation method), is an average over the fraction of the child series

and the parent series: Dij(kp) = 1/n · ∑n
t=1 Sij(t)/Skp(t) [GS90]. Then, the forecast

values of the series element Sij are the product of the disaggregation key Dij(kp) and the

forecast value of Skp.

Each forecasting strategy allows different underlying methods. For example, we could

use exponential smoothing as forecast method, the summation as aggregation method and

an average over the fraction of child and parent series as disaggregation method. While

choosing a concrete method is independent from our approach, it might have a high impact

on the resulting physical design.
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2.2 Physical Design

Conceptually, the user expects a forecast model for every time series queried. However,

based on the three possibilities to calculate the forecast values for a single element Sij ,

we can have different physical designs in a multi-hierarchical system. The benefit of a

physical design depends on the workload of the system. For example, a model at a higher

level might support long-term forecasts as the general trend of the data is captured. We

therefore consider a workload trace of forecast queries for a given period of time. A

workload W consists of elements Sij , their relative frequency f and the corresponding

forecast horizon h: W = {Sij , f, h}. An element Sij might be either described by point

queries or pure conjunctive queries, i.e., addressing multiple hierarchies. However, queries

might also address several elements Sij (e.g., disjunctive, join or group-by queries). In that

case, we only store the individual elements in our workload model.

Definition 2 Configuration: For a given workload W , a configuration CW is a valid as-
signment of forecast models to individual elements. An assignment is valid if each element
Sij in W can be calculated by either a forecast model, aggregation or disaggregation.

In order to make sure that we can calculate forecast values for each element Sij in W , we

always include the least common parent in our configuration, i.e., the element (might not

be part of W ) at the smallest level that is parent of all (other) elements in W .

Example 2 Recall Example 1 and consider the workload W={(R1, 1/5, 1), (C1, 1/5, 1),
(C2, 1/5, 1), (C1P1, 1/5, 1), (C1P2, 1/5, 1)}, where the one-step ahead forecast for the
supply in the region Hesse (R1), the supply in the city Fulda (C1), the supply in the city
Lich (C2), the supply of solar energy in Fulda (C1P1) and of wind energy in Fulda (C1P2)
is requested. A first valid configuration is to create a model over the supply in the region
Hesse {R1} and calculate all workload elements by disaggregation. A second possible
configuration is {C1, C2} that calculates elements C1P1 and C1P2 by disaggregation and
element R1 by aggregation. Many more possibilities exist.

It is obvious that the number of possible configurations is exponential with the number of

possible models |CW |. For each element, we can decide if we create an individual forecast

model and we can choose an arbitrary combination of models.

2.3 Optimization Problem

Our goal is to find the best configuration for a given workload. Each configuration can be

described by two metrics, configuration error and configuration maintenance cost.

Intuitively one would think that a forecast value directly calculated from a model is always

superior than disaggregation from a higher level model. However, many studies in mathe-

matical and forecasting literature have shown that disaggregation (or aggregation) can be

superior to individual time series models [DWD76, Fli99]. Therefore, the forecast error is
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not monotonic (related to a hierarchical system), as adding a new forecast model does not

automatically imply a lower forecast error.

Definition 3 Configuration Error: Given a configuration CW , the error EW is calculated
by the total error over all accessed elements in W using the best strategy:

EW =
∑

(Sij ,f,h)∈W

f · min
∀k1>i,k2<i

(
e(Mij , h),e(Dij(k1), h),e(Aij(k2), h)

)
(1)

where Mij denotes a forecast model, Dij(k1) denotes the disaggregation and Aij(k2) de-
notes the aggregation strategy. We use the time series of length |Sij |−h to train the model
Mij and calculate the disaggregation key Dij . Then, e(strategy, h) calculates the error
for the given strategy over the h-step-ahead forecast over the remaining time series.

The forecast error is calculated using the absolute value of the symmetric mean absolute

percentage error (SMAPE), which is a scale-independent accuracy measure. For both,

aggregation and disaggregation, the forecast error is determined by choosing the set of

child elements or the parent with the minimal forecast error. Note that we do not support

direction changes, i.e., a disaggregate cannot be calculated from an aggregate as this might

lead to an arbitrary result, not following the characteristics of the time series.

Maintenance of forecast models requires mainly parameter re-estimation, as maintain-

ing the state of a model (e.g., smoothing constants) is cheap. The costs of parameter

re-estimation depends on factors like frequency of re-estimation, time series length and

runtime of the parameter estimation algorithm. However, as we are in an offline context,

we assume a fixed estimation method and strategy leading to equal costs for each element.

In addition, we can assume that the time series are about the same length as aggregate

series at higher levels need all their child series to be of the same length. However, if a

series has a missing value, this value might even have a meaning (e.g., zero products sold

this month). Finally, we do not include the maintenance of disaggregation keys as these

are, similar to the state of the model, significantly cheaper than parameter re-estimation

of models. Following these considerations, we explicitly use a very simplified model to

estimate the maintenance cost of a configuration by using the number of created models.

Definition 4 Maintenance Cost: Given a configuration CW , the maintenance cost BW

are calculated by the number of forecast models in CW :

BW = |Mij ∈ CW | . (2)

Now, our optimization goal is twofold: First, we want to reduce the forecast error. Second,

we want to do as less maintenance as possible.

Definition 5 Optimization Goal: Our optimization goal is to find the configuration CW ,
which is minimal according to the configuration error EW and maintenance costs BW :

min
CW

(

α · EW

ET
+ (1− α) · BW − 1

Bmax − 1

)

with Bmax > 1 and α ∈ [0, 1], (3)
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where Bmax as well as ET are used as normalization constants. Bmax is the maximum
number of models in CW and ET is the forecast error for the configuration, where only a
model for the common parent is used. For normalization purposes as well, we subtract 1
in the second part of the equation.

With parameter α we can weight the importance of both dimensions. If we set α = 0.5,

we give equal weight to maintenance cost and forecast error. If we set α = 1 we try to find

the best configuration according to the forecast error, without regarding maintenance. This

generalizes the problem of finding the best hierarchical structure in forecasting literature.

As the forecast error is not monotonic with respect to the number of models, the minimum

forecast error can result for any configuration. On the other hand, with α = 0, as we do

not consider disaggregation costs, we get the configuration where only one model is used

for the common parent and all other elements use the disaggregation strategy.

3 Offline Design Approach

In order to solve the optimization problem of Definition 5, our general approach works as

follows:

1. Create a forecast model for each element in the workload and the common parent.

2. Enumerate all valid configurations according to Definition 2.

3. Evaluate each configuration regarding the configuration error (Definition 3) and

maintenance cost (Definition 4).

4. Choose a configuration according to Definition 5 and drop all models, which are not

part of the solution.

However, this naive algorithm has unacceptable runtime, because we first need to create a

forecast model for every element considered in the workload. This is necessary to calcu-

late the model, aggregation and disaggregation benefit for each element. However, model

creation is expensive as parameters need to be estimated. Second, it is infeasible to enu-

merate all possibilities as the number of possible configurations is exponential with the

number of elements (on instance-level). Therefore, we present an approach to reduce the

number of configurations enumerated (Section 3.1). Then, we discuss some heuristics to

reduce the number of forecast models considered (Section 3.2).

3.1 Greedy Enumeration

As explained before, maintenance cost increase monotonically with each additional fore-

cast model while the behavior of the forecast error is unknown. A new model might lead

to an improvement but the error could also stay similar or get even worse. Thus, in the
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Algorithm 1 Greedy Enumeration

Require: elementsConsidered
1: bestConf ← concat(1,repeat(0, numElements− 1))

2: bestEval ← α
3: repeat
4: stop ← true
5: currentConf ← bestConf
6: for i in elementsConsidered do
7: currentConf [i] ← 1
8: if (currentEval = evaluateConfiguration(currentConf )) < bestEval then
9: bestConf ← currentConf

10: bestEval ← currentEval
11: newModel ← i
12: stop ← false
13: currentConf [i] ← 0
14: elementsConsidered ← remove(elementsConsidered, newModel)
15: until stop = true

second case, we would never use this model as only maintenance increases. Therefore, we

propose a greedy enumeration approach, where we start with the configuration where only

a model for the top element is used. Thus, this is the valid configuration with minimal

maintenance cost. We then try to add additional models step-by-step, using most promis-

ing models first. As each model is described with equal maintenance costs, we always add

the model next, which results in the lowest overall configuration error.

Algorithm 1 outlines our greedy enumeration approach. First, our algorithm requires the

elements, which actually can qualify for a model. This could contain all elements in the

multi-hierarchical structure. However, the workload will reduce these elements signif-

icantly to only the queried elements. In addition, the heuristics introduced in the next

section will reduce the number of models considered further. To represent a configuration,

we use a vector where 1 stands for forecast model and 0 for no model. The entries are the

consecutive elements in the multi-hierarchy starting at the top and going down from left

to right. Therefore, in line 1 we create the configuration, where only a model is created

for the top element. According to Definition 5, the evaluation for our start configuration is

always α, which we use as our current best evaluation (line 2). Then, for each element in

our list of considered elements, we create a configuration where a model is used for this

element (line 7). We evaluate this configuration with Definition 5 and if it is better than

the current one, we store it (line 8-10). Then, we reset the current configuration (line 13).

Therefore, in each step we iterate over all elements and output a new configuration with

one additional element. In the end, we remove the new element from the list of considered

elements (line 14). We stop when we find no better configuration than the current one.

Note that we need to check the benefit of each single element in each iteration as a new

model might have an impact on every other element in the workload.

Example 3 To illustrate the greedy approach, an example is shown in Figure 3. This ex-
ample is created for the workload described in Example 2 with α = 0.5. A gray box shows
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Figure 3: Greedy Enumeration

that an evaluation model was created for the corresponding element, while a gray colored
node implies that the model is actually used and maintained in the current best configura-
tion. Each node is annotated with the errors when using a model EM , aggregation EAk

and disaggregation EDk, where k is level from which the forecast values are aggregated
or disaggregated. In the left part of Figure 3, the start configuration is shown in which
only a model for the top element is used. As explained before, the start evaluation equals
always α, which is shown in the box in the upper left corner (Definition 5). Note that we
use the total error to describe the configuration error as all elements in the workload have
the same frequency. Now, our greedy approach sequentially checks the benefit of a model
for each element. Elements C1 and C1P1 have the highest disaggregation error of 6.0 and
would both profit from a model equally as the model error is only 1.0. However, element
C1P2 would also profit from a model at element C1 as the disaggregation error using level
two is lower. Therefore, we would decide to use a model for element C1 (Figure 3 center).
The new evaluation drops down to 0.43. Second, the greedy approach would decide to use
a model for the element C1P1 as we get the best improvement regarding the forecast error
and the evaluation drops to 0.42. Although, the element C2 would also lead to a decrease
of the error, the algorithm is finished now. The improved error does not compensate the
increased maintenance costs. The evaluation would be 0.51.

For ease of illustration, we used a single hierarchy in this example. However, the only

difference in a multi-hierarchy is that a child node might benefit from the disaggregation

from several parents and a parent from the aggregation of several sets of child elements.

This approach might result in local sub-optima for two reasons. The first reason is that

models are never removed, although they might not be necessary anymore as the element

can be calculated by aggregation. Therefore we additionally analyze aggregation benefits.

Thus, whenever we evaluate a configuration, we also check if we can remove models,

which can now be calculated by aggregation. If so, we also evaluate the configuration with

the removed aggregate model. Second, we might miss optimal configurations because we

only consider single models with each step. However, a whole group might improve the

result as elements at higher levels can be calculated by aggregation. Therefore, we include

a second optimization, where we analyze groups in each step as well. In our case, a group

is a complete set p of elements at one level, which contribute to the same aggregate one

level above. Different strategies to build groups are possible. However, this can have the

drawback that groups are added too early in the process resulting in a different local sub-

optima. In addition, we still end in local sub-optima if adding more than one model (but
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Figure 4: Model Creation Heuristics

not a whole group) would allow the removal of an aggregation model and lead to a better

overall forecast error. However, in most cases, aggregation benefits are less important as

they require many child models to be build.

The complexity of the greedy enumeration approach is O(n+n2) in the worst case. First,

we create n forecast models. Then, we evaluate for each element the benefit of a model

and add the element with the most benefit. We stop when we can not find a beneficial

model anymore resulting in a worst case evaluation of
∑n

i=1 i ≈ n2 configurations. In the

best case, we stop after one run as we did not find a better configuration, so we result in a

linear behavior. Note that the creation of a forecast model might be much more expensive

than the evaluation of one configuration.

3.2 Heuristics

In this section, we present heuristics to reduce the number of forecast models considered.

Each heuristic only creates a subset of possible models. If there is no model created for

an element, our greedy enumeration approach does never consider a configuration where

a model for this element is used (Algorithm 1, line 6). All heuristics can be used by

themselves in addition to the greedy enumeration approach, but an arbitrary combination

of these heuristics is also possible.

Decomposition The decomposition approach assumes that if we find a good strategy for

each single hierarchy, the combination of hierarchies, i.e., conjunctive queries, will also

result in a low error. Therefore, only forecast models are considered that address elements

from single hierarchies. For all combinations of hierarchies we always use the disaggre-

gation strategy (Figure 4(a)). This heuristic reduces the number of considered elements to

the sum over the number of elements in each single hierarchy.

Recursive The recursive approach has the underlying assumption that if disaggregation is

best for one level, it is also best for all underlying child elements. Initially, we only create

forecast models for the top element and the level underneath. Every time we decide to use

a forecast model, we create all models one level below (Figure 4(b)). In the best case, this

approach only creates models for the top two levels of the hierarchy. However, in the worst

case, all models are created. If we combine the recursive heuristic with the decomposition
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heuristic, we might even get a higher reduction of forecast models created, as each child

node is only reachable through exactly one parent node.

Time Series Characteristics This heuristic analyzes the characteristics and the relation of

the time series to filter out forecast models to be created and considered. For this, we use

two different characteristics, correlation and disaggregation error. With both approaches,

forecast models are only created if a certain characteristic is fulfilled.

Correlation The core observation is that high correlated time series follow the same pat-

tern and thus could be calculated by the same model. Therefore, we calculate the cor-

relation between parent-child relations. For this, we also consider parent-child relations

over more than one level (Figure 4(c)). Then, we only create models for child series if

the correlation is below a threshold τ . The threshold τ defines the aggressiveness of this

approach. A low τ might filter out many models, but might also miss good configurations.

In contrast, a high τ is safer, but might only filter out a few models.

Disaggregation Error As we always create the top model, we can analyze the disaggrega-

tion error of each element in the workload. This approach only creates a model for an ele-

ment if the disaggregation error is above ω. To calculate ω, we use the median of the disag-

gregation error median(e(Dij(11), h)) over the elements in the workload and the weight

α of the configuration error. Then, ω is calculated by median(e(Dij(11), h))/(α+ 0.5).
Therefore, if we give equal weight to the configuration error and maintenance cost (α =
0.5), we create all models higher than the medium disaggregation error. This works as we

assume equal maintenance cost in this paper. If we give low weight to the configuration

error, we create less models as ω increases and vice versa. Therefore, we adjust the num-

ber of created models according to the weight of the configuration error as a lower weight

would result in a configuration with less models anyway.

4 Experimental Evaluation

We conducted an experimental study in order to evaluate (1) the performance of our ap-

proach on three data sets from different domains with respect to traditional approaches

from forecasting literature, (2) the performance and scalability of the proposed heuristics

and (3) the adaptability to different user requirements.

4.1 Experimental Setting

To implement the described offline design tuning approach we used the statistical comput-

ing software environment R. It provides efficient build-in forecast methods and parameter

estimation approaches, which we used to build the individual forecast models. All exper-

iments were executed on an IBM Blade (Suse Linux, 64bit) with two processors (each a

Dual Core Intel Xeon at 2.80 GHz) and 4 GB RAM.

In order to show the general applicability of our offline design approach, we use the fol-
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electricity tourism energy

#elements level 1 1,568 32 86

#elements level 2 273 12 1

#elements level 3 14 1 -

#elements level 4 1 - -

series length 28 25 5,808

Table 1: Sizes of Data Sets

lowing three data sets:

• Electricity: Worldwide Electricity Generation The first data set was obtained from

the US Energy Information Administration and is public available at [US110]. This

data set includes metered world-wide electricity generation. It consists of two hi-

erarchies. The first hierarchy contains regional information from world-wide over

continental to individual countries. In the second hierarchy different categories of

electricity sources such as renewable or nuclear are distinguished. After merging

both hierarchies, we result in multi-dimensional hierarchy with four levels, similar

to Figure 2. The data is available from 1980 until 2008 in an annual resolution.

• Tourism: Australian domestic tourism The second data set consists of quarterly

observations on the number of visitor nights for the Australian domestic tourism,

which is an indicator of tourism activity. The sample begins with the first quarter

of 2004 and ends with the first quarter of 2010. The series are obtained from the

National Visitor Survey, which is managed by Tourism Research Australia [TRA10].

The data consists of two hierarchies, purpose of visit and state, resulting in three

levels of the final multi-hierarchical structure.

• Energy: EnBW MEREGIO Energy Demand The third data set was provided by a

partner from the MIRACLE project [BBD+10] and was obtained during the MERE-

GIO project [MER10]. This data set contains energy demand from 86 customers

ranging from November 1st 2009 to June 30th 2010 in a 1 h resolution. It therefore

consists of a single hierarchy with two levels, i.e., level 1 contains the individual

customer demand while level 2 contains the total aggregate over all customers.

Table 1 shows the sizes of the different levels and time series lengths for each data set.

For all three data sets we fixed the forecast, aggregation and disaggregation method. As

forecast method we use triple exponential smoothing. The class of exponential smoothing

methods is widely used in hierarchical forecasting and has proven to be very robust and

applicable in an automated fashion to a large set of time series [Cha00]. If we would use

a more complex forecast method, we would save even more execution time with our ap-

proach as parameter estimation gets more expensive. For the aggregation method, we use

summation. Gross and Sohl analyzed 21 disaggregation methods [GS90] and concluded

that a simple average of the elements’ proportion of the parent element over the entire his-

torical period worked best compared to other, partly more complex, methods. Therefore,

we will use this as disaggregation strategy.
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In addition, we fix the workload. We assume that each element in the hierarchy is queried

once requesting a one-step ahead forecast, so W = {(Sij , 1/ |S| , 1)} for i=1 ... #lev-
els, j=1 ... #elements of level i and |S| is the total number of elements in the whole

multi-hierarchical structure. Therefore, we analyze the worst case, where every element is

considered equally. A different workload would only reduce the search space.

4.2 Performance Comparison

In the following, we compare our greedy approach with the three traditional approaches

”bottom-up”, ”top-down” [Fli01] and ”complete”. The bottom-up approach creates fore-

cast models for all time series at level one and calculates all other forecasts by aggregation

of elementary forecasts. The top-down approach creates only one forecast model for the

top element and calculates all other forecasts by disaggregation of the top forecast. Finally,

the complete approach creates forecast models for all elements in the hierarchy and calcu-

lates all forecasts using directly the model for the concerning element. In this experiment,

we use 80% of the data sets to learn the models for all approaches and to learn the config-

uration for our greedy approach. We set α = 0.3, so we give more weight to maintenance

time. Then, we use the remaining 20% to produce one-step ahead forecasts, where we

reestimate the model parameters after each forecast. Note that we also could use a more

sophisticated model maintenance method, where we trigger parameter reestimation time-

or threshold-based. However, this is not the scope of this paper and the effect would be

similar for all approaches. Figure 5 summarizes the results for all three data sets and ap-

proaches. In Figure 5(a), the average forecast error (using the accuracy measure SMAPE)

of each element over the evaluation period is illustrated. Here, the maximum forecast error

equals 1. In Figure 5(b), the relative maintenance cost compared to the complete approach

as well as the total number of used models is shown.

Our goal is to create as less models as possible while reaching a low forecast error. If

we take a rough view at the results, we see that our greedy algorithm produces the best

result considering both dimensions. Let us analyze each data set a bit more closely. For

the electricity consumption, the complete (C) and bottom-up (B) approach have a much

better forecast error than the top-down (T) approach. Therefore, our greedy approach (G)

creates 61 forecast models reducing the forecast error a lot but adding only little additional

maintenance time. In order to reduce the error even more and beat the complete approach,

we need to choose a higher value of α. We will analyze the effect of α more closely in

Subsection 4.4. For the tourism activity, the forecast error of the complete and bottom-

up approach is slightly better than the top-down approach. However, the forecast error

can actually be reduced a lot, if a few forecast models are created at level two and the

forecasts at level one are created by disaggregation from level two. Therefore, our greedy

approach decides to create some forecast models at level two, reducing the forecast error

even more than the complete approach but resulting in much less number of models to

maintain. For the energy demand, the top-down approach is similar to the complete and

bottom-approach. Therefore, our greedy approach decides to use the top-down approach,

creating no additional forecast models where we save a lot of maintenance cost compared
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(b) Maintenance Cost

Figure 5: Comparison of Different Approaches

to the complete or bottom-up approach (one instead of 87 models).

To summarize, on the one hand our greedy approach can find a better configuration than

the traditional approaches, even with a low value of α. On the other hand, maintenance

time is reduced by using only necessary models. The speed up we can achieve strongly

depends on the used hierarchy, i.e., the number of elements, and on the relationship of

the time series, i.e., weather bottom-up or top-down is superior in general. In terms of

total execution time, the benefit strongly depends on the used forecast method and the

time series length. For example, for the energy data set, we save about half a minute

in each maintenance step if we use triple exponential smoothing. The total maintenance

time is 3.4 h for the complete approach and 2.3 minutes for the greedy approach. If we

use an AR(12) model, which is an instance of the widely used class of ARIMA models,

we save 26 minutes in each single maintenance step. As we are in an offline context, we

did not explicitly measure the speed up of forecast queries. However, a low number of

forecast models implies lower maintenance cost and thus, a lower system load or lower

query processing times if deferred maintenance is used.

4.3 Comparison of Different Heuristics

In a second experiment, we take a closer look at the different heuristics introduced in Sub-

section 3.2. For each heuristic, we might get a slightly worse configuration compared to

the full greedy approach but we might save execution time. Figure 6(a) shows the evalua-
tion (= value of objective function according to Definition 5) of all heuristics compared to

the evaluation of the greedy approach. As all data sets exhibit totally different execution

times, Figure 6(b) shows only the relative execution time decrease to the full greedy ap-

proach. In this experiment, we set α = 0.75 so that the impact of the heuristics are higher
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Figure 6: Comparison of Different Heuristics

as more forecast models are created.

The energy data set contains only a single hierarchy. Therefore, the decomposition heuris-

tic (dec) leads to the same accuracy and execution time as the full greedy approach (full).

For the other two data sets, it shows the lowest execution time but also increases the eval-

uation most for electricity and tourism data set. Therefore, it should only by used if very

little time is available. The recursive heuristics (rec) increases the evaluation only slightly

for the electricity data set but not at all for the other two data sets. However, it shows

the smallest improvement in terms of execution time. Therefore, it can be safely used to

save some of the execution time of the offline design approach. For the correlation heuris-

tic (cor), we set the correlation threshold to 0.75. This heuristic takes the third rank in

terms of execution time and only increases the evaluation slightly for the electricity and

tourism data set. As a result, it should be preferred to the recursive heuristic in order

to save more execution time. The disaggregation error (err) heuristics shows the second

best execution time and only increases the evaluation slightly for all three data sets. To

summarize, besides the decomposition heuristic, all heuristics only increase the evaluation

slightly compared to the full greedy approach. Most execution time can be saved when the

heuristics are used, which take time series characteristics into account.

In order to examine the scalability of our greedy approach and the different heuristics, we

vary the size of the electricity data set. For this, we increase the number of electricity

sources from one to seven and combine the resulting electricity source hierarchy with the

region hierarchy. If we use only one electricity source, we result in a single hierarchical

structure, which consists of 464 elements. With each additional electricity source, we

add 232 elements. The experimental results are displayed in Figure 7(a). The full greedy

approach (using no heuristic) has the longest runtime and shows a super linear behavior

with increasing number of elements. In general, all heuristics also increase the number of

considered models with increasing data size resulting in a super linear behavior as well.

However, the concrete outcome strongly depends on the data itself, e.g., how many time
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(b) Adaptability

Figure 7: Scalability and Adaptability to User Requirements

series fall below the correlation threshold.

4.4 Adaptability to User Requirements

In this section, we take a closer look at the outcome of our greedy approach while varying

the parameter α. Recall that an α = 0 results in the top-down approach as this is the

configuration with the minimal maintenance cost. In contrast, setting α = 1 leads to the

configuration with the best overall forecast error regardless of the maintenance cost. In this

experiment, we execute our greedy approach using the whole electricity data set while in-

creasing α from 0 to 1. Figure 7(b) presents the average forecast error and the maintenance

cost of the final configuration. In the beginning, with only little additional maintenance

cost we get a high improvement of the average forecast error. The reason is that our greedy

approach always adds those models first that lead to the highest improvement. As α gets

higher the number of additional models increases but the error improvement decreases. To

conclude, with a small value of α we get the best improvement of the forecast error with

low additional maintenance cost. A very high α leads to the best overall forecast error,

however it might not be worse the maintenance cost. Nevertheless, for the energy data

set, a value of α = 1 leads to the creation of about 57% of the models where the average

forecast error beats the bottom-up and complete approach.

In addition, we examined different kind of workloads. For this, we varied the number of

distinct elements addressed by the workload, the forecast horizon and the frequency of

forecast queries. The higher the number of distinct elements, the larger the search space.

Therefore, with a higher number of distinct elements, we tend to a higher number of mod-

els but also to a higher accuracy as we can exploit more disaggregation and aggregation

possibilities. An increase of the forecast horizon of the queries leads to a higher average er-

ror and decreasing maintenance costs for all data sets. Longer forecast horizons are harder

to predict at single time series level. Due to more robustness, the greedy algorithm favors

183



models at higher aggregation levels leading to lower maintenance costs. Last, we varied

the distribution of query frequencies by increasing the parameter z of a zipf distribution.

A high parameter implies a high frequency of only a few elements in the workload (high

skew) while a low parameter results in equal distribution of the frequencies (low skew).

With a high skew, we strongly prefer a few workload elements leading to the creation of

models favoring only those. However, the overall forecast error stays roughly constant as

the error is weighted with the workload frequencies (Definition 3).

5 Related Work

Related work can be found in three main areas: (1) existing approaches to integrate fore-

casting in database management systems, (2) hierarchical forecasting studies in forecasting

and economic literature and (3) materialized view selection.

Forecasting in DBMS Forecasting has already been successfully integrated into DBMS.

For example, within the Fa system [DB07] an incremental approach is proposed to build

models for a multidimensional time-series in which more attributes are added to the model

in successive iterations. Furthermore, the skip-list approach for efficient forecast query

processing [GZ08] proposes an I/O-conscious skip list data structure for very large time

series in order to enable the determination of a suitable history length for model building.

However, all approaches investigate how to efficiently find the best forecast model for one

specific forecast query using database techniques. We consider the problem of efficient

forecast query processing from a different point of view by addressing the interaction of

queries, which allows the reduction of the forecast error and maintenance cost by reusing

models. Agarwal et al. address the problem of forecasting high-dimensional data over

trillions of attribute combinations [ACL+10]. They propose to store and forecast only a

sub-set of attribute combinations and compute other combinations from those using high-

dimensional attribute correlation models. However, they select the sub-set manually for

historical importance and seasonality, while we propose an automatic approach to deter-

mine the optimal set of models to store. Then, their correlation models can be used as

disaggregation method in our approach.

Hierarchical Forecasting In contrast to our work, hierarchical forecasting considers only

a single hierarchy. In this context, the majority of the literature has focused on comparing

the performance of bottom-up forecasting (individual item forecasts are made directly

and aggregated) and top-down forecasting (forecasts are made at aggregate level and then

allocated to individual items). Some favor the bottom-up approach [ZT00, DWD76], other

the top-down approach [Fli99, NMB94] and some found no method to be superior for their

specific data set [FM92]. In addition, influencing factors of the superiority of one approach

over the other were investigated, e.g., quality of forecast method, correlation between

variables and forecast errors [Bar80]. In a recent work, bottom-up versus top-down was

investigated when the subaggregate series follows a first-order univariate moving average

MA(1) process [WVP09]. They found no significant difference in the accuracy of the

two strategies when the correlation between the subaggregate series is small or moderate.

However, all research empirically analyzes one specific data set and conclude for one of
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the two methods. In contrast, we propose an approach that quantifies different solutions

and also allows for mixed solutions. In addition, existing approaches focus on accuracy

only, while we take maintenance cost into account as well. This allows for faster query

processing and a lower system load as maintenance time of models is reduced.

Materialized View Selection There is a high amount of work in the area of materialized

view selection [ACN00, BPT97, SDN98]. For example, in [BPT97] two techniques are

proposed, which reduce the number of views to consider for materialization (based on

query benefit, dependent views and the size of the materialized view). The general problem

is the same – for a given workload find the optimal set of materialized views with minimal

query and maintenance cost. However, the model selection problem strongly differs from

the materialized view selection problem, as a second dimension – the forecast accuracy –

is introduced. In addition, different derivation schemes are used in model selection, i.e.,

disaggregation. Therefore, we cannot apply existing techniques directly.

6 Conclusion and Future Work

In this paper, we introduced the problem of physical design of time series forecast models

in a multi-hierarchical data-warehouse scenario. We defined the two-dimensional opti-

mization problem of minimizing the forecast accuracy and maintenance cost. On the one

hand, we generalized the problem of finding the best hierarchical structure addressed in

forecasting literature. On the other hand, we additionally include maintenance cost ad-

dressing evolving time series. Our solution consists of a greedy enumeration approach

and different heuristics, which might reduce the time consumption of the offline design al-

gorithm. In our experimental evaluation, we used three data sets to show that we can find

the configuration, which reaches a high accuracy while using as less models as possible.

This paper is part of an on-going research about physical design of forecast models inside

a database. We started to analyze the physical design from an offline point of view. How-

ever, an important question is how this structure should be maintained when time series

characteristics change, i.e., online physical design. In detail, we need to consider three

different types of maintenance. First, maintenance of the model state and disaggregation

keys, which is cheap and can be done incrementally every time a new tuple arrives. Sec-

ond, maintenance of model parameters, which is expensive and therefore could be trigged

either time or threshold based. Third, maintenance of the model pool itself. For the last

case, we need to monitor the real workload, maintenance cost and accuracy of different

forecast models. Depending on these statistics, we might decide to drop a model, which

has not been worthwhile or to create a new model to improve forecast accuracy.
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[BBD+10] H. Berthold, M. Böhm, L. Dannecker, F.-J. Rumph, T. B. Pedersen, C. Nychtis, H. Frey,
Z. Marinsek, B. Filipic, and S. Tselepis. Exploiting renewables by request-based bal-
ancing of energy demand and supply. In IAEE, 2010.

[BPT97] Elena Baralis, Stefano Paraboschi, and Ernest Teniente. Materialized Views Selection
in a Multidimensional Database. In VLDB, 1997.

[Cha00] Chris Chatfield. Time-Series Forecasting. Chapman & Hall, 2000.

[DB07] Songyun Duan and Shivanath Babu. Processing Forecasting Queries. In VLDB, 2007.

[DWD76] D.M. Dunn, W.H. Williams, and T.L. DeChaine. Aggregate Versus Subaggregate Mod-
els in Local Area Forecasting. Journal of the American Statistical Association, 71:68–
71, 1976.

[Fli99] Gene Fliedner. An investigation of aggregate variable time series forecast strategies
with specific subaggregate time series statistical correlation. Computers & Operations
Research, 26:1133–1149, 1999.

[Fli01] Gene Fliedner. Hierarichal forecasting issues and use guidelines. Industrial Manage-
ment & Data Systems, 101:5–12, 2001.

[FM92] Eugene B. Fliedner and Vincent A. Mabert. Constrained Forecasting: Some Implemen-
tation Guidelines. Decision Sciences, 23:1143–1161, 1992.

[FRBL10] Ulrike Fischer, Frank Rosenthal, Matthias Boehm, and Wolfgang Lehner. Indexing
Forecast Models for Matching and Maintenance. In IDEAS, 2010.

[GS90] Charles W. Gross and Jeffrey E. Sohl. Disaggregation methods to expedite product line
forecasting. Journal of Forecasting, 9:233–254, 1990.

[GZ08] Tingjian Ge and Stan Zdonik. A skip-list approach for efficiently processing forecasting
queries. VLDB, 2008.

[KR02] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit. Wiley, 2002.

[MER10] The MeRegio Project, 2010. http://www.meregio.de/en/.

[NMB94] S.L. Narasimhan, D.W. McLeavey, and P. Billington. Production Planning and Inven-
tory Control. Allyn & Bacon, 2 edition, 1994.

[Ora10] Oracle. Oracle OLAP DML Reference: FORECAST - DML Statement, 2010.

[Pre10] PredictTimeSeries – Microsoft SQL Server 2008 Books Online. http://msdn.
microsoft.com/en-us/library/ms132167.aspx, 2010.

[SDN98] Amit Shukla, Prasad Deshpande, and Jeffrey F. Naughton. Materialized View Selection
for Multidimensional Datasets. In VLDB, 1998.

[TRA10] Tourism Research Australia - National Visitor Survey, 2010. http://www.ret.
gov.au/tourism/tra/domestic/national/Pages/default.aspx.

[US110] US EIA - International Energy Statistics, 2010. http://tonto.eia.doe.gov/
cfapps/ipdbproject/IEDIndex3.cfm?tid=2&pid=2&aid=2.

[WVP09] Handik Widiarta, S. Viswanathan, and Rajesh Piplani. Forecasting aggregate demand:
An analytical evaluation of top-down versus bottom-up forecasting in a production plan-
ning framework. International Journal of Production Economics, 118:87–94, 2009.

[ZT00] Arnold Zellner and Justin Tobias. A Note on Aggregation, Disaggregation and Fore-
casting Performance. Journal of Forecasting, 19:457–469, 2000.

186



Online Hot Spot Prediction in Road Networks
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Abstract: Advancements in GPS-technology have spurred major research and devel-
opment activities for managing and analyzing large amounts of position data of mobile
objects. Data mining tasks such as the discovery of movement patterns, classification
and outlier detection in the context of object trajectories, and the prediction of future
movement patterns have become basic tools in extracting useful information from such
position data. Especially the prediction of future movement patterns of vehicles, based
on historical or recent position data, plays an important role in traffic management and
planning.

In this paper, we present a new approach for the online prediction of so-called
hot spots, that is, components of a road network such as intersections that are likely
to experience heavy traffic in the near future. For this, we employ an efficient path
prediction model for vehicle movements that only utilizes a few recent position data.
Using an aggregation model for hot spots, we show how regional information can be
derived and connected substructures in a road network can be determined. Utilizing
the behavior of such hot spot regions over time in terms of movement or growth, we
introduce different types of hot spots and show how they can be determined online. We
demonstrate the effectiveness of our approach using a real large-scale road network
and different traffic simulation scenarios.

1 Introduction

Driven by major advancements in GPS-based technologies, position data of mobile ob-
jects have become ubiquitous. Through tracking systems for vehicles, persons, and even
animals, enormous amounts of object trajectory data are being collected and subject to
various data mining tasks. The objectives of these tasks include the discovery of (peri-
odic) movement patterns, the classification of objects based on their trajectories, and the
prediction of future movement patterns based on the objects’ historical trajectories (see the
tutorial by Han et al. [HLT10] for an excellent overview).

In the past couple of years, especially the analysis of traffic data has been of great interest
as results obtained by analyzing past and current vehicle position data provide impor-
tant input to traffic management, control, and planning. One key feature of respective
approaches is the detection of hot spots, that is, road segments and intersections that expe-
rience a high load of traffic and thus require special attention in traffic management.

One can roughly distinguish three classes of approaches to the discovery of hot spots,
based on what object position data is used and whether the detection refers to past, cur-
rent, or future hot spots. The first class of approaches apply real-time monitoring where
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only current vehicle position data is used to determine hot spots based on the density of
vehicle positions on a given road network. This approach, where no predictions are made,
is employed by several online traffic monitoring systems. The second class of approaches
perform an analysis of historical trajectory data to determine (periodic) hot spots that oc-
curred in the past and make predictions of future hot spots that likely occur, e.g., during
rush hour [JYZJ10, LHLG07]. The third class utilizes only current position data, perhaps
including a few previous object position data, and they try to predict near future vehicle
paths and hot spots (e.g., [KRSZ08]). Especially this class is of interest in online scenar-
ios where no information about historic object trajectories is available and near time traffic
predictions have to be made to mitigate congestion in a timely manner.

In this paper, we present such an online approach for the prediction of near future traffic
hot spots based on recent positions of vehicles moving in a road network. Our approach
does not require historic object trajectories but makes predictions based on direction in-
formation derived from the most recent and current positions of vehicles, similar to the
approach by Kriegel et al. [KRSZ08]. Through the prediction of possible future positions
of vehicles, nodes in the road network (representing, e.g., intersections) are assigned a
weight that reflects the likely traffic intensity within a specified time horizon. Instead of
just focusing on such so-called hot spot nodes, our interest is in the discovery of regional
information about hot spots, e.g., structures composed of an intersection and roads leading
to that intersection. For this, we introduce a subgraph-based approach, with subgraphs
being part of the underlying road network, to describe predicted hot spots in a more com-
prehensive and intuitive manner. We also introduce different types of hot spots based on
the evolution of respective subgraph structures over time. For example, one can predict
that a hot spot grows over time or that a hot spot moves in a particular direction. Re-
spective results are obtained based on successive predictions of hot spots. We evaluate the
efficiency and effectiveness of our approach to hot spot prediction using a real large-scale
road network and simulated traffic scenarios. In summary, the paper makes the following
contributions:

• An efficient approach to predict a vehicle’s near time future positions based only on
the very recent past positions.

• An online prediction approach to determine near future hot spot nodes that likely
will experience heavy traffic, based on predicted future locations of vehicles.

• An aggregation model for hot spot nodes to determine regional structures in a road
network and the evolution of such predicted hot spot structures over time.

• An extensive evaluation of our framework based on a real-world road network with
more than 170,000 nodes and up to 10,000 vehicles in different traffic scenarios.

The rest of the paper is structured as follows. After a review of related work in the fol-
lowing section, in Section 3 we detail our online approach for predicting future positions
of objects and how to derive hot spot nodes from such a prediction. In Section 4, we then
discuss how regional patterns can be formed from hot spot nodes, and we introduce dif-
ferent types of hot spots based on their behavior over time. After the presentation of an
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evaluation of our approach using a real-world road network and simulated traffic data in
Section 5, we conclude the paper with a summary and outlook in Section 6.

2 Related Work

Research on path prediction for moving objects has been conducted for some time already,
e.g., by Pelanis et al. in [PvJ06] and Tao et al. in [TFPL04]. These approaches, however,
do not consider an underlying road network that restricts the possible movement of objects.
More recently, approaches for path prediction of moving objects in road networks have
been proposed by, e.g.,Kim et al. in [KWK+07] and Jeung et al. in [JYZJ10]. The work
in [KWK+07] assumes that the objects’ destinations are known, which is in contrast to our
approach. In addition, both approaches, and also many others that predict motion paths
in road networks, utilize the complete historical trajectories of all moving objects to infer
common movement or turning patterns. Our prediction instead uses a simple heuristic
based on only a few of the most recent object positions to identify positions that moving
objects will likely travel to in the near future, as existing path prediction approaches are
prohibitively expensive and thus cannot be used in an online fashion in large-scale road
networks with high numbers of moving objects.

As our focus is on the identification of regions with heavy traffic, our work also relates
to the detection of moving clusters [KMB05], convoys [JYZ+08], and flocks [GvK06].
All of these moving object patterns require at least a minimum number of moving objects
to be within a certain distance from each other. We use the same requirement during
the detection of hot spots. The moving object patterns listed above are usually identified
while, or even after, they appeared, as no methods for their prediction have been proposed,
yet. However, we are able to utilize methods for analyzing the evolution of convoys, as
proposed by Aung and Tan in [AT10], in order to identify different types of hot spots, like
growing or moving hot spots.

The detection of hot routes and hot spots in road networks has been addressed by Li et
al. in [LHLG07] and Liu et al. in [LLN+10] respectively. Both approaches provide an
analysis of the current traffic situation, and thus do not perform a prediction but rather a
detection of hot spots.

Most similar to our work is the approach by Kriegel et al. in [KRSZ08], where they intro-
duce a method for traffic density prediction in road networks. The approach in [KRSZ08]
uses a statistical traffic model to predict the traffic density of any edge in the road network
for a given prediction time, which can be either a specific point in time in the future, or
a time interval of certain length. Predictions done by our approach always refer to a time
interval, not a specific future point in time. In addition, we predict traffic intensity on
nodes instead of edges and use a different weighting function. Nevertheless, the traffic
density in the road network predicted by the approach in [KRSZ08] is very similar to our
concept of weights that are assigned to each node in the network to represent the predicted
traffic intensity. Our approach goes one step further and considers regional aspects of hot
spots by identifying hot spot regions in the form of concrete subgraphs structures in the
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road network. Overall, our approach is not tailored as much to predictions for longer peri-
ods of time as [KRSZ08] is, but instead focused on an efficient and scalable approach for
predicting regional hot spots and their evolution in the near future.

3 Prediction of Traffic Intensity

The prediction of hot spots requires knowledge about locations that moving objects are
likely to visit within some future time window. We need to infer this information from the
trajectories observed thus far, as we assume that there is no information available about
future routes or destinations of moving objects. We therefore now present a method that,
at a given point in time, predicts the traffic intensity at all intersections in a road network
for a time interval of a certain length. Based on this prediction, locations that are likely
to be visited by a high number of moving objects within the given time interval can be
identified and processed for further exploration.

In the following Section 3.1, we first explain our setting, i.e., the road network and moving
objects. We then detail our approach for traffic intensity prediction in Section 3.2. Methods
to infer hot spots from the traffic intensity prediction are discussed in Section 3.3.

3.1 Road Network and Moving Objects

Similar to [JYZJ10], we model a road network as an undirected graph G = (V,E,D),
where V is the set of vertices, i.e., connections between two or more road segments, E is
the set of edges, i.e., road segments, and D is a function that maps each edge to a set of
descriptive attributes, such as the speed limit of road segments. Note that road segments
could also be modeled as directed edges that indicate, e.g., one-way roads or roads where
the speed limit differs for the two directions. Our approach could be easily applied to a
directed graph as well.

A set of objects O is moving within the road network. Each such moving object o ∈ O has
an associated unique identifier and an associated trajectory T (o) containing its previously
observed locations. We assume a synchronized model where moving objects report their
location periodically at times t−n, . . . , t−1, t0, t1 . . ., with n ∈ N, where t0 denotes the
current point in time, times with negative subscript are in the past, and times with positive
subscript are in the future. We denote each such time ti a time step. The duration between
two consecutive time steps ti and ti+1 is called the step size, which is application specific
and can range from fractions of a second to minutes, or even hours, although the latter
is uncommon in road network applications. When a moving object reports its location at
time ti, it is of the form of a measurement li(o) = (xi(o), vi(o), ti), where xi(o) is o’s
position and vi(o) is its velocity. An object’s position is usually a 2-dimensional vector
containing longitude and latitude information, and we assume it to be on an edge or vertex
in the road network.

Overall, the trajectory of an object o ∈ O is an ordered list of measurements, i.e., T (o) =
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〈(x−n(o), v−n(o), t−n), . . . (x−1(o), v−1(o), t−1), (x0(o), v0(o), t0)〉, where t−n is the
oldest time step and thus represents the first measurement reported by object o. For our
approach, it is not necessary to store the entire trajectory T (o) of an object o. The two
most recent measurements of each object are sufficient for the OPS approach. Note that a
trajectory contains measurements up to the current time step t0, but no information about
the object’s future positions. Predicting likely positions of an object within a certain time
horizon in the future is part of our proposed method.

In a practical setting, the trajectories our approach uses for hot spot prediction represent a
sample of all cars moving in the road network at any given time. As we will demonstrate
in the evaluation in Section 5, a sample of all moving objects yields similar prediction
results as the full set of moving objects would.

3.2 The OPS Approach

We now present OPS, an approach for Online Prediction of Hot Spots. Given trajectories
T (o) for all objects o ∈ O at the current point in time t0, our goal is to predict the nodes
in the road network that these objects will likely visit within the next h time steps, i.e.,
in the time interval [t0, th]. We predict these nodes separately for each object and denote
the predicted set of nodes at time t0 as A0(o). Note that each A0(o) is a subset of all
vertices in the road network, thus A0(o) ⊆ V , and A0(o) may be different for each object.
In addition, a weight w0(v, o) ∈ [0, 1] needs to be determined for each node v ∈ A0(o)
that indicates how likely it is for o to visit v. These weights are an essential aspect of the
OPS approach, as nodes in A0(o) should not all contribute equally to the traffic intensity
prediction, but based on how likely they actually are part of the future path of a moving
object. By aggregating the weights w0(v, o) that all objects o ∈ O contribute to a node v,
the overall weight w(v) for v is known, which is an estimator for its traffic intensity within
the next h time steps.

A hot spot that is predicted at time t0 is a part of the road network where a significant
number of objects o ∈ O are likely to be located in the time interval [t0, th]. A hot spot
node is therefore defined as a node v ∈ V having a weight w(v) that is relatively high with
respect to the weights of most other nodes. We infer hot spot nodes based on the weights
w(v) as a last step in the presented approach (cf. Section 3.3).

In the next paragraphs, we will detail individual aspects of the algorithm, i.e., assigning
and updating the weights w(v) at each time step and extracting hot spot nodes based on
the weights of all nodes. The complete OPS approach is given in Algorithm 1.

Weight assignment For each object o, a weight w0(v, o) that is greater than zero is only
assigned to vertices that are likely to be visited by o within the next h time steps. In order
to determine the subset of nodes that might be affected, i.e., the set A0(o) ⊆ V , we first
perform a coarse prediction of o’s path during the next h time steps as follows (cf. lines
9–14 of Algorithm 1).

Let d0(o) = x0(o) − x−1(o) be o’s direction of movement at time t0. Then, xh(o) =
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Input: graph G = (V,E,D), trajectories T (o) for each o ∈ O, time horizon h
Output: set hn(t0) of all hot spot nodes predicted at the current time t0
foreach v ∈ V do // initialization1

w(v) = 0;2

c(v) = ∅;3

foreach new time step do4

foreach moving object o ∈ O do5

foreach v ∈ A−1(o) where d0(o) · (x(v)− x0(o)) < 0 do // remove6

weights
w(v)− = c(v)[o];7

remove o from the set c(v)8

// compute new A0(o)
xh(o) = x0(o) + h · v0(o) · (x0(o)− x−1(o));9

x′h(o) = node v ∈ V closest to xh(o);10

x′0(o) = node v ∈ V closest to x0(o) in direction of o’s movement;11

A0(o) = all nodes visited by A∗ (x′0(o),x
′
h(o)) ;12

foreach v ∈ A0(o) do // assign and update weights13

w0(v, o) = 1− (cost(x′0(o), v)/cost(x
′
0(o),x

′
h(o)));14

w(v) += w0(v, o);15

c(v)[o]+ = w0(v, o);16

mean = mean of weights w(v), ∀v ∈ V ;17

std = standard deviation of weights w(v), ∀v ∈ V ;18

foreach v ∈ V do19

if w(v) ≥ mean + 3 ∗ std then20

add v to the set hn(t0);21

return hn(t0)22

Algorithm 1: OPS approach to determine hot spot nodes in the road network G

x0(o) + h · v0(o) · d0(o) is the point in space that object o travels to within the next h
time steps, assuming omaintains its current direction of movement and velocity. As xh(o)
is not necessarily on the road network G, we map it to the closest vertex in G, denoted
x′h(o), by performing a nearest neighbor search. As we only consider vertices for our
traffic intensity prediction, we also need to map o’s current location to the closest node
x′0(o) in G, which we do by finding the vertex that is closest to x0(o) towards d0(o).
Figure 1 depicts an example scenario. The reported locations of o at time steps t−1 and t0
are marked by blue rectangles, as is the predicted location at time th. In addition, nodes
x′0(o) and x′h(o), i.e., the vertices in the road network that x0(o) and xh(o) were mapped
to, are marked by green triangles. Object o’s direction of movement d0(o) is depicted
as a blue arrow. Note that there are other options to compute d0(o), e.g., as the average
direction of the k most recent time steps.

Given x′0(o) and x′h(o), i.e., the start and end nodes of o’s movement during the next h
time steps, we find the set A0(o) of likely visited vertices using the routing algorithm
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A∗ [HNR68]. A∗ performs a best-first search to find the lowest-cost route from x′0(o)
to x′h(o). To compute the cost cost(v1, v2) for the route between two nodes v1 and v2,
function D of the graph is used to determine the speed limit of each road segment. Thus,
the lowest-cost route found by the A∗ algorithm is the fastest route. A∗ uses heuristics to
cut off the search on paths that are not likely to contribute to the fastest route. Thus, all
nodes visited by A∗ are in the vicinity of the fastest route and thus likely to be visited by
o during the time interval [t0, th]. Hence, all nodes visited by A∗ during the computation
of the fastest route from x′0(o) to x′h(o) are in the set A0(o), and thus, ∀v ∈ A0(o):
w0(v, o) > 0. In Figure 1, these nodes are marked by filled black circles.

The value of each weight w0(v, o) at time t0 should indicate how likely o is to visit v
within the next h time steps. Nodes that can be reached from the known start node x′0(o)
within a short amount of time are more likely to be visited, because the object o may
change direction or velocity at some point in time ti < th and thus our predictions for
likely visited nodes become less accurate as the time traveled by o since t0 increases.
Nodes in A0(o) that can be reached faster by o are therefore assigned a higher weight than
those where o takes longer to reach them. We compute the weight w0(v, o) of each node
v ∈ A0(o) as follows:

w0(v, o) = 1− cost(x′0(o), v)

cost(x′0(o),x
′
h(o))

(1)

That is, the assigned weightw0(v, o) decreases as theA∗-based cost between the start node
and v increases. Note that ∀v ∈ A0(o) \ x′h(o): cost(x′0(o), v) < cost(x′0(o),x

′
h(o)),

as A∗ performs a best-first search and thus no node in A0(o) can have higher cost with
respect to start node x′0(o) than node x′h(o). Therefore, w0(v, o) ∈ [0, 1] always holds.
In the example in Figure 1, nodes v1 and v2 are two of the nodes that are assigned a
weight by object o at that time. The weight assigned to v1 is higher than that for v2, i.e.,
w0(v1, o) > w0(v2, o).

Weight update Weight assignment is performed at every time step right after new mea-
surements arrive from all moving objects. It is therefore necessary to update the weights
of all nodes v ∈ V , specifically to aggregate weights wi(v, o) that are assigned at different
time steps, and to rewoke weights that were contributed by objects that, at time t0, are no
longer likely to visit v (cf. lines 6–8 and 15–16 of Algorithm 1).

At every point in time, the weight w(v) of a node v is the sum of all weights wi(v, o),
i.e., the weights that all objects have contributed for node v. We use the set c(v) to keep
track of all objects that contributed to w(v). If an object o repeatedly contributes a weight
greater than zero to node v, i.e., v ∈ Ai(o) holds, in consecutive time steps ti, these
weights are added up instead of just counting the most recent weight that o contributed to
v. This is because summing up the assigned weights over several consecutive time steps
provides for a traffic intensity prediction that spans more than one time step, and thus
helps to identify “popular” nodes. This aspect of the OPS approach is in contrast to most
existing approaches, which mostly operate on snapshots and do not take the previously
discovered popularity of locations into account. That is, other approaches start over every
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x0(o)

xh(o)

x′0(o)

x′h(o)

v1
v2

Figure 1: Example scenario depicting weight assignment, update, and revocation in OPS

time a prediction is done and thus disregard previously obtained information about the
popularity of locations, whereas OPS maintains this information and uses it to reinforce
the expressiveness of the prediction. This is because if an object o repeatedly assigns
weights greater than zero to a node v in consecutive time steps, it indicates that it becomes
more and more likely for o to visit v.

However, adding up all weights continuously does not yield an accurate prediction for the
future traffic intensity, as the sum of all weights contributing to a node’s overall weight
w(v) simply represents v’s all-time likelihood to be visited by moving objects. We there-
fore revoke weights contributed by certain objects, to account for the event that an ob-
ject o is not likely any more to visit v. Specifically, at time t0, all weights wi(v, o) that
were contributed by nodes v /∈ A0(o) at time steps ti < t0 should be subtracted from
w(v). Note that we store the sum of all weights contributed to a node v by object o in
c(v)[o]. Consider an example where an object o contributed the following weights to node
v: w−3(v, o) = 0, w−2(v, o) = .35, w−1(v, o) = 0.2, and w0(v, o) = 0. Thus, at t0, a
total weight of .35 + 0.2 = 0.55 should be subtracted from w(v).

Revoking weights in this fashion requires to determine for each object o all nodes v for
which v /∈ A0(o) and v ∈ A−1(o) hold, i.e., nodes that are not an element ofA0(o) at time
t0, but have been an element of A−1(o) at time t−1. In order to do this, one would have
to store A−1(o) and compute the set difference A−1(o) \ A0(o) for all objects o, which,
for large graphs, requires a lot of additional memory and is computationally expensive.
Therefore, we instead use an efficient heuristic to determine nodes where weights need to
be revoked. The basic idea is depicted in Figure 1. The dashed red line is perpendicular
to object o’s direction of movement d0(o) and crosses at o’s current location x0(o). All
nodes v located in the shaded area below the dashed line have already been “passed” by
object o and are thus not likely to be visited by o in the (near) future. Specifically, object
o either did visit the nodes in the shaded area already or it could have visited them using a
shorter route before t0, as visiting any of these nodes now, i.e., after time t0, would require
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Figure 2: Traffic intensity prediction for an example data set at time t0 = 7:30am on June 20th,
2010, using h = 120

o to take a detour, which is much less likely.

For nodes v that are located in the shaded area, the following inequality holds:

d0(o) · (x(v)− x0(o))

|d0(o)| × |x(v)− x0(o)|
< 0 ⇔ d0(o) · (x(v)− x0(o)) < 0 (2)

Thus, at time t0, we revoke weights from all nodes v ∈ A−1(o) for which inequality 2
holds. Such nodes are marked by empty circles in the example in Figure 1. Note that x(v)
in the above inequality denotes the position of vertex v. Checking if weights need to be
revoked can be done at the beginning of each time step, i.e., before the new set A0(o) is
computed for all moving objects. Then, this step does not require any additional memory,
as A−1(o) is still present at the beginning of a time step, and can be overwritten by A0(o)
once all nodes v ∈ A−1(o) have been checked according to inequality 2.

3.3 Identification of Hot Spot Nodes

After updating the weights w(v) of all nodes v ∈ V in the road network at time t0, one
needs to analyze the distribution of weights over the road network in order to identify hot
spot nodes. Figure 2 depicts the weights assigned to all nodes in a given road network
at a specific point in time t0 = 7:30am based on an example data set of trajectory data.
As is obvious from the figure, it is easy to identify areas in the road network where an
exceptionally high traffic intensity is predicted for time interval [t0, th] (h = 120 in the
figure). Vertices having a high weight stand out as peaks, and thus one can identify a total
of three hot spots in the example in Figure 2.

While the visual identification of hot spots is straightforward, a more formal definition of
hot spots is needed in order to automatically extract them from the set of all nodes in G.
A hot spot is comprised of a single vertex, i.e., it is a hot spot node, or a set of connected
vertices in the road network. The latter group of hot spots is discussed in Section 4, as
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several different types of such hot spots can be distinguished. In the following, we show
how to identify hot spot nodes based on all weights w(v).

Definition 3.1 (Hot Spot Nodes) A hot spot node predicted at time t0 is a vertex v ∈ V
that fulfills the following two properties:

1. The weight w(v) of node v is significantly higher than the weight of most other ver-
tices in the road network, based on some measure.

2. At least minMO distinct moving objects o ∈ O contributed to v’s weight w(v), i.e.,
|c(v)| ≥ minMO holds.

We refer to the set of all hot spot nodes predicted at time t0 as hn(t0).

The second property above ensures that a hot spot node is indeed likely to be visited by a
sufficiently large number of moving objects. This is very similar to the detection of moving
clusters, where a minimum number of objects is required in order to constitute a cluster.
Regarding property (1), different methods can be applied to identify high weights, such
as a threshold δ, which may be fixed or adjustable based on network density and number
of present moving objects, or outlier detection approaches, which are perfectly suited to
detect weights that are significantly higher than those of most other vertices.

In the OPS approach, we use an efficient outlier detection method from [FPP97] that labels
all nodes v as outliers having a weight w(v) that is more than three standard deviations
above the mean weight of all nodes v ∈ V (cf. lines 17–22 of Algorithm 1). All such
nodes are added to the set hn(t0) of hot spot nodes at time t0. Of course, depending on
the desired application and the computational resources available, other outlier detection
approaches may be used. However, the basic method used in the OPS approach proved to
be sufficient, as we demonstrate in the evaluation in Section 5.

The set hn(t0) of hot spot nodes is updated at every time step to reflect the traffic intensity
predicted in the road network at time t0. That is, each node v ∈ hn(t0) is predicted to
experience an amount of traffic in the time interval [t0, th] that is significantly larger than
the amount of traffic that will be observed at most other nodes in the road network, and
thus we expect the number of moving objects visiting v to be very high compared to the
number of objects visiting other nodes in the road network.

4 Regional Hot Spots and Hot Spot Patterns

Although hot spot nodes already provide some interesting information about parts of the
road network, e.g., intersections that likely will experience high traffic in the near future,
there can be many such nodes at any given time. Relationships among hot spot nodes and
in particular their aggregated future evolution is not that obvious. To address these issues,
in the following section, we present a simple clustering approach for hot spot nodes to
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determine more meaningful subgraph structures that convey regional information. Using
such subgraphs, in Section 4.2, we then introduce different types of predicted hot spot
patterns in a road network in terms of their evolution over time.

4.1 Regional Hot Spots

Given a set of hot spot nodes hn(t) determined at time t, which typically corresponds to
the current time t0. To provide the user an aggregated view on these nodes and to better
determine structures and their evolution in future predictions, a set of subgraphs, denoted
hg(t) is derived from hn(t) as follows:

• each node v ∈ hn(t) belongs to exactly one subgraph g ∈ hg(t), and

• if two nodes v, v′ ∈ hn(t) are connected in the road network, i.e., (v, v′) ∈ E, then
v and v′ belong to the same subgraph g ∈ hg(t).

Thus, hg(t) is the set of connected subgraphs based on hot spot nodes hn(t), and the
subgraphs are naturally embedded in the road network (see Figure 3 for an example).
Subgraphs formed in this way naturally convey regional aspects of predicted hot spots.
Such a regional view, as part of the underlying road network, can be extended further by
allowing the formation of larger subgraph structures and thus regions. For example, two
subgraphs g, g′ ∈ hg(t) can be combined into a single subgraph if there exists a node
v 6∈ hn(t) and g, g′ are connected via v, as illustrated in Figure 3(c).

(a) Set of predicted hot spot
nodes

g

g′

(b) Subgraphs g and g′ derived
from hot spot nodes

v

(c) Two subgraphs connected
via a non-hot spot node v

Figure 3: Subgraphs (b. and c.) derived from hot spot nodes (a.) in a road network

Recall that with each node in a subgraph g ∈ hg(t) a weight above a certain threshold
is associated (cf. Section 3.3). Using an appropriate visualization, e.g., such as the one
shown in Figure 2, interesting patterns can emerge from subgraph structures. For exam-
ple, a subgraph may represent an intersection (with a predicted high traffic) with road
segments leading to that intersection node and respective nodes of the road segments hav-
ing a decreasing weight the farther away they are from the intersection. The question that
remains, however, is how such patterns predicted at a point in time t now evolve over time,
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i.e., in subsequent predictions. This is an important aspect supported by our framework
and is discussed in the following section.

4.2 Hot Spot Pattern

A set of subgraphs representing regional aspects of predicted hot spots is determined at
each time step. Because of the continuous movement of objects in the road network, new
subgraphs can emerge, existing ones remain for a period of time or they evolve in terms of
expansion, shrinking, or movement. For example, a subgraph representing roads (or road
segments) leading to an intersection may grow over time, reaching some kind of peak,
and then shrinks until it disappears in the prediction of future hot spots. This is a typical
example of an evolving pattern that emerges, e.g., during rush hour.

In general, for decision purposes in traffic planing and management, it is important to study
the evolution of predicted regional hot spots over time, an important aspect not covered in
related work.

In the following, we introduce a framework to determine important hot spot patterns that
occur over time. For this, we assume a sequence of sets of subgraphs L = [hg(t−k),
hg(t−k+1), . . . , hg(t0)], k ≥ 2, which has been determined up to the current time t0. We
thus investigate hot spot patterns that occur in a time interval of length k + 1. Clearly, the
larger the interval, the more (stable) patterns can be determined. Typically, the size of the
interval is chosen as a multiple of the step size in the trajectory data.

The most simple type of a hot spot pattern is as follows:

Definition 4.1 (Strict Stationary Hot Spot) Let g be a subgraph of some set of subgraphs
hg(t) ∈ L. g is a strict stationary hot spot if for all hg(t′) ∈ L, g ∈ hg(t′).

In other words, the exact same subgraph has to appear at each point in time in the given
interval. This property is independent of possible variances of the weight of the nodes in
g for this time interval. An example of such a pattern is a shopping center or large parking
lot where vehicles stay for some time. Such type of patterns might be rare and perhaps
less interesting in a real world setting, as hot spots and subgraph structures, respectively,
are more likely to expand or shrink over time.

Definition 4.2 (Growing stationary hot spot) Let g be a subgraph of hg(t−k). g is said
to be a growing stationary hot spot if

1. there exists a subgraph gi in each hg(ti),−k ≤ i ≤ 0, s.t. g is a subgraph of gi, and

2. for each two such consecutive subgraphs gi, gi+1 from hg(ti) and hg(ti+1), respec-
tively, we have that gi is a subgraph of gi+1.

The concept of a shrinking stationary hot spot can be formulated in an analogous way,
here with g being a shrunken subgraph observed at time t0. These two types of hot spot
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patterns can also be combined to form a new pattern, first growing, then shrinking, in the
given interval. Such a pattern would then formalize the scenario we gave above describing
the evolution of traffic centered around an intersection.

The final structural pattern we introduce here are moving hot spots. Their concept is mo-
tivated by the following scenario. Assume a truck on a highway that cannot be passed
by other cars. Such a scenario relates to the leadership pattern described by Andersson
et al. in [AGLW08]. Over time, more and more cars will drive behind that truck that is
driving towards its destination, thus forming a hot spot that moves within the road net-
work. A precise formal definition of such a pattern, which we are only able to discover in
a very restricted setting in our system, is a little bit more involved as several parameters
can be introduced to tailor the properties of such a pattern. But, in general, a subgraph
g ∈ hg(t−k) representing such a hot spot is moving if at least l nodes of g can be found
in a subsequent subgraph g′ ∈ hg(t−k+1), and again for this subgraph g′ at least l nodes
can be found in a subsequent subgraph g′′ ∈ hg(t−k+2), and so on. Parameter to this
pattern then is the number of nodes that must be shared among subgraphs in consecutive
timestamps.

The patterns of predicted hot spots described thus far give a fairly comprehensive regional
view of patterns in terms of parts of a given road network but they only consider structural
properties for a given (sliding) time interval. Recall that at each time step, in addition to
the weight of a node, we also maintain the set of objects that contributed to that weight
(cf. Section 3.2). This information can be explored as well in the context of the above
pattern. Here we only outline the basic idea. An example can be best illustrated in the
context of a moving hot spot. The leadership-like pattern mentioned above has the property
that mostly the same cars contribute to the weight of the nodes forming the pattern, as cars
cannot pass the truck. An example where the moving objects contributing to the hot spot
nodes of a pattern is not that homogeneous would be the case for the intersection. As
cars pass the intersection and new cars approach the intersection, the set of moving objects
contributing to respective hot spot nodes would not be as homogeneous as in the leadership
pattern.

We finally want to address the computational aspects regarding the discovery of predicted
hot spot patterns. Key to the complexity are (1) the size k + 1 of the interval (num-
ber of time steps, respectively) in which hot spot patterns are to be discovered and (2)
the number of subgraphs that have been determined for each element in the sequence
L = [hg(t−k), hg(t−k+1), . . . , hg(t0)]. Let L′ denote the set of subgraphs determined
at time point t1, which comprises [hg(t−n+1), . . . , hg(t0), hg(t1)]. If there is a subgraph
g corresponding to a stationary, growing, or moving hot spot in L, then it only has to be
checked whether there is a subgraph g′ in hg(t1) that is a respective continuation of g. In
contrast to this simple case, the more complex case for which all subgraphs in L′ have to
be processed is when there now is a subgraph in hg(t1) such that a new stationary, grow-
ing, or moving hot spot can be formed based on the subgraphs in L′. As we will show in
the following section for different traffic scenarios, the total number of subgraph structures
determined at each point in time is quite moderate, compared to the total number of hot
spot nodes. Thus, processing respective subgraph structures for an interval of length k+1
only requires minimal overhead. A key requirement, of course, is that based on the step
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size vehicle positions are obtained, the computation of hot spot nodes and structures at
each time step has to be done within a two steps sizes. That this requirement is satisfied
will be demonstrated in the following section.

5 Experimental Evaluation

We now present some experimental results evaluating the efficiency of the OPS approach
as well as properties of the predicted hot spot nodes and subgraph structures. As we use
synthetic data in the evaluation, we first provide details about the generated test data in
Section 5.1. We then present evaluation results regarding efficiency and the predicted hot
spots in Sections 5.2 and 5.3 respectively.

5.1 Test Data and Experimental Setup

We use synthetic trajectory data to evaluate the OPS approach, as this enables us to gener-
ate data in different scenarios. Trajectories were created using our moving object simulator
called Tragor (Trajectory generator on road networks), which simulates the movement of
cars on a world-wide road network obtained from OpenStreetMap [OSM]. In Tragor, dif-
ferent types of cars exist. Two of them are used in our experiments: destination cars drive
along the fastest route from a pre-defined start position to a pre-defined destination. In
contrast, random cars follow a random path by starting at a random position in the road
network and taking random turns at each intersection. Cars in Tragor always obey the
speed limit, which is provided as a property of each road segment in the OpenStreetMap
data set. We chose to use Tragor because it enables us to include different kinds of hot
spot patterns in our test data sets.

For each of our experiments, we generate sets of trajectories that contain the movement of
nd destination cars and nr random cars. Thus, each set has a total of n = nr +nd moving
object trajectories. We create hot spots by assigning each destination car one of e distinct
destinations, e� nd, such that the same number of destination cars is assigned to each of
the e destinations. Random cars are added as noise, since they will not contribute to any
hot spots due to their random movements.

For the simulation, we do not use the entire road network, but choose two different re-
gions of interest. The first region is the city of Berlin, Germany, which represents a dense
road network, and the second one is the German State of Brandenburg, which is much
more sparse than the Berlin road network. Thus, when generating trajectory data sets,
the moving objects are either moving on the Berlin road network, denoted BLN, or on
the Brandenburg road network, denoted BB. The BLN (BB) road network contains about
180, 000 (408, 000) nodes and covers roughly 340 (11, 380) square miles. We will indicate
the road network used in the description of the experiments below.

All experiments were conducted on a 16 core Intel(R) Xeon(R)E5520 @ 2.27GHz with
48GB of main memory running Debian Linux. The OPS approach was implemented in

200



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

100 1000 2500 5000 7500 10000

R
u

n
ti
m

e
 i
n

 s
e

c
o

n
d

s
 p

e
r 

it
e

ra
ti
o

n

Number of destination cars

h=60
h=120
h=180
h=300
h=600

(a) Runtime in terms of number of destination cars
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(b) Runtime in terms of random cars using nd = 1000

Figure 4: Runtime per iteration of OPS approach in BLN road network

Java.

5.2 Efficiency of OPS

In a first set of experiments, we evaluated the runtime of the OPS algorithm using 14
different sets of trajectories, seven each for the BLN and the BB road network. The test
data sets contain the trajectories of between n = 100 and n = 10, 000 moving objects, all
of them destination cars that drive to one of e = 10 pre-defined destinations. Trajectories
were generated for a period of one hour using a step size of 60 seconds, resulting in a
total of 60 measurements for each moving object. Hot spot prediction was done for five
different time horizons between 1 and 10 minutes. The results of these experiments are
shown in Figure 4(a) for the BLN road network.

Runtimes depicted in Figure 4(a) are the total time for processing all new measurements in
one time step, i.e., the runtime required for one iteration of the OPS approach. As can be
seen in the figure, the runtime of OPS grows linearly with the number of moving objects,
and is only slightly affected by the length of the prediction interval, i.e., the time horizon h.
Specifically, for h = 60 the runtime is 27 seconds, while the runtime for a ten-times larger
time horizon of h = 600 seconds has not even doubled, being less than 47 seconds. This
demonstrates that our approach is very scalable both in terms of the number of moving
objects and the length h of the prediction interval.

The efficiency of our approach is mostly due to the use of the A∗ algorithm for predicting
likely visited nodes and our heuristic for revoking weights. Only nodes that are relevant
for the hot spot prediction are considered during weight assignment and update, and thus
the total number of weights maintained in the graph over time is small, yielding a low
runtime. To evaluate this aspect further, we performed a similar set of experiments with
test data sets where we added random cars for noise. Specifically, we used nd = 1000
destination cars and added between nr = 500 and 9000 random cars, resulting in a total
number of moving objects of up to 10, 000, i.e., n = nd + nr = 1000 + 9000 = 10, 000.
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The results of this set of experiments are shown in Figure 4(b).

The increase of the runtime is similar to the one observed in the experiments using just des-
tination cars. However, two differences can be observed: (1) the individual runtimes are
higher than those in the respective previous experiments, and (2) the increase in runtime
becomes steeper as the ratio of random cars to destination cars increases. Both observa-
tions are caused by the random movement of the majority of the cars, i.e., all random cars.
Due to their random movement, each car o has very different sets Ai(o) of likely visited
nodes at each time step ti, resulting in more computational effort to maintain the weights
assigned to all nodes. This is because for a random car, a higher number of distinct nodes
get assigned weights, whereas destination cars tend to assign weights to a similar set of
nodes at each time step, resulting in a lower number of weights to be maintained overall.
We will demonstrate this fact in further experiments below. Regarding the second obser-
vation above, the additional computational effort due to the random cars becomes more
predominant when the ratio of random cars and destination cars increases, as is the case in
our experiments, where nd = 1000 is fixed and the number nr of random cars increases.

Both observations above support our claim that OPS is efficient because of its ability to
focus on nodes that are relevant to the hot spot prediction. Random cars interfere with
this approach by adding irrelevant weights and nodes, thus reducing the efficiency of OPS.
Runtimes for real-world trajectory data will usually be more similar to the ones shown in
Figure 4(a), as real-world cars rarely exhibit random movement patterns, but instead drive
fairly targeted to their destination.

We performed the same experiments as above, i.e., using just destination cars and using an
increasing number of random cars, for trajectories on the BB road network, and observed
runtimes that were 10 to 15 times faster than those for the BLN road network. This is
because the BB road network is much more sparse, resulting in a much lower number of
nodes being visited by the A∗ algorithm, and thus less computational effort overall.

To further explore the efficiency of OPS in terms of the number of weights that are assigned
to nodes, we collected additional measurements during the experiments described above.
Each node v in the road network keeps track of the moving objects that contributed to v’s
weight w(v). By summing up, over all nodes, the number of objects that contributed to
the node’s weight, we gain insights in how the number of destination cars and random cars
affects the distribution of weights in the road network. For this, we determined at the end
of each iteration of OPS the sum of how many distinct moving objects contributed to the
weight of each node. That is, we summed up the number of objects stored in the set c(v),
i.e., |c(v)|, over all v ∈ V . We denote this sum as

∑
(|c(v)|). In the following Figure 5,

the maximum value of
∑

(|c(v)|) out of all 60 iterations is given.

In Figure 5(a) it can be seen that for higher numbers nd of destinations cars and longer
prediction horizons h the sum of assigned weights increases. This is expected, as for
higher values of h a car is able to visit more nodes during the prediction time interval.
Additionally, we can observe in Figure 5(b) that for high numbers of random cars, the
number of assigned weights is 10 to 20 times higher than in a scenario with an equal
number of destination cars. This again supports our claim that the weight assignment
performed by destination cars, which behave very similar to cars in a real-world setting, is
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numbers of moving objects nd and nr

just destination cars

with random cars

0

1M

2M

3M

4M

5M

6M

7M

2,500 5,000 7,500 10,000av
er

ag
e 

n
u

m
b

er
 o

f 
ad

d
ed

 w
ei

g
h

ts

Number of moving objects

(a) Average number of cars that newly contributed to a
node’s weight in each iteration

just destination cars

with random cars

0

1M

2M

3M

4M

5M

6M

2,500 5,000 7,500 10,000av
er

ag
e 

n
u

m
b

er
 o

f 
re

v
o

k
ed

 w
ei

g
h

ts

Number of moving objects

(b) Average number of moving objects and nodes for
which weights where revoked in each iteration

Figure 6: Average number of weights that where added or revoked in each iteration of OPS

much more focused, yielding expressive weights at each node in the road network. Also,
the much higher number of assigned weights in the presence of random cars justifies the
increased runtime observed in the second set of experiments, whose results were depicted
in Figure 4(b).

We also kept track of how many objects newly contributed to a node’s weight in each
iteration and for how many objects weights were revoked from nodes. We again summed
up these values over all nodes. The results are depicted in Figure 6, and show the average
over all 60 iterations. These results are in line with all previous experiments, confirming
that random cars indeed exhibit a significant fluctuation in terms of the distinct nodes to
which they assign weights. Both Figures 6(a) and 6(b) show that in the scenarios with
a significant number of random cars, a much higher number of weights gets added and
revoked in each iteration, compared to scenarios where only destination cars move in the
road network.
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t10 t20 t30 t40
n |hn| |hg| |hn| |hg| |hn| |hg| |hn| |hg|

1000 319 51 383 52 526 56 638 50
2000 328 50 478 52 571 61 660 54
3000 358 46 502 48 625 52 683 49

Table 1: Number of predicted hot spot nodes and subgraphs using ε = 1 and minPts = 3

5.3 Evaluating Predicted Hot Spots

Next, we performed a set of experiments to evaluate the predicted hot spot nodes and
subgraphs. For this, we used test data sets containing n = nd = 1000, 2000, or 3000
destination cars that are driving to e = 10 distinct destinations in the BLN road network.
It is important to note that we derived the data sets with fewer objects from the data set
containing all 3000 moving objects, and thus, the hot spots should be similar throughout all
three data set. We again used a step size of 60 seconds and simulated traffic for one hour,
resulting in 60 measurements in each trajectory. All cars start at different positions, but as
each 10% of the present cars share a destination, we expect them to “meet” at major roads
and follow the same few access roads to any of the given destinations. In our experiments,
we determined hot spot nodes after 10, 20, 30, and 40 time steps using a time horizon
of h = 120 seconds. From the set of hot spot nodes, we derived according subgraphs as
detailed in Section 4.1 and depicted in Figure 3(c). That is, we consider two hot spot nodes
to belong to the same subgraph if they are connected directly or via at most one non-hot
spot node.

We used the well-known clustering algorithm DBSCAN [EKSX96] to derive the sub-
graphs. The distance measure we used is the number of “hops” in the road network, i.e.,
the number of edges one has to use in order to get from one node to another. Thus, using
ε = 1 in DBSCAN, we achieve exactly the kind of subgraphs we are looking for. We also
made use of DBSCAN’s minPts parameter, which controls the minimum number of nodes
that have to be contained in a subgraph in order for this subgraph to be considered a hot
spot region. We did this because heavy traffic usually spans more than one node, i.e., more
than one intersection in the road network. Thus, we used minPts = 3 and minPts = 5 in
our experiments. The results of these experiments are listed in Tables 1 and 2.

As is obvious from the figures, the number of predicted hot spot nodes and subgraphs does
not increase with increasing number of cars. This demonstrates that hot spots are reliably
predicted even for a sample of all moving objects, i.e., based just on the trajectories of 1000
or 2000 cars instead of all 3000. Our results also show that a reasonably small number of
subgraphs is derived from a fairly large number of predicted hot spot nodes. The figures
in Table 1, i.e., using minPts = 3, show that about 50 subgraphs are detected at any time.
These subgraphs represent groups of cars that are driving towards the same destination.
The individual groups either approach the destination from different directions, or they
are at different distances to the destination. That is, one groups is further away from the
destination than another, and thus they form separate hot spots.
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t10 t20 t30 t40
n |hn| |hg| |hn| |hg| |hn| |hg| |hn| |hg|

1000 319 5 383 6 526 4 638 5
2000 328 3 478 4 571 3 660 4
3000 358 4 502 4 625 2 683 4

Table 2: Number of predicted hot spot nodes and subgraphs using ε = 1 and minPts = 5

6 Conclusion and Future Work

In this paper we presented an approach for online prediction of hot spots in road networks.
As a first step, our OPS approach determines individual hot spot nodes by using an efficient
heuristic to predict the traffic intensity at all nodes in the road network. For this, likely
visited nodes are predicted for each moving object based on its two most recent positions.
Weights are assigned to each of the likely visited nodes such that the sum of all weights
for one node represents the expected traffic intensity at that node during a time interval of
length h starting at the time of prediction. Based on the hot spots nodes that are predicted
by OPS, we then inferred subgraphs that represent hot spot regions within the road network
and identified different types of hot spot patterns. In our extensive evaluation using a
real large-scale road network, we demonstrated the efficiency and effectiveness of our
approach, especially in terms of the number of considered nodes. We also presented an
evaluation of identified hot spot nodes and the according derived subgraphs.

As part of our ongoing work, we try to adjust the OPS approach to accommodate objects
with different reporting rates. In addition, we experiment with other path prediction ap-
proaches to determine if they provide better estimates for the likelihood that a moving
object will visit a certain node in the future. Such an adjustment to our approach may
further improve the prediction of location, extend, and intensity of hot spots. We also
currently work on predicting the life-span of hot spots as well as their evolution from one
type to another. This comprehensive prediction of hot spots in road networks may benefit
motorists as well as practitioners in application domains like logistics and urban planning.
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Abstract: Reliable cardinality estimation is one of the key prerequisites for effective
cost-based query optimization in database systems. The XML Query Graph Model
(XQGM) is a tuple-based XQuery algebra that can be used to represent XQuery ex-
pressions in native XML database management systems. This paper enhances previous
works on reliable cardinality estimation for XQuery and introduces several inference
rules that deal with the unique features of XQGM, such as native support for Structural
Joins, nesting, and multi-way merging. These rules allow to estimate the runtime car-
dinalities of XQGM operators. Using this approach, we can support classical join re-
ordering with appropriate statistical information, perform cost-based query unnesting,
and help to find the best evaluation strategy for value-based joins. The effectiveness of
our approach for query optimization is evaluated using the query optimizer of XTC.

1 Introduction

Native XML database management systems (XDBMSs) can only become a respected com-
petitor for relational-based XQuery evaluation engines, if they can make the most out of
the sophisticated join operators (Structural Joins and Holistic Twig Joins) and indexes (el-
ement, content, path, and hybrid indexes) that have been proposed in recent years. A
cost-based query optimizer is one of the most important parts of modern database systems
that generates alternative query execution plans (QEPs). Such plans can be judged based
on their expected execution costs. However, the most challenging task for the optimizer is
finding the cheapest plan.

Providing reliable cardinality estimates is key for efficient cost assignment. XQuery is the
predominant query language in native XDBMSs. Internally, query languages are repre-
sented as logical algebra expressions. The XML Query Graph Model (XQGM) [Mat09]
is a logical XQuery algebra serving as extension of the seminal Query Graph Model
[PHH92] and introduces an extended XQuery data model, supports query de-correlation,
and provides seamless support for Structural Joins (SJs) [AKJP+02] and Holistic Twig
Joins (HTJs) [BKS02].

Most surprisingly, almost all cardinality estimation frameworks for native XDBMSs only
deal with the estimation of XPath path cardinalities. Even though XPath covers an impor-
tant fragment of XQuery, restricting cardinality estimation to it is insufficient. To the best
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of our knowledge, the work of Teubner et al. [TGMS08] is the only one that tackles this
important problem in the context of relational XQuery engines. Even though many parts of
their approach can be transferred to native XDBMSs, further adjustments are necessary:
Amongst others, XQGM natively supports Full, Semi, and Outer SJs as logical algebra
building blocks.

1.1 Related Work

Cost-based query optimization in semi-structured database systems emerged in the con-
text of the Lore project [MAG+97]. In Lore, DataGuides [GW97] provide a simple means
for managing the cardinalities of unique paths in XML documents. XTC’s statistics man-
ager reuses this principle to provide the basic statistical information needed to bootstrap
our cardinality inference rules. If there are non-unique paths in an XML document, the
DataGuide is insufficient to provide the necessary information. In the course of time, many
researchers proposed concepts for estimating the path cardinalities in such situations, e. g.,
[AAN01, FHR+02, ZÖAI06, BEH+06, FM07, AH08]. These approaches are mostly fo-
cusing on estimation accuracy and on minimal space consumption of their data structures.
Even though path expressions are important building blocks of XQuery, these approaches
do not help to optimize more complex queries (see Section 2.2).

The early work of Sartiani [Sar03] claims to discuss cardinality estimation of FLWR ex-
pressions, but focuses mostly on for expressions.

Having a look at native XML database management systems that provide cost-based query
optimizers, e. g., Natix [FHK+02] or Timber [JAKC+02], shows that their cardinality es-
timation capabilities are restricted to cardinality estimation of simple path expressions.
To the best of our knowledge, MonetDB/XQuery, and its respective XQuery compiler
Pathfinder, is the only (non-native) XML database management system that supports
XQuery cardinality estimation [TGMS08]. They use the general approach of abstract
domain identifiers to estimate the value space that is taken by tuple items at runtime. As
their cardinality inference rules are strongly tied to their logical algebra, it cannot be di-
rectly used in the context of XQGM. In contrast, our work reuses their concept of abstract
domain identifiers, but introduces a novel set of inference rules that allow to gain reliable
cardinality estimates for XQGM instances.

1.2 Contribution

The contribution of this paper can be summarized as follows:

• We will derive a set of inference rules that allow to perform XQuery cardinality
estimation on XQGM instances.

• We will discuss the optimization of value-based joins, which especially require reli-
able estimates to choose the right join operator and join order to prevent bad plans.

• We describe how reliable cardinality estimates allow for cost-based query unnesting
in XTC.
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• We show that our inference rules provide reliable cardinality estimates for a wide
range of queries and support our cost-based query optimizer in providing linear
scalability for the XMark benchmark queries.

2 Preliminaries

Before we detail our inference rules, Section 2.1 briefly introduces XQGM, which is
our internal representation for XQuery expressions. Thereafter, Section 2.2 motivates
the importance of reliable cardinality estimation for efficient query evaluation in native
XDBMSs.

2.1 A Brief Introduction to XQGM

XQGM is the logical XQuery algebra of the XML Transaction Coordinator (XTC)
[HMB+10], which is our prototype of a native XDBMS supporting, amongst others, ACID
transactions and cost-based query optimization [WHdS10].

2.1.1 XQGM Data Model

Tuple

Item

Node Atomic Value Tuple Sequence

Attribute Node

Document Node

Element Node

Text Node

String

Numeric

Decimal Double Integer ...

1

0..*

1

1..*

Figure 1: The XQGM data model [Mat09]

The XQGM data model extends the XQuery Data Model (XDM) [FMM+07], which sup-
ports atomic values, items, and sequences as model primitives. The XQGM data model
supplements these primitives by tuples. More precisely, every XQGM data model object
is a tuple [Mat09]. Figure 1 depicts the UML diagram of the XQGM data model compo-
nents. An item can be (1) a node, (2) an atomic value, or (3) an ordered list of tuples, which
we denote as tuple sequence. Thus, tuple sequences can contain nested tuples. We refer to
a tuple sequence that contains exactly one tuple as a singleton tuple sequence and a tuple

209



that is formed by a single item is called a singleton tuple1. A singleton is always equal to
the unique element it contains. Moreover, a tuple sequence is an XQuery sequence, if and
only if it contains only singleton tuples or is equal to an empty sequence [Mat09]. Dur-
ing query evaluation, we postulate that only the final result must be an XQuery sequence,
whereas intermediate results must not conform to the XDM, but only to the XQGM data
model.

2.1.2 XQuery the XQGM Way

Before an XQGM instance is passed on to our cost-based query optimizer [WHdS10],
several algebraic rewrites are applied. One of the major challenges for native XML query
processing is bridging the gap between two completely different processing strategies:
node-at-a-time and set-at-a-time processing. Node-at-a-time evaluation is inherent to the
XQuery Core Language and follows a nested-loops-style evaluation approach (nested for
loops) that is similar to sub-selects in SQL [Mat07]. Even though it is not very efficient
in most cases, it can be beneficial in low-selectivity scenarios. On the other hand, set-at-
a-time query evaluation is employed by almost all SJ and HTJ algorithms and is in most
cases very efficient.

XQGM supports both processing strategies. After an initial translation of an XQuery ex-
pression into XQGM, query unnesting tries to iteratively replace path expressions by cas-
cades of (logical) SJs. During this rewriting process, further operators may be introduced,
e. g., outer join operators helping to preserve the correct output semantics for positional
predicates or for the return clause in the presence of empty sequences.

2.1.3 XQGM Example

Figure 2 illustrates an XQGM instance for the following query, which returns the author
names of book nodes whose price is larger than 1.99:

<result> {
for $b in doc("sample.xml")//book
where $b/price > "1.99"
return
<author>{ $b/author/text() }</author>

} </result>

In XQGM, there exists no direct connection between operators. Instead, every operator
contains so-called tuple variables that actually receive the tuple sequences emitted by
child operators. We distinguish between three different types of quantifiers: for (F), let
(L), and exists (E). The first and the second quantifier have a similar semantics as the
corresponding XQuery constructs: A for-quantified tuple variable iterates over the tuple
sequence it receives from its input. In contrast, let-quantified tuple variables deliver their
connected sequences at once. Finally, exists-quantified tuple variables are used to check
whether their inputs are non-empty tuple sequences.

1For the rest of this work, whenever the context is unambiguous, we just refer to it as singleton.
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Figure 2: Sample XQGM instance

Query evaluation starts at the left-most subtree (Document Access operator). The SJ op-
erator evaluates the structural predicate (descendant axis) between the virtual docu-
ment root and all book elements. Actually, SJ is a Semi Join operator, because only
the tuple variable that provides book elements is linked to the projection specification
(PROJ SPEC). The parent Select operator receives a tuple sequence of all book elements
and iterates over it: First, it sends the current evaluation context to the Access operator
associated with it via the exists-quantified tuple variable2. The Access operator selects
a sequence of all price element nodes that are children of the current (context) book
element and returns only those items that satisfy the predicate. Next, the Select opera-
tor passes the current context to the right-most Access operator that returns all author
nodes that are connected to the current context node via the child axis. For each match,
the parent Select operator evaluates the fn:text() function. Now, the Select operator,
which is at the heart of the query graph, can produce an output: It creates a new XML
element <authors>seq</authors>, if the sequence bound to the exists-quantified
tuple variable is non-empty, whereas seq represents the tuple sequence received by the

2In the graphical XQGM representation, the context passing is illustrated as a dashed line from the “sending”
tuple variable to the receiving operator.

211



let-quantified tuple variable. Finally, the top-most Select operator wraps its input in an
opening <result> and a closing </result> tag.

2.2 Problem Statement

Today, cardinality estimation frameworks for native XDBMSs are not prepared to handle
XQuery expressions sufficiently. Most of them are only focusing on estimating the output
sizes of simple XPath expressions. Let us consider a slightly simplified query from the
W3C XQuery Uses Cases query set (Use Case “R”, query Q 13):

<result> {
for $uid in distinct-values(doc("bids.xml")//userid),
$u in doc("users.xml")//user_tuple[userid = $uid]
let $b := doc("bids.xml")//bid_tuple[userid = $uid]
return
<bidder name="{$u/name}" bidCount="{ count($b)}" />

} </result>

The query returns for each user having placed a bid the corresponding user name and the
total number of bids. Figure 3 shows the graphical representation of the respective XQGM
instance.

The subtree rooted at operator 1 delivers the result for the expression distinct-
values(doc("bids.xml")//userid). The Select operator 2 provides the “heart-
beat” for the further workflow. Operator 3 evaluates the first value-based join. Operator 4
triggers the evaluation of the second expression in the for clause that is bound to $u.
The Structural Outer Join (operator 5) returns (userid, user tuple) tuples and pre-
serves user tuple nodes even if it does not find a matching join partner (necessary for
preserving the correct output semantics for empty sequences in the final return clause).
After evaluating the value-based join, the qualifying user tuple nodes are passed on to
operator 6 that provides the results for the name attribute in the query result (operator 7).

In the let clause of our sample query, there is a second value-based join (operator 10).
Operator 8 furnishes the evaluation context (dashed line) for the Access operator below
operator 9. Finally, the result is passed from operator 7 to operator 2, which, in turn, sends
it to operator 11.

Even for this simple XQuery expression, present cardinality estimation frameworks fail
to provide satisfying results. These frameworks are only capable of providing estimates
for the outputs of the XPath expressions bound to $uid (see Section 1.1). This situation
is really sobering, because many optimization decisions, e. g., the selection of appropri-
ate join operators for value-based joins or Structural Join reordering can, in such cases,
only be based on vague and coarse-grained heuristics. For example, if a value-based join
could be evaluated using a hash join operator, we could only guess which input should
be hashed and which one probed. Here, a wrong guess could lead to tremendous perfor-
mance loss. Moreover, we cannot provide cardinality estimates for the final query result.
For example, this might have an impact on the selection of an appropriate materialization
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Figure 3: XQGM instance for the sample query
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strategy: If there are only few final results, late materialization might be preferred over
early materialization.

Even though the concept of abstract domain identifiers and the corresponding cardinality
inference rules introduced by Teubner et al. [TGMS08] provide an elegant means for
gaining reliable cardinality estimates, they rely on a completely different algebra and,
hence, cannot be directly used out-of-the-box for our purposes. Consequently, a similar
set of inference rules must be specified that provide support for XQGM-specific operators
such as logical Structural Joins, n-way outer joins, and unnest operators to allow for full
cardinality estimation on XQGM instances.

At the moment, XTC’s query optimizer applies query unnesting [Mat07] as a heuristics.
If we could provide reliable cardinality estimates for XQGM, we would be able to leave
the decision whether to perform query unnesting or not to the cost-based query optimizer,
which would make the query optimization process even more flexible.

3 Application Scenarios for the Inference Rules

In this section, we have a brief look at two applications of our cardinality inference rules
that complement the classical scenario for cardinality estimation, i. e., providing reliable
statistical information for join reordering.

(a) Node-at-a-time (b) Set-at-a-time

Figure 4: Evaluation strategies for XML queries

In Section 2.1.2, we mentioned the importance of query unnesting for efficient query eval-
uation. Figure 4(a) shows how a simple XPath expression a//b/c is evaluated using
node-at-a-time and set-at-a-time processing, respectively. During node-at-a-time process-
ing, for every a node, the evaluation context for the evaluation of //b is provided (dashed
line). By iterating over all qualified b nodes, the evaluation context for /c is furnished.
Finally, every qualified c node is output. On the other hand, set-at-a-time query evaluation
works similar to relational merge joins. Figure 4(b) illustrates how the XPath expression
a//b/c is evaluated using this approach: First, the location step // is evaluated between
all a and b nodes. Afterwards, the result of the first Structural Join operator serves to-
gether with all c nodes as input for the second one that evaluates the location step b/c. In
XTC, the transition from node-at-at-a-time to set-at-a-time processing is performed during
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a pattern-based algebraic rewrite process3. So far, query rewrites are applied in an eager
way, i. e., as long as query unnesting is possible, it is applied. Now, using our refined
cardinality information, the query optimizer can immediately abort query unnesting if the
estimated cardinalities indicate that this would be counterproductive.

Efficient evaluation of value-based joins is crucial for the performance of XML database
systems. In contrast to structural predicates, which can be decided using appropriate node
labeling schemes without any further access to the document, value-based predicates need
additional accesses to the document to fetch the actual content nodes. Let us have a look
at the XQGM instance shown in Figure 3. For example, operator 3 evaluates a value-based
predicate. At the logical level, for each tuple bound to the let-quantified tuple variable,
a complete iteration over the sub-expression rooted at the for-quantified tuple variable is
performed. Choosing the right physical implementation is crucial for the query perfor-
mance. During optimization, it is especially important to know how many tuples will be
delivered via the for-quantified and let-quantified tuple variables. Hence, the evaluation
order proposed by the logical algebra is not always the most efficient one: Let us assume
that the optimizer can use a value-based hash join for evaluating the value-based join. If
we would know that the let-quantified tuple variable would deliver 1,000 tuples, but the
for-quantified tuple variable only 10, then it would be much cheaper to hash the 10 tuples
(only a single evaluation of the sub-expression) and probe the input of the let-quantified
tuple variable against it. But for a reciprocal input ratio, this decision would result in an
extremely slow QEP.

4 Cardinality Inference

In this section, we introduce the various inference rules that are used for cardinality estima-
tion in XTC. Section 4.1 introduces preliminary notions. Thereafter, Section 4.2 discusses
the inference rules.

4.1 Nomenclature

Our cardinality estimation approach is based on the idea of abstract domain identifiers
[TGMS08]. For your convenience, we repeat its definition and adjust it to our needs in
the context of XQGM. Abstract domain identifiers, which will be denoted by Greek letters
such as α,β , . . ., allow to estimate the value space of tuple items that are exposed by
XQGM expressions at runtime.

Each XQGM operator consumes or emits tuple sequences. Let s =< t1, . . . , tn > be a
tuple sequence where each t j = [i j 1, . . . , i j m] is a tuple with m items. Obviously, this tuple
sequence has a “fixed schema” with m columns (denoted by c1, . . . ,cm), i. e., every tuple
has m (probably nested) items where each i j k shares a common domain (for an arbitrarily
but consistently chosen k). Table 1 illustrates this hypothetical schema.

Let us denote the active domain of ci, i. e., the set of all values taken by tuples t1 . . . , tn in
3The example shown here is very simplistic and abstract. In reality, the patterns are much more complex and

may cover numerous operators. However, the rationale behind the two evaluation strategies should be obvious.
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c1 . . . cm
t1 i11 . . . i1m
...

...
. . .

...
tn in1 . . . inm

Table 1: Hypothetical schema

column ci, by αi. Moreover, we refer to the domain size, i. e., the total number of distinct
values in ci, by ‖αi‖. We define dom(o) = {cα1

1 , . . . ,cαm
m } as the result domain set of the

tuple sequence produced by XQGM operator o as output4, whereas cαi
i is the i-th column

of the tuple sequence emitted by o with the corresponding active domain αi.

According to [TGMS08], for the abstract domain identifiers α and β , we define the reflex-
ive and transitive inclusion relationship β v α as follows: β v α ⇐⇒ ∀b ∈ β : b ∈ α .
Finally, we will denote the assignment of an inferred value by =! and an inferred inclusion
relationship by v!.

4.2 Inference Rules

After providing the preliminaries, we are now ready to discuss the different inference rules
that are used to estimate the cardinalities of XQGM (sub)-expressions. The definition of
the various inference rules is mostly based on the notation introduced by [TGMS08].

4.2.1 Access Operators

Figure 5 shows the inference rules for Access operators. In XQGM, query evaluation starts
at a document’s root node. Rule CARD-DOC-ACCESS simply assigns the value 1 to the
abstract domain identifier α , because there is only a single document root in the document.

Rule CARD-ACCESS is responsible for deriving the cardinality estimates for basic Access
operators. An Access operator provides a tuple stream having an element or attribute name
e as filter and may evaluate an optional predicate p. We estimate its cardinality by the total
number of element or attribute names having the corresponding name. The selectivity of
predicate p can be determined by employing histograms or by simply using the famous
10 % heuristics of System R [SAC+79].

Finally, CARD-ACCESS-WITH-CONTEXT serves for estimating the cardinality of access
operators whose output depends on an evaluation context. Such operators are employed
for XQGM sub-expressions that cannot be unnested according to the unnesting rules de-
fined by Mathis [Mat07]. Here, the abstract domain identifier β of the context-providing
operator is used as a starting point for cardinality inference. In expression σ(bθ e), b is

4Please note, here we assume that the identifiers α1, . . . ,αm have not been used before.
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dom(DocAccess) =
{

cα ∧‖α‖=! 1} (CARD-DOC-ACCESS)

dom(Accesse p) =
{

cα ∧‖α‖=! |e| ·σ(p)
}

(CARD-ACCESS)

bβ ∈ dom(�)∧�provides evaluation context

dom(Accesseθ ) =
{

aα ∧‖α‖=! |e| ·σ(bθ e)
}

(CARD-ACCESS-WITH-CONTEXT)

Figure 5: Inference rules for access operators

the current context item, θ is the corresponding XPath axis and e is the tuple stream issued
by the current access operator.

For example, in Figure 3, the left-most Access operator (below sub-expression 1) accesses
the sequence of all userid nodes and does not evaluate a predicate. The right-most
operator simply accesses the document root of document bids.xml. Sub-expression 9
in Figure 3 shows an Access operator (left-most access operator) that is a match for rule
CARD-ACCESS-WITH-CONTEXT. Here, The Select operator (Operator 8) provides the
evaluation context, θ is the XPath descendant axis, and e corresponds to the element
name bid tuple.

4.2.2 Cardinality Estimation for Structural Joins

In XQGM, Structural Joins are the basic building blocks for the evaluation of path expres-
sions. Whenever possible, we use Structural Semi Joins to reduce intermediate results.
Figure 6 illustrates the inference rules for the six different Structural Join types. For the
representation of the various join types, we use the well-known symbols: np (Structural
Left Semi Join), op (Structural Right Semi Join), onp (Structural Full Join), 1p (Struc-
tural Left-outer Join), and2p (Structural Right-outer Join). The Structural Join evaluates
a structural predicate p described as follows: ai θ b j, where ai is an item of tuple sequence
q1, b j is an item of tuple sequence q2, and θ is an XPath axis, e. g., descendant.

Even though the definitions of the inference rules seem to be cumbersome at first sight,
their rationale is very simple: For estimating the result size of active domains affected by
the structural predicate, we rely on two data structures. In the case of path expressions
describing linear and unique paths, we use the path synopsis, which is an extension of the
seminal DataGuide [GW97], to derive accurate cardinalities for the expression. If the path
expression is more complex or involves non-unique paths, we approximate the cardinality
using XTC’s XPath cardinality estimation framework called EXsum [AH08].

The expression σ
(
ai[θ b j]

)
returns the selectivity of ai items connected to b j items via

the θ axis, i. e., the percentage of ai nodes satisfying the structural predicate. On the
other hand, σ(ai θ b j) returns the selectivity of b j items. For the remaining items, we
follow the idea of Teubner et al. [TGMS08] to use a generalization of the classical 10 %
rule to estimate the new cardinalities of active domains that are not directly affected (i. e.,
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aαi
i ∈ dom(q1) ∧ b

β j
j ∈ dom(q2)

|q1 naiθb j q2|= ‖αi‖ ·σ
(
ai[θ b j]

)
∧ dom(q1 naiθb j q2) =

{
cγ2

2

∣∣γ2 v!
γ1 ∧ cγ1

1 ∈ dom(q1)\

{aαi
i } ∧ ‖γ2‖=! ‖γ1‖ ·

[
1− (1− 1/10)|q1 |/‖γ1‖

]}
∪
{

cγ
∣∣γ v!

αi ∧ ‖γ‖=! |q1 naiθb j q2|
} (CARD-SJ-1)

aαi
i ∈ dom(q1) ∧ b

β j
j ∈ dom(q2)

|q1 oaiθb j q2|= ‖β j‖ ·σ(ai θ b j) ∧ dom(q1 oaiθb j q2) =
{

cγ2
2

∣∣γ2 v!
γ1 ∧ cγ1

1 ∈ dom(q2)

\{bβ j
j } ∧ ‖γ2‖=! ‖γ1‖ ·

[
1− (1− 1/10)|q2 |/‖γ1‖

]}
∪
{

cγ
∣∣γ v!

β j ∧ ‖γ‖=! |q1 oaiθb j q2|
} (CARD-SJ-2)

aαi
i ∈ dom(q1) ∧ b

β j
j ∈ dom(q2) ∧ aiθb j is location step

|q1 onaiθb j q2|= ‖β j‖ ·σ(ai θ b j) ∧dom(q1 onaiθb j q2) =
{

cγ2
2

∣∣γ2 v!
γ1∧

cγ1
1 ∈ dom(q1) ∪ dom(q2)\

{
aαi

i ,b
β j
j
}
∧ ‖γ2‖=! ‖γ1‖ ·

[
1− (1− 1/10)(|q1 |+|q2 |)/‖γ1‖

]}
∪{

cγ
∣∣γ v!

αi ∧ ‖γ‖=! ‖αi‖ ·σ
(
ai[θb j]

)}
∪
{

cγ
∣∣γ v!

β j ∧ ‖γ j‖=! ‖β j‖ ·σ(aiθb j)
}

(CARD-SJ-3)

aαi
i ∈ dom(q1) ∧ b

β j
j ∈ dom(q2) ∧ aiθb j is predicate step

|q1 onaiθb j q2|= ‖αi‖ ·σ
(
ai[θb j]

)
∧dom(q1 onaiθb j q2) =

{
cγ2

2

∣∣γ2 v!
γ1∧

cγ1
1 ∈ dom(q1) ∪ dom(q2)\

{
aαi

i ,b
β j
j
}
∧ ‖γ2‖=! ‖γ1‖ ·

[
1− (1− 1/10)(|q1 |+|q2 |)/‖γ1‖

]}
∪{

cγ
∣∣γ v!

αi ∧ ‖γ‖=! ‖αi‖ ·σ
(
ai[θb j]

)}
∪
{

cγ
∣∣γ v!

β j ∧ ‖γ j‖=! ‖β j‖ ·σ(aiθb j)
}

(CARD-SJ-4)

aαi
i ∈ dom(q1) ∧ b

β j
j ∈ dom(q2)

|q12aiθb j q2|= ‖β j‖ ∧dom(q12aiθb j q2) =
{

b
β j
j

}
∪
{

cγ2
2

∣∣γ2 v!
γ1 ∧ cγ1

1 ∈

dom(q1) ∪ dom(q2)\
{

aαi
i ,b

β j
j
}
∧ ‖γ2‖=! ‖γ1‖ ·

[
1− (1− 1/10)(|q1 |+|q2 |)/‖γ1‖

]}
∪{

cγ
∣∣γ v!

αi ∧ ‖γ‖=! ‖αi‖ ·σ
(
ai[θb j]

)}
(CARD-SJ-5)

aαi
i ∈ dom(q1) ∧ b

β j
j ∈ dom(q2)

|q11aiθb j q2|= ‖αi‖ ∧dom(q11aiθb j q2) =
{

aαi
i

}
∪
{

cγ2
2

∣∣γ2 v!
γ1 ∧ cγ1

1 ∈ dom(q1)

∪dom(q2)\
{

aαi
i ,b

β j
j
}
∧ ‖γ2‖=! ‖γ1‖ ·

[
1− (1− 1/10)(|q1 |+|q2 |)/‖γ1‖

]}
∪{

cγ
∣∣γ v!

β j ∧ ‖γ‖=! ‖β j‖ ·σ(aiθb j)
}

(CARD-SJ-6)

Figure 6: Inference rules for Structural Joins

independent) by the structural predicate: ‖γ2‖=! ‖γ1‖ ·
[
1− (1− 1/10)|q|/‖γ1‖

]
, where |q| is

the cardinality of input operator q, γ1 is the active domain cardinality of a column contained
in the input tuple sequence of q, and ‖γ2‖ is the inferred cardinality for the corresponding
active domain in the output tuple sequence.

Rules CARD-SJ-1 and CARD-SJ-2 depict the inference rules for Structural Left Semi Joins
and Right Semi Joins, respectively. Here, the result domain set is equal to the domain set
of the left or right input operator, respectively. The cardinalities of the active domains’ join
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items are calculated using the path synopsis or EXsum and all remaining cardinalities of
the active domains in the output domain set are approximated using the generalized 10 %
rule.

For the cardinality estimation of Structural Full Joins, rules CARD-SJ-3 and CARD-SJ-4
show the corresponding definitions, which distinguish between the evaluation of location
steps and predicate steps. Both rules estimate the output cardinality of the join operator
and the active domains of join items ai and b j using the path synopsis. Once again, the
generalized 10 % rule helps to approximate the active domains for items that are indepen-
dent of the join predicate.

In Figure 3, several Structural Outer Joins are used (e. g., operators 5, 6, and 9). Inference
rules CARD-SJ-5 and CARD-SJ-6 allow for cardinality inference of Structural Left-outer
and Structural Right-outer Joins, respectively5. The active domain of the join item whose
tuple sequence contributes to the output’s outer part remains unchanged, and the cardinal-
ity of the other join item is adjusted according to EXsum’s estimation. For all remaining
active domains, the generalized 10 % rule is applied.

4.2.3 Inference Rules for Grouping, Unnesting, and Miscellaneous Operators

aαi
i ∈ dom(q)

|GroupByi(q)|= ‖αi‖ (CARD-GROUP-BY)

aαi
i ∈ dom(q)

|Unnesti(q)|= flatCard(q) (CARD-UNNEST)

� ∈ {Split,Project} ∧ dom(q′)⊆ dom(q)
dom(�(q)) =

{
aαi

i |a
αi
i ∈ dom(q′)

}
(CARD-MISC-1)

� ∈ {Sort,DDO}
|�(q)|= |q| · 2/3 (CARD-MISC-2)

Figure 7: Inference rules for grouping, unnesting, and miscellaneous operators

The GroupBy and the Unnest operator allow for nesting and unnesting of tuple sequences
w. r. t. a specific item position, respectively. Figure 7 (CARD-GROUP-BY) shows the
cardinality inference for nesting. The cardinality of the result tuple sequence is primar-
ily determined by the cardinality of the active domain according to which the nesting is
performed. The active domain set remains unchanged.

The cardinality inference rule for the Unnest operator (Figure 7 CARD-UNNEST) approx-
imates the cardinality of the result tuple sequence using the function flatCard, which cal-
culates the cardinality of the Cartesian product of the values of item i and the values of the
remaining active domains.

The Split operator sends its input to multiple consumers and the Project operator serves as
classical projection operator. Figure 7 (CARD-MISC-1) simply derives the result domain
set by considering those active domains that are referred to in the projection specifica-
tion, where q is the input tuple sequence and q′ is the output tuple sequence. Again, the
cardinality remains unchanged.

5Please note, we do not use Structural Full-outer Joins in XQGM.
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Conventionally, every XQGM operator returns tuple sequences sorted in document order
and tries to reduce duplicates to a minimum. If duplicates cannot be avoided, e. g., if
a full join using the descendant axis is performed, additional duplicate elimination
might become necessary. Sort and Distinct-Doc-Order (DDO) retain a certain sort order
or eliminate duplicates. Inference rule CARD-MISC-2, depicted in Figure 7, describes
the estimation of the output cardinality. We expect that most tuple sequences are almost
duplicate free and sorted, therefore, we assume that two thirds of their input tuples will
“survive”.

4.2.4 Inference Rules for Merge and Select

Rules CARD-MERGE-1 and CARD-MERGE-2, listed in Figure 8, show the inference rules
for the Merge operator. The Merge operator contains only for-quantified tuple variables
and calculates the Cartesian product on its input tuple streams. Each Merge operator con-
tains a so-called merge specification that describes a complex selection predicate on the
Cartesian product. The predicate selects all tuples that have equal values for given po-
sitions in the tuple sequence. For the sake of simplicity, we also use the 10 % rule to
determine the output cardinality.

|Merge(q1, . . . ,qn)|=
n

∏
i=1
|qi| · 1/10 ∧ dom(Merge(q1, . . . ,qn))⊇

{
cγ2

2

∣∣γ2 v!
γ1

∧cγ1
1 ∈ ∪

n
j=1dom(q j) ∧ ‖γ2‖=! ‖γ1‖ · [1− (1− 1/10)∑

n
i=1 |qi |/‖γ1‖]

}
(CARD-MERGE-1)

qi delivers outer sequence

|Merge(q1, . . . ,qn)|= |qi| ∧ dom(Merge(q1, . . . ,qn))⊇
{

cγ2
2

∣∣γ2 v!
γ1

∧cγ1
1 ∈ ∪

n
j=1dom(q j) ∧ ‖γ2‖=! ‖γ1‖ · [1− (1− 1/10)|qi |/‖γ1‖]

}
(CARD-MERGE-2)

|Selectp(q1, . . . ,qn)|= ∏
q∈Qfor∪Qlet

|q| · 1/10 ∧ dom(Select(q1, . . . ,qn)) = Q′for ∪ Q′let ∪ Q′exists∧

Q′for =
{

cγ2
2

∣∣γ2 v γ1 j ∧ cγ1
1 j ∈ dom(q j) ∧ q j ∈ Qfor ∧‖γ2‖=! ‖γ1 j‖ · [1− (1− 1/10)|q j/‖γ1 j‖]

}
∧

Q′let =
{

cγ2
2

∣∣γ2 v γ1 j ∧ cγ1
1 j ∈ dom(q j) ∧ q j ∈ Qlet ∧‖γ2‖=! ‖γ1 j‖ · [1− (1− 1/10)|q j/‖γ1 j‖]

}
∧

Q′exists =
{

cγ2
2

∣∣γ2 v γ1 j ∧ cγ1
1 j ∈ dom(q j) ∧ q j ∈ Qexists ∧‖γ2‖=! ‖γ1 j‖ · [1− (1− 1/2)|q j/‖γ1 j‖]

}
(CARD-SEL)

Figure 8: Inference rules for merge and select

Rule CARD-MERGE-2 handles a special case: If there exists an outer tuple variable in the
Merge operator, the outer semantics well-known from outer joins is used, i. e., for every
tuple sequence where a match does not exist, the tuple still appears in the Cartesian product
and all non-matching items are replaced by empty sequences [Mat09]. Here, the output
cardinality is simply determined by the cardinality of the tuple sequence associated with
the operator connected to the outer tuple variable.

The Select operator also calculates the Cartesian product on its input streams. In contrast to
the Merge operator, the Select operator can contain tuple variables with mixed quantifiers:
for, let, or exists. The Select operator is the most versatile operator in XQGM, as it allows
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to express value-based joins and simple selection predicates as well as triggering XQuery
for-let bindings. Rule CARD-SEL describes the cardinality inference for Select operators,
where Qq (Q′q) is the set of all columns that are connected to q-quantified (output) tuple
variables. The for-quantified tuple variables “drive” the output generation process. On
the other hand, the tuple sequences bound to let-quantified tuple variables are “nested”
into the results generated by for-quantified tuple variables, whereas exists-quantified tuple
variables only serve for existence tests and do not contribute to the output.

4.2.5 Inference Rules for Set Operators

Finally, as shown in Figure 9, XQGM provides three set operators: Union, Intersect, and
Difference. In XQGM, Union and Intersect are n-way operators and only Difference is a
binary operator.

|q1|= |q2|= . . . = |qn|

|∪n
i=1 qi|=

n

∑
i=1
|qi| ∧ dom(∪n

i=1qi) = ∪|dom(q1)|
k=1

{
cγ2

2

∣∣∣γ2 v!
γ1∧

cγ1
1k ∈ dom(q1) ∧ ‖γ2‖=!

n

∑
i=1
‖γik‖

}
(CARD-UNION)

aα1
1 ∈ dom(q1) ∧ . . . ∧aαn

n ∈ dom(qn) ∧ |qk|= min{|q1|, . . . , |qn|}

|∩n
i=1 qi|= |qk| · 2/3 ∧ dom(∩n

i=1qi) =
{

cγ2
2

∣∣γ2 v!
γ1 ∧ cγ1

1 ∈ dom(qk)∧

‖γ2‖=! ‖γ1‖ ·
[
1− (1− 1/10)|qk |/‖γ1‖

]}
(CARD-INTERSECT)

|q1 \q2|= |q1| · 1/10 ∧ dom(q1 \q2) =
{

cγ2
2

∣∣∣γ2 v!
γ1 ∧ cγ1

1 ∈ dom(q1)∧

cγ1
1 6∈ dom(q2) ∧ |γ2‖=! ‖γ1‖ ·

[
1− (1− 1/10)|q1 |/‖γ1‖

]}
(CARD-DIFFERENCE)

Figure 9: Inference rules for set operators

Rule CARD-UNION describes the cardinality inference for the Union operator. Here, we
assume that all input operators (q1 . . . qn) have the same output cardinality and all input
tuple sequences have the same active domains whose value ranges may differ. In this case,
γik denotes the active domain of operator i in column k.

The cardinality inference for the Intersect operator is described by rule CARD-INTER-
SECT. In this situation, qk denotes the first operator whose cardinality is minimal w. r. t.
the cardinality of the remaining operators. In experiments with our query optimizer, we
found out that a constant factor of 2/3 is a good heuristics for the selectivity of the n-way
Intersect operator.

Finally, rule CARD-DIFFERENCE illustrates the cardinality inference of the binary Dif-
ference operator that reuses the standard formula well-known from the relational context.
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5 Empirical Evaluation

Finally, this section discusses the empirical evaluation of the inference rules. In this con-
text, we are not focussing on the cardinality inferences alone. Instead, we are interested in
their interplay with the cost-based query optimizer and its ability to derive scalable QEPs.

Figure 10: Actual vs. inferred cardinalities for the XMark benchmark queries

Our experiments were conducted on an Intel XEON quad core (3350) computer (2.66 GHz
CPUs, 4 GB of main memory, 500 GB of external memory) running Linux with kernel
version 2.6.14. Our native XDBMS server—implemented using Java version 1.6.0 07—
was configured with a page size of 16 KB and a buffer size of 256 16-KB frames. The
experimental results for the query execution times reflect the average values of five runs
on a cold database buffer.

For the empirical evaluation, we used the XMark benchmark queries—a set of simple to
complex XQuery expressions [SWK+02]—that serve very well to test the effectiveness
and the ability of an XQuery processor to provide scalable QEPs. If not mentioned oth-
erwise, we used an XMark document with scaling factor f = 1.0 that corresponds to an
approximate document size of 110 MB.

In our first experiment, we used the cardinality inference rules to estimate the final output
cardinality of each query and of each individual XQGM operator. Let us first have a
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look at the results for estimated final output cardinalities. In Figure 10(a), we recorded the
deviation of the estimated value from the actual cardinality on the x-axis. If there is a filled
circle drawn at position 0, this means that there was no deviation between the estimated
and the actual cardinality at all. On the other hand, if a circle is drawn at 10 or 0.1, then the
estimated cardinality became victim of a 10-fold overestimate or a 10-fold underestimate,
respectively. All circles depicted at the left-hand side of 0.01 and on the right-hand of 10.0
summarize overestimates and underestimates beyond these limits.

For 14 out of 20 queries, the cardinality estimates are close or equal to the actual cardi-
nality. For queries Q 1–Q 3, the final cardinality estimates deviate significantly from the
actual cardinality. For query Q 1, the selection predicate has a much lower selectivity than
estimated using the 10 % heuristics. This problem can be easily overcome using refined
statistics on value distribution, e. g., histograms. For queries Q 2 and Q 3, the selectiv-
ity of the positional predicates was not estimated correctly. Unfortunately, the error was
propagated up to the estimate of the final query result. Nevertheless, the cardinalities for
all performance-critical operators, such as access paths and SJs were estimated correctly.
Therefore, the ability of the query optimizer to provide scalable QEPs is not affected in
these situations—as indicated by Figure 11.

Our second experiment looked at the deviation between estimated and actual cardinalities
for individual XQGM operators (Figure 10b). In Figure 10(a), all circles have the same
size. In contrast, in Figure 10(b), we use the same notation as in Figure 10(a), except the
fact that the circles are not filled anymore and their size is scaled logarithmically w. r. t. the
total number of operators that have the same deviation ratio. For example, for the majority
of operators in query Q 10, the inference rules estimated the correct output cardinality (in
fact, 88 % of the inferred cardinalities were correct), hence, the largest circle is drawn at
position 0. Moreover, the tiny circles between 0.1 and 0 and the medium-sized circle on
the right-hand side of position 10 indicate outliers, from which the estimation rules were
able to recover successfully. In total, for almost all queries, the inference rules provided
for the majority of operators exact cardinality estimates. Even though the inference rules
produced some outliers, they have little effect on the shape of the final QEP, because they
mostly are related to GroupBy and Unnest operators that cannot be removed and where no
alternative implementation exists.

Our third experiment shows that the inference rules are robust enough to support the query
optimizer in deriving scalable query plans. Figure 11 depicts the execution times of the
XMark benchmark queries on different document sizes (ranging from 110 KB to 1.1 GB).
Besides the selection of implementations and SJ reordering, the cost-based query opti-
mizer [WHdS10] selected indexes based on the recommendations of XTC’s auto-indexing
feature [SH10]. For these tasks, reliable cardinality information is crucial to derive suffi-
ciently efficient QEPs.

The execution times of most queries scale linearly with the document size. For small
documents (size≤ 10 MB), the average scale factor is even at most 6.85, i. e., an increase
of the document size by factor 10 results only in a 6.85 times longer execution time.
For the largest document in our experiment (1.1 GB), we still get an average scale factor
of 10.5 for all queries except of Q 11 and Q 12. In contrast, queries Q 11 and Q 12 are
very complex, include non-selective joins, and produce very large intermediate results that
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scale quadratically with the document size. Therefore, the execution time of optimal plans
increases quadratically, too. Hence, this is not an error of the optimizer but simply reflects
the document and query characteristics.
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Figure 11: Scalability on XMark benchmark queries

Let us once again emphasize
the importance of reliable
cardinality estimates for the
evaluation of value-based
joins. Using the inference
rules, e. g., for query Q 9, the
optimizer was able to pro-
pose a plan that was almost
18 times faster than without
refined cardinality informa-
tion. Though, it is notewor-
thy how query optimization
time (from query parsing to
the generation of the physi-
cal plan) relates to the over-
all execution time: On aver-
age, 97.62 % of the time is spent for query execution and only 1.54 % of the time was
consumed by query optimization. Hence, cardinality inference has only a low impact on
optimization time. As indicated by earlier experiments, non-optimized QEPs are up to two
orders of magnitude slower than their optimized counterparts. Consequently, it is worth
spending this small amount of time to get significantly better results.

6 Conclusions and Future Work

In this paper, we introduced and experimentally evaluated a set of inference rules that al-
low for effective cardinality estimation in native XDBMSs. To the best of our knowledge,
this is the first approach that enables more precise cardinality estimation in such systems.
Moreover, we have discussed how we can use the inference rules to provide termination
criteria for cost-based query unnesting and support an appropriate selection of value-based
join algorithms. In combination with a rich set of rewrite rules [WHdS10] and our generic
index mechanism [HMB+10], the inference rules provide the foundation for XTC’s cost-
based query optimizer and enable it to derive scalable QEPs for a wide range of XQuery
expressions. Though our experimental results are promising, there is still room for opti-
mization. By refining the generalized 10 % heuristics and by focussing on a more precise
treatment of positional predicates, we expect further improvements in estimation accuracy.
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A XQGM Components

Figure 12: Overview XQGM components [Mat09]
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Abstract: Efficient data structures for in-memory indexing gain in importance due to
(1) the exponentially increasing amount of data, (2) the growing main-memory capac-
ity, and (3) the gap between main-memory and CPU speed. In consequence, there are
high performance demands for in-memory data structures. Such index structures are
used—with minor changes—as primary or secondary indices in almost every DBMS.
Typically, tree-based or hash-based structures are used, while structures based on
prefix-trees (tries) are neglected in this context. For tree-based and hash-based struc-
tures, the major disadvantages are inherently caused by the need for reorganization
and key comparisons. In contrast, the major disadvantage of trie-based structures in
terms of high memory consumption (created and accessed nodes) could be improved.
In this paper, we argue for reconsidering prefix trees as in-memory index structures
and we present the generalized trie, which is a prefix tree with variable prefix length
for indexing arbitrary data types of fixed or variable length. The variable prefix length
enables the adjustment of the trie height and its memory consumption. Further, we
introduce concepts for reducing the number of created and accessed trie levels. This
trie is order-preserving and has deterministic trie paths for keys, and hence, it does
not require any dynamic reorganization or key comparisons. Finally, the generalized
trie yields improvements compared to existing in-memory index structures, especially
for skewed data. In conclusion, the generalized trie is applicable as general-purpose
in-memory index structure in many different OLTP or hybrid (OLTP and OLAP) data
management systems that require balanced read/write performance.

1 Introduction

Index structures are core components of typical data management systems. While this

area has been studied for a long time, many aspects need to be reconsidered in the con-

text of modern hardware architectures. Due to the increasing main-memory capacity and

the growing gap between CPU speed and main-memory latency [MBK00], especially, in-

memory indexing gains in importance. The specific characteristics of in-memory indexing

compared to disk-based indexing are that (1) pointer-intensive index structures with small

node sizes can be preferred instead of page-based structures due to smaller block gran-

ularities of main memory, and that (2) the number of required key transformations and

comparisons as well as efficient main memory management and cache consciousness are

crucial influencing factors on the overall performance. For update-intensive in-memory

indexing in the context of online transaction processing (OLTP), typically, tree-based or

hash-based techniques are used, while tries are usually neglected.

All of those structures have their specific drawbacks. Tree-based structures require re-
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organization (tree balancing by rotation or node splitting/merging) and many key com-

parisons compared to hash-based or trie-based techniques. Hash-based techniques heavily

rely on assumptions about the data distribution of keys and they require reorganization (re-

hashing) as well. Tries are typically only designed for string operations, they often require

dynamic reorganization (prefix splits), and they can cause higher memory consumption

compared to tree- or hash-based structures. The disadvantages of tree-based and hash-

based techniques are caused inherently by their structure. In contrast, the disadvantages of

tries can be addressed appropriately. This optimization potential enables us to generalize

existing trie structures in order to make them applicable for efficient in-memory indexing.

While tree-based and hash-based structures still have their application areas, we argue that

a generalization of existing trie structures for in-memory indexing can, in particular with

regard to a balanced read/write performance and for skewed data, achieve performance

improvements compared to existing index structures. This trie generalization focuses on

the goals of (1) trie-indexing for arbitrary data types, (2) order-preserving key storage,

(3) deterministic trie paths (no need for dynamic reorganization, except leaf splits), and

(4) efficient memory organization. Our primary contribution is the reconsideration and

adaptation of prefix trees for efficient in-memory indexing. Furthermore, we make the

following more concrete contributions, which also reflect the structure of this paper:

• First of all, in Section 2, we survey array-based, tree-based, hash-based and trie-

based index structures and discuss their main drawbacks.

• Then, in Section 3, we describe the generalization of prefix trees. This includes the

formal foundation and a physical realization of the generalized trie.

• Subsequently, in Section 4, we introduce the optimization techniques bypass jumper
array and trie expansion. Furthermore, we provide insights into important read and

write algorithms as well as additional memory optimization concepts.

• We present selected results of our experimental evaluation in Section 5.

• Finally, we conclude the paper and mention future work in Section 6.

2 Analysis of Existing Solutions

In order to give an overview of related index structures, we briefly survey the main cate-

gories of in-memory index structures but refer for more details to a comparison of basic

in-memory structures [LC86] and a detailed time analysis, which also includes the number

of required key comparisons [LDW09].

As the notation, we use the set of records R, where N denotes the number of records, with

N = |R|. Each record ri ∈ R exhibits the structure ri = (ki, αi), where ki denotes the

key and αi denotes the associated information (payload). Furthermore, all records of R
exhibit the same data type, where k with k = |ki| denotes the length of all keys in terms

of the number of bits. If data types of variable length are used, the key length denotes the

maximum key length. For example, a VARCHAR(256) results in k = 2,048.

228



Essentially, index structures are distinguished into the categories: (1) sorted arrays, (2)

trees, (3) hash-based structures, and (4) prefix-trees (tries). In the following, we survey

existing work according to these categories.

Sorted Arrays. The simplest index structure is an array of records. Unsorted arrays cause

linear time complexity of O(N). Hence, often sorted arrays are used in combination with

binary search [Knu97]. It is known that the worst-case time complexity of binary search is

O(logN). We have recently presented a k-ary search algorithm [SGL09] that uses SIMD

instructions, yielding a significant improvement over binary search. However, the worst-

case complexity is still O(logN). Although sorted arrays are advantageous for several

application scenarios, they fall short on update-intensive workloads due to the need for

maintaining the sorted order of records (moving records). In case of partitions of many

duplicates, the shuffling technique [IKM07] (that moves as few as possible records of a

partition) can minimize the costs for order maintenance. Another approach is to use sorted

arrays with gaps according to a used fill factor such that only few tuples might be moved

but the space requirements are increased. While a linked list would allow for more efficient

updates, it is not applicable for binary search.

Tree-Based Structures. Typically, tree-based structures are used for efficient in-memory

indexing. These structures are distinguished into unbalanced and balanced trees. The

binary tree [Knu97] is an unbalanced tree where a node has at most two children. This

structure can degenerate, causing more nodes to be accessed than for a balanced tree. In

contrast, especially for in-memory indexing, balanced tree-structures are used. There is a

wide variety of existing structures such as B-trees [BM72], B+-trees [Jan95], red-black-
trees [GS78], AVL-trees [Knu97] and T-trees [LC86]. With the aim of tree balancing, rules

for node splitting/merging or tree rotation are used. Current research focuses on cache-

conscious tree-structures for T-Trees [LSLC07] and B-Trees [CGMV02, RR99, RR00]

and on exploiting modern hardware like SIMD instructions [ZR02] or architecture-aware

tree indexing on CPUs and GPUs [KCS+10]. All of those balanced tree structures exhibit

a logarithmic time complexity of O(logN) in terms of accessed nodes for all operations.

Additionally, they require a total number of O(logN) key comparisons. This is especially

important when indexing arbitrary data types such as VARCHAR.

Hash-Based Structures. In contrast to tree-based structures, hash-based structures rely on

a hash function to determine the slot of a key within the hash table (an array). Depending

on the used hash-function, this approach makes assumptions about the data distribution

of keys and can be order-preserving. For chained bucket hashing [Knu97], no reorgani-

zation is required because the size of the hash table is fixed. However, in the worst case,

it degenerates to a linked list and thus, the worst-case search time complexity is O(N).
In contrast to this, there are several techniques that rely on dynamic reorganization such

as extendible hashing [FNPS79], linear hashing [Lit80, Lar88], and modified linear hash-
ing [LC86]. Current research focuses on efficiently probing multiple hash buckets using

SIMD instructions [Ros07]. Due to reorganization, those structures exhibit a search time

complexity of O(1). However, additional overhead for dynamic hash table extension and

re-hashing (worst case: O(N)) is required and thus it can be slower than tree-based struc-

tures. In conclusion, hash-based structures are advantageous for uniformly distributed

keys rather than for skewed data.
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Trie-Based Structures. The basic concept of prefix trees (tries) [Fre60]—also called digital

search trees [Knu97]—is to use parts of a key ki (with key length k) to determine the path

within the trie. Prefix trees are mainly used for string indexing, where each node holds an

array of references according to the used character alphabet [HZW02] and therefore they

were neglected for in-memory indexing of arbitrary data types [LC86]. With that concept,

the worst-case time complexity is O(k) for all operations because, in general, the number

of accessed nodes is independent of the number of records N (independent of the trie fill

factor). However, the maximum number of indexable records is N ′ = 2k. Compared to

tree-based structures, more nodes are accessed because k ≥ logN , where k = logN only

if N ′ = N . However, only partial key comparisons are required per node, where in the

worst case, a single full key comparison is required in total for any operations. The most

recognized trie structure is the radix tree [Knu97], where radix tree, patricia trie [Mor68]

and crit-bit tree (critical bit) are used as synonyms. Essentially, these structures maintain

a tree of string prefixes. Each node represents the string position, where the strings of the

left and the right sub-trie differ. Thus, a node has at least two children and each edge can

encode multiple characters [Mor68]. In contrast to traditional tries (using one character

per trie level), this yields a significant string compression. Typically, this structure is

only used for string indexing and efficient string operations. This data type restriction

was addressed with the extension Kart (key alteration radix tree), where bit positions,

rather than single character positions, are used for difference encoding. This allows for

indexing arbitrary data types but due to the encoding of different prefix lengths within a

trie, there is still the need for reorganization (arbitrary prefix splits). In conclusion, the

advantage of trie structures is the good time complexity of O(k) with only few (partial)

key comparisons, which is especially useful when indexing strings. Existing trie-based

structures are therefore mainly designed for those string operations rather than for indexing

arbitrary data types.

Hybrid Structures. Furthermore, there are several hybrid index structures such as pre-
fix hash trees [CE70] (trie and hash), HAT-tries [AS07] (trie and hash), ternary search
trees [BS97] (trie and binary tree), prefix B-trees [BU77] (trie and B-tree), partial keys
[BMR01] (trie and B-tree/T-tree), J+-trees [LDW09] (trie and B-tree/T-tree), CS-prefix-
trees [BHF09] (trie and CSB-tree), and Burst-tries [HZW02] (trie and arbitrary structure

for containers). Interestingly, all of these here mentioned hybrid structures use to some

extend trie-based concepts.

3 Generalized Prefix Trees

Due to the disadvantages of existing structures, we outline our so-called generalized trie
as a new in-memory data structure. It is a generalization of prefix trees (tries) for indexing

arbitrary data types of fixed and variable length in the form of byte sequences. The novel

characteristic compared to existing trie-based structures is an assembly of known and some

new techniques. In detail, we use (1) a prefix size of variable length, (2) a bypass struc-

ture for leading zeros, (3) dynamic, prefix-based trie expansion, and (4) optimizations for

pointer-intensive in-memory indexing. In this section, we focus on the formal foundation

of this trie generalization, the core operational concepts, and still existing problems.
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Figure 1: Example Generalized Trie with k = 16

3.1 Formal Foundation

As the foundation of this work, we define the generalized trie as follows:

Definition 1 Generalized Trie: The generalized trie is a prefix tree with variable prefix
length of k′ bits. We define that (1) k′ = 2i, where i ∈ Z

+, and (2) k′ must be a divisor of
the maximum key length k. The generalized trie is then defined as follows:

• Given an arbitrary data type of length k and a prefix length k′, the trie exhibits a
fixed height h = k/k′.

• Each node of the trie includes an array of s = 2k
′

pointers (node size).

The generalized trie is a non-clustered index with h levels. The root node describes level
h, while nodes of level 1 are leaf nodes and point to the data items. Thus, leaf nodes are
identified by the trie structure. The trie path for a given key ki at level l is determined with
the (h− l)th prefix of ki. The single nodes of the trie are only created if necessary.

As a result, we have a deterministic prefix tree that indexes distinct keys of arbitrary data

types without the need for (1) multiple key comparisons or (2) reorganization. The prefix

length k′ can be used to adjust the required space of single nodes and the number of

accessed nodes for an operation. The following example shows the resulting spectrum.

Example 1 Configuration of Generalized Tries: Assume the data type SHORT(2) with a
key length of k = 16. On the one side, we can set k′ = 1, where each node contains two
pointers (bit set/ bit not set). This would result in a structure similar to a binary tree with
a trie height h = 16. On the other side, we could set k′ = 16, which results in a height
h = 1 node containing an array of 65,536 pointers to keys. In the latter case, the complete
key determines the array index. Figure 1 illustrates this configuration possibility using
k′ = 1 (Figure 1(a), binary prefix tree), k′ = 4 (Figure 1(b), well-balanced hierarchical
configuration), and k′ = k = 16 (Figure 1(c), a sorted array with gaps).

Clearly, when configuring k′, this is a trade-off between the number of accessed nodes and

space consumption. An increasing k′ will cause decreased node utilization and thus, in-
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creased memory consumption, while the steps from the root to the leafs are reduced for all

operations. Furthermore, the generalized trie has the following two important properties:

• Deterministic Property: Using a prefix length of k′, a single node contains s = 2k
′

pointers. Each key has then only one path within the trie that is independent of any

other keys. Due to these deterministic trie paths, only a single key comparison and

no dynamic reorganization are required for any operations.

• Worst-Case Time Complexity: Based on the given key type of length k, the general-

ized trie has a time complexity of O(h) and hence, has constant complexity in terms

of the fill factor of the trie (the number of tuples N ). Due to the dynamic configura-

tion of k′, we access at most h = k/k′ different nodes (where h however might be

higher than logN ), and compare at most O(1) keys for any operations.

In contrast to the original trie [Fre60], we use a variable prefix length (not single charac-

ters) and have a deterministic trie of fixed height. The fixed height allows the determination

of leaves. If the root level is given by h = k/k′, leaves are only present at level 1.

For data types of variable length such as VARCHAR, the trie height is set to the maximum

key length rounded up to a factor of k′. In order to ensure that leaves are only present at

level 1, keys with length k < h · k′ are logically padded with zeros at the end because

padding at the beginning would lead to loosing the property of being order-preserving.

3.2 Physical Data Structure and Existing Problems

Based on the formal definition of the generalized trie, we now explain the IXByte that

is a physical data structure realizing such a trie generalization. We describe the main data

structure and its most important operational concepts.

The IXByte is designed as a hierarchical data structure in order to leverage the determin-

istic property of the generalized trie. A single index (L0Item) is created with the data

type length as a parameter. In order to support also duplicates of keys, we use a further hi-

erarchical structure of key partitions ki (L1Item) and payloads αi (L2Items). Then, the

single keys are indexed as a generalized trie, while the payloads of all records associated

with the same key are maintained as a list of L2Itemswithin this L1Item partition. Fur-

thermore, the node data structure used within the IXByte is defined as an array of s = 2k
′

void* pointers. We use generic void* pointers in order to refer to both inner nodes and

L1Items (leaves), where the fixed maximum trie height h determines the leaves. The

IXByte works on order-preserving byte sequences (big-endian) and therefore arbitrary

data types can be supported as long as their keys can be transformed accordingly.

Example 2 IXByte Operations: Assume an index of data type SHORT(2) with k = 16
and a prefix length of k′ = 4. We insert the record ri = (107, value3), where the resulting
key parts are illustrated at the left side of Figure 2 and by emphasized pointers. We start
at the root node (level 4) and use the value of bits 0-3 as array index in order to determine
the child pointer. We repeat this with bits 4-7 on level 3, and with bits 8-11 on level 2.
Finally, on level 1, we use the value of bits 12-15 as our array index. We know that this
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Figure 2: Example IXByte for k = 16, k′ = 4, h = 4

pointer must reference an L1Item (key partition). If no partition exists, we create a new
one; otherwise, we just insert the payload into the partition.

The deterministic property, where the trie path depends only on the key itself, implies that

this structure is update-friendly because no reorganizations (prefix splits) are required. At

the same time it also allows efficient lookups because no key comparisons are required.

However, two typical problems arise when using such a trie structure:

Problem 1 Trie Height: A problem of this general trie solution is the height of the trie
(number of levels). For example, a VARCHAR(256) index with k′ = 4 would result in a
trie height h = 512. In this scenario, keys with a variable key length k smaller than h · k′
are logically padded with zeros at the end in order to ensure an order-preserving determin-
istic structure. The advantage of tries—in the sense of constant time for all operations—
might be a disadvantage because the constant number of nodes to be accessed is really
high (512). This problem has two facets, namely the number of accessed trie nodes (oper-
ational) and the number of created nodes (memory consumption).
Problem 2 Memory Consumption: Due to the fixed trie height, an inserted key can cause
the full expansion (creation of trie nodes) of all levels of the trie if no prefix can be reused.
In the worst case, an insert causes the creation of h − 1 nodes. Furthermore, each node
requires a space of 2k

′ · size(ptr) byte. For example, on a 64bit architecture, where a
pointer ptr requires 8 byte, and with a prefix length of k′ = 4, the node size is 128 byte.

In the following, we tackle these problems. The trie height is reduced by the techniques trie
expansion and bypass jumper array. There, trie expansion implicitly leads to decreased

memory consumption as well. In addition, we also apply an explicit memory reduction by

pointer reduction and memory alignment (structure compression).

4 Selected Optimization Techniques and Algorithms

In this section, we present selected optimization techniques that address the problems

of the potentially large trie height and memory consumption. We also discuss selected

algorithms.
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4.1 Bypass Jumper Array

Approaches that reduce the large height of the trie (e.g., h = 512 for k = 2048 and k′ = 4)

are required, while preserving the properties of the generalized trie.

The core concept of the technique bypass jumper array is to bypass trie nodes for leading

zeros of a key. In order to enable this, we (1) preallocate all direct 0-pointers (nodes where

all parents are only referenced by 0-pointers) of the complete trie, and we (2) create a so-

called jumper-array of size h, where each cell points to one of those preallocated nodes.

Finally, we (3) use the jumper array to bypass higher trie levels if possible. We show the

concept of this bypass jumper array using our running example:

Example 3 Bypass Jumper Array: Recall Example 2. For this index of height h = 4
(Figure 3), we (1) preallocate all four direct 0-pointers, (2) create the jumper array c of
size four, where cell cj corresponds to the trie level l with j = l. Then, we (3) use the
jumper array to jump directly to level l = �|ki|/k′� that is determined by counting leading
zeros (clz). For example, when inserting the key ki = 107, we can directly jump to the
preallocated node at level 2.

With regard to the applicability, we distinguish data types of fixed and variable length:

First, for data types with variable-length |ki| (e.g., VARCHAR), we change the index layout.

Keys with a length smaller than h ·k′ are now logically padded with zeros at the beginning

and thus, we loose the property of being order-preserving. However, if this is acceptable

the benefit is significant. We assume that the key length |ki| is uniformly distributed in

the interval [1, k]. As a result, the number of accessed trie nodes is reduced from h to h/2
in expectation. This causes significant performance improvements due to fewer accessed

nodes (logical partitioning into h subtries but with prefix sharing). However, the time

complexity is still O(h).

Second, this technique also works for fixed-length data types such as INT, by counting

leading zeros and without any index layout modification. Unfortunately, for uniformly

distributed keys, the impact is lower because the probability of having a key length |ki| < k
depends on k′ with P (�|ki|/k′� < k/k′) = 1/2k

′
. For example, if k′ = 4, only 1/16 of all

keys would benefit at all from this technique. The probability of a specific length is given

by P (�|ki|/k′� = k/k′ − x) = (1/2k
′
)x, where x denotes the number of nodes that can

be bypassed. However, numerical values are typically non-uniformly distributed and rather

small (e.g., key sequences) and hence, they could also benefit from this technique.

In the description of algorithms, we will refer to this technique as bypass top levels.

4.2 Trie Expansion

Another reason for the huge trie height is that the index has a fixed height according to

its data type and thus, each record is stored on level 1. This is also a reason for the huge

memory consumption, because a single record can cause the creation of h− 1 new nodes.

Based on this problem, we investigated the dynamic trie expansion. The core concept is

to defer the access to and creation of trie nodes during insert operations until it is required
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Figure 3: Example IXByte for k = 16, k′ = 4, h = 4 with bypass jumper array and trie expansion

with respect to the deterministic property. In other words, a tuple can now be referenced

on any level rather than only at the leaf nodes. It is possible to reference a record instead

of an inner node if and only if there is only one record that exhibits a particular prefix

(that is given by the position in the trie). A similar concept has already been used within

the original algorithm [Fre60] for string indexing. For data types of variable length (e.g.,

VARCHAR), the logical padding with zeros at the end (or beginning, respectively) ensures

the deterministic property even in case of trie expansion. We use the following example to

illustrate the idea of trie expansion:

Example 4 Trie Expansion: Recall our running example of a SHORT(2) index with h =
4. Figure 3 includes an example of the trie expansion. Consider the keys k1 = 61,451
and k2 = 65,409. If we insert k2 = 65,409, we can refer to it on level 4 instead of on
level 1 because so far, no other key with a first prefix of 11112 exists. Further, if we insert
k1 = 61,451, we need to expand the third level for this sub-trie because k1 and k2 both
share the same prefix 11112. However, we do not need to expand any further because the
second prefix of both keys (00002 and 11112) differs. This still ensures the deterministic
property because we only expand the deterministic trie path of keys if it is required.

In contrast to the bypass jumper array, this technique does not only bypass existing nodes

but influences the number of created nodes. While the dynamic trie expansion significantly

reduces the trie height and therefore also the memory consumption for sparsely populated

subtries, it requires changes of the trie node data structure. A node is now defined as an

array of s = 2k
′
void* pointers and an array of �s/8� bytes to signal the expansion

of a sub-trie. The ith bit of this byte array determines if the ith pointer references an

inner node; otherwise, the pointer directly references a record or is NULL. This is required

due to the generic pointers. However, the evaluation of this flag is a simple bit mask

operation. In the algorithmic description, we refer to this as isExpanded. While so

far, we have required 2k
′ · size(ptr) byte for a node, now a single node has a size of

size(node) = 2k
′ · size(ptr) + �2k′

/8� = 2k
′ · size(ptr) + �2k′−3�. As an example,

for k′ = 4 without trie expansion, the node size was 128 byte; enabling trie expansion

adds two more bytes to the node. The downside of this technique are costs for splitting

and merging of nodes (but still no inner prefix splits) as well as an unaligned data structure
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with the drawback that the node size is no longer a factor or divisor of the cache line size.

However, due to the significant reduction of created nodes, the total memory consumption

is significantly reduced, which improves the performance for all operations.

4.3 Memory Optimization

The solution presented so far still has the drawbacks of (1) creating many small data struc-

tures (many malloc calls), (2) a fairly high memory consumption, and (3) an unaligned

data structure (expanded flags). Hence, we apply several memory optimization techniques.

First, we use memory preallocation in order to address the many small data structures.

Each instance of an index includes a byte array of configurable size that is created using

virtual memory upon index creation. We hold a pointer to this array (mem ptr) and the

allocation position pos as well as we use lists of free objects for reusing memory. We

benefit because the operating system only maps physical pages of this array when they

are accessed. Second, we reduce the memory consumption of trie nodes with the concept

of reduced pointers, which store only the offset within the preallocated memory instead

of the pointer to a certain memory position itself. The real pointer is then computed by

the reference to the full array (mem ptr) plus the given offset (reduced pointer), which

reduces the required size of a pointer; for example (for a preallocated memory of less

than 2GB), from 8 byte to 4 byte on 64bit architectures. Third, cache-consciousness has

significant influence on the overall performance. We align the trie node size to factors of

the cache line size. Based on the concept of reduced pointers, the idea is to use the first

bit of such a pointer as internal flag to indicate whether or not this pointer is an expanded

node. Following this, we do not need any additional flags per node. As a result, the final

structure of our trie node is defined as an array of s = 2k
′
uint reduced pointers resulting

in a node size of size(node) = 2k
′ · size(rptr) = 2k

′ · 4. For example, using k′ = 4, we

get a node size of 64 byte, which is equal to the cache line size of modern processors.

4.4 Algorithms

So far, we have mainly discussed structural properties of the IXByte; now, we focus on

the operational aspects. The main operations are get(key) (point query), getMin(),

getNext(key1) (scan), insert(key,payload), and delete(key,payload).

Updates are represented by a delete/insert pair. It is worth mentioning that keys of arbitrary

data types are converted into byte arrays such that all operations are only implemented

once according to this byte representation. All algorithms to search and modify gener-

alized tries include the optimization approaches bypass jumper array and trie expansion.

We use the operations get and insert as illustrative example algorithms.

Algorithm 1 shows the get algorithm. A single index instance ix includes the root trie
node and the level of this root node (given by h = k/k′). First, the bypass jumper array
is used to jump directly to the trie node of level �|ki|/k′� if required (line 2). Here, level
and node are passed by reference and set accordingly. Then, the get algorithm mainly

comprises a while loop (lines 3-10). For each iteration, we go one level down the trie,
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Algorithm 1 get (non-recursive)

Require: index ix, key ki, key length |ki|
1: node ← ix.trie, level ← ix.level
2: bypass top levels(node,level,|ki|,ix)
3: while (level ← level − 1) > 0 do
4: pos ← computePosition(level,ki,|ki|)
5: if ¬ isExpanded(node,pos) then
6: if node.ptr[pos].key = ki then
7: return node.ptr[pos]
8: else
9: return NULL // null if no key or different key

10: node ← node.ptr[pos] // go one level down

Algorithm 2 insert (non-recursive)

Require: index ix, key ki, key length |ki|
1: node ← ix.trie, level ← ix.level
2: bypass top levels(node,level,|ki|,ix)
3: while (level ← level − 1) > 0 do
4: pos ← computePosition(level,ki,|ki|)
5: if ¬ isExpanded(node,pos) then
6: if node.ptr[pos] �= NULL then
7: entry ← node.ptr[pos]
8: if entry.key = ki then
9: return entry

10: while true do
11: tmp ←createNode() // node prefix splitting
12: node.ptr[pos1] ← tmp
13: setExpanded(node,pos)

14: node ← tmp, level ← level − 1
15: pos1 ← computePosition(level,entry.ki,|ki|)
16: pos2 ← computePosition(level,ki,|ki|)
17: if pos1 �= pos2 then
18: node.ptr[pos1] ← entry
19: return node.ptr[pos2] ←createL1(ki,|ki|)
20: else
21: pos ← pos1
22: else
23: return node.ptr[pos] ←createL1(ki,|ki|)
24: node ← node.ptr[pos] // go one level down

where the loop terminates if level = 0. For each iteration, we first compute the position

within the pointer array (computePosition, line 4). It is determined by the (h − l)th

prefix of key ki. If the pointer specified by pos is not expanded (see trie expansion), there

must be a reference to a key, or the pointer is NULL. Hence, by checking for the right

key (line 6), we could simply return this key partition or NULL. Otherwise (the pointer is

expanded), there must be a reference to another trie node.
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Similar to the get operation, Algorithm 2 uses the same core concept for the insert
operation. After we have jumped to the lowest possible trie node in case it is applicable

(line 2), the algorithm comprises a main while loop (lines 3-24). The structure of this

loop is similar to the get operation. However, we maintain the dynamic trie expansion
of sub-tries. If a pointer is not expanded and not NULL, we have reached a record. In

case the keys are equivalent, we simply return the existing entry. Otherwise, we use an

inner while loop (lines 10-21) to expand the sub-trie as long as it is required (leaf node

splitting). Basically, we can stop splitting such nodes if we reach a level where the prefixes

of both keys are different (lines 17-19). If the current pointer is already expanded, we

follow this pointer and go one level down (line 24). Note that this splitting does not require

any dynamic reorganization because we just go down the trie as long as it is required.

Both algorithms use the computePosition multiple times in order to compute the

current prefix at each trie level. If many levels of the trie are expanded, it is advantageous

to pre-compute all positions in advance in one run over the key.

The other algorithms work similar to the presented ones. For getMin, getNext, and

delete, we additionally maintain a stack of parent nodes and current positions on each

level in order to realize non-recursive algorithms. The getNext searches for the current

key, and starting from this position, it returns the minimum key that is greater than this.

Further, the delete searches a specific record and then deletes the given (key,value) pair

and recursively collapse trie nodes if required.

The index can also store NULL keys, which is required if used as a secondary index.

Therefore, an additional single key partition (L1Item) is referenced by the index instance.

Furthermore, all algorithms include related NULL checks at the beginning.

4.5 Discussion of Related Work

The closest work compared with our approach is the Prefix Hash Tree [CE70], which was

defined by Coffmann and Eve from a theoretical perspective. They use a hash function hj

to map the key ki into a hash code bi of fixed length j. Thereafter, the prefix hash tree uses

prefix-based tree nodes that contain s = 2k
′

child references. In the case of the simplest

hash function of bi = hk(ki) = ki, this is comparable to the generalized trie.

In contrast to this, we presented the generalized trie that does not rely on any hash function,

i.e., it does not require related indirections for overflow lists of different keys and it can

index keys of variable length. Furthermore, we explained the IXByte as a physical real-

ization of the generalized trie including optimizations for the large trie height and memory

consumption as well as the description of efficient algorithms using this data structure.

5 Experimental Evaluation

In this section, we present selected experimental results concerning the performance, scal-

ability, memory consumption, and the comparison with existing index structures. We used

synthetically generated data, a real data set as well as the MIT main-memory indexing
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benchmark [Rei09]. In general, the evaluation shows the following results:

• Data Types: The IXByte achieves high performance for arbitrary data types, where

an increasing key length causes only moderate overhead.

• Skew Awareness: It turns out that the IXByte is particularly appropriate for skewed

data (sequence, real) because many keys share equal prefixes, while uniform data

represents the worst case.

• Prefix Length: A variable prefix length (specific to our IXByte) of k′ = 4 turned

out to be most efficient and robust due to (1) a node size equal to the cacheline size

(64 byte) and (2) a good trade-off between trie height and node utilization.

• Comparison: The IXByte shows improvements compared with a B+-tree and a

T-tree on different data sets. Most importantly, it exhibits linear scaling on skewed

data. Even on uniform data (worst case) it is comparable to a hash map.

As a result, the IXByte can be used as a general-purpose data structure because, espe-

cially for skewed in-memory data, it is more efficient than existing tree-based or hash-

based solutions. The complete C source code (including all experiments) is available at

wwwdb.inf.tu-dresden.de/dexter. Our core data structure IXByte is part of

an overall index server, which is able to maintain an arbitrary number of indices (of dif-

ferent data types) in a multi-threaded fashion. Essentially, it implements the API, defined

by the MIT main-memory benchmark [Rei09] including memory management, synchro-

nization and transaction logging (transient UNDO-log). All reported results were measured

from outside the index server—except the comparison with B+-trees.

5.1 Experimental Setting

As our test environment, we used a machine with a quad core Intel Core i7-920 processor

(2.67GHz) and hyper-threading (two threads per core). It uses Fedora Core 14 (64bit) as

operating system and 6GB of RAM are available. Furthermore, we used the GCC compiler

with the following flags: -O3 -fPIC -lpthread -combine.

While the proposed IXByte is able to index arbitrary data types, here, we used only

the types SHORT (4 byte), INT (8 byte) and VARCHAR(128) (128 byte). In order to

evaluate the influence of skew and other data properties we used the following data sets:

• Key Sequence (best-case synthetic data): We generated a key sequence (highest

skew) of N records with values [1..N ] in sorted order. For the data type VARCHAR,

we convert this value into a string representation.

• Uniform Data Distribution (worst-case synthetic data): In opposite to the key se-

quence, we additionally generated N records with uniformly distributed keys with

values [1..2k] in unsorted order. For VARCHAR(128), we first determined a ran-

dom length in the interval [1..128]. For each position, we then picked a random

character out of the alphabet of 52 printable characters.

• Real Data: Aside from the synthetically generated data, we also used the DBLP

data set [Ley09] as a real data set. In more detail, we indexed all 2,311,462 distinct

key attributes of this data set as a VARCHAR(128) index instance.
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We evaluated the different operations insert, get, getNext (scan), and delete.

Further, we varied the prefix length with k′ ∈ {1, 2, 4, 8}. In addition, we compared our

generalized prefix trie against other index structures: We used an unoptimized B+-tree

[Avi09] and optimized it (memory optimizations) similar to our index structure in order

to ensure a fair comparison. Furthermore, we used the MIT benchmark as well as the

optimized hash map and T-tree implementations from the winner (Clement Genzmer) and

another finalist (Cagri Balkesen) of the SIGMOD Programming Contest 2009.

5.2 Synthetically Generated Data

The first set of experiments uses the synthetically generated data sets sequence and uni-
form. We fixed a prefix length of k′ = 4 as well as enabled trie expansion and the de-

scribed memory optimizations. Then, we measured the execution time for the mentioned

operations. Figure 4 shows the results of this set of experiments.

Experiment S.1: The first experiment uses the sequence data set. The goal was to evaluate

the performance with an increasing number of records N . For each database size, this

comprises N inserts, N point queries (get), a scan of N elements (getNext) as

well as N deletes, where we used all keys of the generated sequence. We repeated

this experiment for the three different data types. Figure 4 (first row) shows the measured

results. First, SHORT(4) shows the best performance due to the lowest trie height (h =
8). Note that for sequences, the complete trie height is expanded. We further observe

that INT(8) (h = 16) shows only a minor overhead, while for VARCHAR (h = 256),

this overhead is higher. Those differences are caused by the trie height and additional

memory requirements for the larger keys. From an operation type perspective, delete
always has the worst performance, followed by insert, which is reasoned by memory

management in addition to the search operations. Further, getNext is typically slower

than get, because for a getNext, a similar point query is used in order to find the old

key, and from there, it finds the next key, which was required by scans with concurrent

updates. Interestingly, getNext is better than get for VARCHAR indices, which was

reasoned by cache displacement on get due to the huge height for the VARCHAR indices.

Furthermore, get, insert, and delete require additional overhead for key generation

and copying of keys into the local memory of our index server. The technique bypass
jumper array led to an improvement (not included in the figures) between 9% and 17% for

the different operations. However, and most importantly, all operations show (1) a linear

scaling according to the number of tuples (constant time for a single operation) due to the

fixed number of accessed nodes and (2) a moderate overhead according to the key size.

Experiment S.2: For a second experiment, we repeated Experiment S.1 with the uniform
data set but exactly the same configuration. Figure 4 (second row) illustrates the measured

results of this experiment. We observe similar characteristics—with some exceptions—

compared to the sequence data set. In general, the index is notably slower for uniform

key distributions. This has different reasons. Recall that uniform data is the worst case

regarding space requirements, while this is the best case with respect to the average number

of accessed nodes per operation. The costs for allocating/loading more memory are higher

than the benefit reached by the lower number of trie nodes. Due to uniformly generated
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Figure 4: Basic Performance Results

keys, each single operation (except the scan operation) accesses different nodes. As a result

of uniform access and the higher memory consumption, many nodes are emitted faster

from the cache. Another difference of uniform keys to key sequences is that the execution

time increases slightly super-linear with an increasing number of tuples (logarithmic time

for a single operation). This effect is caused by the logarithmically increasing number of

accessed nodes with an increasing number of tuples. The second difference concerns the

scan performance, where the getNext is faster than get for all data types. Essentially,

this is a caching effect because the scan is the only operation that accesses the records in

sequential order. Hence, the higher trie nodes are cached across multiple operations. The

technique bypass jumper array lead to an improvement (not shown in the figures) between

4% and 7% for the different operations, which is lower than in experiment S.1 because the

trie does not use the full height for uniform data and thus fewer nodes are bypassed.

As a result, our index shows good performance and an almost linear scaling for sequences

(best-case) and uniform data (worst case). However, it is best suited for skewed data.

5.3 Real DBLP Data

The sequence and uniform data sets are extremes in terms of skew and thus give upper

and lower bounds for the number of accessed nodes as well as required space. We now

additionally use the real-world DBLP data set that lies within this spectrum.

Experiment R.1: As a preprocessing step, we extracted all distinct publication keys,

which are concatenations of the type of publication, the conference/journal name, and the

short bibtex key (e.g., conf/sigmod/LarsonLZZ07). We used a VARCHAR(128)
index and truncated all keys that exceeded this key length (only a few). The number of dis-

tinct items was 2,311,462. Then, we inserted this data set (in sorted order) and evaluated
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(a) Time VARCHAR (sorted) (b) Space VARCHAR (deterministic) (c) Time VARCHAR (unsorted)

Figure 5: Performance on Real Data Set (DBLP)

execution time and space requirements. Figures 5(a) and 5(b) show the results. We observe

an almost linear scalability with increasing data size, similar to our other experiments.

However, in contrast to sequences and uniform keys, there are two main differences. First,

the getNext operation shows the worst performance compared to all other operations,

while in the other experiments, it was usually faster than insert and delete, because

many prefixes are shared such that insert and delete become more efficient. Similar

to this, get is also slower than in other cases compared to the insert/delete func-

tions. This effect is caused by long keys, where we need to access many nodes for each

point query. Note that due to transactional requirements each getNext also includes such

a point query, which reasoned that getNext was the slowest operation. Furthermore, we

see three main parts. Up to 700,000 records, there is a linear scaling. Then, from 700,000
to 1,600,000 records, we see a slower increase. From there to the end, we observe a scaling

similar to the first part. This is caused by the huge number of conferences that all share the

same prefix (e.g., conf/sigmod/), which results in good compression. It is also worth

to note that the performance is strongly correlated to the required memory.

Experiment R.2: As a comparison, we repeated the experiment with unsorted keys (see

Figure 5(c)). Due to the deterministic property, the total memory consumption was equiva-

lent to the previous experiment. In contrast to sorted keys, we observe that the performance

was much lower due to cache displacement because created nodes are distributed over the

memory. The getNext operation now performs best because it is the only one with a

sequential access pattern with regard to the trie nodes. Most important, we still observe a

linear scaling due to the good compression.

As a result, the trie works also well for real-world data. We conclude that the higher the

skew, the higher the performance because we require less memory.

5.4 Comparison with Existing Structures

For comparison with existing structures, we used a general-purpose B+-tree. We optimized

the implementation with memory preallocation in order to achieve a fair comparison. For

the IXByte, we used a prefix length of k′ = 4, while we configured the B+-Tree as a tree

of order four (pointers per node [Knu97]) because experiments with different configura-

tions showed that this leads to highest performance for this experimental setting.
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Experiment C.1: Due to
Sequence Uniform

Figure 6: SHORT(4) Comparison IXByte and B+-Tree

the data type restriction of

the used B+-tree, we used

SHORT(4) only. We var-

ied the number of tuples N
and measured the execution

time for insert and get
as well as the memory con-

sumption. The delete oper-

ation of the B+-tree was simi-

lar to the insert and a scan

operation was not supported.

We first used the sequence
data set. In contrast to our

other experiments, we mea-

sured the time for the opera-

tions of the core index struc-

tures rather than from outside

the index server because the

B+-tree does not implement

the MIT main-memory benchmark API. Figure 6 (left column) shows the results. We

yield an execution time improvement of up to factor 5 due to key comparisons and node

splitting/merging within the B+-tree. Interestingly, the IXByte also requires three times

less memory than the B+-tree. However, this is the best case for the prefix trie.

Experiment C.2: In addition, we repeated the experiment with the uniform data set. Fig-

ure 6 (right column) shows the results. The IXByte is still three times faster than the

B+-tree. Both index structures are slower for this uniform data set. Due to different mem-

ory allocation behavior (uniform data is the worst case for IXByte), the B+-tree required

only 50% of the memory that was required by IXByte.

Most importantly, the IXByte shows a linear scalability on skewed data with increasing

number of tuples, while the B+-tree shows a super-linear scalability for both data sets.

5.5 MIT Benchmark

With regard to repeatability, we provide the results of the MIT main-memory indexing

benchmark [Rei09] that was designed during the SIGMOD Programming Contest 2009

(see Figure 7(c) for a comparison with the winning implementation, where the uniform

data distribution is the best case for the hash map, while it is the worst case for our

IXByte). The benchmark is designed with uniform key distributions but there are also

test cases for skewed data—namely the test cases of varying low bits (VLB) and vary-

ing high bits (VHB). In general, the benchmark creates a random set of indices (of types

SHORT(4), INT(8), and VARCHAR(128)) and runs a transaction workload in a con-

current fashion, where each transaction comprises between 5 and 200 single operations

(point queries, range queries, inserts and deletes). With regard to the repeatability of the
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(a) Indices/Threads (b) Varying k′ (c) Contestants Comparison

Figure 7: MIT Main-Memory Indexing Benchmark

(a) SHORT(4) (b) INT(8) (c) VARCHAR(128)

Figure 8: Contestants Comparison for Different Operations and Data Sets

obtained benchmark results, we used the same seed (1468) for all sub-experiments. We

conducted a set of experiments varying the benchmark parameters, which include the num-

ber of indices and threads NUM IX, the number of initial inserts per index NUM INSERTS,

and the total number of transactions NUM TX over all indices. The results are shown in

Figure 7, where we measured the overall benchmark execution times.

Experiment M.1: We varied the number of indices and threads, respectively. There,

we fixed NUM INSERTS=4,000, NUM TX=800,000 (contest configuration) and measured

the execution time for the three different data distributions. The results are shown in

Figure 7(a). We observe that the index performed best on the VHB benchmark because

there, the varied bits are represented by the first two node levels. In contrast, for VLB we

fully expanded a long path because the varied bits are represented by the last two node

levels. However, for both benchmarks, many keys are shared such that they both exhibit

lower execution time than the uniform benchmark; the differences are moderate. Although

our test machine has only eight hardware threads, our index server scales pretty well with

an increasing number of threads. Note that we reached a CPU utilization of 800% (up

from a number of 25 threads).

Experiment M.2: Beside the benchmark parameters, we also evaluated the influence of

the prefix length k′ on the execution time. We fixed NUM IX=50, NUM INSERT=4,000,

and NUM TX=800,000 and varied the prefix length k′ ∈ (1, 2, 4, 8). Figure 7(b) shows the

results of this second sub-experiment. Essentially, for different data distributions, different

prefix lengths are advantageous. For example, while for uniform data (and VHB), the best

prefix length is k′ = 4, for VLB it is k′ = 8 because there the index is fully expanded for

a certain key range. In general, for skewed data (e.g., sequence), larger prefix lengths are

advantageous because certain subtries are fully expanded.
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Experiment M.3: Finally, we use the optimized hash map and T-tree implementations of

the mentioned other contest finalists for a more detailed comparison regarding different op-

erations (insert, get), data types (SHORT(4), INT(8), VARCHAR(128)) and data

sets (sequence S and uniform U ), where the results are shown in Figure 8. The hash map

did not terminate within 10min on the sequence data set such that these experiments were

aborted. In contrast, we observe that our index performs best on sequence data, where the

relative improvement over the T-tree is highest for VARCHAR due to the higher influence

of the number of required key comparisons. On uniform data, the hash map performed

best but our IXByte achieves only slightly worse performance and still outperforms the

T-tree. In conclusions, the IXByte is especially beneficial in case of skewed data.

6 Conclusions

In-memory data structures are gaining importance but still exhibit certain disadvantages.

While these are inherently given for tree-based and hash-based structures, we addressed

the drawbacks of trie structures in order to make them applicable for in-memory indexing.

To summarize, we presented a generalized prefix tree (trie) for arbitrary data types that

uses a variable prefix length. The major advantage is the deterministic property that elim-

inates the need for dynamic reorganization (prefix splits) and multiple key comparisons.

Furthermore, we presented optimization techniques for reducing the number of accessed

and created trie nodes (bypass jumper array and trie expansion). Additionally, we briefly

discussed memory optimization techniques and efficient algorithms. In conclusion, the

generalized trie is advantageous compared to existing solutions. The major benefit is an

almost linear scalability with respect to the number of tuples, especially for skewed data.

Using this generalized trie, several further research issues arise, which include, for exam-

ple, the (1) adaptive determination of the optimal prefix length k′ during runtime, (2) a

hybrid solution with different prefix lengths on different levels of a generalized trie (e.g.,

{16, 8, 4, 4} for SHORT(4)), and (3) query processing on prefix trees, where database

operations such as joins or set operations can exploit the deterministic trie paths.
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Abstract: Das Constraint-basierte Datenbank-Caching (CbDBC) erlaubt es, feingra-
nular und dynamisch, Satzmengen häufig verwendeter Prädikate, in der Nähe von
Anwendungen vorzuhalten, um lesende Anfragen zu beschleunigen. Dabei lässt sich
die Vollständigkeit bzgl. der Anfrageprädikate anhand einfacher Bedingungen (den
Constraints) ableiten, welche alle auf dem zentralen Konzept der Wertvollständigkeit
aufbauen. Durch das Kopieren der Daten auf den Cache entstehen Replikate, deren
Konsistenz zu gewährleisten ist. Gleichzeitig muss jedoch auch die Wertvollständig-
keit der Constraints jederzeit gewahrt sein. Wie lässt sich unter diesen Bedingungen
für Transaktionen eine akzeptable Isolationsstufe erreichen, wenn der Zugriff auf die
primäre Datenbank aufgrund der hohen Latenz teuer und daher zu vermeiden ist? Die-
ser Aufsatz zeigt, wie sich die Vollständigkeit ganzer Satzmengen im CbDBC wahren
lässt, ohne den durch das Caching erreichten Vorteil aufzugeben. Dabei garantiert die
für das CbDBC angepasste Synchronisation die Isolationsstufe Snapshot Isolation und
erlaubt eine verzögerte (lazy) Aktualisierung der Replikate.

1 Motivation

Datenbank-Caching beschleunigt den lesenden Zugriff auf entfernte Datenbanken, indem
es Satzmengen, die zur Beantwortung häufig gestellter Anfragen benötigt werden, in der
Nähe der betreffenden Anwendungen zur Verfügung stellt. Für alle Datenbank-Caching-
Verfahren [LGZ04, The02, ABK+03, APTP03, BDD+98, LAK10] ist dabei festzulegen,
wie die Vollständigkeit der benötigten Sätze bereits im Cache (durch einen lokalen Zugriff)
bestimmt werden kann. Constraint-basierte Datenbank-Caching (CbDBC) verwendet dazu
einfache Bedingungen (Constraints), welche die Vollständigkeit von Sätzen bezüglich
eines Wertes garantieren. Dies erlaubt es, die einer Anfrage vorgeschaltete Vollständig-
keitsprüfung (Probing [HB07]) durch die Abfrage einzelner Werte zu realisieren, ohne die
benötigten Sätze komplett zu lesen. Gleichzeitig bietet diese Vorgehensweise die Möglich-
keit, feingranular und dynamisch zu entscheiden, von welchen Cache-Inhalten eine hohe
Lokalität zu erwarten ist.

Eine große Herausforderung beim Datenbank-Caching ist die Realisierung von Synchro-
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nisationsverfahren, die für Transaktionen eine hohe Isolationsstufe garantieren. Aufgrund
der hohen Latenz zwischen dem zentralen Datenbestand (Backend) und dem Cache wur-
den in der Vergangenheit Ansätze vorgeschlagen, die es erlauben, die Konsistenz stark
abzuschwächen, um eine größere Skalierbarkeit zu erreichen [GLRG04a, GLRG04b].
Diese Ansätze haben jedoch zwei entscheidende Nachteile: Einerseits ist es oft nötig, die
gewünschte Aktualität der Daten in Anfragen zu spezifizieren, was die Unabhängigkeit
der Anwendung vom Datenbanksystem stark beeinträchtigt, und andererseits wird dabei
keine wohldefinierte Isolationsstufe erreicht.

Ebenso wie das CbDBC-Verfahren halten auch partielle Replikationsverfahren nur einen
Teil der Gesamtdatenmenge als Replikat vor. Die dabei verwendeten Synchronisations-
mechanismen bilden deshalb zwar einen wichtigen Startpunkt für die Suche nach einem
geeigneten Verfahren, aber die beim CbDBC vorherrschende Dynamik erschwert zumin-
dest die Implementierung solcher Lösungen (vgl. Abschnitt 4).

Durch das redundante Vorhalten der Daten im Cache entstehen (dynamisch veränderli-
che) Replikate, weshalb die Kontrolle der verteilen Replikate zwingend in den Synchro-
nisationsmechanismus integriert werden muss. Abschnitt 3 beantwortet deshalb kurz die
grundlegenden Fragen zur Replikatskontrolle. Eine genaue Diskussion hierzu findet sich
in [Kle10].

Zentral für die Auswahl einer geeigneten Nebenläufigkeitskontrolle ist die Forderung, dass
der durch das Caching erreichte Geschwindigkeitsvorteil nicht wieder verloren gehen darf.
Daher muss ein Verfahren gewählt werden, welches sowohl lesende Zugriffe als auch
den Transaktionsabschluss möglichst nicht behindert. Wir konzentrieren uns beim CbDBC
auf Verfahren, Snapshot Isolation für Transaktionen garantieren. In Abschnitt 4 erläutern
wir diese Entscheidung und erklären die benötigten Grundlagen der Snapshot Isolation in
Abschnitt 4.1.

Nachfolgend zeigen wir in Abschnitt 5, wie sich Snapshot Isolation im CbDBC garantie-
ren lässt. Dabei stützen wir uns auf die zentrale Forderung aus [Kle10], auf ältere Snaps-
hots im Backend zugreifen zu können. Der gezeigte Synchronisationsmechanismus erlaubt
eine verzögerte (lazy) Aktualisierung der Replikate und kommt (abgesehen davon, dass die
Änderungen einer Transaktion zum Cache zu übertragen sind) ohne zusätzliche Kommu-
nikation aus. Insbesondere wird kein 2-Phasen-Commit-Protokoll (2PC) zum Abschluss
einer Transaktion benötigt.

Bevor wir dies jedoch genau betrachten, wiederholen wir zunächst die zum Verständnis
nötigen Grundlagen des CbDBC.

2 Grundlagen des CbDBC

Das Constraint-basierte Datenbank-Caching (CbDBC) beschleunigt Anfragen, indem es
Satzmengen häufig angefragter Prädikate in Anwendungsnähe vorhält. Dabei werden die
Sätze in sogenannten Cache-Tabellen gespeichert und stammen aus einer primären Daten-
bank, dem Backend. Zu jeder Cache-Tabelle T gehört immer genau eine Backend-Tabelle
TB . Dabei entspricht die Definition einer Cache-Tabelle der ihr zugeordneten Backend-
Tabelle bis auf die Fremdschlüsseldefinitionen, die nicht übernommen werden.
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Damit der Cache zur Beantwortung eines Prädikats P einer Anfrage Q benutzt werden
kann, muss die Prädikatsextension von P (dies umfasst alle Sätze, die zur Auswertung von
P benötigt werden) im Cache vollständig vorhanden sein. Ist dies der Fall, so ist der Cache
hinsichtlich P prädikatsvollständig und kann die Beantwortung von Q übernehmen.

Um die Prädikatsvollständigkeit effizient überprüfen und herstellen zu können, benötigt
das CbDBC nur zwei Constraint-Typen: Den referenziellen Cache-Constraint (RCC) und
die sogenannte Füllspalte (filling column, FC). Beide bauen auf dem Konzept der Wert-
vollständigkeit auf, welche die Grundlage des Constraint-basierten Ansatzes bildet.

Definition 2.1 (Wertvollständigkeit) Ein Wert w einer Spalte T.a ist genau dann wert-
vollständig (oder kurz vollständig), wenn alle Sätze σa=wTB im Cache verfügbar sind.

Ein RCC S.a → T.b kann zwischen zwei Spalten mit gleichem Wertebereich definiert
werden. Er garantiert jederzeit die Wertvollständigkeit in T.b für alle Werte w aus der
Quellspalte S.a. Hierbei ist zu beachten, dass die Wertvollständigkeit nur für T.b, die soge-
nannte Zielspalte, garantiert wird. Dies erlaubt z. B. die Auswertung des Gleichverbundes
S ona=b T , falls die Wertvollständigkeit für einen Wert w in S (z. B. für w in S.c) gegeben
ist, sodass die Anfrage σS.c=w(S ona=b T ) das korrekte Ergebnis liefert. Im umgekehr-
ten Fall (Wertvollständigkeit ist gegeben für einen Wert w aus T ) ist die Auswertung des
Verbunds nicht möglich1.

Definition 2.2 (Referenzieller Cache-Constraint, RCC) Ein RCC S.a→ T.b von einer
Quellspalte S.a und zu einer Zielspalte T.b ist genau dann erfüllt, wenn alle Werte w aus
S.a wertvollständig in T.b sind.

Jede Spalte einer Cache-Tabelle kann auch als Füllspalte ausgezeichnet werden. Mit Hilfe
von Füllspalten wird festgelegt, wann und welche Werte vollständig in den Cache gela-
den werden. Hierzu verwaltet der Cache zu jeder Füllspalte (z. B. S.f ) eine Menge von
Kandidatenwerten, für die ein Ladevorgang ausgelöst werden darf.

Definition 2.3 (Füllspalte, FC) Eine Füllspalte S.f lädt einen Wert w wertvollständig,
sobald w von einer Anfrage durch das Prädikat S.f = w explizit referenziert wird und w
ein Kandidatenwert ist.

2.1 Cache Groups

Ein Constraint-basierter Datenbank-Cache verwaltet die für ihn definierten Cache-Tabellen
und Constraints (RCCs und FCs) in einer sogenannten Cache Group. Eine Cache Group
besteht dabei aus einer Wurzeltabelle (root table), in der genau eine Spalte als Füllspalte
deklariert ist und evtl. mehreren Mitgliedstabellen (member tables), die über RCCs von
der Wurzeltabelle abhängen. Ein einfaches Beispiel hierfür zeigt Abb. 1a, wobei S als
Wurzeltabelle mit der Füllspalte S.f darstellt und T bzw. R die Mitgliedstabellen über
RCCs von S aus erreichbar sind. Um mehrere Prädikate gleichzeitig zu unterstützen, wer-
den üblicherweise mehrere Cache Groups zu einer Cache-Group-Föderation zusammen-
gefasst (vgl. [HB07]).

1Aus diesem Grund darf ein RCC nicht mit einem Fremdschlüssel gleichgesetzt werden.
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Abbildung 1: Konzeptionelle (a) und interne (b) Darstellung einer Cache Group

Um das Verhalten einer Füllspalte im Cache zu realisieren, wird für jede Füllspalte eine
interne Tabelle angelegt. Im Gegensatz zu einer Cache-Tabelle hat eine interne Tabelle
keine Beziehung zu einer Backend-Tabelle. Für die Füllspalte S.f wird (wie in Abb. 1b
gezeigt) eine interne Tabelle ftab angelegt, deren Primärschlüssel, die Spalte ftab.id,
über einen RCC mit der Füllspalte S.f verbunden wird. Wird nun ein Ladevorgang für
den Wert w der Füllspalte S.f ausgelöst, so genügt es den Wert w in Spalte ftab.id einzu-
fügen. Der ausgehende RCC ftab.id→ S.f erzwingt nachfolgend die erforderliche Wert-
vollständigkeit von w in S.f . Mit Hilfe dieser Vereinfachung kann die Cache-Verwaltung
ausschließlich mithilfe von Tabellen und RCCs beschrieben werden.

2.2 Hülle eines Kontrollwertes

Wie zuvor für den Wert w, der durch Einfügung in ftab.id die Wertvollständigkeit in S.f
erzwang, gezeigt wurde, kontrolliert jeder RCC-Quellspaltenwert die Wertvollständigkeit
in den Zielspalten ausgehender RCCs. Aus diesem Grund nennen wir alle Werte, die in
RCC-Quellspalten auftreten, Kontrollwerte.

Verfolgen wir das Beispiel bzgl. der Cache Group aus Abb. 1 weiter, so fällt auf, dass
abhängig vonw Sätze im Cache benötigt werden, die ihrerseits wieder Kontrollwerte (z. B.
x, y, z in die Spalte S.a) einfügen. Die Werte x, y, z müssen dann wiederum in T.b wert-
vollständig sein. Es entsteht eine rekursive Abhängigkeit von Sätzen unter Verfolgung der
ausgehenden RCCs. Daher definieren wir die Menge aller Sätze, die abhängig von einem
Kontrollwert w im Cache benötigt werden, als Hülle des Kontrollwertes und schreiben für
die Hülle dieses Kontrollwertes C(w).

Definition 2.4 (Hülle eines Kontrollwertes) Sei w ein Kontrollwert des RCC S.a→ T.b
und daher I = σa=wTB die Menge aller Sätze, die in T wertvollständig vorliegen müssen.
Die Hülle von w ist rekursiv definiert als Menge aller Sätze C(w) = I ∪ C(wi), ∀wi ∈
W (I)2, wobei W (I) = (w1, ..., wn) die Menge aller Kontrollwerte aus I beschreibt.

2Die Menge der Kontrollwerte innerhalb einer Hülle ist endlich und lässt sich (analog zur der Bearbeitung
von rekursiven SQL Anfragen) leicht und effizient ermitteln.
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3 Replikatskontrolle beim CbDBC

Durch das Kopieren von Sätzen in den Cache entstehen verteilte Replikate, deren Konsis-
tenz zu gewährleisten ist. Dabei spielt die Frage, wo, wie und, vor allem, wann Replikate
aktualisiert werden, für die Umsetzung der Nebenläufigkeitskontrolle eine wichtige Rolle.
Darüber hinaus muss geklärt werden, auf welchen Replikaten Änderungen durchgeführt
werden dürfen. Im Weg weisenden Aufsatz von Gray u. a. [GHOS96] werden die Verfah-
ren daher auch im wesentlichen mittels zweier Parameter kategorisiert.

Der erste Parameter beschreibt, wo Änderungen ausgeführt werden dürfen, auf einer aus-
gezeichneten Kopie (primary copy) oder auf jeder Kopie (everywhere). Für das CbDBC
wird ein Primary-Copy-Verfahren verwendet [Kle10], da das Backend in natürlicher Weise
eine Primärkopie bereitstellt. Die Hauptproblematik besteht jedoch darin, dass die Zuläs-
sigkeit einer Update-Ausführung nicht allein durch eine Vollständigkeitsprüfung gewähr-
leistet werden kann. Durch eine Änderung könnten z. B. Trigger ausgelöst oder Integri-
tätsbedingungen verletzt werden. Die zugehörigen Metadaten müssten somit auch auf den
Cache kopiert und synchronisiert werden. Darüber hinaus kann niemals sichergestellt wer-
den, dass ein Cache alle Update-Anweisungen einer Transaktion bearbeiten kann. Zum
Abschluss einer Transaktion lägen somit an zwei verschiedenen Stellen, im Cache und
im Backend, Änderungsinformationen vor, die an andere Caches weiterzuleiten sind. Aus
diesen Gründen sind Update-Everywhere-Verfahren für das CbDBC deutlich schwerer
umzusetzen. Nach den Ergebnissen aus [GHOS96] benötigt man für Update-Everywhere-
Verfahren entweder eine komplexe Nebenläufigkeitskontrolle oder Verfahren zur Konflik-
tauflösung, welche im CbDBC nicht automatisch, d. h. ohne Benutzerinteraktion, gewähr-
leistet werden kann. Daher werden im CbDBC alle Update-Anweisungen an das Backend
weitergeleitet, wo deren Ausführbarkeit stets überprüft werden kann.

Der zweite von Gray u. a. [GHOS96] verwendete Parameter definiert, wann die Repli-
kate aktualisiert werden. Dies kann direkt (eager) oder verzögert (lazy) erfolgen. Direkt
bedeutet hierbei, dass die Replikate vor Transaktionsabschluss (Commit) zu aktualisie-
ren sind, wohingegen die verzögerte Aktualisierung irgendwann nach dem Commit (meist
aber möglichst zeitnah) erfolgt.

Eager-Ansätze leiden generell darunter, dass sie den Transaktionsabschluss behindern, bis
alle Replikate aktualisiert sind. Im CbDBC wird dieses Problem noch verstärkt, da zwi-
schen dem Backend und den Caches eine hohe Latenz angenommen wird3. Es bietet sich
daher an, eine verzögerte Aktualisierungsstrategie im CbDBC anzustreben. Entsprechende
Ansätze leiden oft darunter, dass sie Inkonsistenzen erzeugen. Die höchste Isolationsstufe
Serialisierbarkeit ist dabei meist nicht zu erreichen. Die aktuelle Entwicklung in For-
schung und Praxis zielt heute jedoch meist auf eine schwächere Isolationsstufe, die der
Snapshot Isolation [BBG+95, LKPMJP05, WK05]. In [Kle10] wurden die beiden Umset-
zungsvarianten und die dabei auftretenden Herausforderungen für das CbDBC ausführ-
lich diskutiert. Dabei wurde deutlich, dass sich Snapshot Isolation trotz einer verzögerten
Aktualisierungsstrategie erreicht lässt, falls die Caches auf den Zustand (Snapshot) im
Backend zugreifen können, der ihrem derzeit lokalen entspricht.

3Diese ist oft erst der Grund für den Einsatz eines Datenbank-Cache.
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Abbildung 2: Übernahme von Änderungen erfordert das Nachladen von Sätzen

In diesem Aufsatz stützen wir uns auf die vorangestellten Erkenntnisse und verwenden für
den in Abschnitt 5 entwickelten Synchronisationsmechanismus eine Replikatskontrolle
mit verzögerter Aktualisierung der Replikate unter Verwendung einer Primärkopie.

3.1 Änderungspropagierung

Nachdem wir die Fragen, wo und wann Replikate aktualisiert werden, erörtert haben,
betrachten wir in diesem Abschnitt die Besonderheiten bei der Übernahme von Ände-
rungen im Cache und somit die Frage, wie die Replikate (Caches) aktualisiert werden.
Wie die Erfassung von Änderungen durch eine geeignete Change-Data-Capture-Strategie
erfolgt und durch welche Verfahren die Änderungen selektiv an die Caches gelangen, wird
in diesem Aufsatz nicht betrachtet. Erklärungen hierzu finden Sie in [Kle10] und wer-
den zum Verständnis der in diesem Aufsatz entwickelten Nebenläufigkeitskontrolle nicht
benötigt.

Eine besondere Bedeutung hat jedoch die Übernahme von Änderungen im Cache. Hierbei
sind die dort definierten Constraints jederzeit einzuhalten, wodurch Sätze während der
Übernahme nachgeladen werden müssen (vgl. auch [Kle10]). Zur Verdeutlichung dieses
Umstandes betrachten wir Abb. 2.

Wir nehmen an, dass die Transaktion T1 die in Abb. 2 aufgeführten Änderungen im Backend
vorgenommen hat. Das ausgeführte Insert-Statement sowie das Update-Statement bezie-
hen sich auf Sätze, die aufgrund des Kontrollwertes w = Orders.id = 1 im Cache
benötigt werden. Sie gehören zur Hülle von w. Aus diesem Grund müssen die Sätze
(47, 1, 4) sowie (22, 1, 6) (nach Änderung) in den Cache eingelagert werden. Damit der
RCC Order_Lines.IId → Items.Id nicht durch die Übernahme der Änderungen ver-
letzt wird, müssen zunächst die Hüllen der Kontrollwerte u = 22 und v = 47 aus
Order_Lines.IId nachgeladen werden.

Durch Änderungen können Sätze auch ihre Abhängigkeiten verlieren. Im Beispiel könnte
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Abbildung 3: Nachladen verursacht ein Einlagern verschiedener transaktionskonsistenter Zustände

der Satz (11, abc) in Items z. B. entladen werden. Durch Wegfall von Abhängigkeiten
werden jedoch niemals RCCs verletzt und deshalb ist hierbei auch kein Nachladen nötig.
Ein Garbage Collector sucht und löscht nicht mehr benötigte Sätze nebenläufig.

Die Tatsache, dass bei der Übernahme von Änderungen (und auch durch Füllspalten)
Ladeprozesse ausgelöst werden, erschwert die Gewährleistung der Konsistenz im Cache
nachhaltig. Wir wollen dies durch ein weiteres Beispiel (vgl. Abb. 3) verdeutlichen, wobei
wir annehmen, dass die Caches verzögert aktualisiert werden und im Backend nur die
neueste Version von Sätzen gelesen werden kann.

Im Beispiel nehmen wir an, der Cache hat die Bestellung 1 (Orders.Id = 1) vor dem
Ablauf der Transaktion T1 geladen. Nachfolgend wird im Backend die Änderungstrans-
aktion T1 ausgeführt, welche die Summe (Orders.Total) für die Bestellung 1 und 2 auf
die Werte 40 bzw. 90 ändert. Die Änderungen von T1 wurden bereits in Form eines Write
Set (WS) an den Cache übertragen, der aber die Änderungen zu diesem Zeitpunkt noch
nicht übernommen hat. In der Zwischenzeit wird über den Cache mit der Ausführung der
Transaktion T2 begonnen, welche das Nachladen der Bestellung 2 auslöst, wobei nun im
Backend nur noch der Zustand nach Ablauf von T1 zugreifbar ist. Auf dem Cache befin-
den sich nun Sätze, die den Zustand vor Ablauf von T1 repräsentieren, und Sätze, die den
Zustand nach Ablauf von T1 aufweisen, wodurch die Ausführung von T3 ein Incorrect
Summary erzeugt.

Die aufgeführten Beispiele machen deutlich, dass im Cache nur Sätze des gleichen trans-
aktionskonsistenten Zustandes eingelagert sein dürfen, damit dieser überhaupt verwendet
werden kann. Dies ist nur dann möglich, wenn der Cache während des Nachladens noch
Zugriff auf den Zustand hat, den er selbst gerade repräsentiert.

Basierend auf den bisher gewonnenen Erkenntnissen wollen wir nachfolgend untersuchen,
welche Verfahren zur Nebenläufigkeitskontrolle im CbDBC einsetzbar sind. Dabei werden
wir zeigen, dass sich die erwünschten Eigenschaften und die notwendige Konsistenz nur
durch den Einsatz von Mehrversionenverfahren garantieren lassen, wobei die gewählte
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Isolationsstufe der Snapshot Isolation lesende Zugriffe nicht behindert.

4 Nebenläufigkeitskontrolle beim CbDBC

Die gewählte Art der Replikatskontrolle muss mit einer geeigneten Nebenläufigkeitskon-
trolle integriert werden [LKPMJP05, WK05]. In diesem Aufsatz bewerten wir dabei die
verschiedenen Verfahren zur Nebenläufigkeitskontrolle nur im Bezug auf die von uns
gewünschte verzögerte Änderungsübernahme und unter dem Aspekt, dass eine Primär-
kopie existiert. Das wichtigste Kriterium für die Auswahl eines geeigneten Verfahrens für
das CbDBC ist, dass der durch das Caching erzielte Vorteil (die Performance, die durch
eine lokale Anfragebeantwortung gewonnen wurde) nicht verloren gehen darf. Daher sind
Verfahren, die einen Zugriff aufs Backend benötigen, z. B. um eine Sperre anzufordern wie
beim verteilten 2-Phasen-Sperrprotokoll (D2PL [BG81]), nicht geeignet. Beim Einsatz
von optimistischen Verfahren, wie z. B. Forward Oriented Concurreny Control (FOCC)
oder Backward Oriented Concurrency Control (BOCC), müsste das Read Set der Transak-
tion im Cache erfasst und zur Verifikation an das Backend übermittelt werden.

Als zweites zentrales Problem muss der Cache, um die Wertvollständigkeit seiner Con-
straints zu erhalten, Sätze nachladen. Dazu ist es notwendig, auf einen bestimmten trans-
aktionskonsistenten Zustand im Backend zugreifen zu können, wie bereits im vorange-
henden Abschnitt gezeigt. Um dies effizient gewährleisten zu können, muss auf Cache
und Backend eine Mehrversionenverfahren zum Einsatz kommen.

Der Einsatz von Mehrversionenverfahren ist auch dadurch motiviert, dass für eine Trans-
aktion zu jeder Zeit gewährleistet sein muss, dass sie den gleichen transaktionskonsis-
tenten Zustand liest, egal ob sie auf den Cache oder das Backend zugreift. Da sich der
Cache-Inhalt fortlaufend ändert, kann nicht gewährleistet werden, dass das Lesen einer
Transaktion nur auf den Cache beschränkt ist. Durch die verzögerte Aktualisierungsstra-
tegie unterscheiden sich die neuesten transaktionskonsistenten Zustände der Datenbanken
voneinander. Somit müssen ältere transaktionskonsistente Zustände im Backend aufgeho-
ben werden, damit sie für den Cache zugreifbar sind, wodurch zwingend der Einsatz eines
Mehrversionenverfahrens notwendig wird.

Zur effizienten Implementierung von Snapshot Isolation [Fek09] werden auch Mehrversio-
nenverfahren eingesetzt. Als wesentliche Eigenschaft blockiert Snapshot Isolation niemals
lesende Zugriffe. Gelesene Objekte müssen somit auch nicht aufgezeichnet werden, was
für CbDBC von großem Vorteil ist. So wird die Implementierung Middleware-basierter
Lösungen sehr erleichtert, da es oft keine Unterstützung gibt, alle gelesenen Objekte einer
Transaktion abzufragen bzw. in einem Read Set zu speichern. Durch die Einführung und
Einhaltung zusätzlicher Bedingungen lässt sich für SI-Transaktionen sogar Serialisierbar-
keit garantieren (vgl. [CRF08, FLO+05]). Um dies jedoch innerhalb des Synchronisati-
onsmechanismus (also nicht durch die Applikationslogik) zu gewährleisten müssen Lese-
operationen jedoch wiederum beachtet werden.

Im Nachfolgenden betrachten wir Snapshot Isolation und später deren Umsetzung im
CbDBC genauer. Dabei gehen wir stets davon aus, dass auf eine Objektmenge oder ein
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Objekt O abstrakt zugegriffen wird. Für die Nebenläufigkeitskontrolle spielt es nämlich
keine Rolle, ob O einzelne Attributwerte, Sätze oder Seiten darstellt. Wichtig ist nur,
das über die Art der Versionskontrolle immer der gleiche transaktionskonsistente Zustand
zugegriffen wird.

4.1 Snapshot Isolation

Die Isolationsstufe Snapshot Isolation wurde maßgeblich in [BBG+95] motiviert. Snaps-
hot Isolation gründet direkt auf dem Einsatz von Mehrversionenverfahren, die einer Trans-
aktion stets den Zustand (Snapshot), der zu ihrem Startzeitpunkt (Begin of Transaction,
BOT) gerade gültig war, präsentieren. Dabei muss dieser Zeitpunkt irgendwann vor dem
ersten Lesezugriff durch die Transaktion festgelegt werden. Lesende Zugriffe werden nie-
mals blockiert. Sie sind also immer möglich, was für das Datenbank-Caching von beson-
derer Bedeutung ist. Will eine Transaktion Tx ein Objekt O schreiben, so darf sie dies
im einfachsten Fall nur dann, wenn nach der zu lesenden Version Vi keine weitere festge-
schriebene Version Vj>i existiert. Ist dies der Fall, wird Tx zurückgesetzt. Dieses Vorgehen
bezeichnet man auch als First Committer Wins [BBG+95]. Es werden also nur sogenannte
Schreib/Schreib-Konflikte erkannt und aufgelöst. Schreibende Transaktionen müssen also
nicht durch ein spezielles Protokoll (im einfachsten Fall ein RX-Sperrprotokoll) synchro-
nisiert werden.

Um den BOT einer Transaktion bzw. den Commit-Zeitpunkt einer Version festlegen zu
können, benötigt man eine logische Uhr, die zumindest nach dem erfolgreichen Commit
einer schreibenden Transaktion erhöht werden muss. Um auch den BOT einer Transaktion
eindeutig zuordnen zu können, wird diese Uhr, welche wir nachfolgend als Systemuhr t
bezeichnen, meist auch bei BOT um eins erhöht.

In unserer Implementierung gehen wir entsprechend vor: Bei Beginn einer Transaktion
wird der Wert von t als BOT festgehalten; danach wird t um eins erhöht. Gleiches gilt beim
erfolgreichen Abschluss einer Transaktion (z. B. von Tx), wobei alle von ihr geschriebenen
Versionen mit dem Zeitpunkt EOT (Tx) = t markiert werden.

Bei der Umsetzung von Snapshot Isolation für verteilte Datenbanksysteme unterscheidet
man üblicherweise zwischen starker (strong) und schwacher (weak) Snapshot Isolation
[DS06]. Der Unterschied besteht darin, dass es im verteilten Fall dazu kommen kann, dass
eine Transaktion ihre eigenen Änderungen nicht sofort sieht, je nachdem wann Replikate
aktualisiert werden. Bei starker Snapshot Isolation kann dies nicht vorkommen, bei schwa-
cher Snapshot Isolation wird dies toleriert.

Die nachfolgend beschriebene Vorgehensweise beim CbDBC garantiert zunächst nur schwa-
che Snapshot Isolation. In Abschnitt 5.4 erklären wir aber auch, wie sich starke Snapshot
Isolation garantieren lässt.
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5 Snapshot Isolation für CbDBC

Wir betrachten nun, wie sich Snapshot Isolation beim CbDBC erreichen lässt. Da das
Backend und die Caches auf unterschiedlichen Hosts agieren, unterscheiden wir die Back-
end-seitige Systemuhr tBE von der Cache-seitigen Systemuhr tCi

. Wir benötigen diese
Unterscheidung auch, um deutlich zu machen, dass alle Instanzen ihre eigene (lokal ver-
waltete) Versionskontrolle besitzen. Eine global eindeutige Systemuhr wird somit nicht
benötigt.

In den nachfolgenden Betrachtungen beziehen sich alle Erklärungen direkt auf die Ver-
sionen, die bei Änderung eines Objektes angelegt werden. Dabei spielt es jedoch keine
Rolle, ob die vorgeschlagene Versionskontrolle direkt in ein eigenständiges (evtl. proprie-
täres) CbDBC-System integriert wird oder ob das Caching-System Middleware-basiert
umgesetzt ist, wobei jedoch nur Datenbanksysteme benutzt werden können, die lokal auch
Snapshot Isolation anbieten, wie z. B. PostgreSQL [Pos10], Oracle [Ora10] oder MS-SQL-
Server [Mic10] (vgl. hierzu auch Abschnitt 5.7).

Im Folgenden bezeichnen wir eine durch den Benutzer (bzw. zugreifende Applikation)
initialisierte Transaktion Tx als global bzw. als Benutzertransaktion. Jede globale Trans-
aktion wird immer genau von einem Cache Ci zusammen mit dem Backend ausgeführt,
wobei das Cache-Management-System (CacheMS) die Transaktion Tx kontrolliert. Für den
Teil der Transaktion Tx, der über das Backend ausgeführt wird, schreiben wir T be

x und für
den Cache-Zugriff T ci

x . Wir bezeichnen diese Teile von Tx als lokale Transaktionen, da
sie nur einen lokalen Zugriff, entweder auf die Cache-Datenbank oder auf die Backend-
Datenbank zulassen. Bei einer Middleware-basierten Umsetzung sind für die Zugriffs-
wege T be

x und T ci
x eigenständige, sogenannte echte lokale Teiltransaktionen nötig, die vom

CacheMS initialisiert werden. Darüber hinaus gibt es weitere lokale Transaktionen, die
durch das CacheMS initialisiert werden, um bestimmte Verwaltungsaufgaben (z. B. das
Nachladen) von Werten durchzuführen. Diese Transaktionen werden einfach mit ihrem
Zweck markiert. Wir schreiben T load

y für eine lokale Ladetransaktion, die auf das Backend
zugreift, um die zu landenden Sätze zu lesen, und T insert

y für deren Einfügeoperationen
im Cache. Lokale Transaktionen, die die Übernahme von Änderungen aus dem WS rea-
lisieren, markieren wir mit accept, so ergibt sich z. B. T accept

z . Lokale Transaktionen, die
auf das Backend zugreifen, nennen wir auch einfach Backend-Transaktionen und dement-
sprechend lokale Transaktionen, die auf den Cache verweisen Cache-Transaktionen. Auch
wenn die Ausführung lokaler Transaktionen nicht Middleware-basiert, sondern integriert
(intern) abläuft, gehen wir davon aus, dass für diese Transaktionen die ACID-Eigenschaften
unter Isolationsstufe Snapshot Isolation eingehalten werden. Den zugewiesenen Zugriffs-
zeitpunkt von Backend-Transaktionen benennen wir tbeZ und von Cache-Transaktionen tciZ .

5.1 Referenzierung eines Snapshots

Wie bereits erwähnt, muss der Cache ältere Versionen (Snapshots) im Backend referenzie-
ren und zugreifen können. Dies wird durch die Übermittlung des gewünschten Zugriffs-

256



Abbildung 4: Gemeinsame Versionen von Backend und Cache bei verzögerter Aktualisierung

zeitpunktes tbeZ ans Backend ermöglicht. Es genügt beim ersten Lesen einer Transaktion im
Backend, diesen Zeitpunkt mitzuteilen. Die Frage ist jedoch, woher der Cache diesen Zeit-
punkt kennt bzw. wie er ihn herausfindet. Das Backend überträgt den Zustandszeitpunkt tZ
beim Abschluss einer globalen Transaktion T zusammen mit den Änderungen von T im
WS. Dabei ist EOT (T ) = tBE = tZ . Sobald der Cache alle Änderungen aus diesem WS
übernommen hat, stellt er zusammen mit dem Backend den neuen Zustand (Snapshot), der
nach T erreicht wurde, bereit und kann daher fortan unter Angabe des im WS übermit-
telten Zustandszeitpunktes tZ auf das Backend zugreifen. Die Initialisierung stellt dabei
einen Sonderfall dar, weil hierbei zunächst ein Startzeitpunkt vom Backend zugewiesen
wird (vgl. Abschnitt 5.2). Wir betrachten hierzu Abb. 4, welche einen Überblick über die
angestrebte verteilte Versionsverwaltung bietet.

In Abb. 4 sind im Backend die Versionen V1, V2 und V3 des ObjektesO zu den Zeitpunkten
10, 17 und 23, welche in Klammern angegeben sind, festgeschrieben worden. Wir nehmen
an, dass diese Versionen durch die Transaktionen T1, T2 und T3 erzeugt wurden, die zu
den gleichen Zeitpunkten (z. B. EOT (T1) = 10) erfolgreich abgeschlossen wurden. Da
auf einem Cache niemals Änderungen durch einen Benutzer stattfinden, werden dort nur
Versionen von O erzeugt, wenn O neu geladen wird oder wenn ein WS nachfolgend eine
Änderung für O signalisiert.

In unserem Beispiel lädt der Cache C1 die Version V2 und schreibt diese zum Zeitpunkt
7 seiner lokalen Systemuhr (tC1

) fest. Das Überspringen von älteren Versionen entsteht,
wenn der Cache erst zu einem Zeitpunkt tBE > 17 das Objekt O lädt. Dies wäre z. B.
der Fall, wenn die WSs von T1 und T2 übernommen werden, bevor der Cache O lädt.
Im Beispiel hat C1 auch bereits das WS von T3 eingespielt und die Änderung auf O zum
Zeitpunkt tC1 = 10 festgeschrieben.
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Abbildung 5: Initialisierung des Caches

Nehmen wir an, eine Transaktion Tneu startet, bevor das WS von T3 eingespielt wird. In
diesem Fall wird der Snapshot von Tneu korrekt referenziert, wenn zum Cache im Zei-
tintervall tC1 ≥ 7 ∧ tC1 < 10 zugegriffen wird und zum Backend zum Zeitpunkt tZ
von 17. Die Wahl eines späteren Zeitpunktes als tbeZ = 17 würde im Backend möglicher-
weise einen anderen Snapshot adressieren, wenn nämlich eine Transaktion zum Zeitpunkt
18 Versionen anderer Objekte eingebracht hätte. Im Cache repräsentieren alle Zeitpunkte
tci zwischen der Übernahme zweier WSs den gleichen transaktionskonsistenten Backend-
Zustand. Daher sind hier mehrere Zugriffszeitpunkte tciZ wählbar.

Der Cache C2 hat bereits die Version V1 von O geladen und das WS von T1 übernommen.
Die Änderungen der WSs von T2 und T3 stehen noch aus. Somit kannC2 einer Transaktion
Tneu zurzeit nur einen gemeinsamen Snapshot basierend auf der gemeinsamen Version V1
anbieten.

5.2 Initialisierung

Ein neu zu initialisierender Cache ist zunächst leer. Damit er seine Arbeit aufnehmen kann,
muss er sich zunächst am Backend registrieren (vgl. Abb. 5a). Dabei erhält er eine eindeu-
tige Identifikation, die Cache-Id, um sich während der weiteren Verarbeitung gegenüber
dem Backend ausweisen zu können. Der Cache ist bereits vor dieser Registrierung in der
Lage, Benutzertransaktionen entgegenzunehmen. Diese werden solange komplett an das
Backend weitergeleitet, bis die Initialisierung vollständig abgeschlossen ist.

Nachdem die Registrierung abgeschlossen ist, greift der Cache auf das Backend durch
Initialisierung einer Ladetransaktion T load

1 erstmalig zu. Da der Cache noch leer ist, wird
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für T load
1 der Wert tbeZ = tZ = 0 als Zugriffsparameter angegeben. Dies signalisiert dem

Backend, dass T load
1 Zugriff auf den letzten festgeschriebenen Datenbankzustand (den

neuesten Snapshot) erhalten soll. Diese Situation ist in Abb. 5b dargestellt, wobei der
tatsächliche Zugriffszeitpunkt für T load

1 auf BOTBE(T
load
1 ) = tBE = 21 korrigiert wird.

Dieser erstmals festgelegte Zeitpunkt wird als Ausgangszeitpunkt des Caches im Backend
hinterlegt. Der Cache ist nun initialisiert und kann seine normale Verarbeitung aufnehmen.
Muss der Cache in dieser Phase (tZ = 0) noch weitere lokale Transaktionen anlegen, die
auf das Backend zugreifen (z. B. falls eine Benutzertransaktion neu startet), so werden
diese auf den Ausgangszeitpunkt (hier 21) festgelegt. Auf diese Weise muss dem Cache
niemals durch eine gesonderte Kommunikation der Ausgangszeitpunkt explizit mitgeteilt
werden.

Start der Auslieferung von WSs. Sobald der Cache erstmalig eine lokale Transaktion
zum Zugriff auf das Backend gestartet hat (T load

1 ), werden alle WSs von Änderungs-
transaktionen mit einem EOTBE ≥ 21 an den Cache ausgeliefert. Ändern sich also
Objekte, die mittels T load

1 geladen wurden, kann der Cache alle Folgeänderungen anhand
der ihm zugestellten WSs nachvollziehen. Da in jedem WS der nachfolgend zu verwen-
dende Zustandszeitpunkt tZ mitgeschickt wird, ist dieser nach der ersten WS-Übernahme
im Cache eindeutig definiert.

Transaktionskonsistenter Zustand. Wir betrachten nochmals Abb. 5b. SolangeC1 kein
WS abschließend eingespielt hat (also auch während der Übernahme eines WS) wer-
den alle geladenen Sätze über T load

1 abgefragt. Somit erreichen nur Objekte des gleichen
Snapshots (d. h. des gleichen transaktionskonsistenten Zustands) den Cache. Somit spielt
es keine Rolle, wann und wie oft Sätze in die Cache-Datenbank eingefügt werden. In unse-
rem Beispiel aus Abb. 5b wurde das ObjektO zum ZeitpunktEOTC1

(T insert
1 ) = 3 in die

Cache-Datenbank eingebracht. Eine lokale Transaktion T c1
alt mit BOTC1

(T c1
alt) = 1 kann

auf das ObjektO im Cache nicht zugreifen, eine Transaktion T c1
neu mitBOTC1

(T c1
neu) = 4

hingegen schon. Die durch das CbDBC vorgegebenen Regeln, die eine korrekte Cache-
Verwaltung (bzgl. Laden, Entladen, Probing) garantieren, bleiben dabei unangetastet und
müssen natürlich eingehalten werden [KB09, HB07].

5.3 Übergang zum Nachfolgezustand

Sobald ein WS im Cache eintrifft, muss dieses schnellstmöglich verarbeitet werden. Dabei
muss sichergestellt werden, dass die WSs in der Commit-Reihenfolge ihrer zugehörigen
Änderungstransaktionen abgearbeitet werden. Jede WS-Übernahme wird durch genau eine
lokale Transaktion im Cache abgewickelt (z. B. von T accept

1 , wie in Abb. 6a gezeigt).

Für jede Änderung im WS ist zu prüfen, ob der Cache den als geändert aufgeführten
Satz4 überhaupt enthält. Ist der Satz im Cache, wird er durch T accept

1 angepasst. Wie in

4Im WS werden alle Attribute eines geänderten Satzes für jede Cache-Tabelle in ihrem alten und neuen
Zustand übertragen (vgl. [Kle10]).
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Abbildung 6: Übergang zum nächsten transaktionskonsistenten Zustand.

Abschnitt 3 gezeigt, können hierbei Ladeoperationen ausgelöst werden. Dabei ist es sogar
möglich, dass neue Sätze den Cache erreichen, für die im gerade abzuarbeitenden WS eine
Änderung aufgeführt ist, welche dann noch zusätzlich (nach dem entsprechenden Lade-
vorgang) durchzuführen ist. Diese könnte wieder ein Nachladen auslösen usw. Es entsteht
eine rekursive Abarbeitung des WS. Dabei wird jedoch jede im WS aufgeführte Ände-
rung höchstens ein Mal angewandt, wodurch der Übernahmeprozess stets terminiert. Erst
wenn alle anwendbaren Änderungen des einzuspielenden WS übernommen wurden und
die hierdurch ausgelösten Nachladeoperationen beendet sind, wird T accept

1 abgeschlos-
sen. Hierdurch wird der Cache atomar von einem transaktionskonsistenten Zustand in den
nachfolgenden überführt.

Nach dem erfolgreichen Abschluss von T accept
1 müssen alle nachfolgenden Ladeprozesse

mit einer lokalen Backend-Transaktion durchgeführt werden, die den neuen transaktions-
konsistenten Zustand repräsentiert. In Abb. 6b wurde dazu die Transaktion T load

2 neu ein-
gerichtet, welche mit dem Zugriffszeitpunkt tbeZ = tZ = 23 aus dem WS von T1 initia-
lisiert wurde. Ebenso muss jede neu zu initialisierende lokale Backend-Transaktion T be

neu

mit tbeZ = 23 angelegt werden. Die genaue Initialisierung der zugehörigen Benutzertrans-
aktion Tneu wird im anschließenden Abschnitt besprochen.

5.4 Snapshot-isolierte Benutzertransaktion

Durch die in den beiden vorangegangenen Abschnitten beschriebene Versionsverwaltung
sind wir nun in der Lage einer Benutzertransaktion (z. B. T1) einen eindeutigen, globalen
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Abbildung 7: Initialisierung einer Benutzertransaktion.

Snapshot zuzuweisen. Dieser ergibt sich durch die Festlegung der Zugriffszeitpunkte für
die lokalen Teiltransaktionen T be

1 und T ci
1 . Sie werden im Transaktionskontext (oder kurz:

Kontext) von T1 hinterlegt, der vom CacheMS verwaltet wird. Auf diese Weise wird durch
die Informationen im Kontext der Snapshot der Transaktion definiert. Aus diesem Grund
bezeichnen wir solche Transaktionskontexte fortan synonym als Snapshot der Transaktion.

Jeder Snapshot wird gebildet, indem zunächst T ci
1 für die Cache-Datenbank angelegt wird.

Hierbei wird kein Zugriffszeitpunkt vorgegeben. Der im Snapshot hinterlegte Zeitpunkt
für den Cache-Zugriff ergibt sich direkt aus dem Startzeitpunkt von T ci

1 . Somit ist tciZ =
BOT ci(T

ci
1 ) = tci der im Kontext hinterlegte Cache-Zugriffszeitpunkt. Gleichzeitig wird

im Kontext von T1 der aktuelle Wert von tZ für den lokalen Backend-Zugriff hinterlegt
(tbeZ = tZ). Die Transaktion T be

1 wird erst initialisiert, wenn ein Zugriff auf das Backend
tatsächlich nötig wird. So wird für Transaktionen, die nur Lesezugriffe ausführen, die
durch den Cache beantwortbar sind, das Backend nicht involviert. Wir betrachten das
Anlegen einer Benutzertransaktion nochmals genau mit Hilfe der Beispiele aus Abb. 7.

In Abb. 7a greift die Benutzertransaktion T1 erstmalig über das CacheMS von C1 auf das
CbDBC-System zu. Die lokale Systemuhr des Caches hat derzeit den Wert tc1 = 5 und im
letzten, bereits eingespielten WS wurde der Zustandszeitpunkt tZ = 24 übermittelt. Der
Cache initialisiert den Snapshot von T1, indem er die Zeitpunkte tc1Z = BOT c1(T

c1
1 ) =

tc1 = 5 und tbeZ = tZ = 24 für T1 festlegt. Danach wird die lokale Systemuhr tc1 um
eins erhöht (tc1 = 6, vgl. Abb. 7b). Die lokale Backend-Transaktion T be

1 ist noch nicht
initialisiert. T1 kann zurzeit also nur die Version V2 vonO im Cache lesen. Im Bild ist auch
angedeutet, dass der Cache gerade die Version V3 übernimmt (z. B. durch T accept

1 ), die im
Backend bereits festgeschrieben wurde. T accept

1 ist jedoch noch nicht abgeschlossen und
daher zu T1 nebenläufig. Sie endet erst zu einem Zeitpunkt tc1 > 5, sodass T1 die Version
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V3 niemals lesen kann.

Der Cache hat den Snapshot gebildet und ist nun in der Lage, falls T1 auf das Backend
zugreifen muss, T be

1 jederzeit korrekt anzulegen (vgl. Abb. 7b). Der Zugriffszeitpunkt von
T be
1 würde normalerweise (unangepasste Snapshot Isolation) auf den tatsächlichen Beginn

der Transaktion BOTBE(T
be
1 ) = tBE = 36 festgelegt. Da der Cache für T be

1 aber den
Zugriffszeitpunkt 24 hinterlegt hat, wird der Beginn auf BOTBE(T

be
1 ) auf den Wert 24

vorverlegt. Egal ob T1 nun auf den Cache oder das Backend zugreifen muss, er sieht immer
die gleiche Version des Objektes O (hier V2). Da bereits eine weitere Version (V3) von O
durch eine andere Transaktion festgeschrieben wurde, kann T1 auf O keine Änderung
vornehmen. Dies würde zu einem Schreib/Schreib-Konflikt führen, der im Backend wie
üblich (nach den Regeln für SI) erkannt wird. T1 müsste dann zurückgesetzt werden (First
Committer Wins).

Wir konnten somit zeigen, wie im Cache ein transaktionskonsistenter Zustand hergestellt
und gewahrt werden kann. Durch die Möglichkeit, ältere Versionen im Backend zu refe-
renzieren, kann jeder Benutzertransaktionen ein einheitlich aufgebauter, global konsis-
tenter Snapshot zur Verfügung gestellt werden. Da Änderungen nur im Backend erfol-
gen, lassen sich dort alle Schreib/Schreib-Konflikte korrekt erkennen. Insbesondere der
erfolgreiche Transaktionsabschluss kann allein durch das Backend verifiziert werden. Ein
2PC-Protokoll ist nicht notwendig, da auf den Caches keine Dauerhaftigkeit von Objek-
ten benötigt wird. Tritt während der Verarbeitung ein schwerwiegender Fehler auf (wenn
z. B. der Cache ausfällt oder ein übermitteltes WS nicht lesbar ist), kann der Cache im
einfachsten Fall geleert und neu initialisiert werden.

Der beschriebene Ansatz garantiert jedoch nur schwache Snapshot Isolation, da es vor-
kommen kann, dass eine Transaktion ein Objekt ändert (Backend), welches sie nachfol-
gend nochmal liest (Cache). Wir diskutieren im nachfolgenden Abschnitt kurz einige Mög-
lichkeiten, starke Snapshot Isolation zu erreichen, falls schwache Snapshot Isolation nicht
ausreicht.

5.5 Starke Snapshot Isolation

Um starke Snapshot Isolation zu erreichen, muss sichergestellt sein, dass eine Transak-
tion T1 keine Sätze im Cache liest, die sie selbst bereits geändert hat. Am einfachsten
gelingt dies, wenn einer Transaktion der Zugriff auf den Cache verwehrt bleibt, sobald sie
einmal ein Update-Statement ausführt hat. Dadurch wird jedoch die Nutzung des Caches
sehr stark eingeschränkt. Reine Lesetransaktionen und Transaktionen, die erst am Ende
schreiben, würden jedoch kaum oder gar nicht beeinflusst.

Um diese radikale Lösung zu vermeiden, kann man selektiv nur Zugriffe auf Cache-
Tabellen verbieten, deren zugeordnete Backend-Tabelle zuvor von einem Update-Statement
geändert wurde. Da jedes Statement einer Transaktion zunächst am Cache ankommt kann
dieser die betroffene Tabelle auslesen und das Zugriffsverbot für die Transaktion in deren
Kontext vermerken.

Als weitere Verfeinerung können alle Primärschlüssel (oder die Record Identifier) geän-
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derter Sätze an die Antwortnachricht einer Update-Anweisung angehängt werden (per Pig-
gybacking). Dies macht nur dann Sinn, wenn nicht zu viele Informationen zu übertragen
sind. Der Cache kann so prüfen, ob zu lesende Sätze bereits durch die Transaktion geän-
dert wurden. Wenn ja, wird die Leseoperation vom Backend beantwortet. Wurden zu viele
Sätze geändert, so dass der Verwaltungsaufwand zu hoch ist, werden nachfolgend unge-
prüft alle Operationen der Transaktion direkt ans Backend geschickt. Der große Nach-
teil dieser Vorgehensweise besteht darin, dass die Änderungen einer Anweisung direkt
im Backend ermittelt werden müssen (z. B. durch Trigger). Das im Aufsatz gezeigte Ver-
fahren vermeidet dies gerade, da hierbei die Änderungen erst nach Transaktionsabschluss
(z. B. durch Log-Sniffing-Techniken) ermittelt werden können.

Eine viel versprechende Methode ist die Durchführung einer Vollständigkeitsprüfung (Pro-
bing) für Update-Anweisungen. Ist das Probing erfolgreich, kann der Cache selbst die
geänderten Sätze ermitteln und daraus auch die neuen Werte berechnen. So kann der
Cache selbst einer Transaktion ihre geänderten Sätze zurückliefern, falls die Ausführung
im Backend erfolgreich war. Hierbei ist es jedoch zu beachten, dass dem Backend das
erfolgreiche Probing signalisiert wird. Das Backend muss im Gegenzug die Zulässigkeit
des Update bestätigen. Werden beim Update Folgeänderungen ausgelöst, die wiederum
den momentanen Cache-Inhalt beeinflussen, muss dies zurückgemeldet werden, da der
Cache solche Situationen nicht erkennen kann.

Es lassen sich auch Kombinationen der vorgeschlagenen Verfahren implementieren. Sobald
der Cache jedenfalls transaktionslokal geänderte Sätze – in der Regel bei wiederholtem
Lesen – nicht selbst zur Verfügung stellen kann, muss die Leseoperation im Backend erfol-
gen.

Alle hier aufgeführten Methoden können starke Snapshot Isolation erreichen. In unserem
CbDBC-Prototyp ACCache [BHM06] ist jedoch bisher nur schwache Snapshot Isolation
umgesetzt.

5.6 Löschung alter Versionen

Alte Versionen von Objekten dürfen gelöscht werden, wenn keine Transaktion mehr auf sie
zugreifen kann. Sobald die Caches ein WS übernehmen, erhöht sich ihr lokaler Zustands-
zeitpunkt tZ . Legt der Cache eine Backend-Transaktion an, wird der Zugriffszeitpunkt
tbeZ ans Backend zurück übermittelt. tZ und somit auch tbeZ werden stets nur erhöht. Eine
vom Cache angelegte Benutzertransaktion greift also niemals mit einem Zugriffszeitpunkt
tbeZ , der kleiner als ein zuvor übermittelter Wert ist, auf das Backend zu. Aus dem Mini-
mum aller übermittelten Zugriffszeitpunkte lässt sich so ermitteln, welche Versionen noch
zugreifbar sind. Nicht mehr zugreifbare Versionen können gelöscht werden. Werden Benut-
zertransaktionen nur im Backend ausgeführt, ohne das ein Cache involviert ist, muss der
kleinste BOT aller laufenden Transaktionen in die Analyse aufgenommen werden.

Auf dem Cache gelten die Standard-Regeln für die Löschung von Versionen. Das heißt,
dass dort nur das Minimum über alle BOTs von laufenden Transaktionen herangezogen
wird, um zu entscheiden, welche Versionen zu löschen sind.
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5.7 Middleware-basierter Zugriff auf ältere Snapshots

In der derzeitigen Implementierung unseres Prototyps (ACCache) wird der Zugriff auf
ältere Snapshots durch einen speziellen Transaktionspool simuliert. Dieser basiert auf der
Idee, dass nach dem Abschluss einer Transaktion, die den Datenbankzustand verändert
hat, ein Pool von nebenläufigen Transaktionen5 angelegt wird, deren Startzeitpunkte direkt
aufeinander folgen (z. B. BOTBE(T

be
1 ) = 10, BOTBE(T

be
2 ) = 11 usw.). Dabei wird

sichergestellt, dass, während ein solcher Pool angelegt wird, keine andere Transaktion ihr
Commit ausführt. Die Transaktionen innerhalb eines Pools greifen also alle auf den glei-
chen logischen Snapshot zu. Jeder Pool erhält eine Nummer, die gleichzeitig als Zugriffs-
zeitpunkt dient und im WS an den Cache übermittelt wird. Wenn ein Cache eine lokale
Backend-Transaktion anlegen will, referenziert er den entsprechenden Pool über den mit-
gelieferten Zustandszeitpunkt. Aus diesem bekommt er dann eine Transaktion zugewie-
sen. Ist der Pool von Transaktionen erschöpft, ist der Snapshot für den Cache nicht mehr
erreichbar. Der Cache wird gezwungen, weitere WSs zu übernehmen, um einen neueren
Pool referenzieren zu können. Wenn die Initialisierung einer lokalen Backend-Transaktion
T be
1 fehlschlägt (z. B. wenn der Pool leer ist), wird die Benutzertransaktion T1 einfach

abgebrochen.

6 Fazit

Der vorliegende Aufsatz zeigt, dass der Einsatz eines (verteilten) Mehrversionenverfah-
rens für das CbDBC zwingend erforderlich ist, um einer Benutzertransaktion stets einen
transaktionskonsistenten Zustand anbieten zu können. Damit lesende Zugriffe bevorzugt
werden, wurde die Isolationsstufe Snapshot Isolation angestrebt. Dabei ist die im Aufsatz
entwickelte Art der Nebenläufigkeitskontrolle bestens auf die Eigenschaften des CbDBC
abgestimmt. Lesende Zugriff werden niemals blockiert, ein Erstellen von Read Sets ist
nicht erforderlich, die Replikate in den Caches lassen sich verzögert aktualisieren und
es gibt keinerlei zusätzliche Kommunikation zwischen Cache und Backend. Besonders
diese letztgenannte Eigenschaft ist wichtig. Der Cache ist sogar in speziellen Fällen in der
Lage, eine Benutzertransaktion alleine, ohne Involvierung des Backends durchzuführen.
Der erfolgreiche Abschluss einer Transaktion kann allein vom Backend verifiziert wer-
den, sodass ein 2PC-Protokoll nicht notwendig ist. Durch Sondermaßnahmen lässt sich
starke Snapshot Isolation erreichen, wobei der Cache oft selbst verifizieren kann, ob die
zu ändernden Sätze vollständig im Cache vorliegen.

Das Poolen von Transaktionen ermöglicht, falls erforderlich, den Middleware-basierten
Zugriff auf ältere Snapshots, wobei eine Integration dieser Funktionalität in ein beste-
hendes Datenbanksystem (z. B. PostgreSQL) anzustreben ist. Einerseits sind dadurch die
älteren Zustände durch beliebig viele Benutzertransaktionen zugreifbar und andererseits
ist ein deutlich besseres Leistungsverhalten zu erwarten.

5Durch diesen Trick können wir später bei Bedarf noch mehrfach einen existierenden Snapshot nutzen.
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7 Kritik und Ausblick

Der einzige echte Nachteil der vorgestellten Nebenläufigkeitskontrolle liegt darin, dass
der Backend-Zugriff von Benutzertransaktion auf den Zustand zurückgesetzt wird, der im
Cache als letztes übernommen wurde. Der Cache bestimmt somit durch die Geschwindig-
keit, mit der er WSs übernimmt, wie stark sein Zustand vom aktuellen Zustand im Backend
abweicht. Dieser Abstand sollte nur gering sein, da sonst die Gefahr von Schreibkonflik-
ten enorm steigt, was zum Abbruch vieler Transaktionen führen würde. Zur Verhinderung
einer solchen Situation kann der Cache die Ausführung von Benutzertransaktionen künst-
lich verlangsamen, um mit höherer Priorität WSs einzuspielen. In der Regel ist jedoch zu
erwarten, dass bei hoher Leselast im Gesamtsystem (60-80%) Konsistenz und Vollstän-
digkeit in den Caches nur wenig vom aktuellen Datenbankzustand abweichen.

Die Eigenschaften der vorgestellten Synchronisation (Konfliktrate, Leistung, Skalierbar-
keit) müssen durch Messungen noch genau untersucht werden. Dies stellt den Hauptan-
teil weiterer Forschungsbemühungen dar. Wünschenswert wäre dabei eine Integration in
ein bestehendes Datenbanksystem (z. B. PostgreSQL). Außerdem müssen die Ideen und
Methoden, um starke Snapshot Isolation zu garantieren, noch umgesetzt werden.
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A generalized join algorithm 
Goetz Graefe 

Hewlett-Packard Laboratories 

Abstract 
Database query processing traditionally relies on three alternative join algorithms: in-

dex nested loops join exploits an index on its inner input, merge join exploits sorted inputs, 
and hash join exploits differences in the sizes of the join inputs. Cost-based query optimi-
zation chooses the most appropriate algorithm for each query and for each operation. Un-
fortunately, mistaken algorithm choices during compile-time query optimization are com-
mon yet expensive to investigate and to resolve. 

Our goal is to end mistaken choices among join algorithms by replacing the three tra-
ditional join algorithms with a single one. Like merge join, this new join algorithm exploits 
sorted inputs. Like hash join, it exploits different input sizes for unsorted inputs. In fact, for 
unsorted inputs, the cost functions for recursive hash join and for hybrid hash join have 
guided our search for the new join algorithm. In consequence, the new join algorithm can 
replace both merge join and hash join in a database management system. 

The in-memory components of the new join algorithm employ indexes. If the database 
contains indexes for one (or both) of the inputs, the new join can exploit persistent indexes 
instead of temporary in-memory indexes. Using database indexes to match input records, 
the new join algorithm can also replace index nested loops join. 

Results from an implementation of the core algorithm are reported. 

1 Introduction 
Non-procedural queries and physical data independence both enable and require auto-

matic query optimization in a SQL compiler. Based on cardinality estimation, cost calcula-
tion, query rewrite, algebraic equivalences, plan enumeration, and some heuristics, query 
optimization chooses access paths, join order, join algorithms, and more. In most cases, 
these compile-time choices are appropriate, but poor choices often cause poor performance, 
dissatisfied users, and disrupted workflows in the data center. Investigation and resolution 
of intermittent performance problems are very expensive. 

Our research into robust query processing has led us to focus on poor algorithm 
choices during compile-time query optimization. In order to avoid increasing complexity 
and sophistication during query optimization, e.g., by run-time feedback and statistical 
learning [MLR 03], our efforts center on query execution techniques.  

The new join algorithm introduced here is a result of this research. Its design goal is a 
viable single replacement for all three traditional join algorithms by matching the perform-
ance of the best traditional algorithm in all situations. If both join inputs are sorted, the new 
algorithm must perform as well as merge join. If only one input is sorted, it must perform 
as well as the better of merge join and hash join. If both inputs are unsorted, it must per-
form as well as hybrid hash join. If both inputs are very large, it must perform as well as 
hash join with recursive partitioning or merge join and external merge sort with multiple 
merge levels. Finally, if one input is small, the new join algorithm must perform as well as 
index nested loops join exploiting a temporary or permanent index for the large input. 
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Table 1 summarizes the input characteristics exploited by index nested loops join, 
merge join, hybrid hash join, and the new join algorithm. Rather than merely performing a 
run-time choice among the traditional join algorithms, it combines elements from these 
algorithms and from external merge sort. Therefore, we call it “generalized join algorithm” 
or abbreviated “g-join.” 

 INLJ MJ HHJ GJ 
Sorted input(s)  +  + 

Indexed input(s) +   + 
Size difference   + + 

Table 1. Join algorithms and exploited input properties. 
With one or two sorted inputs, g-join avoids run generation and merging, instead ex-

ploiting the sort orders in the inputs. For indexed inputs, it exploits the index either as a 
source of sorted data or as a means of efficient search. 

For unsorted inputs, g-join employs run generation quite like external merge sorts for a 
traditional merge join. Unlike external merge sort, g-join avoids all or most merge steps, 
even leaving more runs than can be merged in a single merge step. Like hybrid hash join, it 
divides memory into two regions, one for immediate join processing and one for handling 
large inputs. If the size of the small join input is similar to the memory size, most memory 
is assigned to the first region; if the size of the small input is much larger, most or all mem-
ory is assigned to the second region. As in hybrid hash join, the size of the large join input 
does not affect the division of memory into regions. 

The following sections review the traditional join algorithms (Section 2) and then in-
troduce g-join (Section 3). Algorithm details for unsorted inputs of various input sizes and 
unknown input sizes (Section 4) are followed by answers for the “usual questions” about 
any new join algorithm or new algorithmic variant (Section 5). Based on those details and 
answers, replacement of the traditional join algorithms is discussed in depth (Section 6). 
Two partial prototype implementations permit an initial performance evaluation of g-join 
(Section 7). The last section offers our summary and conclusions from this effort so far. 

2 Prior work 
G-join competes with the well-known (index) nested loops join, merge join, and (hy-

brid) hash join algorithms, which are reviewed in detail elsewhere [G 93]. The diag-join 
algorithm [HWM 98] can serve as preprocessing step for most join algorithms including g-
join. Moreover, the merge algorithm of g-join might seem similar to the diag-join algo-
rithm as both exploit sorting and a buffer pool with sliding contents. The algorithms differ 
substantially, however, because diag-join only applies in the case of foreign key integrity 
constraint whereas g-join is a general join algorithm, because diag-join depends on equal 
insertion and scan sequences whereas g-join does not, and because diag-join is inherently 
heuristic whereas g-join guarantees a complete join result. 

In addition to join algorithms, prior research has investigated access paths, in particu-
lar index usage – from covering indexes (also known as index-only retrieval) to index in-
tersection (combining multiple indexes for the same table) and query execution plans with 
dynamic index sets [MHW 90]. Inasmuch as such access plans require set operations such 
as intersection, g-join serves the purpose; otherwise, source data access in tables and in-
dexes is not affected by g-join. 
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Prior research also has investigated join orders in the contexts of dynamic program-
ming [SAC 79], very large queries [IK 90], and dynamic join reordering [AH 00, BBD 05, 
LSM 07]. Most of those research directions and their results are orthogonal to g-join and its 
relationship with the traditional join algorithms. 

The following sections assume a join operation with an equality predicate between the 
two join inputs. Special cases such as joining a table with itself, joining on hash values, etc. 
are feasible but ignored. Similarly, we ignore join operations without equality predicates. 

3 The new join algorithm 
G-join is a new algorithm; it is not a run-time switch among algorithms, e.g., the tradi-

tional join algorithms. It is based on sorted data and thus can exploit sorted data stored in b-
tree indexes as well as sorted intermediate results from earlier operations in the query exe-
cution plan. For unsorted inputs, it employs run generation very similar to a traditional ex-
ternal merge sort. Thereafter, it avoids most or all of the merge steps in a traditional merge 
sort. Moreover, the behavior and cost function of recursive and hybrid hash join have 
guided the algorithm design for unsorted inputs. Nonetheless, g-join is based on merge sort 
and is not a variant of hash join, e.g., partitioning using an order-preserving hash function. 
Delaying all details to subsequent sections, the basic idea is as follows. 

For unsorted inputs, run generation produces runs like an external merge sort, but 
merging these runs can be omitted in most cases. Any difference in the sizes of the two join 
inputs is reflected in the count of runs for each input, not in the sizes of runs. 

With sufficient memory and a sufficiently small number of runs from the smaller in-
put, join processing follows roughly (but not precisely) the sort order of join key values. A 
buffer pool holds pages of runs from the small input. Pages with higher keys successively 
replace pages with lower keys. A single buffer frame holds pages of runs from the large 
input (one page at a time) while such pages are joined with the pages in the buffer pool. In 
other words, during join processing, most memory is dedicated to the small input and only 
a single page is dedicated to the large input. With respect to memory management, the 
buffer pool is reminiscent of the in-memory hash table in a hash join, but its contents turns 
over incrementally in the order of join key values.

If merging is required, the merge depth is kept equal for both inputs. This is rather 
similar to the recursion depth of recursive hash join and quite different from a merge join 
with two external merge sorts for inputs of different sizes. For fractional merge depths – 
similar to hybrid hash join – memory is divided into segments for immediate join process-
ing and for buffers for temporary files. Thus, g-join requires memory and I/O for temporary 
files in very similar amounts as recursive and hybrid hash join. Even bit vector filtering and 
role reversal are possible, as are integration of aggregation and join operations. 

If one or both inputs are sorted, run generation and merging can be omitted. With two 
sorted inputs, the algorithm “naturally simplifies” to the logic of a traditional merge join. If 
the small input is sorted, the buffer pool holds only very few pages, very similar to the 
“back-up” logic in merge join with duplicate key values. If the large input arrives sorted, g-
join joins its pages with the buffer pool contents by strictly increasing join key values. 

If one or both of the inputs is indexed, g-join exploits available indexes in its merge 
logic. If one input is tiny and the other input is huge, the merge logic skips over most data 
pages in the huge input, thus mimicking traditional index nested loops join. If the small 
input is indexed and the index can be cached in memory, there is no need for sorting the 
large input – like hash join as well as the non-traditional mode of index nested loops join. 
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4 Unsorted inputs 
Many of the algorithm’s details can best be explained case by case. This section fo-

cuses on inner joins of two unsorted, non-indexed inputs with practically no duplicate key 
values, with uniform (non-skewed) key value distributions, and with pages holding multi-
ple records and thus non-trivial key ranges. Later sections relax these assumptions. 

As the size of the small input is crucial to achieving join performance similar to recur-
sive and hybrid hash join for unsorted inputs, the discussion divides cases by the size of the 
small input relative to the memory size. In all cases, the large input may be larger than the 
small input by a few percent or by orders of magnitude. The core algorithm that most other 
cases depend on is covered in Section 4.2. 

In order to explain g-join step-by-step, Sections 4.1 through 4.5 assume accurate a pri-
ori knowledge of the size of input R. Section 4.6 relaxes this assumption. 

The following descriptions assume that compile-time query optimization anticipated 
that input R will be smaller than input S. Therefore, input R is consumed first and drives 
memory allocation and run generation. 

The memory allocation is M (pages or units of I/O) and the maximal fan-in in merge 
steps as well as the maximal fan-out in partitioning steps is F. F and M are equal except for 
their units and a small difference due to a few buffers required for asynchronous I/O etc. If 
M is around 100 or higher, this difference is not significant and usually ignored. 

During merge steps, read operations in run files require random I/O. Large units of I/O 
(multiple pages) are a well-known optimization for external merge sort and for partitioning, 
e.g., during hash join and hash aggregation. The same optimization also applies to the runs 
and to the merge operations described in 4.2.1. 

4.1 Case R ≤ M 
The simplest case is a small input that fits in memory, i.e., R≤M. No run generation is 

required in this case. Instead, g-join retains R in memory in an indexed organization (e.g., a 
hash table, but it may be a b-tree), and then processes the pages of S one at a time. 

With all temporary files avoided, the I/O cost of g-join in this case is equal to that of 
traditional in-memory hash join. When using the same in-memory data structure, the CPU 
effort of the two join algorithms is also the same.

4.2 Case R = F × M 
The next case is the one in which Grace hash join [FKT 86] and hybrid hash join oper-

ate in the same way, with F pairs of overflow files, no immediate join processing during 
the initial partitioning step, and all memory required during all overflow resolution steps. 

In this case, g-join creates initial runs from both inputs R and S. With replacement se-
lection for run generation, the number of runs from input R is F/2+1. Even if the number of 
runs from input S is much larger than the maximal merge fan-in F, no merging is required. 
Instead, inputs R and S are joined immediately from these runs. Practically all memory is 
dedicated to a buffer pool for pages of runs from input R. Input S requires only a single 
buffer frame as only one page at a time is joined with the contents of the buffer pool.  

4.2.1 Page operations 
Careful scheduling governs read operations in runs from inputs R and S. At all times, 

the buffer pool holds some key range of each run from input R. The intersection of those 
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key ranges is the “immediate join key range.” If the key range in a page from input S falls 
within the immediate join key range, the page is eligible for immediate join processing. 

The schedule focuses on using, at all times, the minimal buffer pool allocation for 
pages of the small input R. It grows its memory allocation only when necessary in order to 
process pages from the large input S one at a time, shrinks the buffer pool as quickly as 
possible, and sequences pages from the large input S for minimal memory requirements. 

The minimal memory allocation for the buffer pool requires one page for each run 
from input R. Its maximal memory allocation depends on key value distributions in the 
inputs, i.e., distribution skew and duplication skew. With uniform key value distributions 
and moderate amounts of duplicate key values, about two pages for each run from input R 
should suffice. Two pages for each of F/2+1 runs amount to M pages. In other words, g-
join can perform the join immediately after run generation in this case, independently of 
the size of input S. Thus, if indeed two pages per run from input R suffice, memory needs 
and I/O effort of g-join match those of hash join. 

Algorithm overview 
Figure 1 illustrates the core algorithm of g-join. Various pages (double-ended arrows) 

from various runs cover some sub-range of the domain of join key values (dotted horizontal 
arrow). Some pages of runs from input R are resident in the buffer pool (solid arrows) 
whereas some pages have already been expelled or not yet been loaded (dashed arrows). 
The pages in the buffer pool define the immediate join key range (dotted vertical lines). It 
is the intersection of key ranges of all runs from input R. Some pages of runs from input S 
are covered by the immediate join key range (solid arrows) whereas some have already 
been joined or cannot be joined yet (dashed arrows). Differently from the diagram, there 
usually are more runs from input S than from input R. Again, at any one time, memory 
holds multiple pages of each run from input R but only one page from one of the runs from 
input S. 

In Figure 1, the buffer pool contains 2 pages each from runs 1 and 3 of input R and 3 
pages from runs 2. In the illustrated situation, the next action joins a page from run 2 of 
input S with the pages in the buffer pool, whereupon the buffer pool may shrink by a page 
from run 2 of input R. 

Figure 1. Runs, pages, buffer pool, and the immediate join key range. 

Data structures 
The immediate join key range expands and contracts as it moves through the domain. 

Multiple priority queues guide the schedule of page movements. These priority queues re-
quire modifications when the buffer pool reads or drops pages of input R and when a page 

Domain of join key values 

Input R, run 1 

Input R, run 2 

Input R, run 3 

Input S, run 1 

Input S, run 2 

271



of S joins with the pages in the buffer pool. All priority queues are sorted in ascending or-
der such that top entry holds the smallest key value. The priority queues are named A 
through D: 
A. This priority queue guides how the buffer pool grows. Each run from the small input R 

has one entry in this priority queue at all times. Its top entry indicates next page to load
into memory. The sort key is the high key of the newest page in the buffer pool for a 
run. 

B. This priority queue guides how the buffer pool shrinks. Each run from input R has one 
entry in this priority queue at all times. Its top entry indicates the next page to drop
from memory. The sort key is the high key of the oldest page in the buffer pool for a 
run. 

C. This priority queue guides how the buffer pool shrinks. Each run from input S has an 
entry in this priority queue. Its top entry indicates the next page to join from the large 
input S. The sort key is the low key value in the next page on disk. 

D. This priority queue guides how the buffer pool grows. Each run from input S has an 
entry in this priority queue. Its top entry indicates the next page to schedule from input 
S. The sort key is the run with the high key value in the next page on disk. 
Priority queue A is similar in function and size (F/2 entries) to a priority queue guiding 

page prefetch (“forecasting”) in a traditional external merge sort. Priority queue B could 
have an entry for each page in memory rather than for each run from input R. In that case, 
it would be similar in function and size (M entries) to a priority queue used for page re-
placement in a buffer pool. Priority queues C and D are similar in size (S/(2M)+1 entries) 
to that of a priority queue guiding a traditional merge sort to merge in each step the small-
est ones among all remaining runs, which is the fastest way to reduce the number of runs. 

Priority queues C and D employ information from pages not yet read during the join 
process. With a very moderate loss in predictive precision, priority queue C can use the 
highest key value already seen instead of the lowest future key value. 

Finally, it is possible to omit priority queue D and schedule pages of input S entirely 
based on priority queue C. This algorithm variant does not require a larger maximal buffer 
pool, although it may require a large buffer pool over longer periods.  

Algorithm 
The algorithm initializes the buffer pool and priority queues A and B with the first 

page of each run from input R. Priority queues C and D initially hold information about the 
first page of each run from input S. The algorithm continues step by step until all pages of 
all runs from input S have been joined, i.e., priority queues C and D are both empty. 

Each step tests the top entries of priority queues C and then D whether they can be 
joined immediately. If so, it reads the appropriate page of input S and joins it to the pages 
of input R in the buffer pool. It then replaces the page of input S in priority queues C and D 
with the next page from the same run from input S. If the end of the run is reached, the run 
is removed from priority queues C and D. If the replaced page used to be the top entry of 
priority queue C, the buffer pool may drop some pages, guided by priority queue B. 

Otherwise (if the top entries of priority queues C and D cannot by joined immediately), 
the buffer pool grows by loading some additional pages from input R. Priority queue A 
guides this growth until the top entry in priority queue D can be joined immediately. 

The overall complexity of the priority queue operations is modest: each page in all 
runs from inputs R and S goes through precisely two priority queues. Replace and erase 
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operations are required in these priority queues. Tree-of-loser priority queues [K 73] can 
implement these operations with a single leaf-to-root pass. 

The actual I/O operations as well as operations on individual records will likely exceed 
the CPU cost for the priority queues. Operations on individual records include insertion and 
deletion in an in-memory index when pages of input R enter and exit the buffer pool as 
well as search operations in this index to match records of input S. These insertions, dele-
tions, and searches are similar in cost and complexity to the equivalent operations in a hash 
join and its in-memory hash table. 

Prototype implementation 
Our first prototype implementation of the g-join logic employs priority queue B to 

guide shrinking the buffer pool. It does not merge key values into an in-memory b-tree 
index. The prototype has run-time switches that control whether or not priority queue D is 
used and whether priority queue C is sorted on the highest value already seen or the lowest 
value not yet seen. Priority queue D is not used in any of the experiments reported below. 

For a uniform distribution of join key values and a uniform distribution of run sizes, it 
requires about two pages of input R, as discussed in detail later. Two inputs with 100 and 
900 runs of 1,000 pages, i.e., a total of 1,000,000 pages, can be processed in the priority 
queues in less than 1 second using a laptop with a 2.8 GHz CPU. Clearly, 1,000,000 I/O 
operations take more time by 3-4 orders of magnitude. Maintenance of the priority queues 
takes a negligible amount of time. 

4.2.2 Record operations 
As pages of runs from input R enter and exit the buffer pool, their records must be in-

dexed in order to permit fast probing with join key values from records of input S. 
A local index per page of input R is not efficient, as each record of input S would need 

to probe as many indexes as there are pages in the buffer pool. This can substantially in-
crease the cost of probing compared to a global index for all records in the buffer pool. 

A global index must support not only insertions but also deletions. After a new page 
has been read into the buffer pool, its records are inserted into the global index; before a 
page is dropped from the buffer pool, its records are removed from the global index. 

The implementation of the global index can use a hash table or an ordered index such 
as a b-tree. B-tree maintenance can be very efficient if the b-tree contains only records in 
the key range eligible for immediate join processing. For efficient insertion, the runs from 
input R can be merged (as in a traditional merge sort) and then appended to the b-tree in-
dex. For efficient deletion, entire leaf pages can be removed from the b-tree. 

On the other hand, a hash table may support more efficient join processing than a b-
tree index. Even if every record in input R eventually joins with some records of input S, 
each page of input S join with only a few records of input R. Thus, a lot of skipping and 
searching is required in a global b-tree index. 

Hash table implementations with efficient insertion and deletion therefore seem the 
most appropriate data structure for in-memory join processing, i.e., the buffer pool with 
records from input R with individual pages of runs from input S. 

4.3 Case M < R < F × M 
This case falls between the prior two cases, i.e., the case in which hybrid hash join 

shines. During the initial partitioning step of hybrid hash join, some memory serves as out-
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put buffers for the partition overflow files and some memory holds a hash table and thus 
enables immediate join processing. If the small input is only slightly larger than the avail-
able memory allocation, most of the join result is computed during the initial partitioning 
step and only a small fraction of both join inputs incurs I/O costs. If the small input is much 
larger than the available memory allocation, hardly any join result is computed immedi-
ately and a large fraction of both join inputs spills to overflow partitions. 

G-join also employs a hybrid of two algorithms. It divides memory among them and 
employs the same division of memory as hybrid hash join. A fraction of memory equal to 
the size of the hash table in hybrid hash join enables immediate join processing as in Sec-
tion 4.1. Thus, while consuming the join inputs for the first time, g-join computes the same 
fraction of the join result as hybrid hash join. The remaining memory enables run genera-
tion quite similarly to the algorithm of Section 4.2. 

The less memory run generation uses, the smaller the resulting runs are. The goal is to 
produce F/2 runs from input R, because the algorithm of Section 4.2 can process F/2 runs 
in a single step. Interestingly, the required formulas for the memory division are equal in 
hybrid hash join and g-join. 

Specifically, hybrid hash join requires at least K overflow partitions and output buff-
ers, with K derived as follows. K partitions can hold K×M pages from input R. This mem-
ory allocation leaves M−K pages for the hash table and immediate join processing. In order 
to process all input in a single step, input R must fit within the hash table plus these parti-
tions, i.e., K must satisfy R ≤ (M−K)+K×M. Solving for K gives K ≥ (R−M)÷(M−1) or 
K = ceiling((R−M)÷(M−1)). 

G-join uses the same division of memory as hybrid hash join. Immediate join process-
ing uses M−K pages and K pages are used for preparation of temporary files. In g-join, 
these pages serve as workspace for run generation. Thus, R−(M−K) pages are the input to 
run generation, with R−(M−K)≤K×M because R ≤ (M−K)+K×M. 

With replacement selection using a workspace of K pages, the average run size is 2K. 
The resulting count of runs is (K×M)/(2K)=M/2. This is precisely the number of runs from 
the smaller input R that can be processed by the algorithm described in Section 4.2. 

As in hybrid hash join, immediate in-memory join processing must be assigned a spe-
cific set of key values. In hybrid hash join, an appropriate range of hash values is assigned 
to the in-memory partition. G-join can employ a similar hash function or it can simply re-
tain the lowest key values from input R. For the latter variant, the required data structure 
and algorithm is very similar to that of an in-memory “top” algorithm [CK 97], i.e., a prior-
ity queue. This design choice is best with respect to producing sorted output suitable for the 
next operation in the query execution plan. 

While g-join consumes input R, it employs a priority queue to determine the key range 
eligible for immediate join processing. While g-join consumes input S, it employs a hash 
table for join processing. The hash table contains precisely those records that remained in 
the priority queue after consuming input R. 

In summary, g-join running in hybrid mode divides memory like hybrid hash join, re-
tains the same fraction of the smaller input R in memory, performs the operations required 
for in-memory just as efficiently as hybrid hash join, and produces nearly sorted output. 

4.4 Case R = F2 × M 
In this case, hash join requires precisely two partitioning levels. Assuming a perfectly 

uniform distribution of hash values, two partitioning levels with fan-out F produce over-
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flow files from input R equal in size to the available memory, enabling in-memory hash 
join for each partition. Suitable overflow partitions from input S require the same two parti-
tioning levels, independent of the size of input S and its partition files. 

G-join similarly moves each input record through two temporary files. After run gen-
eration produces R÷(2M)=(F2×M)÷(2M)=F2/2 initial runs for input R, a single merge level 
with merge fan-in F reduces the count of runs to F/2. Input S also goes through two levels, 
namely run generation and one level of merging. Thereafter, the algorithm of Section 4.2 
applies, independent of the size of input S and its number of remaining run files. 

4.5 Case F × M < R < F2 × M 
In this case, a hash join requires more than one partitioning level but less than two full 

partitioning levels. The partial level is realized by hybrid hash join when joining partitions 
produced by the initial partitioning step. 

G-join first aims to produce F2/2 runs from input R by dividing memory similar to the 
algorithm in Section 4.3. If the size of R is close F×M, most memory is used for immediate 
join processing during this phase. If the size of R is close to F2×M, very little memory is 
used for immediate join processing and most memory is used as workspace for run genera-
tion. More specifically, the calculation K=ceiling((R−M)÷(M−1)) of Section 4.3 is re-
placed with K=ceiling((R/F−M)÷(M−1)) to account for one additional merge level. 

After this initial hybrid step, g-join merges all runs once, reducing the number of runs 
from input R by a factor of F to F/2. All runs from input S are also merged once with a fan-
in F. The final step applies the algorithm of Section 4.2 to the remaining runs. 

4.6 The general case 
The preceding descriptions assume precise a priori knowledge of the size of input R. 

Dropping this assumption, the following discussion assumes that actual run-time sizes are 
not known until the inputs have been consumed by the join algorithm, that input R is con-
sumed before input S, and that R is smaller than S. Should S be smaller than R, role rever-
sal is possible after run generation for both inputs but it is not discussed further. 

In order to calibrate expectations, it is worthwhile to consider the behavior of hybrid 
hash join under these assumptions. The preceding discussions of hybrid hash join assume 
perfectly uniform distributions of hash values. For a perfect assignment of hash values to 
the in-memory hash table and to the overflow partitions, hybrid hash join also requires 
prior knowledge of the desired size of the in-memory hash table, i.e., of the precise size of 
the build input. Without this knowledge, hash join loses some degree of efficiency. Differ-
ent designs and implementations of hash join suffer in different places. In all cases, chang-
ing the size of the in-memory hash table and its hash buckets is quite complex. 

G-join, with two unsorted inputs of unknown sizes, first consumes the input antici-
pated to be the smaller one. If that input R fits in memory (case R≤M), run generation for 
input S can be avoided entirely, and g-join performs similarly to an in-memory hash join. 

Otherwise, the algorithm divides memory between immediate join processing and run 
generation. With an unknown input size, the best current estimate is used. This estimate 
may change over time, and the memory allocation is adjusted accordingly. Note that such 
an adjustment is easily possible in g-join. 

The most conservative variant of g-join prepares for two huge inputs, i.e., run genera-
tion uses all available memory. If the first input turns out to be small and fit in memory, run 
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generation for the second input is skipped in favor of immediate join processing. Other-
wise, run generation for both inputs is completed. In this variant, g-join performs rather 
like Grace hash join [FKT 86] without dynamic de-staging [NKT 88]. 

The memory allocation at the end of consuming input R is preserved throughout run 
generation and immediate join processing for input S. After run generation for input S, if 
one of the two inputs has produced no more than F/2 runs, final join processing can com-
mence immediately without any intermediate merge steps. 

Otherwise, runs from the smaller input are merged until F/2 runs remain. Each merge 
step merges the smallest remaining runs, which reduces the number of remaining runs with 
the least effort [K 73]. Due to the effects of replacement selection, this will most likely 
affect the first and last initial runs, because the sizes of all other runs tend to be similar to 
the sizes of these two runs together. If run generation produces precisely F/2+1 runs, merg-
ing the first and last runs produces F/2 runs of similar size. 

The merge policy also attempts to minimize the size of the largest run of input R left 
for final join processing. Thus, it might be useful to perform multiple merge steps with 
moderate fan-in rather than one merge step with maximal fan-in, even if doing so requires 
merging slightly more than the minimal data volume.

Next, g-join merges runs from the larger input. Again, each merge step merges the 
smallest remaining runs. Even with no other merge steps, it might be useful to merge the 
first run and the last run produced during run generation. In fact, it is often possible to 
merge the first and last runs immediately after the end of the input, i.e., while the last run is 
being formed. Merging continues until the smallest remaining run is at least as large as the 
largest remaining run from the smaller input. For unsorted inputs, this stopping condition 
leads to equal merge depth for both inputs. For join inputs of very different sizes, this is a 
crucial performance advantage of g-join when compared to merge join, very similar to the 
main advantage of hash join over merge join. 

The crucial aspect is not the count of runs but their sizes. Ideally, the runs from input S 
should be of similar size as the runs from input R. More specifically, the smallest run of 
input S should be at least as large as the largest run of input R. Assuming reasonably uni-
form distributions of join key values, this ensures that a buffer pool of M pages suffices to 
join F/2 runs from input R with any number of runs from input S, which is the final step in 
g-join for unsorted inputs of unknown size. 

4.7 Summary for unsorted inputs 
In summary, g-join processes two unsorted inputs about as efficiently as recursive hy-

brid hash join. This is true for input sizes from tiny to huge and for both known and un-
known input sizes. In particular, g-join exploits inputs of very different sizes by limiting 
the merge depth for both inputs to that required by the smaller input, quite similar to the 
recursion depth in hash join. Moreover, g-join is able to divide memory between immediate 
join processing and preparation of temporary files, very similar to hybrid hash join in both 
memory allocation and performance effects. 

G-join is based on sorting its inputs rather than on hash partitioning. It even produces 
the join result roughly in sorted order such that it might be useful in subsequent operations 
within the query execution plan. This and similar questions are discussed in the following 
section, and the issue whether g-join can substitute for the traditional join algorithms is 
considered thereafter. 
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5 The usual questions 
This section discusses skew in the distribution of join key values, binary operations of 

the relational algebra other than inner join, complex queries with multiple join operations, 
and parallel query execution. 

5.1 Skew 
Skew can affect the performance of g-join in several ways. For example, extreme du-

plication of a single key value in the small input may temporarily force a very large buffer 
pool. A temporary file might be required, comparable to a buffer pool in virtual memory 
rather than real memory. In those extreme cases, both hash join and merge join effectively 
resort to nested loops join, usually using some form of temporary file and repeated scans. 

In general, a buffer pool extended by virtual memory or an equivalent technique is one 
of two “water proof” methods for dealing with extreme cases of skew. The other one re-
duces both inputs R and S to a single run and then performs a merge join. Short of these 
methods, however, a variety of techniques may reduce the impact of skew on the perform-
ance of g-join. The following describes some of those. 

Run generation may gather some statistics about the range and distribution of key val-
ues in each run. If skew is an issue, the merge step may process inputs R and S just a bit 
further than discussed so far. As a result, input R will have fewer than F/2 runs remaining 
and the available memory allocation can support more than two buffer pool pages per run. 
Input S will have larger runs with a smaller key range per page, thus requiring fewer pages 
of input R in the buffer pool during join processing. 

Even in the case of uniform distributions of join key values, merging runs from input S 
until the smallest run from input S is twice as large or even larger than the largest run from 
input R reduces the buffer pool requirements. Again, the key ranges in each page of input R 
and in each page of input S are crucial. If the pages from input S have a smaller key range 
on average, fewer runs from input R require multiple pages in the buffer pool at a time. 

Rather than merging entire runs, it is also possible read individual pages from input S 
twice. If the buffer pool is at its maximal permissible size, cannot be shrunk, and no pages 
can be joined immediately, joining the low key range of some pages from input S might 
enable shrinking the buffer pool and then growing it again to extend the immediate join key 
range. Priority queue C can track key ranges already joined. If the key value in priority 
queue C falls in the middle of a page rather than a page boundary, the page must be read 
again to complete its join with the buffer pool and input R. 

5.2 Beyond inner joins 
In addition to inner joins, traditional join algorithms also serve semi-joins and anti-

semi-joins (related to “in” and “not in” predicates with nested queries) as well as outer 
joins (preserving rows without matches from one or both inputs). In fact, some of the joins 
permit some optimizations. For example, a left semi-join can avoid the inner loop in nested 
loops join, avoid back-up logic in merge join, and short-circuit the loop traversing a hash 
bucket in hash join. On the other hand, some join algorithm require additional data struc-
tures. For example, a right semi-join implemented as nested loops join needs to keep track 
of which rows in the inner input have already had matches from earlier outer rows, and a 
hash join needs an additional bit with each record in its hash table. 
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In addition to join operations, relational query processing employs set operations such 
as intersection, union, and set difference. These operations may be specified in the query 
syntax or they may be inserted into a query execution plan during query optimization, in 
particular in plans exploiting multiple indexes for a single table. For example, conjunction 
queries might employ two indexes and intersect the resulting sets of row references. 

G-join supports all of these operations. For some of them, it requires an additional bit 
for each record from the first input while a record is resident in the buffer pool. All other 
decisions for left and right semi-join, anti-semi-join, and outer join can readily be sup-
ported with small changes and optimizations in the join processing logic. 

5.3 Complex queries 
A join method is useful for database query processing only if it passes the “Guy Loh-

man test” [G 93]. It must be useful not only for joining two inputs but also in complex 
query execution plans that join multiple inputs on the same or on different columns. 

In complex query execution plans with multiple join operations, g-join can operate as 
pipelined operation (in particular with pre-sorted inputs) or as “stop-and-go” operation or 
“pipeline breaker” for one or both inputs. The choice is dictated by input sizes or by exter-
nal control, e.g., from the query optimizer. For example, a pipeline break can avoid re-
source contention with an earlier or a later operation in the query execution plan, it can 
enable a later operation to improve its resource management based on more accurate esti-
mates of the join output size, or it can enable general dynamic query execution plans. 

The output of g-join is almost sorted. If a perfect sort order is desired, the sort can be 
optimized to take advantage of the guaranteed key range. At any point in time, g-join can 
produce output only within a certain range of join key values defined by the current con-
tents of the buffer pool. While the join output within that key range fits into the memory 
allocation of the sort operation, the sort operation can avoid temporary run files and imme-
diately pipeline its output to the next operation in the query execution plan. Even if tempo-
rary run files are required, they can be merged eagerly up to a key value defined by the key 
range in the buffer pool of g-join. 

If two instances of the new join form a producer-consumer relationship within a query 
execution plan and thus pipeline the intermediate result from one to the other, and if the 
join columns in the two join predicates share a prefix (or ideally are entirely the same), the 
output order produced by the first join improves the performance of the second. Even if the 
intermediate result is not perfectly sorted, its ordering has a high correlation with the re-
quired ordering in the second join operation. Thus, run generation in the second join opera-
tion achieves longer intermediate runs, fewer runs, and thus less intermediate merge effort 
or a smaller buffer pool during final join processing. 

For this effect, it is not required that the join columns in the two join predicates be 
equal. It is sufficient that they share a prefix. If so, longer runs and thus more efficient join 
processing is entirely automatic. While this is also true for merge join with explicit sort 
operations, exploiting equal join predicates requires hash teams [GBC 98], which are more 
complex than traditional binary hash join algorithms but relatively simple compared to 
generalized hash teams [KKW 99] that exploit partial overlap of join predicates. 

In relational data warehouses with star schemas around one or more fact tables, star 
joins combine multiple small dimension tables with a very large fact table. Optimizations 
for star joins include star indexes (b-tree indexes for the fact table with row identifiers of 
dimension tables as search keys), semi-join reduction (semi-joins between dimension tables 
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and secondary indexes of the fact table), and Cartesian products (of tiny dimension tables). 
It appears that g-join can support all required join operations and in fact exploits the size 
difference in joins of small (dimension) tables and large (fact) tables as well as hash join. 

5.4 Parallel query execution 
Parallel query execution relies on partitioning a single intermediate result, on pipelin-

ing intermediate results between operations in producer-consumer relationships, or on both. 
G-join can participate in all forms of parallel query execution. Partitioning intermediate 
results into subsets is entirely orthogonal to the choice of local algorithms. Pipelining in-
termediate results might be aided by exploiting not only equal column sets in join predi-
cates of neighboring operations but also by exploiting join predicates that merely share a 
prefix. In other words, there is reason to expect that g-join enables efficient pipelining more 
readily than multiple merge join operations with intermediate sort operations. Compared to 
query execution plans with multiple hash join operations, g-join enables similar degrees of 
pipelining but it does so making much better use of the sort order of intermediate results. 

6 Replacing traditional join algorithms 
It is unrealistic to expect that g-join will displace all traditional join algorithms rapidly. 

Even if this goal succeeds eventually, it will take many years. As an analogy, it has taken 
decades for hash join to be implemented in all products. On the other hand, slow adoption 
permits additional innovation beyond the initial ideas. For example, after hybrid hash join 
was first published in 1984, Microsoft SQL Server included hash join only in 1998 
[GBC 98], but it also included hash teams to mirror the advantages of interesting orderings 
in query execution plans based on merge join. Nonetheless, even if it is unrealistic to pro-
pose or to expect a rapid adoption of g-join, it seems worthwhile to make the case for re-
placing the traditional join algorithms. 

6.1 Hash join 
Hash join offers advantages over the other traditional join algorithms for unsorted, 

non-indexed join inputs. Thus, the focus of this discussion must be the case of unsorted, 
non-indexed input, e.g., intermediate results produced by earlier operations in the query. 

Throughout Section 4, the cost of the new algorithm mirrors the cost of hash join in-
cluding recursive partitioning and hybrid hash join. In addition to a fairly similar cost func-
tion for unsorted inputs, g-join also produces nearly sorted output without any extra effort. 

The traditional optimizations of hash join readily transfer to g-join. For example, if 
compile-time query optimization errs in estimating relative input sizes, role reversal after 
run generation for both inputs is trivial. Similarly, due to separate phases consuming the 
two join inputs, bit vector filtering readily applies to g-join. 

Hash join can readily integrate aggregation (grouping) on the join column, albeit only 
for its build input. If aggregation is desired for the inputs of g-join, sorting must merge the 
affected input until it forms a single run. Thus, some efficiency is lost, more so when ag-
gregation applies to the larger input than for the smaller input, which g-join merges to F/2
runs in any case. Note that Section 4.2 proposes merging these F/2 runs to form an in-
memory b-tree index. This merge step with a single output stream can readily perform ag-
gregation or duplicate elimination for input R. 
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Hash teams are another optimization for query execution plans based on hash join and 
hash aggregation. They mirror the effects of interesting orderings in plans based on merge 
join and stream-aggregation. Earlier sections already discuss the ability of g-join to pro-
duce, consume, and exploit interesting orderings of intermediate results. 

In summary, hash join and its optimizations shine for unsorted, non-indexed inputs. G-
join closely matches the performance of hash join and its optimizations in all cases. While 
the performance of g-join does not exceed that of hash join, it produces and consumes 
sorted intermediate results and it eliminates the danger of a mistaken choice among multi-
ple join algorithms. 

6.2 Merge join 
Merge join shines when both join inputs are sorted by prior operations, e.g., join or ag-

gregation operations on the same columns or by scans of b-tree indexes. In those cases, g-
join exploits the sorted inputs. Run generation is omitted and join processing consumes the 
join inputs, which take on the roles of runs in the discussion of Section 4. The buffer pool 
requires one or two pages for the smaller input. Note that a traditional merge join requires a 
small buffer pool to back up its inner scan in the case of duplicate join key values. In other 
words, if both inputs are sorted, g-join operates very much like a traditional merge join and 
its underlying movement of pages in the buffer pool. 

If only one join input is sorted by prior operations, g-join consumes it as a single run 
and performs run generation for the other input, similar to run generation as discussed in 
Section 4 for two unsorted inputs. The performance of g-join in this case matches or ex-
ceeds that of merge join, because merging the unsorted input may stop early when many 
runs remain. The performance also matches or exceeds that of hash join, because no effort 
is required for partitioning or merging the input already sorted. 

In summary, g-join matches or exceeds the performance of merge join in all cases. 
Note that qualitative information such as the sort order of indexes, scans, and intermediate 
results is known reliably at compile-time or at least at plan start-up-time; the decision 
whether or not sorting is required does not depend on error-prone quantitative information 
such as cardinality or cost estimation. 

6.3 Index nested loops join 
Index nested loops join shines in two distinct cases. First, when the outer input includ-

ing an index fits in memory, the resulting algorithm is rather like an in-memory hash join. 
Second, if there is an index for the large inner input and there are fewer rows (or distinct 
join key values) in the outer input than pages in the inner input, then index nested loops 
join avoids reading useless pages in the large inner input. In both of these cases, g-join can 
match the performance of index nested loops join. 

In the first case, run generation stops short of writing records from input R to tempo-
rary run files. Instead, all records remain in the run generation workspace, which takes on 
the role of the buffer pool. In-memory join processing may use an in-memory index struc-
ture like in-memory hash join or order-based merge logic like merge join. 

In the second case, which is the traditional case for index nested loops join, g-join sorts 
the small input and then performs a zigzag merge join of the two inputs, i.e., the merge 
logic attempts to skip over useless input records rather than scan over them, and it applies 
this logic in both directions between the join inputs. If the number of distinct join key val-
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ues in the smaller input is lower than the number of pages in the larger input, many of these 
pages are never needed for join processing. This is, of course, precisely the effect and the 
performance advantage of index nested loops join over merge join and hash join, and g-join 
mirrors this performance advantage precisely. 

In order to achieve full performance, index access should to be optimized with proven 
techniques such as asynchronous prefetch, pinning page on the most recent root-to-leaf 
path in the buffer pool, leaf-to-root search using cached boundary keys, etc. These tech-
niques limit the I/O cost of an index nested loops join to that of scanning the two indexes 
involved. 

It is important to note that all required choices – whether to sort or to rely on the sort 
order of the input, whether to build an in-memory index or rely on a database index – are 
based on schema information, not on cardinality estimation. In other words, the detrimental 
effects of errors in compile-time cardinality estimation are vastly reduced. 

7 Performance 
A prototype of the core algorithm produced the results reported here. Michael Carey 

and his students are building a query execution system at UC-Irvine that includes g-join. 
G-join combines well-studied elements of prior query processing algorithms. Imple-

mentation techniques and behavior of run generation, replacement selection, merging, in-
memory hash tables, index creation, index search, etc. are all well understood. A new im-
plementation of those algorithmic components is unlikely to yield new insights or results. 

The principal novel component and the core of g-join is the schedule of page move-
ments during join processing, i.e., the technique described in Section 4.2. The buffer pool 
loads and drops pages of runs from input R while individual pages of runs from input S are 
scheduled, read, and joined with the buffer pool contents. This is the algorithm component 
modeled in detail in the prototype. Actual I/O operations with on-disk files and operations 
on individual records are not included in the prototype. 

The crucial performance characteristic that is not immediately known from prior work 
is the required size of the buffer pool. In the best case, only a single page of each run from 
input R is required; in the worst case, the buffer pool must grow to hold all of input R. The 
expectation from the discussion above is that about 2 pages per run from input R are re-
quired in the steady state. If this expectation is accurate, the I/O volume of g-join is practi-
cally equal to that of recursive and hybrid hash join. This assumes, of course, an unsorted 
input for g-join (as g-join would exploit pre-sorted inputs) and a perfectly uniform distribu-
tion of hash values in hash join (which is required to achieve balanced partitioning and to 
match the standard cost function in practice). 

7.1 Implementation status and baseline experiment 
The prototype focuses on page movements in the algorithm of Section 4.2. Input pa-

rameters include the run count for each input (defaults 10 and 90 runs), the page counts for 
each input (default 40 pages per run), and the number of values in the domain of join key 
values (default 1,000,000 distinct values). With random key ranges in input pages, the run 
sizes are only approximate. The output includes the average and maximum buffer pool 
sizes, and may include a trace showing how the buffer pool grows and shrinks over time. 

With the default values, the prototype simulates a join of input R with about 400 pages 
to input S with about 3,600 pages. Figure 2 illustrates the size of the required buffer pool 
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for input R over the course of an experiment. The x-axis indicates how many pages of the 
large input S have already been joined. The y-axis shows the size of the buffer pool at that 
time, indicated as the average number of pages per run from input R. It can be clearly seen 
that this size hovers around 2 pages per run from input R. The buffer pool repeatedly grows 
beyond that, but not by very much. The maximum in this experiment is 2.3 pages per run 
(equal to 23 pages total in this experiment). The buffer pool also shrinks below 2 pages per 
run repeatedly and in fact more often and more pronounced than growing beyond 2 pages 
per run. At the end of the join algorithm, the buffer pool size shrinks to 1 page per run. 
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Figure 2. Buffer pool requirements over time. 

7.2 Run counts and sizes 
The next experiment shows how 2 pages per run from input R is quite stable across a 

range of memory sizes and input sizes. 
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Figure 3. Buffer pool requirements with varying memory and input sizes. 
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Specifically, memory sizes in this experiment range from 10 pages to 5,120 pages, var-
ied by powers of 2. Run sizes are assumed twice the memory size. The number of runs 
from input R is half the memory size (such that the buffer pool holds 2 pages per run). The 
number of runs from input S is 9 times larger, as in the prior experiment. Thus, run sizes 
vary from 20 to 10,240 pages and run counts vary from 5 to 2,560 for input R and from 45 
to 23,040 for input S. Thus, input sizes vary from 100 to 26 million pages for input R and 
from 900 pages to 236 million pages for input S. 

Figure 3 relates the number of runs from input R and the buffer pool requirements, 
both the average (lower curve) and the maximal (upper curve) buffer pool size for each 
memory and input size. In all cases, each run from the smaller input R requires about 2 
pages in the buffer pool, confirming the basic hypothesis that g-join perform similar to 
hash join for large, unsorted inputs. 

With an increasing number of runs from each input, the average grows closer to 2 and 
the maximum shrinks closer to 2. The former is due to many runs from the large input S; 
some page in some run from input S spans any page boundary in the runs from input R, and 
thus all runs from input R require about 2 pages in the buffer pool at all times. The latter is 
due to many runs from the small input R; even while some run might need 3 instead of 2 
pages for a short period, it has little effect on the number of buffer pool pages when divided 
by the number of runs from input R. Thus, while the number of buffer pool pages is usually 
below 2, it sometimes is above 2, but only by a little bit and only for a short time. 
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Figure 4. Buffer pool requirements with different run sizes. 
Figure 4 illustrates the effect of insufficient or excessive merging in the large input S. 

In all cases, all runs from input R are of the same size and all runs from input S are of the 
same size. The x-axis indicates the quotient of runs size from input S to those from input R. 
The left-most data points indicate runs from input R 8 times larger than those from input S; 
the right-most data points indicate runs from input S 8 times larger than those from input R. 
The y-axis, ranging from 1 to 10 on a logarithmic scale, again shows average and maximal 
buffer pool needs, with the total buffer pool size divided by the number of runs. For all data 
points, there are 10 runs from input R and 90 runs from input S. 

In the left half of the diagram, it is readily apparent that g-join needs many buffer pool 
pages per run if runs from input S are smaller. This is due to the large key range covered by 
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each page in such a run: it takes many pages of a larger run from input R to cover such a 
key range. In the right half of the diagram, where runs from input S are larger than the runs 
from input R, the average buffer pool requirements shrink almost to 1 page per run from 
input R. The maximal buffer pool requirements, however, do not. 

Figure 4 permits two conclusions. First, in order to minimize buffer pool requirements, 
runs from input S require merging until all remaining runs are larger than all runs from 
input R. In this mode of operation, the cost function of g-join for unsorted inputs most 
closely resembles that of hash join. Second, if buffer space is readily available for runs 
from input R, it can be exploited to save some effort merging runs from input S. For exam-
ple, with 10 buffer pool pages for each run from input R, runs from input S may be left 
smaller than those from input R, thus saving merge effort for input S. 

7.3 Skew 
Just like hash join suffers from skew in the distribution of hash values, g-join may suf-

fer from various forms of skew in its inputs. There are several forms of skew, e.g., the sizes 
of runs (due to dynamic memory allocation during run generation) as well as skew in key 
value distribution. The form of skew most likely to affect the performance of g-join is skew 
in the sizes of runs. Such skew might be due to dynamic memory management during run 
generation or a correlation between input order and desired sort order. 
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Figure 5. Buffer pool requirements with varying run sizes. 
Figure 5 illustrates the effect when runs from the same input differ in size. (In Figure 

4, all runs from either one input are the same size.) In Figure 5, sizes for runs from input R 
are chosen from the range 400 to 3,200 pages, i.e., the largest and smallest run might differ 
by a factor 8. Sizes for runs from input S might also differ by a factor 8, but the range is 
chosen differently for each data point. For the left-most data point (ratio = 1), the range is 
also 400 to 3,200 pages; for the right-most data point, the range is 64 times larger or 25,600 
to 204,800 pages. 

The buffer pool needs are governed by the largest run from input R and the smallest 
run from input S. They are equal for the central data point (ratio = 8), and the average and 
maximal buffer pool requirement for each run from input R is about 2 pages. It is actually 
less because some runs from input R are small and some runs from input S are large. 

284



At the left-most data point, some runs from input R are much larger than some runs 
from input S. Those runs require many more pages in the buffer pool, and in fact dominate 
the overall buffer pool requirements. The number of pages per run from input R (about 5) 
is almost equal to the ratio of runs sizes (about 8). 

At the right-most data point, all runs from input R are much smaller than all runs from 
input S. Thus, each page from input R covers many pages from input S. With fairly small 
key ranges within pages from input S, only a few runs from input R require 2 pages in the 
buffer pool at any point in time. Thus, the maximum buffer pool size (divided by the num-
ber runs from input R) is approaching the ideal value of 1. 

7.4 Hyrax experiences 
Michael Carey and students at UC-Irvine have experimented with g-join [L 10] within 

their Hyrax research prototype. Their implementation differs from the original design de-
scribed above by using quicksort for run generation rather than replacement selection. 
Thus, runs are equal in size to the memory allocation, not twice. More importantly, this 
algorithm choice exacerbates the problem of a last run much smaller than memory and with 
a key range per page much larger than in other runs. They also observe that incidental or-
dering in an input has little effect on run sizes and run counts, which of course is different 
with replacement selection. 

Their experiments so far show faster random writes during hash partitioning than ran-
dom reads during merging and join processing in g-join. This is most likely due to auto-
matic write-behind in hash join (using additional system memory) and the lack of forecast-
ing and asynchronous read-ahead in this implementation of g-join. Nonetheless, their ex-
periments confirm the above observations about the number of I/O operations and the 
amount of data written to and read from temporary files. 

Finally, their experiments show average and maximal buffer pool sizes larger than 
shown in the experiments above, but still consistently below 3 pages if runs of input S are 
no smaller than runs of input R. It has been impossible to reproduce these larger buffer 
pool sizes with the initial implementation of the core algorithm used in the experiments 
reported above. 

8 Summary and conclusions 
In summary, the new, generalized join algorithm (“g-join”) combines elements of the 

three traditional join algorithms yet it is an entirely new algorithm. This is most obvious in 
the case of two unsorted inputs, where g-join performs run generation like an external 
merge sort but then joins these runs without merging them (or with very little merging even 
for very large inputs). Therefore, g-join performs like merge join in the case of two sorted 
inputs and like hash join in the case of two unsorted inputs, including taking advantage of 
different input sizes. Our partial prototype implementation and our experimental evaluation 
confirm the analytical performance expectations. 

In the case of indexed inputs, g-join exploits the indexes for sorted scans or even for 
searches in a zigzag merge join. Skipping over many pages in the index and fetching only 
those input pages truly required for the join is the main advantage of index nested loops 
join over hash join and merge join. G-join mirrors this advantage by using a zigzag merge 
join (skipping forward) rather than a traditional merge join (scanning forward). Thus, g-
join performs as well as index nested loops join for a large, indexed, inner join input. 
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In conclusion, we believe that g-join competes with each of the three traditional join 
algorithms where they perform best. It could therefore be a replacement for each or for all 
of them. Replacing all three traditional join algorithms with g-join eliminates the danger of 
mistaken (join) algorithm choices during compile-time query optimization. Thus, g-join 
improves the robustness of query processing performance without reducing query execu-
tion performance. 
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Abstract: This paper addresses maintenance of materialized views in a warehousing
environment, where views reside on a remote database. We analyze so called Change
Data Capture techniques used to capture changes (also referred to as deltas) at the
source systems. We show that many existing CDC techniques do not provide com-
plete deltas but rather incomplete (or partial) deltas. Traditional view maintenance
techniques, however, require complete deltas as input. We propose a generalized tech-
nique that allows for maintaining a class of materialized views using partial deltas.

1 Introduction

Materialized views are used to pre-compute (intermediary) query results to speed up query
evaluation [GM95]. Upon updates to the base data, materialized views need to be main-
tained to regain consistency. Assuming that updates affect just a small part of the base
data, it seems wasteful to maintain a view by recomputing it from scratch. It is often
more efficient to compute only the changes required to update the view. This approach is
referred to as incremental view maintenance.

The concept of materialized views has been applied in distributed environments, where
base tables and materialized views reside on different machines connected by a net-
work [ZGMHW95, ZGMW98, AASY97, AAM+02]. A machine hosting materialized
views is usually called data warehouse (DWH). In a DWH environment, views are typi-
cally maintained in a deferred manner, i.e. deltas are gathered at the sources and propa-
gated periodically in batches.

It has been shown that traditional view maintenance techniques can be applied in DWH
environments. However, since global transactions are prohibitively expensive, special
care must be taken w.r.t. synchronization. Previous research focused on this aspect only
(cf. Sec. 6).

Our work addresses an orthogonal problem. In a DWH environment, so called Change
Data Capture (CDC) techniques are used to gather deltas at the source systems [KC04].
The captured deltas are often partial (or incomplete). Partial deltas may lack attribute val-
ues – the initial state of an updated tuple may not be available, for instance. Furthermore,
the type of partial deltas may be uncertain, i.e. inserted tuples may not be distinguishable
from updated ones.

The reasons for deltas being partial are twofold. First, there are CDC approaches that
cannot deliver non-partial (or complete) deltas due to principal restrictions. Second, the
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CDC process may become more efficient if partial deltas are acceptable. Traditional view
maintenance techniques, however, require complete deltas and cannot be used in such an
environment. In this paper we give answers to the following questions: Is it possible to
maintain materialized views using partial deltas? How can traditional view maintenance
techniques be generalized such that partial deltas can be propagated?

The remainder of this paper is organized as follows. In Sec. 2 we give an overview of CDC
techniques used in practice. We explain why many CDC techniques provide partial deltas.
Traditional view maintenance techniques presume the availability of non-partial deltas
and thus, cannot be applied in many DWH setups. Hence, we aim at generalizing these
techniques such that partial deltas can be propagated. To this end, we propose a formal
model for partial deltas in Sec. 3. This model will provide a basis for our generalized
update propagation approach. In Sec. 4 we discuss techniques to apply partial deltas to
materialized views. In Sec. 5 we first review a view maintenance algorithm by Griffin
et al. based on algebraic differencing, which provides the basis for our work. We then
discuss view maintainability in the context of partial deltas. As we will see, views cannot
be maintained using partial deltas in general. However, we will identify an important
class of views, which we will call dimension views, that is maintainable here. In the
remainder of this section, we show how the Griffin et al. algorithm can be generalized for
the propagation of partial deltas. We discuss related work in Sec. 6 and conclude in Sec. 7.

2 Change Data Capture

Change Data Capture (CDC) is a general term for techniques that gather change infor-
mation (or deltas) at source systems [KC04]. We analyzed existing CDC modules and
identified four main approaches, namely utilization of audit columns, log-based CDC,
change tracking, and computing snapshot differentials.

Audit columns: Source systems may maintain dedicated columns (so called audit
columns) to store timestamps or version numbers for individual tuples. Whenever a tu-
ple is changed, it is assigned a fresh timestamp. Audit columns can serve as selection
criteria to retrieve tuples that have been updated since the last CDC cycle.

In its most simplistic form, a single audit column is appended to each base table. A new
timestamp is assigned whenever a tuple is either inserted or updated. Hence, insertions
cannot be distinguished from updates when deltas are extracted. To work around this lim-
itation, two audit columns can be appended to base tables. The first audit column is used
to store the time of insertion while the second stores the time of the last update. However,
deletions remain undetected when tuples are physically deleted. Tuples can instead be
logically deleted by adding yet another audit column to store the time of the (logical) dele-
tion. However, CDC techniques backed by audit columns are generally unable to capture
the initial state of updated tuples. This is obvious considering that updates are performed
in-place and previous values are overwritten.

288



Log-based CDC: Source systems may keep a log of changes that is appended in the
event of an update. Several implementation approaches for log-based CDC exist: If the
source system provides active database capabilities such as triggers, deltas can be written
to dedicated log tables. Log-based CDC can also be implemented by means of application
logic. Database log scraping is another common CDC approach. The idea is to exploit
the transaction logs kept by the database system for backup and recovery. Deltas can be
extracted using database-specific utilities.

Log-based CDC mechanisms are generally capable of providing complete deltas. How-
ever, their efficiency can be improved if partial deltas are acceptable. For view mainte-
nance the so called net effect of changes is required as input. To obtain the net effect, the
change log needs to be post-processed. When a tuple has been changed multiple times,
the effects of these changes are combined to produce a single delta tuple. If a tuple has
been inserted and subsequently updated, for instance, a delta tuple of type insertion with
the updated values is produced.

The net-effect computation is more efficient if partial output deltas are acceptable. The
following quote has been taken from the SQL Server 2008 documentation on the change
capture feature [Mic].

Because the logic to determine the precise operation for a given change
adds to query complexity, this option is designed to improve query perfor-
mance when it is sufficient to indicate that [...] the change is either an insert
or an update, but it is not necessary to explicitly distinguish between the two.

Note that not being able to distinguish between insertions and updates means that the initial
state of updated tuples is also not available.

Change Tracking: Change Tracking is an alternative change capture feature of SQL
Server 2008 built into the database engine [Mic]. Change tracking is being advertised
as light-weight change capture solution that offers better scalability than audit column or
trigger-based solutions.

Change tacking is done by making a note of the primary key of the tuple that changed,
along with the type of the change (insert, update, or delete) and a version number in an
internal table. To retrieve deltas, the change tracking table needs to be joined to the corre-
sponding base table, because it does not store any non-key attributes. More precisely, an
outer join needs to be used, because deleted tuples are no longer found in the base tables.
Thus, deltas produced by change tracking do not contain any information about deleted
tuples except for the primary keys. Furthermore, the initial state of updated tuples cannot
be reconstructed, because it has been overwritten in the base table.

Snapshot Differentials: Legacy and custom applications often lack a general purpose
query interface. However, it is often possible to dump a system snapshot into the file
system. Deltas can then be inferred by comparing successive snapshot files.
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Figure 1: Delta sets with decreasing Completeness

In summary, several CDC approaches are used in practice and many of them produce par-
tial deltas. Since there are CDC techniques that do not have this restriction, one could
argue that only these techniques should be used for view maintenance in DWH environ-
ments. However, partial deltas can be captured more efficiently. Furthermore, source
systems typically remain autonomous. Often, the system owners are reluctant to changes,
thereby limiting the choice of practicable CDC techniques.

3 A Model for Partial Deltas

This section introduces a formal model for partial deltas. The analysis of CDC techniques
in the previous section revealed different kinds of partial deltas that need to be captured in
this model. First, it may not be possible to distinguish insertions from updates. Second,
deltas may lack the initial state of updated tuples. Third, only the primary key of deleted
tuples may be known.

Definition 1 (Partial Deltas) Let R(pk, a) be a relation with primary key pk and a set
of attributes a. Let Rold be the state of R before it is changed and Rnew the state of
R hereafter. Partial deltas are a six-tuple of sets (Rins , Run/uo , Rdel , Rup , Rups , Rdelk )
where

• Rins ⊆ Rnew denotes a set of tuples inserted into R (referred to as insertions),

• Rdel ⊆ Rold denotes a set of tuples deleted from R (referred to as deletions),

• Run/uo(pk, aun , auo) with
πpk,aun

(Run/uo) ⊆ Rnew and πpk,auo
(Run/uo) ⊆ Rold

denotes a set of tuples updated in R (referred to as update pairs). The initial state
and the current state of updated tuples is given by (pk, auo) and (pk, aun), respec-
tively,

• Rup ⊆ Rnew denotes a set of tuples updated inR in their current state only (referred
to as partial updates),

• Rups ⊆ Rnew denotes a set of tuples either inserted or updated in R (referred to as
upserts),
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• Rdelk ⊆ πpk(Rold) denotes a set of primary keys of tuples deleted from R (referred
to as partial deletions)

such that each change at the tuple level fromRold toRnew is reflected by exactly one tuple
in one of the delta sets Rins , Rdel , Run/uo , Rup , Rups , or Rdelk . That is, the primary key
values are pairwise disjoint across the delta sets and

πpk(Rnew −Rold) = πpk(Rins ∪Run/uo ∪Rup ∪Rups) and

πpk(Rold −Rnew ) = πpk(Rdel ∪Run/uo ∪Rdelk ).

Figure 1 depicts the connection between the six delta sets. For each change in R there is
a delta tuple in one of the delta sets. However, a delta tuple may appear in different delta
sets. The alternative placements are indicated by the arrows in Fig. 1. The completeness
decreases while moving from the upper to the lower delta sets. Decreasing completeness
means that either attribute values become unavailable (update pairs to partial updates and
deletions to partial deletions) or the type of the change becomes uncertain (partial updates
to upserts and insertions to upserts).

The CDC techniques introduced in the previous section, can be characterized using our
model for partial deltas. Figure 2 depicts the delta sets provided by different CDC tech-
niques.

4 Change Data Application

The purpose of change propagation is maintaining the (remote) materialized view to re-
synchronize it with the source data. In this paper we show that change propagation is
closed under the model for partial deltas (for a certain class of view definitions). That is,
given partial input deltas the process of change propagation results in partial output deltas
again, that comply with the model introduced in Sec. 3. The completeness of the output
deltas may however differ from the completeness of the input deltas. The output deltas
may contain upserts, for instance, even when none of the input delta sets did. Once the
deltas have been propagated to the DWH, they are applied to the view. Depending on
their completeness, different techniques can be used for delta application. An overview is
provided in the following.

ins del un/uo up ups delk
Audit columns � � �

Log-based CDC � � �
Log-based CDC (efficient net-effect computation) � �

Change Tracking � � �
Snapshot differentials � � �

Figure 2: Delta sets provided by different CDC techniques
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Insertions To apply insertions, the SQL interface provides the INSERT statement. Fur-
thermore many databases are equipped with bulk loading facilities to insert larger batches
of records in an efficient manner.

(Partial) deletions Assuming that the view has a primary key column, just key values
are required to apply deletions (whereas attribute values are not). Thus partial deletions are
sufficient for view maintenance in such cases. Non-partial deletions are however relevant
for change propagation. In general, the resulting deltas are less partial when non-partial
deletions are provided as input. The interrelationship will be examined in Sec. 5.

Partial updates Much like partial deletions, partial updates are sufficient for maintain-
ing views with key columns.

Update pairs In contrast to partial updates, update pairs include the old state of updated
tuples. To update a tuple in place, the old state is not required. However, the DWH
often keeps historical data. Data historization is typically done using the so called Slowly
Changing Dimensions technique [KR02]. To do so, it is important to understand which
attributes have been changed. Given an update pair this can be found out easily. Given a
partial update, however, a warehouse lookup is required to find out about the initial values.
The latter approach is obviously less efficient.

Upserts To apply upserts, one can either attempt an UPDATE first and issue an INSERT
if no rows were affected or else run an INSERT first and issue an UPDATE if the inserted
key violates the uniqueness constraint. This method has been criticized as being rather
inefficient [KC04]. In the latest SQL standard the MERGE statement has been introduced
to work around this issue. MERGE can be used to insert or update tuples depending
on whether a user-defined condition matches. While MERGE is more efficient than the
former approach, it performs worse than a sequence of INSERT and UPDATE statements.
However, the latter approach is only possible when inserts and updates are given in two
distinct delta sets (i.e. deltas are less partial).

It is interesting to understand the relation between change capture and change application
in the context of partial deltas: While more partial deltas can be captured more efficiently,
the application of more partial deltas is less efficient. Thus, there is a trade-off between
change capture and change application. Note that these steps are performed at distinct
systems. It is thus possible to shift workload from the source systems to the DWH (by
capturing more partial deltas) or vice versa (by capturing less or non-partial deltas).

5 View Maintenance using Partial Deltas

A number of approaches to incremental view maintenance have been proposed in litera-
ture (cf. [GM95] for an overview). Our work is based on an approach known as algebraic
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V ∆V ∇V

σp(S) σp(∆S) σp(∇S)

πA(S) πA(∆S)− πA(Sold ) πA(∇S)− πA(Snew )

S 1 T (Snew 1 ∆T ) ∪ (∆S 1 Tnew ) (Sold 1 ∇T ) ∪ (∇S 1 Told )

Table 1: Delta Rules by Griffin et al.

differencing that was introduced in [KP81] and subsequently used for view maintenance
in [QW91]. Some corrections to the minimality results of [QW91] and further improve-
ments have been presented in [GLT97]. The basic idea is to differentiate the view defini-
tion to derive expressions that compute the change to the view without doing redundant
computations.

The remainder of the section is structured as follows. In Sec. 5.1 we recall a conventional
view maintenance algorithm by Griffin et al. [GLT97]. We proceed with a discussion
on view maintainability in the context of partial deltas in Sec. 5.2. We will identify a
class of views, which we call dimension views, that are maintainable in this context. The
Griffin et al. algorithm uses so called delta rules to derive incremental expressions for view
maintenance from view definitions. We propose generalized delta rules in Sec. 5.3. These
rules allow for deriving incremental expressions to maintain views using partial deltas.

5.1 Algebraic Differencing for View Maintenance

In this section, we recall the algorithm proposed by Griffin et al. [GLT97] that provided the
base for our work. Objects of interest are relations and relational expression presented in
relational algebra. Relational expressions are used to define derived relations (or views).
Changes to base relations are modeled as two sets – the set of deleted tuples and the set
of inserted tuples. For a relation R the set of deleted tuples is denoted by ∇R and the set
of inserted tuples is denoted by ∆R. Updates are not modeled explicitly but represented
by delete-insert-pairs, i.e. for each update in R there is a corresponding delta tuple in ∇R
and in ∆R.

Given a relational expression that defines a view, incremental expressions are derived by
recursively applying so called delta rules. The delta rules1 defined in [GLT97] are depicted
in Tab. 1. From a relational expression V two incremental expressions ∇V and ∆V are
derived that compute the deletions and insertions to the view, respectively. To this end,
subexpressions in V that match the “patterns” shown in the left column of Tab.1 are re-
cursively replaced by incremental counterparts found in the middle column or the right
column to obtain ∆V or ∇V , respectively. Intuitively, the delta rules in Tab. 1 can be
understood as follows.

• Selection: An inserted tuple is propagated through a selection, if it satisfies the filter
1Since our work is focused on Select-Project-Join (SPJ) views, delta rules for union, intersection, and set

difference have been omitted.
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predicate. A deletion is propagated through a selection, if the tuple used to satisfy
the filter predicate.

• Projection: An inserted tuple is propagated through a projection, if no alternative
derivation existed before the change. A deletion is propagated through the projec-
tion, if no alternative derivation remains after the change.

• Join: New tuples appear in the join of two relations, if a tuple inserted into one
relation joins to tuples in the other one. Tuples disappear from the join, if a tuple
deleted from one relation used to join to tuples in the other one before the change.

The view maintenance algorithm by Griffin et al. requires complete change information.
Thus, it cannot be applied if deltas are partial as described in Sec. 3. We propose a gener-
alized view maintenance algorithm that gracefully deals with partial deltas for a restricted
(but important) class of view definitions.

5.2 Dimension Views

In general, materialized views cannot be maintained using partial deltas. Consider the fol-
lowing example. Say there is a base relation R(pk, a) with pk being the primary key col-
umn and a simple derived view V (a) := πa(R). Say we use a CDC mechanism that does
not provide the initial state of updated tuples (such as audit columns or change tracking).
Obviously, V cannot be maintained in case of an update to R. While it is straightforward
to add the updated tuple to V , it is unclear which tuple in V needs to be discarded (or
overwritten) in return. Similar considerations hold for the other kinds of partial deltas,
i.e. partial deletions and upserts.

Note, that V was maintainable if it included the primary key column pk. Including pri-
mary keys is thus a necessary condition for views to be maintainable using partial deltas.
However, not all primary keys from the source relations need to be retained in the view
definition. We will discuss the selection of keys in the following. At first, we define a class
of views, which we call dimension views, that has interesting properties w.r.t. maintenance
using partial deltas.

Definition 2 (Dimension View) Let V be a relational expression defining a view that con-
tains projections, selections, and joins only. V is called dimension view, if each join
R 1p S has a join predicate of the form (R.a = S.pk) where a is a (set of) attributes of
R and pk is the (composite) primary key of S.

In the subsequent sections, we will show that dimension views are maintainable using par-
tial deltas, if they include those primary key attributes that are not functionally dependent
on any other key attributes. With other words, all key attributes used in join predicates do
not need to be included in the view.

Dimension views are commonly found in DWHs. While they are usually called dimen-
sion tables here, they store derived data and can thus be seen as views. DWHs typically
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CID CName CDiscount CAddr

1 Adam 0% 1

2 Bob 0% 2

3 Carl 0% 3

Custold

CID CName CDiscount CAddr

1 Adam 5% 1

2 Bob 0% 4

4 Dave 0% 4

Custnew

AID ACity ACountry

1 Austin US

2 Berlin DE

3 Chemnitz DE

Addrold

AID ACity ACountry

1 Aachen DE

2 Berlin DE

4 Dresden DE

Addrnew

Figure 3: Sample base tables in the old and new state

use a star schema to store multi-dimensional data that consists of fact and dimension ta-
bles [KC04, KR02]. Dimension tables are used to join together data on business entities
that originates from multiple source systems. For improved query performance, dimen-
sion tables are typically denormalized. Dimension tables include a unique identifier for
business entities referred to as business key. Typically, no other keys originating from
the sources are stored here. Note that these keys would be functionally dependent on the
business key in the denormalized dimension table. Our work is thus directly applicable to
incremental maintenance of dimension tables.

Example 1 Figure 3 depicts two relations that are going to be used as a running example
throughout the paper. The Cust relation stores the ID, name, and discount of customers
and a reference to an address, which is stored in the Addr relation. The idea is to derive a
dimension table D from these base tables. Dimension tables are typically de-normalized.
Consider the sample view definition.

D := πCID,CName,CAddr (Cust) 1(Cust.Addr=Addr .AID) σACountry=′DE′(Addr)

The view is restricted to German customers, furthermore the customer discount column is
dropped. Note that the view is a dimension view w.r.t. Def. 2.

5.3 A Generalized View Maintenance Algorithm

We propose a generalization of the algorithm by Griffin et al. that allows for maintaining
dimension views using partial deltas. We proceed as follows: First, we explain how partial
deltas can be represented by means of delete-insert sets used by the original algorithm.
Second, we propose generalized delta rules for projection, selection, and join. We show
that these operators are closed under the model for partial deltas. Third, we conclude that
dimension views can be maintained by our algorithm.

View maintenance algorithms (including the one by Griffin et al.) model deltas by two
sets – the set of deleted tuples and the set of inserted tuples. We are going to refer to this
model as delete-insert delta model or delete-insert model for short. This model does not
directly match our model for partial deltas introduced in Sec. 3. The latter uses a six-tuple
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∆R(pk, a) := Rins ∪ πpk,aun (Run/uo) ∪Rup ∪Rups

∇R(pk, a, flag) := πpk,a,comp(Rdel ) ∪ πpk,auo ,comp(Run/uo)∪

πpk,NULL,up(Rup) ∪ πpk,NULL,ups(Rups) ∪ πpk,NULL,up(Rdelk )

with flag ∈ {comp, up, ups}

Figure 4: Conversion from six-tuple model to delete-insert model

representation instead and we will therefore refer to it as six-tuple delta model or six-tuple
model for short.

While the six-tuple model allows for a natural representation of partial deltas, it is more
complex to handle six distinct sets during update propagation. We experienced that delta
rules become rather complex. In particular, the join delta rules require a large number of
joins to capture the interactions between the different delta sets.

Overly complex incremental expressions can be avoided by sticking to the delete-insert
delta model for the update propagation. To do so, partial deltas need to be transferred
to the delete-insert model. Furthermore, the result of the update propagation needs to be
converted back into the six-tuple model. The general idea here is to extend the schema
of the delta sets by adding a type flag column. This flag is used to indicate the type of
individual delta tuples. Unknown attribute values (of partial deltas) are padded with NULL
values. One could say that partial deltas are “encoded” as special kinds of complete deltas.

We proceed by describing the conversion from six-tuple deltas to delete-insert deltas, and
continue with the conversion in opposite direction.

Six-tuple model to delete-insert model The equations for converting from the six-tuple
model to the delete-insert model are given in Fig. 4. For a relation R it is straightforward
to express the delta sets Rins , Run/uo , and Rdel by means of the delete-insert model,
because these sets are non-partial. To distinguish complete delta tuples from partial ones,
they are assigned a type flag of value comp.

The remaining delta sets are treated as follows: Partial updates Rup and upserts Rups

are added to the insert set ∆R. Note that we need to distinguish them from “regular”
insertions and updates, however. To this end, we add tuples with the same primary key
value to the delete set∇R. All other attribute values are padded with NULLs, because the
initial attribute values of these tuples are unknown. Additionally we add a flag to indicate
the type of the delta tuple. Note that the schema of ∇R is extended to accommodate the
type flag. The partial deletions Rdelk are also added to∇R. Since Rdelk contains primary
key values only, the missing attributes are padded with NULLs. Note that a up flag is used
for partial deletions. Partial deletions can however be distinguished from partial updates.
While partial updates have a matching tuple in ∆R, partial deletions do not.

Example 2 Recall the running example introduced in Sec. 5.2. Fig. 3 depicts both, the old
and the new state of the base relations Cust and Addr. Assume that a log-based CDC tech-
nique is used for Cust providing insertions, update pairs, and deletions. Further assume
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CID CName CDiscount CAddr

1 Adam 5% 1

2 Bob 0% 4

4 Dave 0% 4

∆Cust

CID CName CDiscount CAddr flag

1 Adam 0% 1 comp

2 Bob 0% 2 comp

3 Carl 0% 3 comp

Cust

AID ACity ACountry

1 Aachen DE

4 Dresden DE

∆Addr

AID ACity ACountry flag

1 - - up

3 - - up

Addr

∆ ∆

Figure 5: Sample deltas converted to the delete-insert model

Rins := ∆R npk ∇R
Run/uo := ∆R 1pk σ(flag=comp)∇R

Rup := ∆R npk σ(flag=up)∇R

Rups := ∆R npk σ(flag=ups)∇R

Rdel := ∇R npk σ(flag=comp)∆R

Rdelk := πpk (∇R npk σ(flag 6=comp)∆R)

Figure 6: Conversion from delete-insert model to six-tuple model

that change tracking is used for Addr providing insertions, partial updates, and partial
deletions. The deltas converted to the delete-insert model are depicted in Fig. 5.

Delete-insert model to six-tuple model The equations for converting from the delete-
insert model back to the six-tuple model are given in Fig. 6. Note that the symbols n and
n are used to denote a semi join and a anti join, respectively. The Rins delta set consists
of those tuples in ∆R that have a primary key value not existent in∇R. The Run/uo delta
set consists of pairs of tuples in ∆R and ∇R having equal primary key values and being
“complete”. The completeness is checked by means of the type flag in ∇R. The Rup and
Rups delta sets consist of tuples in ∆R that join to tuples in ∇R having a up or ups type
flag, respectively. The Rdel and Rdelk delta set consist of tuples in ∇R having a primary
key that does not exist in ∆R and being complete or incomplete, respectively.

5.4 Projection

The original delta rules for projection depicted in Tab. 1 are repeated for the reader’s
convenience.

∆(πA(S)) ≡ πA(∆S)− πA(Sold)

∇(πA(S)) ≡ πA(∇S)− πA(Snew )
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The projection delta rules contain a so-called effectiveness test to prevent redundant up-
dates from being propagated. A set difference is used to discard insert delta tuples if an
alternative derivation of the same tuple existed in the old database state. Similarly, delete
delta tuples are discarded if an alternative derivation continues to exist in the new database
state.

We can represent the new and old relation states Snew and Sold using the so called pre-
served state So := Snew − ∆S = Sold − ∇S, i.e. the set of tuples that have not been
changed.

∆(πA(S)) ≡ πA(∆S)− πA(So ∪∇S)

∇(πA(S)) ≡ πA(∇S)− πA(So ∪∆S)

Recall that dimension views contain primary key attributes that must not be dropped by
a projection. Since primary key values are unique, πA(∆S) and πA(So) are obviously
disjoint. Similarly πA(∇S) and πA(So) are disjoint. Given this, the delta rules can be
simplified for dimension views as follows.

∆(πA(S)) ≡ πA(∆S)− πA(∇S)

∇(πA(S)) ≡ πA(∇S)− πA(∆S)

The effectiveness test in the above equations can be understood as follows. An alternative
derivation of a delta tuple must have the same primary key value. An alternative derivation
of an insert delta tuple can thus only be found among the delete delta tuples and vice versa
(recall that updates are represented as delete-insert pairs).

The aim of the effectiveness test is to discard so called ineffective updates, i.e. updates
that do not change the view. In the presence of keys, an ineffective update occurs when
all updated attributes are dropped by the projection. In this case, the initial state of the
propagated attributes is equal to their current state. Thus, the update is ineffective w.r.t. the
view.

We now discuss the implications of partial deltas w.r.t. the effectiveness test. In fact, the
test may not work as expected here. The reason is that the initial state of an updated tuple
may not be available. Hence, its effectiveness cannot be tested. Without having the initial
state available, we do not know which attributes have been updated. Hence, we cannot
know whether the update will affect the view2. However, propagating ineffective updates
is not problematic, because a view is not changed when an ineffective update is applied.
While ineffective updates cause some overhead, the view does not become inconsistent.

Delta rules for projection can be generalized to handle partial deltas. To this end, the
effectiveness test is only done for complete delta tuples and omitted for partial ones.

∆(πA(S)) ≡ πA(∆S)− πA(σflag=comp∇S)

∇(πA(S)) ≡ πA,flag(∇S)− πA,comp(∆S)

2Note that our notion of ineffective updates is related to the notion of safe updates studied mainly in the
context of integrity checking [Beh09]. Safe updates are an overestimation of true updates that can be computed
more efficiently. For integrity checking, safe updates are often sufficient. The computation of safe updates has
been proposed to improve efficiency. In contrast, our ineffective updates necessarily occur in the context of
partial deltas.
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CID CName CAddr

2 Bob 4

4 Dave 4

∆Cust’

CID CName CAddr flag

2 Bob 2 comp

3 Carl 3 comp

Cust’

∆

Figure 7: Result of the sample incremental expressions ∆Cust ′ and ∇Cust ′

In the second delta rule, the schema of ∆S is extended by adding a type flag column
which is assigned the value comp. Note that the effectiveness test may safely be omitted.
Doing so may result in a larger number of ineffective updates being propagated. However,
the rules become even simpler and may be evaluated more efficiently. Furthermore, note
that the delta rules are closed under the model for partial deltas. That is, the result of the
operation is again partial deltas.

Example 3 Reconsider the running example. The first term of the dimension view defini-
tion D is Cust ′ := πCID,CName,CAddr (Cust). We can apply the delta rules given above
to derive incremental expressions ∆Cust ′ and∇Cust ′.

∆Cust ′ ≡ πCID,CName,CAddr (∆Cust)− πCID,CName,CAddr (σflag=comp(∇Cust))

∇Cust ′ ≡ πCID,CName,CAddr ,flag(∇Cust)− πCID,CName,CAddr ,comp(∆Cust)

The result deltas are depicted in Fig. 7. Note that the update to the customer tuple with ID
1 is ineffective and thus discarded.

5.5 Selection

The original delta rules for selection found in Tab. 1 are repeated here for the reader’s
convenience.

∆(σp(S)) ≡ σp(∆S) ∇(σp(S)) ≡ σp(∇S)

These equations need to be adapted to handle partial deltas. We will discuss each type of
delta separately in the following.

The inserted tuples in Sins are propagated if they satisfy the selection predicate and dis-
carded otherwise. The deleted tuples in Sdel are treated similarly. For the update pairs in
Sun/uo both, the initial and the current state have to be considered. If the initial and the
current state satisfy the selection predicate the delta tuple is passed on as an update, i.e. it
remains in Sun/uo . If neither the initial nor the current state satisfy the selection predicate
the update pair is discarded. If the initial state did satisfy the predicate but the current
state no longer does, the initial state is propagated as a deletion, i.e. it becomes part of
Sdel . Similarly, if the initial state did not satisfy the predicate but the current state does,
the current state is propagated as an insertion, i.e. it becomes part of Sins .

For partial updates Sup the initial state is not known. It could have either satisfied the
selection predicate or not. Thus, given that the current state does satisfy the predicate, the
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AID ACity ACountry

1 Aachen DE

4 Dresden DE

∆Addr’

AID ACity ACountry flag

1 - - ups

3 - - ups

Addr’

∆

Figure 8: Result of the sample incremental expressions ∆Addr ′ and ∇Addr ′

resulting delta is either an insert or an update. Since we cannot distinguish these cases,
the delta tuple becomes part of Sups , i.e. the delta tuple changes its type and becomes
an upsert. Given that the current state of an partial update does not satisfy the selection
predicate, a deletion needs to be propagated. Since the initial state of the updated tuple
is unavailable, a partial deletion (Sdelk ) is propagated. Note that this deletion may be
ineffective, i.e. the tuple to be deleted may not be found in the view, because it did not
satisfy the predicate in its initial state either.

The upsert delta set Sups is handled in a very similar way as partial updates. Again, the
initial state of delta tuples is unavailable. Given that the current delta tuple satisfies the
selection predicate, it remains in Sups . If it does not, it becomes part of Sdelk . Again, the
partial deletion may be ineffective.

Partial deletions contain primary key values only. Obviously, the selection predicate can
generally not be checked without having the non-key attribute values. However, tuples in
Sdelk may safely be propagated in all cases. If a tuple with the same primary key value
exists in the view, it is deleted. If no such tuple exists, the view remains unchanged, i.e. the
deletion turns out to be ineffective. Ineffective deletions occur, when the original tuple did
not satisfy the selection predicate and therefore never appeared in the view.

∆(σp(S)) ≡ σp(∆S) ∇(σp(S)) ≡ σp∨flag 6=comp(πa,s(flag)∇S)

with s(flag) :=

{
ups if flag = up
flag else

Given these considerations, the original delta rules for selection can be adapted to partial
change data. The rule to compute the insert set does not need to be changed. The rule to
compute the delete set needs some adaptations though, because the selection predicate can
only be checked for non-partial delta tuples (with flag = comp). All partial delta tuples
are simply passed on. As mentioned before, partial updates may become upserts and the
type flag needs to be changed accordingly. Note that the delta rules are closed under the
model for partial deltas.

Example 4 Reconsider the running example. The second term of the dimension view
definition D is Addr ′ := σACountry=′DE′(Addr). By applying the above delta rules the
incremental expressions ∆Addr ′ and∇Addr ′ can be derived.

∆Addr ′ ≡ σACountry=′DE′(∆Addr)

∇Addr ′ ≡ σ(ACountry=′DE′)∨flag 6=comp(∇Addr)

The result deltas are depicted in Fig. 8. Note that partial updates are turned into upserts
and effective partial deletions into possibly ineffective partial deletions.

300



S
pre ins del up ups delk

T

pre - ins del

ups ups delk

ins ins ins -
del del - del
un un ins -
uo uo - del
up up ins -
ups ups ins -
delk delk - delk

Figure 9: Join Matrix 1

5.6 Join

The original join delta rules found in Tab. 1 are repeated here for the readers convenience.
Note that both, the new and the old state of the base relations are required to incrementally
maintain join views.

∆(S 1 T ) ≡ (Snew 1 ∆T ) ∪ (∆S 1 Tnew )

∇(S 1 T ) ≡ (Sold 1 ∇T ) ∪ (∇S 1 Told)

In the DWH environment source systems are decoupled and base relations are usually
available in their new state only. However, the old state can be reconstructed using the
new state and the deltas. Given a relation R, the preserved state Ro can be computed by
subtracting the insert delta set from the new state (Ro := Rnew −∆R). The old stateRold

can then be computed by adding the delete delta set to the preserved state. In the light of
partial deltas, it may not be possible to fully reconstruct the old state, because delta tuples
in ∇R may be partial. Recall that a flag is used to indicate the type of delta tuples in∇R.
We hence use a type flag in the old stateRold as well; the preserved tuplesRo are assigned
with the distinct type flag pre (Rold := π...,preRo ∪∇R).

In this paper, we focus on the maintenance of so called dimension views defined in
Sec. 5.2. All join predicates used in dimension views follow a common pattern. They are
equality predicates and involve the primary key attribute of at least one relation. In the fol-
lowing, we consider the join of two relations S and T with the join predicate (S.a = T.pk)
where S.a is an arbitrary attribute of S and T.pk the primary key attribute of T . It is im-
portant to understand that the type of the resulting (joined) delta tuples depend on the type
of both input delta tuples. To adapt the join delta rules, all possible combinations of delta
types need to be considered. The different combinations are represented by the matrices
in Fig. 9 and Fig. 10. Consider the matrix in Fig. 9. The column headings represent the
different delta sets of S participating in the join. From left to right, there are preserved
tuples, insertions, deletions, partial updates, upserts, and partial deletions. For the sake of
clarity, update pairs are shown in a separate matrix (Fig. 10). The row headings in the ma-
trix represent the different delta sets of R participating in the join. The cells of the matrix
indicate the delta type resulting from a join between the corresponding delta sets of S and
R.

Consider the matrix cell at the intersection of the Sins column and the Tup row, for in-
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S Tnew S Told result S Tnew S Told result
un - uo - - un un uo - ins
un - uo pre del un un uo pre un/uo
un - uo uo del un un uo uo un/uo
un - uo del del un un uo del un/uo
un - uo delk delk un un uo delk up
un - uo up delk un un uo up up
un - uo ups delk un un uo ups ups
un pre uo - ins un up uo - ins
un pre uo pre un/uo un up uo pre un/uo
un pre uo uo un/uo un up uo uo un/uo
un pre uo del un/uo un up uo del un/uo
un pre uo delk up un up uo delk up
un pre uo up up un up uo up up
un pre uo ups ups un up uo ups ups
un ins uo - ins un ups uo - ins
un ins uo pre un/uo un ups uo pre un/uo
un ins uo uo un/uo un ups uo uo un/uo
un ins uo del un/uo un ups uo del un/uo
un ins uo delk up un ups uo delk up
un ins uo up up un ups uo up up
un ins uo ups ups un ups uo ups ups

Figure 10: Join Matrix 2

stance. The cell indicates that the join result of these delta sets is to be propagated as
insertion. This is obvious considering that any tuple added to S has a key that is unique in
S. Thus, the key cannot be in the view yet. Hence, the result of the join is an insertions
w.r.t. the view.

Consider the three right-most columns in the matrix referring to partial updates, upserts,
and partial deletions in S. These deltas lack certain attribute values. They hence cannot be
joined to Told , because the join predicate cannot be evaluated. Consider a partial update
in S, for instance. Recall, that the initial state of the updated tuple is not available. Hence,
it is unclear whether the updated tuple used to find a join partner in T before the update.
The joined tuple is either an update w.r.t. the view (if it used to find a join partner) or an
insertion (if it did not). Since these cases cannot be distinguished for partial updates, an
upsert has to be propagated.

Upserts in S are propagated as upserts and partial deletions as (possibly ineffective) partial
deletions. Note that partial S deltas are handled for joins in a similar way than partial deltas
are handled for selections (see Sec. 5.5). The function s defined in Sec. 5.5 to translate
type flags can thus be reused in the generalized delta rules for joins.

The matrix in Fig.10 represents joins involving update pairs in S. Recall that the new
state of an updated tuple is joined to the new state of T (Tnew ) while the old state of an
updated tuple is joined to the old state of T (Told ) in the delta rules for update propagation.
The matrix shows all possible join combinations. Let s be an update pair in Sun/uo , sun

the new state of s, and suo the old state of s. The first two columns of the matrix indicate
where sun finds a join partner in Tnew . There are the following possibilities: A join partner
may not exists, it may be a preserved tuple, an inserted tuple, an updated tuple in its new
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state, a partial update, or an upsert.

The third and fourth column indicate where Suo finds a join partner in Told . A join partner
may not exists, it may be a preserved tuple, an updated tuple in its old state, a deleted
tuple, a partial deletion, a partial update, or an upsert.

The fifth column indicates the type of the delta resulting from the joins. As an example,
consider the second row of the matrix. It treats the case where sun does not find a join
partner in Tnew , while suo used to join to a preserved tuple (i.e. the join attribute of s was
updated). Hence, a tuple Suo 1 To used to be in the view and needs to be discarded now.
Thus, the resulting delta is of type deletion.

The matrix in Fig. 10 reveals a pattern. Whenever suo joins to a complete tuple in Told ,
namely a preserved tuple, an updated tuple, or a deleted tuple, the resulting delta tuple is
again complete, i.e. an update pair or a deletion. When suo joins to a partial update or
a partial deletion in Told , the resulting delta tuple is either an partial update or a partial
deletion. The distinction is made based on the existence of a corresponding delta tuple
in the insert set ∆(S 1 T ), when the deltas are converted to the six-tuple model (see
Sec. 5.3). When suo joins to an upsert, the resulting delta tuple is either an upsert or a
partial deletion. Based on these considerations and the considerations that lead to the first
join matrix, a function j is defined to derive type flags for joined tuples from the type flags
of the input tuples.

j(flags ,flagt) :=


flagt if flags = pre
comp if flags = comp ∧ (flagt = pre ∨ flagt = comp)
up if flags = comp ∧ flagt = up
ups if flags = comp ∧ flagt = ups

The join delta rules are adapted as follows to handle partial deltas.

∆(S 1 T ) ≡ (Snew 1 ∆T ) ∪ (∆S 1 Tnew )

∇(S 1 T ) ≡ π...,j(S .flag,T .flag)(Sold 1 ∇T )∪
π...,j(S .flag,T .flag)(∇S 1 Told)∪
π...,s(flag)(σflag 6=comp(∇S))

Once again, the delta rule for computing the insert delta set remains unchanged. The delta
rule for the delete delta set is changed in two ways. First, a function j is used to derive the
type of the resulting delta tuples from the type flags of joining tuples in S and T . Second,
an additional term is added to the rule to handle partial tuples in ∇S. In this additional
term the function s (defined in Sec. 5.5) is used to modify the type flag as needed. Note
that the join delta rules propagate partial deltas as defined in Sec. 3. The join operation is
thus closed under this model.

In Sec. 5.2 we have shown that views need to include primary key attributes to be main-
tainable using partial deltas. A simple join view includes the primary key attributes of both
base relations. As we will see, not all of these key attributes are required to maintain di-
mension views though. In dimension view definitions, all join predicates have a common
form. They are equality predicates involving the primary key of at least one base relation.
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CID CName CAddr ACity ACountry

1 Adam 1 Aachen DE

2 Bob 4 Dresden DE

4 Dave 4 Dresden DE

∆D

CID CName CAddr ACity ACountry flag

1 Adam 1 - - ups

2 Bob 2 Berlin DE comp

3 Carl 3 - - ups

D

∆

Figure 11: Result of the sample incremental expressions ∆D and ∇D

Reconsider the join of S and T with the join predicate (S.a = T.pk) with S.a being an
arbitrary attribute of S and S.pk and T.pk being primary key attributes of S and T , re-
spectively. Obviously S.a is functionally dependent on its key S.pk. Thus, in the join view
T.pk is functionally dependent on S.pk. Thus each join view tuple is uniquely identified
by S.pk alone. Hence, partial updates, upserts, or partial deletions can be applied based on
S.pk only. In summary, dimension views remain maintainable when key attributes used in
a join predicate are projected out hereafter.

Example 5 Reconsider the running example. The sample dimension view was defined as
D := Cust ′ 1(Cust.Addr=Addr .AID) Addr ′. The incremental expressions ∆D and ∇D
can be derived using the delta rules given above.

∆D ≡ (Cust ′new 1 ∆Addr ′) ∪ (∆Cust ′ 1 Addr ′
new )

∇D ≡ πCID,CName,CAddr ,ACity,ACountry,j (Cust′.flag,Addr ′.flag)(Cust ′old 1 ∇Addr ′)

∪ πCID,CName,CAddr ,ACity,ACountry,j (Cust′.flag,Addr ′.flag)(∇Cust ′ 1 Addr ′
old)

∪ πCID,CName,CAddr ,NULL,NULL,s(flag)(σflag 6=comp(∇Cust ′))

The result deltas are depicted in Fig. 11. When ∆D and ∇D are converted back to the
six-tuple model, one obtains an insertion (ID 4), an upsert (ID 1), an update pair (ID 2),
and a partial deletion (ID 3).

5.7 Putting it all together

In the previous sections, it has been shown that projection, selection, and join (with re-
stricted join predicates) are closed under the model for partial deltas. Furthermore it has
been shown that join views are maintainable if they include all non-functional dependent
key attributes. Recall that dimension view definitions are assembled from these opera-
tions. We can thus conclude that dimension views are maintainable using partial deltas if
all non-functional dependent key attributes are included.

6 Related work

View maintenance techniques have been adapted in several ways to deal with situations
where input data is not or only partially available (cf. [GM95] for a survey). Work on
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self-maintainable views aimed at maintaining a materialized view using just the deltas and
the view itself, i.e. without accessing the base relations. Partial-reference maintenance
considers only a subset of the base relations and the materialized view to be available.
The irrelevant update problem means to decide whether an specific update leaves a view
unchanged looking at the deltas and the view definition only, i.e. neither accessing the
view nor the base relations. Interestingly, previous work has not considered deltas to be
partial themselves, as we did here. This is probably because change capture is much less
of a problem in the non-distributed environment.

Previous work on view maintenance in a warehousing environment [ZGMHW95,
ZGMW98, AASY97, AAM+02] was focused on synchronization issues arising when base
relations and materialized views reside on distributed systems. So called maintenance
anomalies may occur when base relations are updated while view maintenance is per-
formed concurrently. To prevent maintenance anomalies the Eager Compensating Algo-
rithm (ECA) [ZGMHW95], the Strobe family of algorithms [ZGMW98], and the SWEEP
algorithm [AASY97, AAM+02] have been proposed for SPJ views.

Preventing maintenance anomalies is an orthogonal problem to our work. ECA, Strobe,
and Sweep make use of standard rules of algebraic differencing and tacitly assume non-
partial deltas to be available. However, as we have seen, many CDC techniques used for
warehousing provide incomplete deltas only. We believe that both, synchronization and
handling of partial deltas are very relevant in the DWH environment. Thus, we feel our
work is complementary.

We investigated view maintenance in the context of partial deltas in earlier work of ours
[JD08, JD09]. In our previous work, we analyzed the impact of partial source deltas on
view maintenance to understand which delta types (insert, update, delete, upsert) can still
be reliably propagated. Such an analysis could, for example, reveal that a given view is
maintainable w.r.t. insertions but not w.r.t. deletions for source deltas of a certain com-
pleteness. In our current work we took a different approach. We identified a restricted
class of views (dimension views) that can be fully maintained using partial source deltas
of any kind. We furthermore proposed a generalized algorithm for maintaining dimension
views using partial deltas.

7 Conclusion

Maintenance of materialized views is an established research topic. More recently it has
been proposed to use view maintenance techniques in the DWH environment where base
relations and materialized views reside on different machines. However, previous work
tacitly presumed that deltas captured at the sources are “complete”. We analyzed existing
change capture modules and discovered that this assumption does often not hold in prac-
tice. In fact, change capture techniques may be unable to provide complete deltas or may
provide partial deltas more efficiently. Thus, conventional maintenance techniques cannot
be used in common DWH environments.

In this paper we studied view maintenance using partial deltas. At first, we introduced a
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formal model for partial deltas. As we have shown, in general views cannot be maintained
using partial deltas but there is a class of view that is maintainable. We referred to this
class as dimension views, because of their close relation to dimension tables, which are
typically used in star schemas. Based on our formal model for partial deltas, we then
proposed a new view maintenance algorithm. To our knowledge, our algorithm is the first
that allows for maintaining (a class of) views using partial deltas.
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Abstract: Over the last few years cloud computing has received great attention in the
research community. Customers are entitled to rent infrastructure, storage, and even
software in form of services. This way they just have to pay for the actual use of these
components or services. Cloud computing also comes with great opportunities for dis-
tributed design applications, which often require multiple users to work cooperatively
on shared data. In order to enable cooperation, strict consistency is necessary. How-
ever, cloud storage services often provide only eventual consistency. In this paper, we
propose a system that allows for strict consistent and cooperative XML authoring in
distributed environments based on Amazon S3. Our solution makes use of local and
distributed transactions, which are synchronized in an optimistic fashion, in order to
ensure correctness. An important contribution of this paper is the evaluation of our
system in a real deployment scenario upon Amazon S3. We show the strong impact
of write operations to S3 on the transaction throughput. Furthermore, we show that
fragmenting data increases write performance and reduces storage costs.

1 Introduction
Driven by the big players of the internet who want to better utilize their large data center
infrastructures, cloud computing has often been viewed as the next paradigm shift or even
big revolution in IT over the last few years. Normally the term cloud computing is un-
derstood as a mechanism to provide shared resources (computing capacity, software, data)
on demand to multiple computers over the internet. Though the basic idea of centraliza-
tion and hosting is not new, in fact it goes back to the mainframe era, cloud computing
offers some new benefits and opportunities. First of all, availability and reachability guar-
antees given by the cloud provider by relying on highly redundant infrastructure simplifies
building business-critical services. Second, the elasticity of resources allows to provide the
illusion of infinite resources for customers to rent on demand. This is strongly related to
the scalability: a customer can start with only a few machines and extend the number with
a growing demand of resources. Together with a pay-per-use pricing model this helps to
reduce the TCO dramatically and, therefore, is particularly interesting for small projects
and companies that cannot afford large investments in infrastructure.

In cloud computing resources are provided at different levels, ranging from Infrastructure
as a Service (IaaS) like Amazon Elastic Compute Cloud (short: EC2), where fundamental
computing resources are rented, over Platform as a Service (PaaS) like Amazon Simple
Storage Service (short: S3) or Google AppEngine, where customer-created applications
can be deployed to the cloud, to Software as a Service (SaaS) like Salesforce or Google
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Docs, where a provider’s application already running in the cloud can be used over the
Internet.

Apart from computing-intensive jobs, web and application hosting or scalable data ana-
lytics using MapReduce [DG04], storage and database services are an application class
well-suited for running in the cloud. Examples like Dropbox, Ubuntu One as cloud file
storage and Slideshare for sharing presentation slides already exist. These systems are all
based on Amazon’s S3, but also the deployment of full-fledged SQL databases using Ama-
zon RDS or Microsoft SQL Azure is possible as well as using data management services
as part of higher level SaaS solutions. Such database services are particularly promising
for cooperative applications in which different users can share and edit a common set of
documents and data. Google Docs or Microsoft Office Web Apps are well-known exam-
ples of these cooperative applications. Engineering design and media production processes
could benefit from cloud-based database services in a similar way. In this work we consider
media production using spatial sound systems based on the wave field synthesis [Ber88]
as an example application. This technique enables the creation of more realistic surround
sound for movies or concerts. During the design process the task of a sound designer is to
animate static objects and to define their locations and movements as well as the charac-
teristics of their surroundings. This way a listener can for example be given the impression
to be in a cave or in a concert hall. The result of this design process is a scene description
stored in an XML-based scene graph. However, apart from relying on a graph-based model
and the usage of specialized authoring tools the approach we are going to present here is
not limited to this application domain but rather usable for any kind of cooperative XML
authoring.

In this context, cooperativeness means to allow multiple users to work at the same time on
shared XML data and to exchange information in arbitrary directions without restrictions.
This way it is possible for each user to adjust his own work to the current state of the
project and the work of others. Furthermore, a cooperative authoring environment should
support transactional semantics in order to ensure recoverability in case of transaction and
system failures as well as strict consistency. The latter is needed to (i) guarantee that every
user has the current state of the project and to (ii) prevent wrong design decisions of a user
due to incorrect or outdated data.

Thus, the goal of our work is to build a cloud-based data management system for cooper-
ative authoring of XML scene graphs which is as easily usable as a cloud storage system
like Dropbox but supports transactional semantics. Building such a system on top of exist-
ing cloud platforms raises several questions. First of all, an appropriate storage abstraction
and system have to be chosen, this can either be a low-level BLOB store like S3 or a
full-fledged SQL database. Based on this decision a system architecture which maps a co-
operative transaction model to the abstractions and operations of the underlying storage
technology has to be designed. Amazon S3, for example, only supports eventual and read-
after-write consistency (depending on the region where the service is provided) and atomic
updates are restricted to single keys (tuples).

In this paper, we present such a system. Based on our previous work [GHS09], where
we have developed a transaction model and an appropriate synchronization strategy for
closely-coupled client/server-based workgroup environments, we discuss the design and
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implementation of a cooperative transactional authoring system for XML data on top of
Amazon S3 as an example. The contribution of our work is twofold:

• We discuss the implementation of distributed optimistic synchronization of XML
updates using S3 as storage layer.

• We present results of our experimental evaluation using a real deployment which
shows that fragmenting data reduces storage costs and increases write performance.
Furthermore, we show that S3 write performance has a strong impact on the overall
transaction throughput.

The remainder of this paper is structured as follows. Section 2 summarizes related work.
In Section 3, we briefly introduce our data and fragmentation model, the operations on
tree structured data and Amazon S3. Furthermore, we sketch our optimistic concurrency
control protocol developed in our previous work. In Section 4 we describe our proposed
system model which enables cooperative processing of XML data using Amazon S3. In
Sections 5 and 6 we discuss the applied transaction model as well as synchronizing and
committing transactions in more detail. Section 7 reveals how strict consistency upon an
eventually consistent storage layer can be achieved. In Section 8 we consider some as-
pects concerning transaction and system recovery. Section 9 presents the results of our
evaluation followed by a conclusion in Section 10.

2 Related Work
The CAP theorem [FGC+97] states that only two of the three properties – consistency,
availability and network partitioning tolerance – can be fulfilled in a distributed environ-
ment. Most of the current solutions show a lack of consistency guarantees in favor of a
higher availability. Examples are Amazon S3, Amazon SimpleDB, Dynamo [DHJ+07],
Yahoo PNUTS [CRS+08] and Google Bigtable [CDG+08]. Hence, without further exten-
sions, these systems are not suitable for cooperative environments.

Not only in cooperative environments, but also in fields like business or e-commerce a
strong need for strict consistency exists. With Amazon RDS, Microsoft SQL Azure, and
Google AppEngine three companies tried to fulfill the consistency requirements of their
customers. These systems provide strict consistency and transaction support. In [KKL10]
an evaluation regarding performance, scalability, and costs of these systems (amongst oth-
ers) can be found. However, in these systems transaction processing is either restricted to
a certain entity group (Google AppEngine) or it is only supported on a single database
instance (Amazon RDS, SQL Azure). Since we assume distributed data, support for dis-
tributed transaction processing is essential. Due to this, these systems are not applicable to
our use case without further extensions.

The endeavor of building databases upon cloud storage systems is not new. Our work
is mainly inspired by [BFG+08], [DAA10a] and [DAA10b]. In [BFG+08] the design
of a database system on S3 is described. The authors address in detail, how atomicity,
consistency and durability of transactions can be fulfilled. Concerning isolation they argue
that protocols, like the BOCC (backward-oriented concurrency control [KR79]) protocol,
can only be partly implemented, as they need a global transaction counter, which might
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become a bottleneck. For this reason we use timestamps for validation purposes, which are
assigned by every transaction manager separately. This is possible, because the transaction
managers run on virtual machines within an IaaS layer, where synchronized clocks can be
assumed. We discuss this in more detail in Section 6.

The authors of [DAA10a] propose a scalable and elastic layered system approach, called
ElasTraS, for transaction processing upon S3. They assume partitioned data as we do. In
order to process transactions across different partitions they use minitransactions. Mini-
transactions were first used in Sinfonia [AMS+09]. They provide only very restricted
transactional semantics. Precisely spoken, every data object accessed by a minitransaction
must be specified before the minitransaction is started. This is almost impossible in design
environments we consider. However, minitransactions can be used in order to implement
optimistic concurrency control [AGS08].

In [DAA10b] the authors propose a transactional system approach for collaborative pur-
poses, e.g., collaborative editing. They support transactions on so-called key groups, which
can be established dynamically. Amongst others, the authors describe an implementation
of their system on top of existing key-value stores, e.g., Bigtable. However, resolving the
problem of how to ensure strict consistency on top of a weak consistent key-value store is
left as future work.

With our endeavor of synchronizing transactions in distributed environments, we also in-
tersect with current research projects in the field of distributed transactional memories. In
these systems, a preferred solution for distributed transaction processing is to run transac-
tions on a single site and move the accessed objects between different sites [HS07, ZR09].
Although, this is an interesting approach for future work, frequently moving fragments
between different buckets might decrease the overall system performance.

Besides the approach of building a cooperative system upon an existing cloud storage
layer, the development and hosting of a tailored cloud storage system is another possibility.
Thereby, systems like Scalaris [SSR08] and Chubby [Bur06], which use the Paxos commit
protocol [Lam02] to guarantee strict consistency, could be used as an entry point. Further-
more, separating transaction processing and data access, like proposed in [LFWZ09], is an
interesting research area. It should be considered for future work.

3 Preliminaries
In order to understand the approaches proposed in this paper, we briefly sketch some basic
concepts needed. We start with a characterization of the data model before going into de-
tails on the tree operations and concurrency control. A detailed description of all concepts
can be found in [GHS09].

3.1 Data Model and Fragmentation Model

Basically, we assume XML data as a tree structure following the tailored DOM (short:
taDOM) specification [HH03]. There, a tree consists of nodes with unique node ids, node
labels and node values. Nodes are connected via directed edges denoting parent-child
relationships. Figure 1 shows an example.
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Amazon S3 (see Figure 3), on the other hand, just provides a simple key-value store. Data
is stored as blobs under unique keys. Furthermore, key-value pairs are organized in buck-
ets, which are containers with a unique url. The task is to map our tree model to Amazon’s
storage model. Therefore, we serialize tree data as simple strings and store these under
unique names in S3 buckets. Serializing a whole tree results in a very large string. This
leads to less read/write performance from/to S3 and hampers transaction throughput as
we show later. Another possibility is to store every single node as a string using a unique
key. However, this would increase costs, as multiple get operations have to be performed
in order to retrieve partial tree data. Hence, a fragmentation model – as a trade off be-
tween costs and performance – is necessary. Figure 2 shows an example: The XML tree is
shredded into three fragments with unique ids fragment 1, fragment 2 and fragment 3. In
order to reconstruct the whole tree, we introduce special nodes fragment 2 and fragment
3, which reference the corresponding tree fragments. The reconstruction is performed in a
top-down fashion. This approach is sufficient for our use case.

Fragmentation of a tree can be performed with respect to different aspects. Regarding
our use case, sound production with spatial sound systems, a whole scene graph could be
fragmented based on cooperation on data units. Assuming that in a sound studio different
teams exist, e.g., one for effects and one for speech, then a possible fragmentation could
be dialogs and effects as most in cases each team works on their own data set. However,
there are other possibilities, for example fragmentation with respect to certain efficiency
criteria. Summarizing, it depends on the application which fragmentation strategy should
be used.
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3.2 Operations

Our overall goal is to enable cooperative processing of tree data. In order to achieve this,
we specified semantic tree operations. These allow for fine-grained conflict specification
and hence support cooperative synchronization protocols.

In order to read a fragment and the contained tree, we defined a simple read(fragment
id). The manipulation of XML data is possible with the help of some update operations.
An edit(fragment id, n, new node value) (E) is used to assign a new node value to a
node n. The operation insert(fragment id, n, sub tree) (I) adds a new sub tree to node
n. Thereby, a new edge between n and the root node of the sub tree is inserted. The op-
eration move(fragment ids, n, m) (M) assigns node m as new parent of node n so that the
existing edge (p, n) between n’s old parent p and n is removed and the new edge (m,n)
is inserted. A delete(fragment ids, n) (D) removes node n, the edge (p, n) between n and
its parent p and n’s children from the tree. Note that move and delete can affect several
fragments.

Amazon S3 just offers really simple operations in order to read and update data, i.e., get
and put for an object (blob).

The mapping of semantic tree operations to simple get and put operations is performed
as follows. A fragment to be read is retrieved from S3 with the help of a get operation.
Updates on the tree are performed externally with the help of semantic tree operations. In
the end the changed fragment is written back to S3 using a put operation.

3.3 Synchronization Model

Simply using S3 operations in order to perform updates on data would have negative con-
sequences regarding transaction synchronization, as a fine-grained conflict specification is
impossible. Consider, for example, two authors who are working on the example scene
graph in Figure 1. One author changes a dialog element and the other one changes an ef-
fects element. Both operations do not influence each other, because they are executed on
different parts of the scene. However, both operations result in one put operation of the
whole scene graph each and, hence, have to be considered as conflicting. Using seman-
tic tree operations allows fine-grained conflict specifications. Furthermore, we consider
functional dependencies between read and update operations. This leads to the following
conflict definition:

Definition 3.1. Two operations oi and pj , which belong to transactions ti and tj respec-
tively, are conflicting, iff they are incompatible according to the compatibility matrix shown
in Table 1. If both are read(fragment id) operations, they are not conflicting. Without
loss of generality, we assume that oi is a read(fragment id) operation and pj is an up-
date operation. Then both operations are conflicting, only iff oi is followed by an update
operation ui which itself depends on oi. Otherwise, they are not conflicting.

Table 1 shows the compatibility of the update operations with respect to the nodes or edges
our operations consider. Thereby,

√
states that the operations are fully compatible, − that

they are not compatible at all, and + that they are only compatible if the tree they are
performed on is considered unordered. Compatible operations are not in conflict and can
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be executed in parallel. Read operations are not further considered. In our use case it is
sufficient to investigate update operations in order to detect conflicts between different
transactions.

E I M D
E −

√ √
−

I
√

+ + −
M

√
+ + −

D − − − −

Table 1: Compatibility of Update Operations

In order to synchronize transactions, several approaches exist, each depending on the con-
sidered scenario. Pessimistic protocols, e.g. locking, are useful for working environments
with high conflict rates. Optimistic protocols are applied in situations where a lower con-
flict rate is assumed. In our scenario we assume that in most cases authors are working
on different parts of the same scene. Furthermore, the semantic tree operations lead to a
lower conflict probability, as shown in Table 1. Hence, we apply an optimistic synchroniza-
tion protocol, which is based on the well-known BOCC protocol. Here, we only present
a short summary, more detailed information can be found in [GS10]. Like the traditional
BOCC, we divide a transaction into three phases – read, validate and persist. Within the
read phase all operations are performed on local copies of the data. In the validation phase
the transaction is checked against all successfully committed transactions that interleaved
the considered transaction. After successful validation the changes are stored persistently.
Like the inventors of the BOCC protocol we assume validate and persist phase as an indi-
visible unit.

The interesting part of the protocol is the validate-persist phase. First, we summarize the
validation criterion, as this is the main point where our protocol differs from the tra-
ditional BOCC protocol. For this purpose we introduce the notion of UpdateSets. An
UpdateSetTi

contains all update operations a transaction Ti has performed. Update opera-
tions may or may not conflict, as it is shown in Table 1. Let Tj be a transaction with transac-
tion number (or timestamp) tn(Tj). Tj is successfully validated, iff ∀Ti, tn(Ti) < tn(Tj)
one of the following conditions holds:

1. Ti has completed its validate-persist phase before Tj starts its read phase.

2. UpdateSetTi is not in conflict with UpdateSetTj according to Table 1.

The first case follows the traditional BOCC approach. Hence, if Ti and Tj are executed se-
rially, Tj is validated successfully. The second case implies that validation is not successful
if the transactions conflict in their UpdateSets. Otherwise, if the transactions used differ-
ent data items, serializability is preserved and Tj is validated successfully. The validation
criterion works, because we assume less functional dependencies between read and up-
date operations. In [GS10] we show that this validation criterion leads to fewer transaction
aborts, even in case of environments with high conflict rates.

Finally, we briefly show correctness of our protocol.
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Theorem 3.1. The proposed validation criterion produces serializable schedules. Hence,
every local transaction manager following this protocol produces locally serializable
schedules.

Proof. We construct a conflict graph G where nodes denote transactions and directed
edges denote conflicts between these transactions [WV01]. A conflict is defined as in Def-
inition 3.1. Iff G is acyclic, the schedule is serializable. Otherwise, it is not serializable.
Now assume G is an acyclic graph of the form (... → ti → ... → tk → ...). This im-
plicitly means that all transactions were successfully validated and committed (Aborted
transactions are not contained ). By inserting a running transaction tj this graph becomes
cyclic. This means there must be at least one conflict directed from tj to ti and one directed
from tk to tj , where k = i is possible. However, if there are conflicts detected during the
validation phase where tj is involved in, then tj is aborted. Hence, the graph stays acyclic.
Note that validation is performed indivisibly. This means, only one transaction is validated
at a certain time. Hence, if tj is conflicting with another running transaction tz , these con-
flicts are detected during validation of tz (in case tj has successfully been committed).

4 System Architecture
In Section 3 we discovered discrepancies between our requirements and what is provided
by S3. Namely, these are the different data models and the different operation sets. Fur-
thermore, we want to enable strict consistent and cooperative transaction processing upon
S3 which by itself provides at most read-after-write consistency for put operations of new
data. Hence, we need to define a system model which maps our data model and operations
to S3 and provides strict consistency for the application.

Our proposed system architecture is shown in Figure 4. We chose a layered approach on
top of Amazon S3.

Amazon S3 is organized in buckets, as described in the last section. In the context of media
production with spatial sound systems we assume that all scene data (fragment sets) is
partitioned over a set of buckets. This way every fragment belongs to exactly one bucket.
The partitioning is performed in a way that a bucket contains the amount of scene data
which is shared within a certain group of authors (clients). This is a natural approach with
respect to huge movie projects, where we can find several teams for, e.g., sound effects or
music.

Clients possess fragment caches in which they store local copies of the fragments they
want to work on in form of trees. Every update operation is first executed on these copies.
Only after the successful validation of the corresponding transactions the updates are
stored persistently in Amazon S3. The advantage is that in case of a transaction abort
no compensation (or version restoring) has to be performed in order to remove inconsis-
tencies from S3. Clients are only allowed to read and update fragments via transaction
managers within a transactional context.

The VM layer is situated between S3 and the clients. This layer consists of a set of virtual
machines, which are started when needed and closed if they get dispensable. The virtual
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machines execute three kinds of services - local transaction managers (TXN-Man), orga-
nized in the local coordination layer, global transaction managers (GTXN-Man), organized
in the global coordination layer and a single global registry. (Note that several services can
run on a single virtual machine.) Every local transaction manager is exactly assigned to
one single bucket and vice versa. It retrieves (get operation) copies of the scene data from
the bucket it is assigned to, parses the XML string and stores this data in form of a tree in
its fragment cache. The copies are written back to the bucket (in form of an XML string us-
ing the put operation) after manipulation. A local transaction manager is started/executed
if at least one client intends to work on a certain bucket, otherwise it is stopped. Occasion-
ally it is required that several groups of authors synchronize their work. This may result in
concurrent access to different buckets. In order to handle this, global transaction managers
are needed. Their task is to route client operations or requests to the responsible local
transaction managers. However, they are not allowed to access S3 buckets. Hence, they
have a local registry where they store which local transaction manager is responsible for
which fragment of the tree. A global transaction executed by a global transaction manager
is decomposed into several sub transactions. These are then executed by the responsible
local transaction managers. Note that the sets of local transaction managers accessed by
different global transaction managers do not necessarily have to be disjoint in order to
allow for correct transaction synchronization. We show this in Section 6. Similar to local
transaction managers, global transaction managers are only instantiated when needed. In
addition to the transaction managers a single global registry is maintained. It is respon-
sible for starting, stopping, and monitoring transaction managers and their corresponding
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virtual machines. The registry knows which fragments are stored in which bucket. This is
required in order to route client requests to the right transaction manager.

Next we give a brief example of how client requests are treated (Figure 5). Assume an
author knows a fragment he wants to work on. It could have been assigned to him by the
supervisor in his team. The client sends a lookup request to the global registry in order
to get the address of the responsible transaction manager. In the case that an appropriate
transaction manager is not yet running, it is instantiated. After obtaining the transaction
manager’s address, the author is able to start his work. Every atomic unit of work is en-
capsulated into a transaction. The client retrieves the fragment copy the author wants to
work on with the help of a read operation. Thereby, a new transaction is started implic-
itly by the transaction manager. The transaction manager retrieves a copy of the fragment
from S3 and stores it locally if it is not yet in the cache. Thereafter, the client (author)
performs an update on the local copy which is also logged by the transaction manager.
After a certain number of update operations were performed, the transaction manager tries
to commit the transaction. Therefore, the transaction enters the indivisible validate-persist
phase. If validation is successful, the logged updates are applied to the local fragment copy
and the updated fragment is written back to the S3 bucket. The validation and committing
of transactions is described in more detail in Section 6.

We briefly discuss two possible APIs which enable application developers to connect to the
proposed system. Using the first approach, the client application directly communicates
with the VM layer (see Figure 4). However, this way application programmers have to
care about fragment caching and have to use the tree operations proposed in Section 3.2.
Following the second approach, application programmers use a low-level client provided
by us. This client software cares about fragment caching. Additionally, it maps application
operations onto the tree operations used by our system. Hence, it would be possible to
use, for example, XPath or XUpdate for XML processing on the application side. These
operations are then transparently mapped onto semantic tree operations.

5 Transaction Model
In [GHS09] we defined a transaction model for cooperative XML processing. However, it
has to be simplified for this use case, because of the following reasons. First, managing root
transactions in such a distributed environment causes too much overhead. They are simply
running too long. During this time a client could change the transaction manager and the
transactional context has to be exchanged between the participating transaction managers.
Second, splitting up operations on sub trees (like deleting a node with its corresponding
children) into sub transactions (containing operations on nodes and edges) for recovery
purposes is unnecessary, because S3 does not provide versioning of nodes and edges but
only of fragments. Hence, a fine-grained recovery is impossible at all.

The resulting transaction model looks as follows. A transaction starts with a set of
read(fragment id) operations followed by a set of update operations. Thereby, every data
item that is affected by these update operations has to be read. This means we do not allow
so-called “blind writes”. Hence, we can assure that every author knows the current state
of the project before he starts to make changes. This is necessary to allow for coopera-
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Figure 6: Example Transaction Execution

tive working. We illustrate our transaction model with a short example. Assume an author
wants to balance the volumes of a crash and a speaker in the fragmented scene in Figure 2.
Therefore, he reads fragment 2 and fragment 3 and performs two edit operations, one on
node 4 and another on node 6. Figure 6 shows the resulting transactions in case that both
fragments are stored in different buckets. In order to ensure atomicity across two buckets, a
global transaction manager is used. All operations performed by the client are encapsulated
in the global transaction GTXN1. The global transaction manager knows the responsible
local transaction managers and, hence, performs a decomposition of the global transaction
into two sub transactions (STXN11 and STXN12). In case both fragments are stored in
the same bucket, no global transaction manager is needed. Then, the client communicates
directly with the responsible local transaction manager and the example transaction is not
decomposed at all.

Finally, the transaction boundaries (begin and commit) have to be determined. On one
possibility they are explicitly specified by the designers or the application programmers.
However, specifying transactions in design environments is not an easy task. In contrast
to, for example, banking applications, where predefined transactions exist, e.g., for with-
drawal, in design environments, the transactions are constructed during the interaction of a
designer with the system. Usually, designers are not interested in specifying transactions.
Hence, this task must be performed transparently by the system. In [GS10] we described
an appropriate method, which automatically determines transaction boundaries based on a
user defined degree of cooperation and the importance of the executed update operations.

6 Transaction Validation and Commit
In the last section, we described how it is determined, when a transaction is started and
when it should be committed. Now, we clarify how transactions in this distributed envi-
ronment are committed in order to guarantee atomicity and correctness.

In case an author works with XML data that belongs to a single bucket, there is no need for
further investigation, because only a local transaction is executed at a single site. Here, val-
idation is performed, and in case of success, the transaction is committed and the changes
are stored persistently in S3. Correctness is guaranteed, because of our validation scheme
described in 3.3.

However, in case an author works on scene data that is distributed across several buck-
ets, a global transaction manager and several local transaction managers are involved. The
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task is, i) to synchronize the global and local transactions against other global and local
transactions in order to assure correctness and ii) to commit a global and all its local trans-
actions entirely in order to guarantee atomicity. A common approach for these problems is
the adaption of the two phase commit protocol [WV01] to optimistic concurrency control
protocols. If a distributed transaction shall be committed, the global transaction manager
becomes the coordinator and sends PREPARE messages to all affected local transaction
managers. This message is a request for validation. Every local transaction is validated
at its corresponding site. If validation is successful, a READY for commit message is
sent to the coordinator. Otherwise, the local transaction manager answers with an ABORT
message. If all local transactions voted for commit, the coordinator sends COMMIT mes-
sages to all participating local transaction managers and the whole distributed transaction
is committed and the changes are stored persistently. If at least one transaction fails, all
local transactions are aborted by the coordinator with the help of ABORT messages, fol-
lowed by an abort of the global transaction itself.

Global transaction managers support parallel validation of several global transactions.
However, local transaction managers treat the validate-persist phase including commit as
indivisible unit, leading to serial validation.

The two phase commit protocol described above can lead to deadlocks between global
transactions, because of cyclic wait-for graphs between sub transactions waiting for the
entrance into the validate-persist phase. Two alternatives are known to deal with deadlock
situations. First, avoid deadlocks - all transactions are validated simultaneously. If at least
one sub transaction is not able to enter validation phase, the global transaction is aborted
and, hence, all sub transactions are aborted, too. Second, deal with deadlocks - in the
literature, e.g. [WV01], several mechanisms to detect and handle deadlocks are described.

In order to determine the serialization order of global and local transactions global trans-
action counters or timestamps are necessary. Since using a global transaction counter can
become a bottleneck in highly distributed systems (as mentioned in Section 2), we chose
timestamps for our solution. These can be assigned in a distributed manner. However, the
precondition is, that clocks are synchronized at all transaction managers. In commonly
known distributed systems this is hard to achieve. However, we assume our system (VM-
layer) to be running in a data center on top of virtualization software like Eucalyptus,
which also needs synchronized clocks. Current versions of the network time protocol pro-
vide time accuracy in the range of less than 10 milliseconds for local networks. We believe
this is sufficient for our use case. However, for the unlikely case, that accuracy is too
low, the approach described in [AGLM95] could be adapted and applied. However, this is
beyond the scope of this paper.

Finally, we show that the proposed protocol is correct.

Theorem 6.1. If every global transaction Ti follows the proposed commit protocol, the
resulting schedule is globally serializable.

Proof. Due to our proposed validation method, all locally executed transactions are serial-
izable. Now, assume a schedule of committed global transactions Tk, k ∈ N. We construct
a global conflict graph S. A conflict is defined according to Definition 3.1. Iff S is acyclic,

318



validation/persist 

thread
read thread 1 read thread n...

fragment cache

bucket

local transaction 

manager
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the schedule is globally serializable. Assume, without loss of generality, that S contains
a cycle of the form ( Ti → ... → Tk → ... → Ti). Hence, there must be a (direct or
indirect) conflict directed from tir to tks and one directed from tku to tiv , where tmn is
the n-th sub transaction of Tm executed at the n-th local transaction manager. Since all sub
transactions were successfully validated and committed at the corresponding local trans-
action managers, Ti and Tk must have been serialized in opposite directions at different
local transaction managers. This is not possible - at a local transaction manager site the
validation phase is indivisible. Hence, only one transaction can be performed at a certain
point in time. If a sub transaction entered the validation phase, it cannot leave it until its
corresponding global transaction commits. (And a global transaction cannot commit if at
least one sub transaction is not validated successfully.) This means, validation (serializa-
tion) order can only be unidirectional.

Note, that we did not assume, that the validation phase at the global transaction manager
site must be indivisible. Hence, validation can be performed in parallel. This also means, it
does not matter, if two global transactions are validated in parallel on the same or different
global transaction managers.

7 Ensuring Consistency and Enhancing Read Performance
In order to understand how transaction throughput can be increased, we give some insights
into the implementation of a local transaction manager. Figure 7 shows a local transac-
tion manager with its corresponding S3 bucket. We implemented the transaction manager
multi-threaded. We start exactly one validation/persist thread in order to serialize update
operations and an arbitrary amount of reading threads, which are only allowed to read from
the fragment cache. (In order to allow for real parallel reading, the number of read threads
should follow the number of assigned CPU cores.) This implementation allows to serve a
lot of client read requests in parallel.

The fragment cache is limited. Hence, it is possible that a cache resident fragment has
to be replaced by another fragment that is immediately needed. In the literature, several
page replacement strategies usable for our case are described. Thus, we do not consider
fragment replacement any further. However, one problem remains with respect to fragment
replacement. Assume a worst-case scenario where a fragment is updated and written to the
corresponding S3 bucket. Right after this, it is replaced in cache by a different fragment
and then immediately requested again and, thus, read from S3. As already said, Amazon S3
provides no strict consistency. So, if a fragment is written and read immediately thereafter,
it is possible that an older version is retrieved. In order to prevent this, we make use of
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the entire versioning feature S3 provides. An Amazon S3 put operation returns the version
ID of the written object. We just store the returned version ID in the local transaction
manager. This ID is updated every time a put of the considered fragment is executed.
When the fragment is read, this version ID is passed to the Amazon S3 get operation. If the
requested version is already available, it is returned. Otherwise, the transaction manager
waits for some milliseconds and tries retrieving the fragment again.

8 Recovery
Concerning recovery we have to distinguish between transaction and system recovery.

Transaction recovery is necessary to guarantee atomicity in case of failures. Aborted trans-
actions have to be rolled back to not have any effect on the persistent storage. In our
approach transaction recovery and synchronization are closely coupled. In case of local
transaction processing the use of our extended BOCC protocol ensures that only commit-
ted changes are stored persistently. Dirty updates are only performed on the client side
during the read phase. Furthermore, cascading aborts are avoided as a transaction may
only depend on previously committed transactions. (A transaction T depends on a trans-
action S if there is a directed conflict (Definition 3.1) from S to T .) For global transactions
the variation of the two phase commit protocol ensures atomicity and durability. In cases
where local or global transactions are aborted during read or validation phase, the affected
transactions can just be aborted, as no changes have been stored persistently. Only the
cases, where local transactions are aborted during the persist phase are a bit more intricate.
However, Amazon S3 provides versioning feature, which is helpful in these situations.
Even if a transaction is aborted after the put operation has been successfully performed,
the previous version can easily be restored. Every put operation produces a new version
of the fragment with a unique version ID. This version can simply be deleted by using
the version ID. Since global transactions are not allowed to access S3 there is no need for
further investigations.

A main problem of the original two phase commit protocol is that a deadlock situation
occurs if the coordinator (global transaction manager) fails. Then, the local transaction
managers are waiting for notifications infinitely. A possible solution is the introduction
of time outs. In our system a global registry is running, which monitors all transaction
managers. This way the registry can inform all affected local transaction managers if the
global transaction manager fails and all local transactions are aborted. If a local transaction
manager fails, the responsible global transaction manager is informed, which then reacts
accordingly.

The base for ensuring system recovery is the global registry, which, as already mentioned,
instantiates, monitors, and restarts virtual machines and transaction managers. In order to
guarantee that the global registry is always available and also for load balancing purposes
we use backup instances of this service. If a virtual machine or a transaction manager
fails, it is detected by the global registry and the affected machines and managers are
restarted. There is only a need for simple recovery steps after a local or global transaction
manager was restarted. All running transactions have been aborted and all changes of
committed transactions are stored in the corresponding S3 bucket. However, there could be

320



uncommitted changes in the bucket, as previously described. They can easily be removed
by using the version IDs. After a local transaction was committed, the produced version ID
is communicated to the global registry (during monitoring). If a local transaction manager
is restarted, the last stored version ID is communicated to the local transaction manager,
which simply retrieves a list of version IDs from the concerned bucket. If the last known
version ID is not the current one in the list, the current version is simply deleted by using its
version ID. Recovery for global transaction managers is much easier. A global transaction
manager retrieves the lists of fragment IDs from its local transaction managers and can
this way assure a proper routing of new client requests.

The versioning feature can also be used to allow undo operations. If a client wants to
restore an old version of a fragment, it just retrieves all versions with a listing command
via the global and/or local transaction manager. Then, it chooses one version and deletes all
other versions. However, the undo feature has to be refined in order to enable for example
access control. We consider this in future work.

9 Evaluation
In this section we evaluate the proposed system with respect to performance, applicability,
scalability, and costs. We measure S3 performance and costs with respect to different frag-
ment sizes in order to show that fragmentation reduces costs and enhances performance.
Furthermore, we determine the local and global transaction throughput in order to show
that the proposed system is applicable to cooperative media production scenarios. Con-
cluding, we give a simple cost formula to helps calculate the overall S3 costs and show
that the proposed system is scalable within Amazon EC2.

In order to determine S3 costs we use prices for the region EU/Ireland from the Amazon
S3 web page:

• StorageCosts = $0.15 for storing 1 GB of data

• GetCosts = $0.01 for 10000 get operations

• PutCosts = $0.01 for 1000 put operations

• DataInCosts and DataOutCosts = $0.15 for transferring 1 GB of data

The versioning feature is charged via storage costs. Every update operation leads to a full
copy of the data item and hence increases storage costs.

Costs and Performance

As mentioned in Section 3.1, there are two possible extreme solutions for storing the tree
data as blob objects – one blob per node or one blob for the whole tree. Here we out-
line how S3 costs and performance evolve between these two extrema and we show that
fragmenting data reduces S3 costs and enhances data processing performance.

In order to measure the results we used an S3 bucket in the region EU/Ireland with the
versioning feature enabled. Versioning is necessary for transaction recovery as described
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in Section 8. The overall storage costs for a fragment of size FragSize in MB, which is
updated n times in an EU/Ireland bucket with enabled versioning feature, are calculated
as follows: TotalStorageCosts = FragSize ∗ (StorageCosts/1000) ∗ (n + 1). Fur-
thermore, the whole get costs of retrieving all fragments of a tree are: TotalGetCosts =
GetCosts/10000 ∗NumberOfFragments.

For our first measurement we consider a tree with a size of 500 KB. We fragment the
tree step by step and consider get performance (the time needed for retrieving the whole
data tree) and put performance (the time needed for putting a single fragment into the
bucket). The tests were performed on an EC2 instance in region EU/Ireland as well as an
instance in our institute. The results are shown in Figure 8. As expected, put performance
increases with decreasing fragment size as decreasing fragment size avoids transferring
of unchanged parts of the whole tree. The get performance decreases with an increasing
degree of fragmentation. This can be explained by the higher number of get operations
needed to retrieve the whole data tree and the associated higher number of expensive http
requests sent to S3. Overall, results measured in EC2 are better than those measured ex-
ternally. The reason is better infrastructure with less latencies and higher bandwidth.

Next, we measure TotalStorageCosts and TotalGetCosts. Therefore, we, again, con-
sider a tree with a size of 500 KB, which is stepwise fragmented. We assume that always
the whole tree is retrieved from S3 and a single fragment of considered size is updated and
written back to S3 ten times. The results are shown in Figure 9. As expected, the get costs
increase and storage costs decrease with decreasing fragment size as decreasing fragment
size avoids versioning of unchanged parts of the whole tree.
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Figure 8: Put and Get Performance
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Figure 9: Total Storage Costs and Total Get Costs

Transaction Throughput

The goal of this part of the evaluation is to show that using the proposed system architec-
ture and synchronization protocol results in sufficient transaction throughput. Furthermore,
we show that fragmentation has some impact on transaction throughput.

Before presenting experimental results we first introduce the notion of conflict rate. The
conflict rate determines the number of transactions which are conflicting with each other in
the whole transaction set (for details see [GS10]). The set of conflicting transactions is de-
termined based on the validation criterion of our new approach (conflicting UpdateSets).
The tree the transactions are executed on is considered to be unordered.
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We measure the number of successful committed transactions per minute
(TransactionThroughput = NumOfCommittedTxns/duration, where duration
is the measured time in minutes for executing the whole transaction set) at the local/global
transaction manager site. Thereby, we analyze the following scenarios:

1. Local transaction throughput depending on fragment size with fixed conflict rate of
25%.

2. Global transaction throughput depending on fragment size with fixed conflict rate of
25%.

For our test scenarios we used a simulation where a randomly generated set of transactions
is executed on a randomly generated tree that follows our data model specification of
Section 3.1. The tree is again fragmented step by step.

In test scenarios with local transactions the setup consisted of a local transaction man-
ager upon an S3 bucket in the region EU/Ireland. In order to measure global transaction
throughput the setup consisted of two local transaction managers upon two S3 buckets in
the same region and one global transaction manager. All transaction managers are running
on the same virtual machine. Local transactions consist of a set of read fragment opera-
tions and exactly one update operation. Global transactions consist of exactly two local
transactions. It should be noted that in the local transaction scenario no global transactions
are executed. Furthermore, in the global transaction scenario no local transactions that do
not belong to global transactions are executed. Since duration of the read phase of a trans-
action is unpredictable (because it depends on the working time of an author), we assume a
read phase duration between one and two seconds. Figures 10 and 11 show the measured
results in case of transaction manager deployments in EC2 (region EU/Ireland) as well as
in our institute. In both cases we measured transaction throughput when writing updates to
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Figure 10: Local Transaction Throughput
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Figure 11: Global Transaction Throughput

S3 and in a second experiment only writing to the fragment cache. Basically, the measured
transaction throughput is sufficient for typical cooperative design environments. However,
write performance of S3, obviously, has a big impact on transaction throughput. In future
work we have to think about sophisticated update caching mechanisms in order to save
put operations. Furthermore, although writing a smaller fragment is faster than writing a
large fragment to S3, transaction throughput slightly decreases with increasing fragmen-
tation degree. We get this effect as with decreasing fragment size update operations affect
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Figure 12: Total S3 Costs per Month

more fragments. Hence, more fragments have to be written back to S3 and this operation
is heavily influenced by expensive http put requests.

Total S3 Costs

Here, we show that fragmentation reduces total S3 costs. We use the following cost for-
mula in order to calculate costs resulting from external access to S3 (not from EC2):

TotalS3Costs = F ∗ ((n+ 1) ∗ (FragSize ∗ StorageCosts
1000 + PutCosts

1000 +

FragSize ∗ DataInCosts
1000 ) + n ∗ (GetCosts

10000 + FragSize ∗ DataOutCosts
1000 )) (1)

F is the number of fragments, n is the number of updates, and FragSize is the size of
a fragment in MB. Note that we assume that every update of a fragment leads to a new
version of this fragment. Even if only a small part of the tree data within a fragment is
changed, the whole fragment has to be read and written as one unit, because S3 is used as
a block storage device.

These costs are worst-case costs, because we assume that get operations are always per-
formed on S3. In real scenarios we assume most of the get operations on the cached frag-
ments (local transaction manager). Hence, costs should be much lower.

Figure 12 shows the total S3 costs for one month, assuming a fixed project size of 100
MB and 10000 updates of the project file. The project file is fragmented step by step
and updates are assumed to be distributed equally upon the fragments. This means, if we,
for example, split up a single document into two fragments, n/2 updates are performed
on each fragment. Again, we used a single S3 bucket in the region EU/Ireland with the
versioning feature enabled. As expected, costs for the whole project decrease with an in-
creasing degree of fragmentation. Hence, fragmentation should always be considered in
big projects.

Scalability

Previously, we have shown that global and local transaction throughput is sufficient for
typical design scenarios. For our measurements we used a relatively small test setup. Here,
we want to show that our system model scales with an increasing workload. Therefore, we
assume that the necessary transaction managers are hosted in EC2.

In EC2 it is possible to rent different instances with different memory and cpu equipment.
For example, one can rent a machine with 7 GB RAM and 20 EC2 compute units. One
EC2 compute unit compares to a single 2007 Opteron or Xeon cpu, which is at least a
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dual core cpu. This means, we can execute at least 40 threads in parallel on one instance.
As already mentioned in Section 4, it is possible to execute several transaction managers
on a single virtual machine. Assuming a local transaction manager consists of one vali-
date/persist thread and three read threads, we can run 10 local transaction managers (with
corresponding S3 buckets) on a single instance. By assuming a local transaction through-
put of 100 committed transactions per minute and local transaction manager, we get a total
local transaction throughput of 1000 committed transactions per minute and instance.

If a bucket becomes a “hot spot”, we can split up the data across other buckets in order
to distribute the load. If this is also not sufficient, fragments could be further decomposed
and distributed across several buckets.

10 Conclusion and Future Work
In this paper, we proposed a system model, which enables strict consistent and coopera-
tive processing of XML data in a distributed environment upon an existing cloud storage
service, namely Amazon S3. We described applicable transaction models for local and
distributed transaction processing, followed by a discussion of appropriate mechanisms
for optimistic transaction synchronization and transaction commit protocols. We proved
that these proposed protocols ensure correctness. Furthermore, we described how strict
consistency can be achieved upon a storage layer that at most provides read-after-write
consistency for put operations of new data. We also considered recovery with respect to
transaction aborts and system failures. A critical part of this paper is the evaluation. We
investigated the impact of S3 performance on our implementation within a real deploy-
ment on S3. We have shown that fragmentation is necessary in order to reduce storage
costs and increase write performance. Furthermore, the evaluation reveals the strong im-
pact of writing to S3 on the transaction throughput. For future work we propose to look for
sophisticated approaches in order to avoid this bottleneck. A possible solution is caching
of write operations. However, appropriate recovery mechanisms are necessary in order to
guarantee durability.
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Abstract: The storage, management, and retrieval of entity data has always been
among the core applications of database systems. However, since nowadays many
people access entity collections over the Web (e.g., when searching for products,
people, or events), there is a growing need for integrating unconventional types of data
into these systems, most notably entity descriptions in unstructured textual form. Prime
examples are product reviews, user ratings, tags, and images. While the storage of this
data is well-supported by modern database technology, the means for querying it in
semantically meaningful ways remain very limited. Consequently, in entity-centric
search suffers from a growing semantic gap between the users’ intended queries and
the database’s schema. In this paper, we introduce the notion of conceptual views,
an innovative extension of traditional database views, which aim to uncover those
query-relevant concepts that are primarily reflected by unstructured data. We focus on
concepts that are vague in nature and cannot be easily extracted by existing technology
(e.g., business phone and romantic movie). After discussing different types of concepts
and conceptual queries, we present two case studies, which illustrate how meaningful
conceptual information can automatically be extracted from existing data, thus enabling
the effective handling of vague real-world query concepts.

1 Introduction

With the widespread use of the Web as primary information source, entity-centric search

has become a common task for many people, with product search arguably being most

prominent. In this context, typical entity types are mobile phones, movies, and books, but

could of course also be people, news items or events. Although the handling of entity data

traditionally falls into the domain of database systems [Che76], database methodology alone

is becoming less and less adequate to master this task. Entities are no longer characterized

by structured data alone but to a large extent also by semi-structured and unstructured

information. For example, besides technical specifications, a typical e-shopping website

features detailed textual product descriptions, expert reviews, and a large variety of user-

generated content such as ratings, tags, and opinions. While modern database systems offer

extensive technical capabilities for storing a large variety of data types (e.g., text documents,

XML documents, and even multimedia content), the means for querying this data remain

very limited [Wei07].
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Therefore, recent research has been more and more focused on integrating information

retrieval capabilities into database systems, in particular by structuring unstructured data

for use by structured queries [WKRS09, CRS+07, MS06]. Most of this ongoing research

focuses on extracting precise facts from textual data using methods from the area of

information extraction [Moe06]. While preliminary results are promising, still many

problems remain to be solved.

But to make things even more complicated, an analysis about product search we performed

on the AOL search query log revealed the following: When searching for mobile phones,

people very often include vague concepts (e.g. business phone, portability, or for kids) in

their queries, about as often as they refer to precise technical product details (e.g. weight,
display diagonal size, or talk time). Figure 1 illustrates the different types and respective

frequencies of queries related to mobile phones we identified in the AOL search query log.

Figure 1: Different types of queries related to mobile phones in the AOL search query log

We also investigated what information about mobile phones is provided by current online

shops, price comparison services, and media news sites such as CNET.com. We found

that while almost all sites collect and allow searching for a broad range of technical

specifications, the coverage of vague product features is fragmentary at best. Typically,

information about concepts such as business phone is only available through manually-

created top ten lists, which have been published as ordinary pages. User-defined top lists

are particular popular and even market leaders such as Amazon.com have recognized them

as important means for providing conceptual information about products. None of the web

sites we studied offered structured search functionality for vague concepts.

Our analyses indicate that there exists a significant mismatch between the users’ intended

queries and the database’s schema. A very similar issue has been identified in the field

of multimedia databases, where it is usually referred to as semantic gap [HLES06]. As

argued above, in case of entity-centric search, the semantic gap mainly exists because

users’ information needs often are based on natural but typically vague concepts, which

information providers usually do not model explicitly in their databases. However, previous

studies also indicate that information about many query-relevant concepts is already con-

tained in those parts of entity databases that are currently not used for answering the users’

queries [SB10, KT09]. This mainly refers to unstructured information (e.g. textual product

reviews), but may also include structured information (e.g. user ratings, which currently are

mostly used to compute average product ratings, thus ignoring the users’ hidden preferential

structures).
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In this paper, we present our approach to bridging the sematic gap in entity-centric search.

As a key element, we introduce the notion of conceptual views, an innovative extension of

traditional database views, which aims at systematically providing the means for making

implicit conceptual information explicit to database applications. In particular, using case

studies from the domains of mobile phones and movies, we demonstrate how concep-

tual views can be constructed automatically from the existing data and provide a rough

classification of typical query types and matching extraction techniques.

The rest of the paper is structured as follows: First, we introduce and discuss the notion

of conceptual views as well their use in modern database systems in Section 2. In the

following sections we present our case studies. We continue by reviewing related work in

Section 5, and conclude by highlighting some important findings from cognitive psychology

in Section 6, which are strongly aligned to our approach and will guide our further work.

We conclude by summarizing the results of our current research efforts and discuss open

problems in Section 7.

2 Designing a View Mechanism for Answering Conceptual Queries

In this section we will discuss the basic mechanism for answering conceptual queries. Since

database entities usually represent entities of the real world, the key idea is to understand

concepts as special database attributes in a structured form. The attribute’s value for every

entity is obviously determined by the “degree of applicability” of the concept, which can

be defined in a variety of ways as we will discuss later. In any case, this specific way of

mediating between some user’s or application’s information need and the logical design

of a database or information system is generally provided by the view mechanism. In the

following we will briefly discuss how concepts are prepared for retrieval purposes using

conceptual views.

2.1 Detecting Concepts in Queries

As we have seen, many queries address a rather conceptual understanding of database

items (or entities) and therefore cannot be answered directly. But, how can such queries

be handled in an effective yet easy-to-use way? The first step of course is to detect some

new concept within queries, and thus a new information need. Whereas this is easy to

do in SQL-style declarative query languages, where a mapping of previously unknown

attributes to actually existing attributes in the underlying source(s) can be derived (see

for instance the work on malleable schemas [ZGBN07]), the recognition of new concepts

in simple keyword queries is somewhat harder. Of course, it is impossible to mine all

individual concepts from a vast number of query terms put together in millions of queries

regarding some topic. But preparing the underlying database to answer at least the most

often occurring keyword queries, and thus providing for predominant groups of users, can

be a strategic advantage, especially for e-commerce portals.
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Following our running example, we therefore determined typical characteristics of pre-

dominant conceptual queries, i.e., what concepts with respect to mobile phones are there

and how often do they occur? To answer this question we inspected the online advertising

platform Google AdWords1 and related the monthly number of general queries on our

example domain of mobile phones (and all common spelling variants like “mobile phones”

and “cell phones”) to the number of queries reflecting often used concept terms as derived

from the AOL query log (again expanded with common spelling variants, but not related

queries, e.g., the query “business phone” was not expanded by related terms like “calendar”

or “organizer”). Since Google AdWords only allows for monthly averages, the results

shown in Table 1 can only be seen as an intuition about the demand for individual concepts.

For the month of September 2010, Google AdWords reported a total of 22,110,560 general

purpose queries on mobile phones. Considering the top-5 concepts from the AOL query log

we find that the relative monthly amount of queries ranges between 0.2% and 1.4%. Still,

the result clearly shows that individual concepts will occur in significant numbers of queries

and thus are easily detectable in a query log. Thus, periodically inspecting query logs for

often co-occurring combinations of keywords can be expected to lead to the detection of

currently relevant query concepts.

Frequency

Concept Absolute Relative

Cheap phone 313,400 1.4%

Business phone 87,520 0.4%

TV cell phone 62,700 0.3%

Music cell phone 49,300 0.2%

Cell phone for kids 33,260 0.2%

Table 1: Relative frequencies of concepts related to queries about mobile phones.

2.2 Building Conceptual Views

Since long relational databases have provided a mechanism for supporting queries that do

not directly address attributes predefined in the logical design: views. Whereas views were

often understood as a security feature regulating access to database tables and even providing

some statistical data security by pre-aggregating several attributes, after the introduction

of materialized views the performance implications became paramount. Especially for

expensive aggregations a pre-computation and materialization of view attributes is essential.

This perfectly fits to the complex nature of concepts and their problematic deduction from

entity information.

The basic idea for building conceptual views is to derive each entity’s score with respect

to some concept and offer it to query processing engines under the name of the concept

(basically the used query term, for complex mappings of different queries to abstract

concepts please refer to the large body of work on schema mapping). The score assigned

1http://adwords.google.com
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to each entity with respect to a concept can be interpreted in several ways. Of course the

easiest way is to employ expert judgments simply rating all items. However, relying on

editors (like e.g., the allmusic portal2) is an expensive and cumbersome method, which can

only be employed on small collections, where trust in the scoring process is vital. On the

other hand, given the variety of information about entities collected in today’s databases and

information systems, such as Amazon.com’s shopping portal or the IMDb movie database3,

conceptual information can be derived with adequate extractors. Before discussing these

extractors, we will provide a brief overview of how concept scores are typically interpreted:

1. Possibility that an entity represents a concept given structured information. A good

example is the concept portability for mobile phones or laptops. Here, the degree

of membership (score) can be assumed to be a simple weighted aggregation of the

weight and size attributes that will be part of the structured technical specifications.

2. Possibility that an entity represents a concept, also considering unstructured infor-
mation. This is essential for concepts that cannot directly be derived from structured

data, such as the concept of business phone in the domain of mobile phones. Usually,

such concepts are to some degree based on opinions or user expectations, which are

just supported by structured information.

3. Probability that an arbitrary user would rate an entity as matching the concept. The

way of scoring is often modeled as degree of belief. A typical example is the notion

of beauty, which again is sometimes supported by structured information, but in the

end relies on (probably differing) opinions.

4. Average user judgments. User judgments already form a significant type of data in

most information portals. Users are invited to express a personal opinion, and the

scoring of each entity can then be derived by suitable aggregations of such ratings.

Of course, the major feat for the successful generation of conceptual views lies in the

respective extraction algorithms for the concept scoring. Indeed, for the four interpretations

above there are some typical extraction techniques (which we will described in more detail

and tied to conceptual query types in a later section). Generally speaking all extraction

algorithms have to rely on a set of sample entities exhibiting the concept in question.

Of course, such typical entities can always be provided by users in a query-by-example

fashion (e.g., the iPhone as a typical smart phone or Hugh Grant movies as typical romantic

comedies), but also a simple keyword search in unstructured data associated with some

entities in our experiments proved to yield sufficiently accurate examples. The basic

structure of extraction algorithms for the above interpretations can be roughly classified as

follows:

1. Extractors working only on structured data are usually of a purely statistical na-
ture trying to find correlations between different attributes for the sample entities.
Generally attributes allowing for a good clustering of the sample, while showing a

2http://www.allmusic.com
3http://www.imdb.com
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different overall distribution, can be expected to have some meaning with respect to

the query concept. Typical algorithms like association rule mining for categorical

data and Bayesian classification, or clustering algorithms for numerical data are well

understood and already often used [WKQ+08].

2. Extractors integrating structured and unstructured data usually involve some natural
language processing techniques and are generally a mixture between statistical
methods and techniques from information retrieval. Since they form a currently very

active and complex research topic, we will revisit a typical representative of these

algorithms as use case in the Section 3 and discuss the result quality.

3. Extractors for degrees of belief are usually relying on user relevance feedback in some
form and thus tend to be interactive algorithms. Generally speaking, all methods

need some time to derive meaningful scorings, but following the wisdom-of-the-

crowds principle [Sur04] eventually result in scorings of good quality. Due to their

unobtrusiveness, recently the combined evaluation of query logs together with the

results users clicked on has been a prime candidate for establishing degree of belief

values [BHJ+10].

4. Extractors for exploiting rating information often use an abstract semantic space
for entity representations and then derive scorings from evaluating similarities in
this space. A typical representative of such algorithms is Latent Semantic Analysis

[DDF+90]. Here, the feature space is rotated into the direction of prominent eigen-

vectors representing predominant topics that can be used to distinguish between sets

of entities. We will also revisit this kind of extraction as a use case.

Having built a new attribute in the conceptual view for each relevant target concept using

an adequate extractor depending on the type of concept, the view can be queried. Obvi-

ously, the extraction algorithms tend to be rather complex and time-consuming such that a

materialized version of the view has to be maintained. This immediately raises questions

about possibilities to update such views, which in turn reflects on the extraction algorithms

used. However a detailed discussion of this problem is beyond the scope of this paper.

2.3 Answering Conceptual Queries

For answering conceptual queries by means of conceptual views, we must be aware of

the dichotomy between precise concepts (which usually are already modeled explicitly in

the database) and vague concepts (which are provided by conceptual views). The former

typically will be used to specify hard logical constraints within the query (e.g., retrieve

only Nokia phones or phones being cheaper than 300 Euros), while the latter are the

primary focus of queries involving vague concepts (e.g., retrieve all business phones that

are mid-priced and iPhone-like). Since those queries cannot be formulated and processed in

a semantically meaningful manner using precise query languages such as SQL, a different

approach is needed.
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Since vague concepts almost always go hand-in-hand with the notion of degree of member-

ship, a purely set-oriented retrieval approach seems inappropriate for conceptual attributes;

ranking-based methods are more appropriate here. Fortunately, there already exists a large

body of research dealing with exactly this type of query formulation and processing. As

soon as all relevant concepts have been made explicit in structured form, a whole bunch

of existing methods for supporting vagueness in queries and data can be applied, thus

enabling a concept-enriched and more intuitive entity-centric search. Notable approaches

are fuzzy databases [GUP06], the VAGUE system [Mot88], top-k retrieval [IBS08] and

typicality queries [HPF+09], just to name a few. To integrate both types of query concepts,

preference-based database retrieval [Kie02, Cho03] offers a large variety of options.

Figure 2 summarizes our vision of conceptual views and embeds this notion into the

context of existing database systems. Conceptual views can actively and automatically

be maintained by analyzing user query logs. As soon as relevant query concepts have

been identified that currently cannot be handled using structured data, a suitable extractor

is chosen to extend the conceptual view accordingly. Thus, conceptual views provide a

systematic and unifying perspective on all available data, regardless of its type. Since

all relevant concepts have been made explicit in structured form, existing methods for

concept-based query processing can be applied to satisfy a broad range of information

needs, which could not be handled using the previously existing structured data alone.

Figure 2: Conceptual views within a database system.

3 Case Study: Mobile Phones

Our first case study concerns the domain of mobile phones, which already has been dis-

cussed briefly. Here, in addition to providing a number of structured technical specifications

for each phone, a typical product database also contains a textual description of the phone

along with a (possibly large) collection of detailed reviews written by expert users or
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journalists. The relevant query concepts vary from those that are primarily defined in terms

of structured data (e.g., portability) to those that have almost no connection to the technical

specifications (e.g. well-designed). In between, there are concepts being defined by both

types of data (e.g. business phone). In this case study, we present a method that jointly

analyzes both structured and textual data to extract a meaningful score value for some target

concept, which in the following will be business phone.

In order to store the degree of membership for each entity towards the target concept, one

first needs to build a model-based representation of this concept. Such a model comprises

a feature collection together with the corresponding strengths, which we will refer to as

model vocabulary (MV) in the following. Moreover, we will need an entity representation
function, used for calculating the degree of membership of each entity in the database

towards the target concept.

3.1 Method: Feature Analysis

The approach to be presented in the following is based on conceptual features, which are

either “real” product features extracted from the technical specifications or nouns (and

noun phrases) contained in some textual description or review of a product [LHC05]. We

first extract all conceptual features from the available structured and unstructured data, and

then try to find meaningful relationships between them (e.g., business phones tend to have

advanced calendar functionalities). Our algorithm is based on a self-supervised learning

technique that uses two types of training data for each product: a concept-related product

review provided by some professional editor and the product’s technical specifications in

structured form.

The method works as follows: We start by automatically splitting the training data (and thus

also the entities) with classical information retrieval techniques (such as keyword search)

into the explicitly concept-relevant data, further referred to as R, and the remaining data

(for which the relevance towards the concept is unknown), further referred to as U . The

sets R and U are disjoint. Of course, U will typically not only contain irrelevant entities,

but also some entities for which the concept is only visible in terms of related features. In

order to ensure a model of high quality, we have to split the training set by performing the

concept keyword search both in the structured and unstructured data of each entity. We also

have trained the model by using only editor product reviews which are extensive by nature,

explicitly covering a broad spectrum of features and concepts.

Adapting procedures from document classification, we extract those product features that

tend to discriminate entities in the set R from those in U (assuming that most entities in U
will be irrelevant to the target concept). For this purpose, we assign a numerical strength

to each feature, which measure the feature’s importance with respect to the given concept.

We consider only the strongest ones for our MV. The strength of a feature fi is defined as

follows:

strength(fi) =
nR(fi) − minj

(
nR(fj)

)

maxj

(
nR(fj)

)− minj

(
nR(fj)

) − nU (fi) − minj

(
nU (fj)

)

maxj

(
nU (fj)

)− minj

(
nU (fj)

) ,
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where nR(fi) is the number of entities in R containing the feature fi. The first summand

calculates the normalized feature strength relative to entities belonging to R, while the

second summand calculates the normalized strength relative to U .

Our method considers only those features having a reasonably high strength, namely three

times the standard deviation above the average strength found in the entire population. An

example of the resulting MV for the concept business phone is shown in Figure 3. The

technical features and specification labels are extracted from the structured data, along

with part of the corresponding values. Other features are extracted from unstructured data.

Together with their corresponding strengths calculated with the above formula, all these

features describe our target concept.

Figure 3: Model vocabulary for concept business phone.

In order to be able to evaluate the degree of membership of an entity E towards the target

concept, we have used the entity representation function

∑

fi∈MV∩E

strength(fi),

which states that an entity is as relevant to the concept as the sum the strengths of those

features belonging to both the model as well as the entity.

As an example, consider that we want to compute the degree of membership towards the

business phone concept for an entity which is described by the following text: “Powerful,

but incredibly cumbersome. Pros: Has Microsoft Office, full featured calendar, support

for multiple email accounts, internet connectivity, Wi-Fi, and a good battery life. Cons:

It’s incredibly cumbersome and has a cluttered Windows 3.1 UI.” After evaluating the

strength of this text only, by using our weighting function on the features from the text

which also belong to the model (see Table 2), the entity gains a strength of 1.115, increasing

its relevance towards the concept. Knowing that the total strength of the model is 57.082,

the previous text provides for an increase in relevance by about 2%.

335



Feature Strength

calendar 0.346

Wi-Fi 0.260

Windows 0.255

Office 0.155

battery life 0.099

Table 2: Features and associated strengths for concept business phone.

3.2 Experimental Setup

To evaluate our approach, we collected a training data set from PhoneArena.com, a major

customer portal in the area of mobile phones. Our data set consists of expert reviews and

technical specifications for 500 different phones. This data set has been used to build a

model for the concept business phone as described above. Of course, this concept is not

explicitly mentioned in PhoneArena.com’s structured data.

To test the predictive power of this model, we downloaded 200 user-provided reviews of

the latest mobile phones from CNET.com. These reviews then have been manually labeled

by experienced mobile phone users, either as being relevant or not relevant with respect

to the concept business phone. We then compared the entity scores derived by our model

to these manually created assessments. As evaluation metric, we used a precision–recall

curve, which the dominant methodology for evaluating information retrieval systems. We

compared our approach to two different baselines: document ranking by TF–IDF and Latent

Semantic Indexing.

3.3 Results

The results of our evaluation are displayed in Figure 4. As we can see, our method is close

to the two baseline approaches for high-precision scenarios, and outperforms them in high-

recall settings. This clearly shows that integrating the available structured information into

the retrieval process allows us to create a much more accurate model of the target concept

than it is possible using previous methods. However, there is still room for improvement,

which will be our primary goal in future work. To conclude, these results indicate that our

method is well-suited for the task of constructing conceptual views from structured data

and textual information.
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Figure 4: Precision–recall graph for the concept business phone.

4 Case Study: Movies

In our second case study, we are considering a database of movies. There are many popular

examples on the web, e.g. IMDb, Netflix4, and Rotten Tomatoes5. Typically, those services

offer their customers a broad spectrum of structured information about each movie, such

as its title, release date, director, cast, genre, running time, and a short plot description.

Also, they often allow people to contribute by providing their personal opinions in form of

textual user reviews or ratings on a fixed numerical scale (e.g. one to five stars). The former

usually are published on the respective service’s web site, the latter are used to compute a

mean rating (which then is published) or to generate personalized movie recommendations

for each user.

In contrast to our first case study, taste in movies is extremely complex and individual, and

can only approximated very coarsely by the usual ways of cataloging movies. Therefore,

the structured data available often is of very limited use for finding movies matching

a user’s current mood or taste. To counter this problem, some providers have started to

manually classify each movie along a wide range of semantically more meaningful concepts

(e.g., complexity or character depth). This method is sometimes referred to as the Movie

Genome approach and adopted by Clerkdogs6 and Jinni7, amongst others. However, since

movie databases tend to be very large (ranging from around 10,000 movies in smaller

systems to almost 1.7 million in larger ones such as IMDb), manually evaluating each

movie with respect to many different vaguely defined concepts seems to be a challenging,

if not impossible, task.

In the following, we demonstrate how such movie concepts can be made explicit by a

conceptual view that extracts all necessary conceptual information from a large number

of user ratings (where each user just assigns a number to each rated movie but does not

4http://www.netflix.com
5http://www.rottentomatoes.com
6http://www.clerkdogs.com
7http://www.jinni.com
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provide any additional details). Each concept included in the conceptual view is defined

by providing a small number of exemplary movie–score pairs. In a sense, this setting is

similar to the machine learning task of semi-supervised learning [ZG09]. The approach to

be presented in the following is based on but significantly extends previous work, which

has been published recently [SB10].

4.1 Method: Semantic Spaces

In contrast to the feature-based approach presented in the previous section, we now purely

rely on similarities and differences in users’ perception of movies, which are modeled

by embedding the movies into an artificial high-dimensional coordinate space (“seman-

tic space”). The individual dimensions of this space do not necessarily correspond to

conceptual features of movies as recognized by humans.

We start by giving a formal definition of the problem to be solved. In the following, we use

the variable m to identify movies, whereas u denote users. We are given a set of nM movies

and nU users, where each user may rate each movie on some predefined numerical scale

(e.g., the set of integers from one to ten). The provided ratings thus can be represented as a

rating matrix R = (rm,u) ∈ {R ∪ ∅}nM×nU , where each entry corresponds to a possible

rating and rm,u = ∅ indicates that movie m has not been rated (yet) by user u. Typically, the

total number of ratings provided is very small compared to the number of possible ratings

I · U , often lying in the range of 1–2%. We are also given a small set of n movie–score

pairs C =
{
(m1, s1), . . . , (mn, sn)

}
, which correspond to a human evaluation of the target

concept for a random selection of movies. Our task is to estimate the score of all remaining

movies.

In line with methodology that recently has been successfully applied in the area of collabo-

rative recommender systems [KBV09], we first perform a factorization of the rating matrix

R into two smaller matrices A = (am,i) ∈ R
nM×d and B = (bi,u) ∈ R

d×mU such that the

product A · B closely approximates R on all entries that are different from ∅; the constant

d is chosen in advance and typically ranges between 50 and 200. The idea is similar to the

Latent Semantic Indexing (LSI) approach used in information retrieval [DDF+90]: Reduce

the nU-dimensional movie space (each movie is described by a vector of user ratings) and

the nM-dimensional user space (each user is described by a vector of movie ratings) to its

most significant d-dimensional subspace.

Formally, the matrices A and B can be defined as the solution of the following optimization

problem:

min
A,B

SSE
(
R,A · B)

+ λ
∑

(m,u) | rm,u∈R

d∑

i=1

(
a2

m,i + b2
i,u

)
,

where the SSE (sum of squared errors) function is defined as

SSE
(
R, R̂

)
=

∑

(m,u) | rm,u∈R

(
rm,u − r̂m,u

)2
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and λ ≥ 0 is a regularization constant used to avoid overfitting. Besides this specific

formulation of the matrix decomposition problem, many other versions have been proposed

[KBV09]. However, the one just presented is the most fundamental.

To arrive at a canonicalized solution exhibiting some desirable properties (orthogonal

axes, axes weighted by importance), we apply a singular value decomposition to represent

the product A · B in the form U · S · V , where U ∈ R
nM×d is a column-orthonormal

matrix, S ∈ R
d×d is a diagonal matrix, and V ∈ R

d×nU is a row-orthonormal matrix.

By reordering rows and columns, S can be chosen such that its diagonal elements (the

singular values) are ordered by increasing magnitude. To arrive at a data representation

that distinguishes only between movies and users, we integrate the weight matrix S to

equal parts into U and V . Therefore, we define U ′ = US
1
2 and V ′ = S

1
2 V to be our final

coordinate representation.

Now, each row of U ′ corresponds to a movie, and each column of V ′ corresponds to a

user, both being represented as points in some d-dimensional space. This representation of

movies provides the basis for learning the target concept from the examples in the set C.

Taken together, the nM movie points can be interpreted as a semantic space, which captures

the fundamental properties of each movie [SB10]. Now, the target concept can be learned

using specialized algorithms from the fields of statistics and machine learning. For this

case study, we decided to use kernel-based support vector regression [SS04].

4.2 Experimental Setup

This case study uses the MovieLens 10M data set 8, which consists of about 10 million rat-

ings collected by the online movie recommender service MovieLens9. After post-processing

the original data (removing one non-existing movie and merging several duplicate movie

entries), our new data set consists of 9,999,960 ratings of 10,674 movies provided by

69,878 users (thus, about 1.3% of all possible ratings have been observed). The ratings

use a 10-point scale from 0.5 (worst) to 5 (best). Each user contributed at least 20 ratings.

Movie coordinates have been extracted using a method based on gradient descent [RIK07].

The regularization parameter λ has been chosen by cross-validation such that the SSE is

minimized on a randomly chosen test set. We arrived at a value of λ = 0.04.

As target concepts to be learned from examples, we decided to use the collection of 37

concepts that have been manually created by movie experts from Clerkdogs. For each

movie, an expert selected a subset of the available concepts (probably the most relevant

ones) and scored the movie with respect to each of these concepts on a 12-point scale (0 to

11). We retrieved a total number of 137,521 scores for the 13,287 movie entries in their

database (thus, each movie has been evaluated with respect to 10.4 concepts on average).

After mapping these movies to the MovieLens 10M data set (and removing 9 movie entries

which have been duplicates), we identified 7,813 movies that are covered by both data

sets. Since the extracted coordinates of movies with only a small number of ratings by

8http://www.grouplens.org/node/73
9http://www.movielens.org
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MovieLens users tend to be unreliable, we restricted our experiments to those movies that

received at least 100 ratings. Finally, we ended up with a collection of 5,283 movies.

To learn each of the 37 target concepts from a set of examples, we randomly selected

a subset of all the movies that have been scored with respect to the respective concept

and applied kernel-based support vector regression to estimate the scores of all remaining

movies. We then compared the estimated scores to the correct ones and measured both

Pearson correlation and Spearman rank correlation to measure the estimates’ accuracy.

All experiments have been performed using MATLAB in combination with the SVMlight

package10 for kernel regression. After some initial experiments we found the Gaussian

radial basis function kernel to be most useful. We chose the learning parameters C = 10,

γ = 0.1, and ε = 0.1 as they seemed to generate results of high quality. We did not yet

perform a systematic tuning of these parameters.

We tried training sets of different sizes, ranging from 1% of the scored movies up to 90%.

Although our scenario clearly focused on small training sets (to enable an easy definition

of concepts within the conceptual view), we also included larger training sets to see the

effect of the number of training examples on overall performance. For each combination of

target concept and training size, we performed 20 experimental runs on randomly selected

training sets. All numbers reported in the following section are averages over these 20 runs.

Depending on the training size, the whole learning and estimation process took between 0.2

and 202 seconds on a notebook computer with a 2.6 GHz Intel Core Duo CPU (we used

only a single core) and 4 GB of RAM.

4.3 Results

The results of our experiments are listed in Table 3. Since there have been large differences

in performances among the different concepts, we abstained from aggregating the results

into a single performance score over all target concepts. The table only reports the Pearson

correlation between our estimations and the correct scores, as we found Pearson correlation

and Spearman rank correlation to be extremely similar in most cases.

The most notable result is that all Pearson correlations are positive, that is, it was always

possible to learn the target concept correctly at least to a certain degree. While for some

concepts we have been able to achieve a quite high accuracy (e.g., character depth and

suspense), there also have been concepts which proved to be hard to learn (e.g., slow pace
and revenge); we can only speculate that these concepts do not significantly influence

human movie preferences and thus are not reflected in the user ratings, but leave this

question open for further research. We can also observe that for most concepts we can

obtain a correlation between 0.2 and 0.3, even for a very small number of training examples.

It is also interesting to see that even with small training sizes we are able to come close to

the performance achieved on extremely large sizes.

Given that the correlation coefficient of a perfect estimation is 1 and that of a naive baseline

(estimating each score by the average score in the training set) is 0, the estimated scores

10http://www.cs.cornell.edu/People/tj/svm_light
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Size of the training set

Concept #movies 1% 2% 5% 10% 20% 50% 90%

Action 2480 0.35 0.43 0.50 0.53 0.55 0.59 0.62

Bad Taste 470 0.09 0.18 0.29 0.38 0.44 0.49 0.49

Black Humor 1102 0.09 0.15 0.25 0.28 0.30 0.36 0.36

Blood & Gore 787 0.21 0.27 0.35 0.43 0.47 0.52 0.54

Cerebral 468 0.22 0.25 0.40 0.43 0.45 0.47 0.47

Character Depth 5198 0.68 0.70 0.72 0.73 0.75 0.76 0.76

Cinematography 3019 0.35 0.41 0.46 0.49 0.51 0.54 0.56

Complexity 2611 0.43 0.48 0.52 0.54 0.56 0.59 0.61

Crude Humor 677 0.23 0.36 0.48 0.53 0.57 0.60 0.62

Disturbing 1804 0.30 0.37 0.45 0.49 0.51 0.54 0.56

Downbeat 2831 0.28 0.32 0.38 0.40 0.43 0.46 0.47

Dry Humor 1656 0.15 0.18 0.26 0.29 0.32 0.37 0.40

Fantasy 604 0.10 0.13 0.20 0.27 0.32 0.41 0.48

Fast Pace 2988 0.12 0.15 0.19 0.22 0.23 0.25 0.29

Geek Factor 636 0.15 0.24 0.33 0.40 0.46 0.51 0.59

Hollywood Feel 2885 0.16 0.22 0.28 0.32 0.34 0.38 0.41

Humor 800 0.11 0.20 0.28 0.41 0.48 0.55 0.56

Informative 168 0.09 0.06 0.14 0.18 0.24 0.26 0.26

Offbeat 2414 0.33 0.37 0.40 0.43 0.45 0.47 0.51

Parental Appeal 521 0.20 0.37 0.45 0.48 0.52 0.54 0.58

Political 400 0.15 0.15 0.15 0.19 0.25 0.31 0.32

Revenge 526 0.08 0.09 0.14 0.20 0.25 0.29 0.29

Romance 2728 0.22 0.28 0.37 0.41 0.44 0.48 0.51

Screwball Humor 1133 0.13 0.18 0.23 0.27 0.29 0.34 0.34

Sex 2122 0.23 0.30 0.38 0.43 0.48 0.52 0.53

Slapstick Humor 1098 0.14 0.18 0.26 0.34 0.35 0.40 0.44

Slow Pace 2111 0.09 0.14 0.20 0.23 0.22 0.25 0.27

So Bad It’s Good 154 0.02 0.04 0.03 0.09 0.15 0.22 0.27

Soundtrack 1932 0.19 0.24 0.31 0.35 0.39 0.44 0.47

Special Effects 655 0.20 0.24 0.30 0.36 0.42 0.46 0.50

Suspense 2693 0.36 0.44 0.51 0.54 0.57 0.60 0.62

Tearjerker 520 0.01 0.03 0.10 0.14 0.20 0.23 0.25

Terror 678 0.15 0.22 0.35 0.42 0.50 0.54 0.52

Truthfulness 177 0.14 0.29 0.35 0.42 0.47 0.49 0.49

Upbeat 2448 0.18 0.26 0.33 0.38 0.41 0.44 0.44

Violence 2914 0.33 0.42 0.49 0.52 0.55 0.60 0.63

Table 3: Pearson correlations for different target concepts and numbers of training examples.
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do not seem to be very accurate. But this assessment take too narrow a view, as it relies

on the assumption that the scores provided by Clerkdogs’ experts are indeed objectively

correct. In our analysis of Clerkdogs’ data we found nine movies that occur twice in the

movie database, and thus have also been evaluated more than once by the experts, most

probably without being aware of it. In total we located 63 movie–concept combinations

which have been assessed twice, and used this data to estimate the inter-expert consistency.

We found that the Pearson correlation between the rating pairs is only 0.60, which is an

surprisingly low value. Therefore, the quality for most of our own results lies somewhere

in the middle between a naive approach and a human expert assessment, which makes the

results of this study a promising starting point for further research. Since our estimates are

based on a broad range of user opinions, there is hope that at least for some concepts the

wisdom of the crowd can outperform the experts [Sur04].

To conclude this case study, we have been able to show that a meaningful conceptual view

can be created from rating data and a few examples of each target concept. Due to the short

computation times, new concepts can be integrated easily.

5 Related Work

Our general approach and methods are related to two other prominent areas of research,

namely, multimedia databases and recommender systems.

5.1 Multimedia Databases

The notion of sematic gap as used in this paper originates from research in content-based

image and video retrieval, where the mismatch between the users’ information needs and

the available descriptive information has very early been identified as one of the foremost

problems to be solved [HLES06]. Consequently, early approaches focused on extracting

numerical scores from images and movies that are related to human perception such as the

coarseness of an image, its color distribution, and the parameters of mathematical models

describing textures, so called low-level features [SWS+00]. Although these features do

not correspond directly to query-relevant concepts, they provide a solid foundation for

further processing, in particular for defining meaningful similarity measures. In a sense,

these feature spaces correspond to the coordinate spaces created by LSI and the method we

presented in our second case study.

More resent research in multimedia databases, focuses on integrating high-level semantic

features into the retrieval process [LZLM07]. Here, the idea is to learn relevant query

concepts from the collection of extracted low-level features, thus bridging the semantic gap.

This general approach follows the same spirit as conceptual views, although the latter also

integrate meaningful structured data, which rarely exists in multimedia databases.
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5.2 Recommender Systems

Recommender systems [AT05] aim at learning the user’s preferences based on his or her

previous interaction with the system. Typically, this is done by recording which items

have been bought or at least investigated in the past. The main goal of recommender

systems is to present a ranked list to the user containing those items which are likely to

match the user’s taste. Again, there is connection to conceptual views. While conceptual

views try to extract concepts that are meaningful for all users, the only concepts relevant

to recommender systems are of the general type well-liked by user X. Although the task

of learning those concepts is much more focused than the extraction problem underlying

conceptual views, it also limits the possibilities of recommender systems. For conceptual

views, we intentionally chose not to perfectly fit any user’s needs and taste but provide a

semantically meaningful conceptual description of all entities. In particular, this enables

the system to respond to spontaneous changes in the user’s mood and taste (e.g., the lover

of documentary movies that sometimes just wants to view a comedy). However, as we have

seen in our second case study, research in recommender systems offers a wide variety of

methods that can be adapted to construct conceptual views.

6 Cognitive Psychology’s View on Concepts

Before concluding this paper, we would like to offer cognitive psychology’s perspective

on concepts. Until now, our motivation and handling of vague concepts has been backed

mainly by intuition and common knowledge. While this approach is perfectly valid and in

line with previous work on handling concept-related queries in database and information

retrieval systems, we next show that many ideas presented are backed by research performed

on cognitive psychology over the last forty years.

From a psychological perspective, concepts are mental representations of classes, and

their primary function is to enable cognitive economy [Ros78]. By dividing the world into

categories, we decrease the amount of information to be perceived, learned, remembered,

communicated, and reasoned about. Concepts are considered to be formed through the

discovery of correlations between features/attributes (that is, clear properties of the entities

under consideration). For example, the concept bird if formed when noticing a correlation

between the features has wings and has feathers. Features largely correspond to precise

attributes that are typically modeled explicitly in databases.

When investigating how people think about concepts and categories, psychologists came

to differentiate two kinds of categories: precise concepts (also called classical or crisp

concepts) and vague concepts (also called fuzzy or probabilistic concepts). Precise concepts

can be defined through logically combining defining features, e.g., the concept prime
number can be defined this way. Vague concepts cannot be so easily defined, a popular

example is game. Their borders tend to be fuzzy. Some concepts may even appear both in a

precise as well as in a vague shape. Biologists may suggest that we use the word fruit to

describe any part of a plant that has seeds, pulp, and skin. Nevertheless, our natural, vague
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concept of fruit usually does not easily extend to tomatoes, pumpkins, and cucumbers.

The notion of vagueness as used in this context is clearly to be distinguished from the

problem of missing knowledge. Vague concepts are inherently fuzzy, that is, even with

perfect knowledge of the world they do not allow crisp classifications of all entities. Vague

concepts are primarily based in human intuition and often cannot be made explicit in terms

of logical rules.

Another central property of human concepts is typicality, that is, within a category, items

differ reliably regarding their “goodness-of-example.” While both penguins and robins

clearly are considered birds, the former are judged as being untypical instances of this

concept. This phenomenon can even be observed in precise concepts. For example, people

generally consider 13 to be a better example of a prime number than 89 [Mur04].

Cognitive psychology also offers formal models for capturing the essential properties of

real-world concepts. These models can roughly be classified into two groups: models based

on features, and models based on semantic spaces. In feature-based models, each entity is

represented by a list of features; the process of categorization often is modeled by complex

interactions between these features, e.g., by means of neural network models. Models based

on semantic spaces represent each entity as a point in some high-dimensional space, where

individual coordinate axes do not necessarily have an interpretable meaning; categorization

is modeled by means of similarity measures in this space, e.g., distance of an entity to the

concept’s prototype. Both types of models have been found to be highly accurate; some

researchers even propose to create hybrid models to get the best of both worlds [RJ10].

Now, the connection to the models used in our case studies becomes apparent. The model

used in the first study (mobile phones) models the target concept using a feature-based

approach; classification is performed based on relative feature frequency. In our second

study (movies), the underlying model uses a semantic space for categorization, which has

been extracted from rating data. Therefore, our work provides a solid foundation for further

research and may readily be extended to incorporate the important notion of typicality.

7 Conclusion and Outlook

In this work, we identified and discussed one of the major problems of entity-centric search,

namely, the lack of support for querying natural concepts in a structured fashion. We

demonstrated that most of the relevant information is already present in current database

systems and only needs to be made visible to applications.

To this end, we proposed the notion of conceptual views, which provide a systematic and

unified interface between the broad range of data types available in current database systems

and existing query processing algorithms, thus bridging the semantic gap between the vague

concepts characterizing the users’ information need and the database schema.

In two extensive case studies from different domains we have been able to demonstrate that

our vision of an automated extraction process for vague concepts can indeed be put into

practice. We also showed that our work is backed by theories from cognitive psychology.
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However, this paper also revealed that we have just started our journey towards an effective,

efficient, and reliable construction and maintenance of conceptual views. In future work, we

will develop a detailed theory of conceptual views that is closely interwoven with models

and theories from cognitive psychology. Since we are primarily dealing with natural,

vague concepts, there needs to be a stronger focus on research results from the humanities.

Moreover, we are going to both continue the work on our existing concept extractors as

well as creating new ones for application scenarios that are not covered well enough yet.
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Abstract: In high dimensional databases, traditional full space clustering methods
are known to fail due to the curse of dimensionality. Thus, in recent years, subspace
clustering and projected clustering approaches were proposed for clustering in high
dimensional spaces. As the area is rather young, few comparative studies on the ad-
vantages and disadvantages of the different algorithms exist. Part of the underlying
problem is the lack of available open source implementations that could be used by re-
searchers to understand, compare, and extend subspace and projected clustering algo-
rithms. In this work, we discuss the requirements for open source evaluation software
and propose the OpenSubspace framework that meets these requirements. OpenSub-
space integrates state-of-the-art performance measures and visualization techniques to
foster clustering research in high dimensional databases.

1 Introduction

In recent years, the importance of comparison studies and repeatability of experimental
results is increasingly recognized in the databases and knowledge discovery communities.
VLDB initiated a special track on Experiments and Analyses aiming at comprehensive and
reproducible evaluations (e.g. [HCLM09, MGAS09, KTR10, SDQR10]). The conferences
SIGMOD followed by SIGKDD have established guidelines for repeatability of scientific
experiments in their proceedings. Authors are encouraged to provide implementations and
data sets. While these are important contributions towards a reliable empirical research
foundation, there is still a lack of open source implementations for many state-of-the-art
approaches. In this paper we present such an open source tool for clustering in subspaces
of high dimensional data.

Clustering is an unsupervised learning approach that groups data based on mutual simi-
larity [HK01]. In high dimensional spaces, subspace clustering and projected clustering
identify clusters in projections of the full dimensional space.
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Figure 1: Subspace and projected clustering research with and without a general repository for data,
algorithms, comparison, and evaluation.

It is a fundamental problem of unsupervised learning approaches that there is no generally
accepted “ground truth”. As clustering searches for previously unknown cluster structures
in the data, it is not known a priori which clusters should be identified. This means that
experimental evaluation is faced with enormous challenges. While synthetically generated
data is very helpful in providing an exact comparison measure, it might not reflect the
characteristics of real world data. In recent publications, labeled data, usually used to
evaluate the performance of classifiers, i.e. supervised learning algorithms, is used as a
substitute [SZ04, KKRW05, AKMS07a]. While this provides the possibility of measuring
the performance of clustering algorithms, the base assumption that clusters reflect the class
structure is not necessarily valid.

Some approaches therefore resort to the help of domain experts in judging the quality of
the result [KKK04, BKKK04, KKRW05]. Where domain experts are available, which is
clearly not always the case, they provide very realistic insights into the usefulness of a
clustering result. Still, this insight is necessarily subjective and not reproducible by other
researchers. Moreover, there is not sufficient basis for comparison, as the clusters that
have not been detected are unknown to the domain expert. This problem is even more
aggravated in high dimensional subspace or projected clustering. As the number of results
is typically huge, it is not easily possible to manually analyze the quality of different
algorithms or even different runs of the same algorithm.

As there is no ground truth, nor accepted benchmark data or measures for evaluating sub-
space and projected clustering, the experimental evaluation can be hardly set into relation
to other published results. Especially the results are incomparable, as there are no publicly
available common implementations neither for subspace/projected clustering algorithms
nor for evaluation measures (cf. Fig 1). As a consequence, progress in this research area
is slow, and general understanding of the advantages and disadvantages of different al-
gorithms is not established. The source code for experimental evaluation is most of the
time implemented by the authors themselves and often not made available to the general
public. This hinders further experimental study of recent advances in clustering. As te-
dious re-implementation is often avoided, only few comparisons between new proposals
and existing techniques are published.

For clustering (but also for classification and association rule mining), the open source tool
WEKA (Waikato Environment for Knowledge Analysis) has been very helpful in allowing
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researchers to analyze the behavior of different algorithms in comparison [WF05]. It pro-
vides measures for comparison, visualization of the results, and lets researchers add their
own algorithms and browse through the implementation of other techniques.

For subspace and projected clustering, such a general tool does not exist. In this paper,
we discuss the requirements for a successful open source tool that supports evaluation
and exploration of subspace and projected clustering algorithms and their cluster results.
Our framework OpenSubspace fulfills these requirements by integration of measurement
and visualization techniques for in-depth analysis. Furthermore, it will be useful in es-
tablishing benchmark results that foster research in the area through better understanding
of advantages and disadvantages of different algorithms on different types of data. It in-
cludes successful techniques in demonstration systems for visualization and evaluation of
subspace mining paradigms [MAK+08, AMK+08, GFKS10, GKFS10, MSG+10].

As anyone will be able to see the implementation, the code base can be continually re-
vised and improved. Researchers may analyze the algorithms on a far greater range of
parameter values than would be possible within the scope of a single conference or journal
publication (cf. Fig 1). Based on this, we published a thorough evaluation study on sub-
space/projected clustering techniques [MGAS09]. As open source basis for this study, this
publication provides an overview of techniques included in our OpenSubspace framework.

For scientific publications the open source implementations in OpenSubspace enable more
fine grained discussions about competing algorithms on a common basis. For authors of
novel methods OpenSubspace gives the opportunity to provide their source code and thus
deeper insight into their work. This enhances the overall quality of publications as com-
parison is not based any more on incomparable evaluations of results provided in different
publications but on a common algorithm repository with approved algorithm implemen-
tations. In Figure 1 we compare the current situation (on the left side) with the improved
situation having a common repository of both subspace/projected clustering and evalua-
tion measures (on the right side). Thus, OpenSubspace aims at defining a common basis
for research and education purposes maintained and extended by the subspace/projected
clustering community.

None of the existing data mining frameworks provide both subspace/projected clustering
as well as the full analytical and comparative measures for the full knowledge discovery
cycle. KNIME (Konstanz Information Miner) is a data mining tool that supports data flow
construction for knowledge discovery [BCD+09]. It allows visual analysis and integration
of WEKA. Orange is a scripting or GUI object based component system for data mining
[DZLC04]. It provides data modeling and (statistical) analysis tools for different data min-
ing techniques. Rattle (the R Analytical Tool To Learn Easily) is a data mining toolkit that
supports statistical data mining based on the open source statistical language R [Wil08].
Evaluation via a number of measures is supported. In all of these frameworks subspace
clustering or projected clustering are not included. ELKI (Environment for DeveLoping
KDD-Applications Supported by Index Structures) is a general framework for data min-
ing [AKZ08]. While it also includes subspace and projected clustering implementations,
the focus is on index support and data management tasks. With respect to evaluation and
exploration, it lacks evaluation measures and visualization techniques for an easy com-
parison of clustering results. Furthermore, as a stand alone toolkit it does not provide an
integration into popular tools like WEKA.
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2 Subspace and Projected Clustering

Clustering is an unsupervised data mining task for grouping of objects based on mutual
similarity [HK01]. In high dimensional data, the “curse of dimensionality” hinders mean-
ingful clustering [BGRS99]. Irrelevant attributes obscure the patterns in the data. Global
dimensionality techniques such as Principle Components Analysis (PCA), reduce the num-
ber of attributes [Jol86]. However, the reduction may obtain only a single clustering in the
reduced space. For locally varying attribute relevance, this means that some clusters will
be missed that do not show in the reduced space. Moreover, dimensionality reduction
techniques are unable to identify clusterings in different reduced spaces. Objects may be
part of distinct clusters in different subspaces.

Recent years have seen increasing research in clustering in high dimensional spaces. Pro-
jected clustering aims at identifying the locally relevant reduction of attributes for each
object. More specifically, each object is assigned to exactly one cluster (or noise) and
a corresponding projection. Subspace clustering allows identifying several possible sub-
spaces for any object. Thus, an object may be part of more than one cluster in different
subspaces.

2.1 Paradigms

While subspace and projected clustering are rather young areas that have been researched
for only one decade, several distinct paradigms can be observed in the literature. Our open
source framework includes representatives of these paradigms to provide an overview over
the techniques available. We provide implementations of the most recent approaches from
different paradigms (cf. Fig. 2):

Subspace clustering
Subspace clustering was introduced in the CLIQUE approach which exploits monotonicity
on the density of grid cells for pruning [AGGR98]. SCHISM [SZ04] extends CLIQUE
using a variable threshold adapted to the dimensionality of the subspace as well as efficient
heuristics for pruning. Both are grid-based approaches which discretize the data space for
efficient detection of dense grid cells in a bottom-up fashion.

In contrast, density-based subspace clustering defines clusters as dense areas separated by
sparsely populated areas. In SUBCLU, a density monotonicity property is used to prune
subspaces in a bottom-up fashion [KKK04]. PreDeCon extends this paradigm by intro-
ducing the concept of subspace preference weights to determine axis parallel projections
[BKKK04]. A further extension FIRES proposes an approximative solution for efficient
density-based subspace clustering [KKRW05]. In DUSC, dimensionality bias is removed
by normalizing the density with respect to the dimensionality of the subspace [AKMS07a].
Its extension INSCY focuses on efficient in-process removal of redundancy [AKMS08].
Recently, more general techniques have been proposed for optimization of the resulting
set of clusters to eliminate redundant results and to include novel knowledge in orthogonal
projections [MAG+09, GMFS09].

Projected clustering
Projected clustering approaches are partitioning methods that identify disjoint clusters in
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Figure 2: Algorithms implemented in OpenSubspace

subspace projections. PROCLUS extends the k-medoid algorithm by iteratively refining
a full-space k-medoid clustering in a top-down manner [AWY+99]. P3C combines one-
dimensional cluster cores to higher-dimensional clusters bottom-up [MSE06]. Its exten-
sion StatPC searches for non-redundant significant regions [MS08]. Further techniques
are DOC a randomized approach using a Monte Carlo algorithm to find projected clusters
represented by dense hypercubes [PJAM02] and MineClus an extension using the FP-tree
for iterative projected clustering [YM03].

2.2 Challenges

Both subspace clustering and projected clustering pose new challenges to the mining task
but especially to evaluation and exploration of the actual clustering results. In the follow-
ing, we will show that these challenges have not yet been addressed by recent open source
systems. Furthermore, they can not be solved by simply applying traditional techniques
available for low dimensional clustering paradigms.

The WEKA framework provides several panels for different steps in the knowledge dis-
covery cycle as well as for different data mining tasks (cf. Fig. 3). Besides structuring the
GUI for users of the framework, the API reflects these different tasks in being structured
according to classifiers, clustering algorithms, etc. This means that the Java class hier-
archy reflects the common properties of each of the tasks. From this, several challenges
arise in introducing a new data mining task, namely subspace/projected clustering, and
new evaluation and visualization methods.

Due to special requirements in high dimensional mining we cannot simply extend the clus-
tering panel in WEKA by adding new algorithms. We have to set up a new subspace panel
by introducing techniques specialized to the new requirements in all areas (mining, evalu-
ation and visualization). Subspace and projected clustering algorithms differ from cluster-
ing (or other data mining tasks such as classification) in that each cluster is associated with
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a possibly different subspace projection. As a consequence, the existing representation that
assumes that all objects are clustered with respect to the initially chosen dimensions, is not
valid. Moreover, the result is not necessarily partitioning. A single object may be part of
several subspace clusters. These two aspects are important for the subspace/projected clus-
tering panel, i.e. for the interface that describes common properties of these approaches.
Moreover, these aspects have to be taken into consideration for evaluation and visualiza-
tion as well. Following the same rationale, it is necessary to provide new APIs to allow
meaningful analytical and visual tools in the OpenSubspace framework. Any measure that
supports subspace and projected clustering evaluation needs to incorporate information
on the respective subspace projection of each cluster. Visualization techniques to provide
techniques for comparison of results in differing projections, as in [AKMS07b], cannot
plug into existing visualization interfaces for traditional clustering in WEKA for the same
reason.

As a consequence, OpenSubspace allows identifying any result with a corresponding set of
dimensions, i.e. the subspace in which the result cluster resides. This is taken into consid-
eration both for the subspace/projected clustering panel itself with the display of numeric
results and evaluation measures, as well as for the visualization panel. This streamlined
approach ensures that for all steps in the KDD cycle, representation in the correct subspace
projection is achieved.
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2.3 Lack of Ground Truth in Clustering

As briefly mentioned in the Introduction, clustering is a challenging task with respect to
evaluation, as there is usually no ground truth. This means that it is in the very nature of
clustering to search for yet unknown patterns in the data that provide novel and interesting
insights to the user. Moreover, even for historic data, the true patterns that were interesting,
are not known, either. This is in contrast to e.g. classification, where existing real world
data can be used to easily validate the performance of any existing or newly presented
classifier. Simply by checking the predicted class labels against the ones obtained from
historic data, the classification accuracy can be easily measured in a reproducible fashion.
In clustering, no such “labels” on historic data exists. Such “labels” would require an
exhaustive enumeration of all combinatorial possibilities and their comparison. This is
clearly infeasible even for reasonably small to medium datasets.

To allow for reproducible analysis, some publications resort to the measure of classifica-
tion accuracy [BZ07, MAK+09]. The underlying idea is to find an objective measure for
the performance of clustering. The assumption is that the class labels somehow reflect
the natural grouping of the data, and can therefore be used to judge the performance of
clustering algorithms as well. While this does provide some measure for comparison of
these approaches, the underlying assumption is not necessarily valid and can even, in the
worst case, produce random results. For example, an unsupervised clustering technique
might detect a group of objects covering different labels, which might be meaningful as
a clustering result. The given class labels, however, reflect only a single concept while
clustering and especially subspace clustering aim at detecting multiple unknown concepts.
The opposite case might happen as well: The clustering can split a set of objects with
common labels into two clusters. Both meaningful clustering results are punished by eval-
uation measures simply based on the labels. As a consequence, class labels might provide
only very limited insight into the performance of clustering algorithms.

Another approach taken in clustering evaluation is the use of synthetic data. Such artificial
databases overcome the above mentioned problems by the generating process, the best
clustering is already known. There are several limitations to this approach, however. First,
most synthetic datasets are generated just for a single publication to evaluate the benefits
of the proposed method. As such, they serve a very important purpose: they provide the
means to understand whether the proposed method indeed detects (subspace or projected)
clusters of the nature defined by the authors. Moreover, as the ideal clustering is known,
the performance of algorithms perform on this dataset can be checked without having to
resort to class labels. Even though some publications use very elaborate models to generate
datasets that follow distributions that are believed to be observed in practical applications,
there is obviously no guarantee that synthetic data is like real world data. Synthetic data,
by its very nature, represents what is thought to occur in the datasets we analyze, but
since we do not know which clusters might actually go unnoticed in real world data, these
properties cannot be known.

Some researchers suggest using the help of domain experts in getting an informed answer
to the quality of clustering results. Domain experts are obviously very helpful in judging
the practical usefulness of the results and in ranking several possibilities in relation. How-
ever, as is true for the above examples, alternatives that are not known, i.e. not presented
to the domain expert, cannot be taken into consideration. As a result, a very good cluster-
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ing solution might be available and would be much more important to the domain expert.
However, as this clustering is not retrieved, the domain expert cannot give a correspond-
ing judgment. Moreover, manual analysis performed by domain experts is very limited to
small result sizes and few parameter variations. Manual inspection of varied settings on a
variety of datasets, as would be required for in-depth analysis, is clearly not feasible for
humans. And, as mentioned before, the number of result clusterings in high dimensional
spaces tends to grow enormously with the number of attributes. As a consequence, domain
experts cannot judge typical outcomes of most subspace and projected clustering results.
Moreover, the results indicated by domain experts are subjective and cannot be reproduced
by other researchers.

As a consequence, any dataset used for evaluation is necessarily only a glimpse at the
performance of (subspace or projected) clustering algorithms. As we will see later on,
the open source idea provides a means to combine several of these glimpses into a larger
picture towards an integrated view of clustering performance. As both the source code for
validation of the results and the datasets are collected, a more integral picture is provided
which can be easily extended by applying these algorithms to the datasets.

2.4 Lack of Standard Evaluation Measures in Clustering

Another problem in the evaluation of subspace and projected clustering lies in the evalua-
tion measures themselves. This problem is closely related to the one of suitable datasets in
that different results cannot be easily compared. Measuring the quality of (subspace and
projected) clustering results is not straightforward. Even if the ground truth for any dataset
were available, there are different ways of assessing deviations to this ground truth and of
computing an overall performance score. For evaluation of clustering algorithms, large
scale analysis is typically based on pre-labelled data, e.g. from classification applications
[MSE06, BZ07]. The underlying assumption is that the clustering structure typically re-
flects the class label assignment. At least for relative comparisons of clustering algorithms,
this provides measures of the quality of the clustering result.

In the literature, several approaches have been proposed. Quality can be determined as
entropy and coverage. Corresponding roughly to the measures of precision and recall,
entropy accounts for purity of the clustering (e.g. in [SZ04]), while coverage measures
the size of the clustering, i.e. the percentage of objects in any subspace cluster. Open-
Subspace provides both coverage and entropy (for readability, inverse entropy as a per-
centage) [AKMS07a]. Inverse entropy measures the homogeneity in the clustering result
with respect to a class label. The measurement assumes a better clustering structure if
the detected clusters are formed by objects homogeneously labeled with the same class
labels. Besides the above mentioned problem of possible discrepancies in class labels and
clustering structure, homogeneity of class labels is only one aspect of a good clustering
structure. The coverage of the data set has to be measured separately to ensure that most
of the objects occur in at least one cluster. Furthermore, overall homogeneity itself can be
biased by many small homogeneous clusters dominating bigger inhomogeneous clusters.

Another approach is direct application of the classification accuracy. Accuracy of classi-
fiers (e.g. C4.5 decision tree) built on the detected patterns compared with the accuracy of
the same classifier on the original data is another quality measure [BZ07]. It indicates to
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Figure 4: Evaluation measures in OpenSubspace

which extend the subspace clustering successfully generalizes the underlying data distribu-
tion. This approach is refined to enhanced classification accuracy which takes the original
attributes and the ones that are derived as a combination of the original ones through the
clustering. By comparing the performance of classifiers on the original attributes only
with the performance of the same classifiers on original plus derived attributes, an insight
into the quality of the clustering is achieved. However, as discussed before, any measured
improvement is valid only with respect to the class labels. It is unclear, in which way the
findings generalize to data without class labels.

The F1 value is commonly used in evaluation of classifiers and recently also for sub-
space or projected clustering as well [MSE06]. The F1 measure compares the clusters that
are found by any particular (subspace or projected) clustering algorithm with an assumed
ground truth by taking the harmonic mean of precision and recall. This approach obvi-
ously suffers from the same drawbacks as any class label-based method, yet, additionally,
it is open to interpretation in high dimensional spaces. As clusters are detected in subspace
projections, any deviation might be punished with respect to the subspace projection and
with respect to the inclusion of positive and negative false alarms. However, the basis for
comparison is not as straightforward, as it might seem. Depending on whether individ-
ual clusters or the entire clustering are used for the assessment, different results might be
achieved. As a consequence, results based on variants of the F1 measure are not compara-
ble across publications as one is using different F1 measure definitions.

All mentioned measures simply compare the detected groups of objects against the class
label given for each object. Thus, these measures only provide a quality criterion for
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object clusters as they ignore the detected subspaces in each cluster. More enhanced sub-
space clustering measures take also the detected subspaces into account and compare them
against the possibly given relevant dimensions [PM06]. We have implemented such mea-
sures like Cluster Error (CE) and Relative Non-Intersecting Area (RNIA) in our frame-
work. However, they require not only class labeled data for evaluation but also the rele-
vant dimensions for each label. Such information is not provided in most real world data
sets (e.g. used in classification task). Relevant dimensions are only available for synthetic
data, as they are used and provided by the generators that hide subspace clusters in high
dimensional spaces. Although both CE and RNIA achieve more detailed measurements as
they take both objects and dimensions into account the missing ground truth is even more
obvious for these measures.

In addition to this, several other measures have been used. In general, they all require
some ground truth for assessing the performance of (subspace or projected) clustering
algorithms. And, since several different subspace clusters might combine into a single
“true” projected cluster, it is not always clear how to judge the result in its deviation from
the postulated ground truth. Consequently, published results cannot be compared simply
by their performance scores. Since there is no objective best measure for all approaches
that is commonly agreed upon, researchers cannot compare different algorithms based
solely on published results.

OpenSubspace provides the framework for using several, widely used, evaluation mea-
sures for subspace and projected clustering algorithms. In Figure 4 we present the evalua-
tion output with various measures for comparing subspace clustering results. This allows
easy extension of published results for various measures and direct comparison. Over
time, as more and more results are available on different datasets and with respect to dif-
ferent evaluation measures, a benchmark background is built. It provides the means for
in-depth understanding of algorithms and evaluation measures and fosters research in this
area based on individual researcher’s findings.

3 OpenSubspace Framework

With OpenSubspace we provide an open source framework tackling the challenges men-
tioned in the previous section. By fully integrating OpenSubspace into the WEKA frame-
work we build on an established data mining framework covering the whole KDD cycle:
pre-processing, mining, evaluation and visualization of the results, additionally including
user feedback to the mining algorithm to close the KDD cycle. With OpenSubspace we
focus on the mining, evaluation and exploration steps in this cycle (cf. Fig. 5). Provid-
ing a common basis for subspace/projected clustering as a novel mining step we achieve
a framework for fair comparison of different approaches. For evaluation and exploration
of the subspace and projected clusters OpenSubspace provides various evaluation mea-
sures for objective comparison of different clustering results. Furthermore, OpenSubspace
provides visualization methods for an interactive exploration. Please refer to our website
where we document our ongoing work in this project. It also contains more detailed in-
formation about OpenSubspace, its usage and extension. In the following, we will give an
overview on the major contributions of OpenSubspace to the subspace clustering commu-
nity:
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Figure 5: KDD cycle of OpenSubspace in WEKA

• Transparency of implementations

• Evaluation and comparison of algorithms

• Extensibility to further approaches

As we will show open source is the key property for all of these contributions. Open source
code enables us to compare and validate the correctness of algorithm implementations. It
gives us the basis for evaluating existing approaches on a common basis and leads thus to
a fair comparison in future publications. By having the code of recent approaches at hand
we enable the extension of existing algorithms to everyone and not only to the authors of
these approaches.

3.1 Transparency of Implementations

The basis for thorough and fair evaluation is a common basis for all implementations.
OpenSubspace provides such a basis for data access supporting both main and secondary
storage. Furthermore, the framework provides a common interface for subspace cluster-
ing implementations. Algorithms which extend this interface can be easily plugged into
OpenSubspace.

All of these algorithms are provided as open source. This transparency of the underlying
implementation ensures high quality algorithms in the framework. The research commu-
nity is able to review these implementations according to the original publication of the
algorithm. Even improved versions can be provided which go beyond the descriptions in
the publications using novel data structures, heuristics or approximation for specialized
purposes. The benefit of reviewing implementations based on open source is especially
useful as in most publications authors can only sketch their algorithms. This makes it dif-
ficult to re-implement such approaches. Various different interpretations of one approach
could arise if only closed implementations were available. Using these different imple-
mentations of the same approach leads to incomparable results in scientific publications
as evaluations have different bases. Open source repositories as in OpenSubspace prevent
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such differing implementations that might even be biased and does away with the need
for re-implementation for competing approaches. Overall OpenSubspace aims at a trans-
parent and thus fair basis for evaluations of various approaches for detecting meaningful
subspace clusters.

Explorer

ClusterPanel

ParameterBracketing

SubspaceClusterPanel

«interface»
SubspaceClusterer

SubspaceClusterResult

«interface»
SubspaceClusterEvaluation

WEKA Framework

PreprocessPanel

ClassifierPanel AssociationsPanel
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P3C Schism ... F1 Measure ...Entropy
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evaluation interfacesubspace clustering interface

Visualizations

SubspaceVisualizations

Figure 6: UML class diagram of the OpenSubspace framework

For extending the OpenSubspace algorithm repository our framework incorporates two
open interfaces, which enable extensibility to further subspace clustering algorithms and
new evaluation measurements. In Figure 6 we show the main classes of our OpenSubspace
framework which extends the WEKA framework by a new subspace clustering panel.

Subspace clustering shows major differences compared to traditional clustering; e.g. an
object can be part of several subspace clusters in different projections. We therefore do
not extend the clustering panel, but provide a separate subspace clustering panel.

Recent subspace clustering algorithms described in Section 2.1 are implemented based on
this framework. The abstraction of subspace clustering properties in OpenSubspace allows
to easily add new algorithms through our new subspace clustering interface.
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3.2 Evaluation and Comparison of Algorithms

Given the framework with transparent implementations of subspace clustering algorithms
OpenSubspace enables researchers to evaluate their methods against competing approaches
available in our repository. We establish a basis for developing new methods to per-
form an objective evaluation on arbitrary subspace clustering algorithms. OpenSubspace
defines evaluation measurements based on labeled data sets. It includes measurements
like entropy, coverage, F1-value, Cluster Error, RNIA and accuracy used in recent sub-
space/projected clustering publications as a basis for thorough evaluations. The set of
measures is formally defened in our recent evaluation study providing additional experi-
ments and analyses on several clustering paradigms [MGAS09].

In OpenSubspace all of these evaluation methods are implemented and published as open
source as well. For a fair and comparative evaluation these measurements have to be
accessible to all researchers. Review and refinement of these measurements is essential as
there is always the possibility of different interpretations of these measures. As a ground
truth is not given for subspace clustering the data mining community has to develop new
evaluation measures that rate the quality of different approaches. This seems to be as
difficult as the mining task itself. Therefore, we do not only provide several evaluation
techniques (cf. Section 2.4) to measure the quality of the subspace clustering, but also an
open interface (cf. Fig. 6) to implement new measures. Further measures can be added by
our evaluation interface, which allows to define new quality criteria for subspace clustering
on a common basis for all algorithms.

Evaluation measures summarize the result set in typically one real valued rating; however,
visualization of results for more insight might be interesting. OpenSubspace, therefore,
includes specialized visualizations for subspace clustering results with the possibility for
interactive exploration. As stated before, subspace/projected clustering algorithms typi-
cally provide overwhelming result sets. Investigating these results is sometimes as difficult
as looking at the raw data. For some specialized or domain dependent mining tasks it is
even more important to investigate the actual clustering than to compare it with competing
approaches. OpenSubspace provides specialized visualization techniques which close the
KDD cycle by providing user feedback (cf. Fig. 5). Our framework provides interactive
exploration of the results and thus the opportunity to refine the mining step by exploring
different parameter settings and their resulting clustering output [MAK+08, AMK+08]. In
addition the different views detected by subspace clustering approaches can be visualized
and explored as well [GFKS10, GKFS10].

3.3 Visualization Techniques

OpenSubspace provides visualization techniques to present subspace clustering results
such that users can easily gain an overview of the detected patterns, as well as an in-depth
understanding of individual subspace clusters and their mutual relationship.

Gaining a meaningful overview is crucial in allowing users to assess the overall subspace
clustering result. As mentioned, subspace clustering is inherently challenging as both the
typical number of resulting subspace clusters is usually enormous as well as that clusters
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Figure 7: Visualization in OpenSubspace

in different projections are difficult to understand. Visualization techniques that were de-
veloped for full space clustering results rely on a common representation, i.e. no subspace
projections [AKMS07b]. Consequently, they cannot be applied to subspace clustering.

Our framework thus contains specialized techniques for visualization of subspace cluster-
ing. 2d and 3d models are an adequate representation for human cognitive abilities. Based
on a recently developed comparison measure for subspace clusters our system provides an
overview on the entire subspace clustering result by MDS (multidimensional scaling) plots
in both 2d and 3d [AKMS07b]. As illustrated in Figures 7, MDS approximates distances
in high dimensional spaces by two or three dimensions. While the 2d representation is a
static view that allows for easy reading, the 3d MDS plots allow users to interactively ex-
plore the overall subspace clustering result. They may move around the 3d representation
to focus on those subspace clusters they are most interested in. At any point, they may
choose individual subspace clusters in the plot to obtain more detailed information.

Thus, our MDS plots provide an overview on subspace clustering. Moreover, it helps
users in interactively determining the best parameter setting. For any subspace clustering
algorithm, some core parameters tend to have a large influence on the resulting output. We
therefore present a bracketing representation, i.e. a series of 2d MDS plots for different
parameters. Users thus get a clear visual impression of the effect of parameters and may
choose the best ones for a feedback loop that generates the desired subspace clustering.

For in-depth analysis of any subspace clustering algorithm, representation of the key fea-
tures of subspace clusters in a cognitively meaningful way is crucial. As subspace clus-
tering results represent patterns in different projections by their very nature, visualization
should contain information on the respective subspaces, the cluster values and additional

360



information on the interestingness measures computed by the subspace clustering algo-
rithm. We use a color-coding scheme where the different axis in the HSV color space
are used to represent different aspects of subspace clusters in a very compact and easy to
understand manner [AKMS07b]. For easy navigation, subspace clusters can be zoomed
into, and understood using a color legend on values of the subspace clusters.

3.4 Interactive Exploration

The conceptual design for interactive exploration in OpenSubspace is based on the Visual
Exploration Paradigm [Kei02]: Starting from an overview over the subspace clustering
result the user can navigate through the visualized patterns. By selecting subjectively in-
teresting subspace clusters, the user may then obtain more detailed information where
desired. Detailed information is provided on three levels: for entire subspace clusterings,
for single subspace clusters, as well as for individual objects. Based on the discovered
knowledge, the user can give feedback to the system for further improved results. This
feedback loop enables the system to use the cognitive abilities of humans for better pa-
rameter settings and thus for meaningful subspace clusters.

Overview Browsing. Interactive exploration starts from an overview of all mined sub-
space clusters in which the user can browse. The automatically detected patterns are thus
presented to the user for a general impression of the result and a comparison of the re-
sulting clusters. As clusters are detected in arbitrary subspaces, they cannot be compared
based on the full space dimensionality. We thus incorporate a distance function that takes
the main characteristics of subspace clusters, their subspace dissimilarity and object dis-
similarity into account for visualization in an MDS plot [AKMS07b]. Based on such an
overall distance function, subspace clusters can be intuitively represented as circles in a 2d
or 3d space (Figure 7). This approximation of the original high dimensional information
to a 2d or 3d representation, allows human users to easily understand the result just by the
visual impression. We enriches this MDS information by additional visual features. The
size of a subspace cluster is represented as the diameter of the circle. Its dimensionality
is encoded by the color of the circle. This information allows users to identify similar
subspace clusters, those clusters of similar dimensionality, or of similar size, or to study
the overall distribution of these characteristics in the result for further analysis.

Parameter Bracketing. Parameter setting is in general a difficult task for most data
mining algorithms. This is especially the case for unsupervised techniques like cluster-
ing, where typically no prior knowledge about the data is available. This inherent prob-
lem of clustering is even more present in subspace clustering as the user has to provide
parametrization for detecting clusters in different subspaces. In general the problem can
be solved by guessing a parameter setting, looking at the result and then trying to choose
a better parameter setting. To speed up this tedious process for users and give them more
information to base their parameter choice on, we compute and visualize a series of dif-
ferent subspace clustering results at once, called bracketing of different parameter settings
for direct feedback. This means that users obtain a series of MDS plots (cf. upper part
of Figure 7) from which they pick the most appropriate one(s) for subsequent runs of the
subspace clustering algorithms. By directly comparing the results of different parameter
settings, parametrization is no longer a guess, but becomes an informed decision based
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on the visual analysis of the effects of parameters. Moreover, this process is far more
comfortable for users and allows reaching the desired subspace clustering result in fewer
steps.

Direct subspace cluster comparison. For a more detailed analysis of two different pa-
rameter settings the user can select two clusterings out of the presented series of MDS
plots by clicking on them in the bracketing representation. These two subspace clusterings
are then presented as larger plots in the lower part of the cluster overview screen. Once
again, detailed information for the subspace clusters can be obtain by picking individual
subspace clusters.

3d Browsing. For the overview browsing we provide static 2-dimensional MDS plots.
These static views provide a fixed perspective for easy comparison. For in-depth brows-
ing, where focusing to different parts of the subspace clustering is of interest, a flexible
navigation through MDS plots is provided. 3-dimensional MDS plot browsing allows
users to shift, rotate and zoom into the MDS plot using standard 2-dimensional input de-
vices or 3-dimensional input devices that allow for even more intuitive navigation. The
user may thus identify similar or dissimilar subspace clusters that are of specific interest.
In Figure 7, we show two 3-dimensional MDS plots representing two clustering results.

Interactive Concept Detection. In general, subspace clustering techniques were devel-
oped for the task of finding clusters in differing subspaces. Even more challenging is the
grouping of clusters according to their specific concepts, for example the clusters ’smok-
ers’, ’joggers’, or ’vegans’ are manifestations of the concept ’health awareness’. Some
recent approaches focus already on the task of grouping objects according to underlying
concept structures [CFD07, GMFS09, GFMS10]: they find clusters in strongly differing
subspace projections, providing the key for discovering the inherent concept structure.
However, since the concepts are generative, i.e. they actually induce the clusters, they
cannot be automatically concluded out of clusters. Accordingly, the mentioned subspace
clustering techniques achieve concept-based aggregations of objects but are not capable of
abstracting from these aggregations in the sense of named concepts.

In real-world applications, however, the interest lies in the explicit discovery and naming
of the underlying concepts. This task cannot be solved automatically by unsupervised
learning methods as subspace clustering but requires the domain knowledge of an expert.
OpenSubspace supports the user in revealing the concepts out of a given subspace clus-
tering [GFKS10, GKFS10]. It therefore provides the user with concept-oriented cluster
visualization and interactive exploration to enable him to uncover the inherent concept
structures. Each concept can be described by its occurring clusters on the one hand and its
characteristic attributes on the other hand. Since the related clusters are not known before-
hand, the idea is to capture the concepts through the structure of relevant attributes of the
clustering. The relevant attributes are of particular importance for a semantic labeling of
clusters and concepts. In the OpenSubspace framework, the user can take a closer look at
the concept compositions and one can give feedback to refine or to recalculate the concept
structures. Thus, the whole process of concept discovery in OpenSubspace is iterative and
highly dependent on user interaction.
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3.5 Extensibility of OpenSubspace

As a novel framework OpenSubspace provides the basis for further research. There are
several algorithms implemented in our subspace/projected clustering repository. For eval-
uation measures we have included recently used measures in this field [SZ04, MSE06,
BZ07, MAK+09, AKMS08]. However, as subspace clustering has just started to become
a broader research topic, these evaluation measures can be only seen as first steps that
are likely to be extended greatly in the near future. We included different visualiza-
tion techniques in OpenSubspace which we presented in recent demonstration systems
[MAK+08, AMK+08, GFKS10, GKFS10, MSG+10].

All three areas (mining, evaluation and visualization with interactive exploration) can be
extended by open interfaces. Due to the fact that the whole framework is given as open
source code it is easy to develop new algorithms, evaluation measures and visualizations.
For researchers who wish to develop their own novel algorithm in this field we provide an
easy way to integrate their approach into our framework and to perform a fair evaluation
with competing approaches. Thus it is a key property of OpenSubspace to define an open
basis for the development of new approaches, evaluation and visualization techniques.

We used and still use our framework for subspace clustering research but also for educa-
tion in advanced data mining courses. In both cases we got positive feedback from our
students who enjoyed easy and wide access and the predefined interfaces in our frame-
work. Furthermore, we got encouraging feedback also by the community for our recent
demonstration system which integrates extensible mining techniques into WEKA.

4 Conclusion

With OpenSubspace we provide an open source framework for the very active research
area of subspace clustering and projected clustering. The aim of our framework is to estab-
lish a basis for comparable experiments and thorough evaluations in the area of clustering
on high dimensional data. OpenSubspace is designed as the basis for comparative studies
on the advantages and disadvantages of different subspace/projected clustering algorithms.

Providing OpenSubspace as open source, our framework can be used by researchers and
educators to understand, compare, and extend subspace and projected clustering algo-
rithms. The integrated state-of-the-art performance measures and visualization techniques
are first steps for a thorough evaluation of algorithms in this field of data mining.

5 Ongoing and Future Work

OpenSubspace can be seen as the natural basis for our next task. We plan to develop evalu-
ation measures that meet the requirements for a global quality rating of subspace clustering
results. Evaluations with the given measurements show that none of the measurements can
provide an overall rating of quality. Some measurements give contradicting quality ratings
on some data sets. Such effects show us that further research should be done in this area.
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Visualization techniques give an overall impression on the groupings detected by the al-
gorithms. However, further research of meaningful and intuitive visualization is clearly
necessary for subspace clustering. The open source framework for subspace mining al-
gorithms has already encouraged researches in Visual Analytics and Human Computer
Interaction to work on more meaningful visualization and exploration techniques.

For an overall evaluation framework OpenSubspace provides algorithm and evaluation im-
plementations. However, further work has to be done to collect a bigger test set of high di-
mensional data sets. On such a benchmarking set one could collect best parameter settings
for various algorithms, best quality results and screenshots of subspace clustering result
visualizations as example clusters on these data sets. The aim of an overall evaluation
framework with benchmarking data will then lead to a more mature subspace/projected
clustering research field in which one can easily judge the quality of novel algorithms by
comparing it with approved results of competing approaches.
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[KTR10] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity resolution ap-
proaches on real-world match problems. Proc. of the VLDB Endowment, 3(1):484–
493, 2010.

[MAG+09] Emmanuel Müller, Ira Assent, Stephan Günnemann, Ralph Krieger, and Thomas
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Abstract: We consider the problems of interest group discovery in a social network
graph using term-based topic descriptions. For a given query consisting of a set of
terms, we efficiently compute a connected subset of users that jointly cover the query
terms, based on the annotation vocabulary utilized by users in the past. The presented
approach is twofold; first we identify so-called seed users, centers of interest groups,
that act as starting points of the group exploration. Subsequently, we inspect the seed
users’ neighborhoods and build up the tree connecting the most promising neighbors.
We demonstrate the applicability and efficiency of our method by conducting a series
of experiments on data extracted from a Web portal showing that our method does not
only provide accurate answers but calculates these also in an efficient way.

1 Introduction

In this work, we consider a graph of users with edges reflecting a certain degree of close-
ness, for instance in terms of explicit friendship links in social networking sites such as
Flickr or Facebook, or derived from relations, such as the is-co-author relation in the case
of bibliographic information. A common feature of these scenarios is that users exhibit a
certain amount of profile information, either explicitly by specifying keyword based areas
of interest, or implicitly by using specific terms when annotating resources or by assigning
keywords to publications, as is common practice. Given this information, we aim at pro-
viding means to efficiently identify connected subgroups of users whose profiles match a
particular keyword-based query.

Many approaches have modeled user behavior in online social networks, with the obser-
vation that users usually annotate resources they are interested in and that such annotations
represent a summary of a user’s interests [SSMY08]. Complementary to the information
centric functionality of these portals, most of them provide means to create social commu-
nities in form of groups and friendship links. Analogously, in a bibliographic information
system, links between authors can be defined based on the co-author relation, and semantic
annotations to authors are given by keywords they have used in their publications. A query
would involve certain keywords, such as databases, graph, and algorithm, with the goal
to identify a set of authors, connected by the co-author relation, which jointly cover the

� This work is partially supported by NCCR-MICS (grant number 5005-67322), the FP7 EU Project
OKKAM (contract no.ICT-215032), and the German Research Foundation (DFG) Cluster of Excellence
“Multimodal Computing and Interaction” (MMCI).
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three query terms. Clearly, the assigned keywords reflect the authors’ (research) interests,
hence, we denote these groups as interest groups.

Identifying users which have used at least one of the query terms in the past is straight
forward as it requires a simple per-term indexing mechanism in form of sets or more ad-
vanced inverted files where users are ordered by some kind of quality information. This
would allow us to readily apply well established methods to return single users that are
relevant w.r.t. our query. However, as it is often unlikely that single users can answer the
query as a whole, the general answer to a query is a subset of users that together cover
the whole query. As the number of such user groups can potentially be very large, we
have to introduce a scoring function which assesses for a given group its suitability to the
query, hence, being able to return the top-k list of user groups. Such a scoring function
consists of two ingredients: (i) the quality of the users contained in the group and (ii) the
compactness of the group. This is related to the problem of keyword search on graphs, or
graphs imposed by the primary/foreign key relation ship in relational databases (cf., e.g.,
[HP02, HWY07, BHN+02]) which has been extensively studied in the past years.

In this work we will use a combined approach that integrates both user quality informa-
tion and structural (network) information to make the computation tractable. For sake of
readability we will use the terms user, friendship, and tags, in this paper.

1.1 Model and Problem Statement

We consider a directed friendship graph G = (V,E) with nodes representing the users
and with an edge e = (ui, uj) ∈ E if user ui is a friend of user uj .

Each user is furthermore associated with a set of documents she has annotated so far,
hence, we have for each user a set of (tag, frequency)-pairs that reflect her tagging history.
The frequency number is simply a count of how many times the user has used a certain tag.

We assume users to issue tag-based queries to explore the social network. For each of
these queries the task is to return the most relevant and compact groups whose users jointly
cover the specified query.

Our coverage requirement can be formalized as follows: Given a query as a set of tags
Q = {t1, t2, ..., tn} and a set of users U = {u1, u2, ...., um}, we consider that U covers Q
iff Q ⊆

⋃
u∈U Tu, where Tu is the set of tags used by user u. This notion of coverage can

be relaxed, by accepting groups that only partially cover the query. This is in particular
useful if the query is very large and does not have any results, which can be a consequence
of restricting the compactness of the returned groups. We nevertheless favor those subsets
of users that answer a larger fraction of the query.

Concerning the quality of the answer we need to address two requirements: (i) rele-
vance: the returned interest group should be relevant w.r.t. the query terms and (ii) com-
pactness: the returned interest group should be as small as possible (in terms of number
of users) and the users in this group should be connected as closely as possible.

1.2 Contribution and Outline

The contribution of this paper can be summarized as follows: (i) We present an approach
to detect communities of interest in a social network; (ii) We integrate the friendship in-
formation into the content information for efficient query processing; (iii) We evaluate our
approach using a real world dataset, taken from the popular delicious portal.
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Section 2 gives an overview of existing related work. Section 3 contains the scoring
model for communities and a first glance on the problem of identifying user groups that
cover a query. Section 4 explains how to get a handle on the community selection by in-
tegrating network information into standard index lists. Section 5 shows how we employ
a threshold algorithm over the extended index lists to identify centers of communities.
Section 6 presents our graph traversal algorithm that computes community trees based on
previously selected seed users. Section 7 contains the performance evaluation and Section
8 concludes the paper.

2 Related Work

As collaborative tagging sites become more and more popular, many approaches to ex-
ploit this data for information retrieval have been proposed. Li et al. [LGZ08] propose a
method which uses tags to discover clusters of users that share common social interests.
In a first phase, association rules mining algorithms are used to discover patterns of tag oc-
currence which identify higher level topics. In a second step, users and URLs are clustered
according to these topics.

Another research area close to our work is that of community discovery in networks
which can be summarized as the problem of dividing a graph into sub-groups of nodes such
that the nodes in a partition are densely connected among each other and less connected
with the rest of the network [NG04, FLGC02, YL08]. In general, all these approaches rely
solely on the topological information (i.e., links between nodes) in the network in order
to discover densely connected communities, whereas in this work we take a query-driven
view on this problem which is guided by the content of the nodes. We do not require that
our users form a densely connected sub-graph per-se, as we allow for communities to span
over several topic clusters, depending on the nature of our query.

Other approaches such as [CZC08, CCL+09] only rely on textual information about
users in a social networking site to identify communities. As opposed to the above men-
tioned approaches we also integrate the topological information in the network.

Recently, Li et al. [LNL+08] introduce an algorithm for community discovery in large
text collections which builds a hierarchy of communities based on the relationship be-
tween textual documents (i.e., links within these documents) as well as on the content of
the documents. In the first phase, community cores are identified based on the topologi-
cal information solely and in the second phase the communities are identified based on the
textual information by studying the latent topic distributions in the documents. As opposed
to this method, our algorithm is driven by the user query and we integrate the quality of
the users and the link structure in the same computation.

Qin et al. [QYCT09] proposes algorithms to enumerate all or a top-k set of communi-
ties using foreign key relations in a RDBMS. Similar to our work, they introduce an upper
bound for the community (i.e., group) size and deal with extracting centers of commu-
nities. The focus is put on a higher level algorithmic solution, disregarding performance
issues on the level of index accesses to determine the top centers.

Lappas et al. [LLT09] consider the problem of finding a group of experts in social
networks that together cover a certain set of given skills. Their approach is limited to a
boolean assignment of skills to users, leaving no room for a fine grained differentiation,
which is in particular essential for our tag based detection mechanism. The authors sketch
to use thresholds of skill values to obtain a binary assignment. While this seems to be
reasonable in scenarios with limited sets of skills, such an approach would introduce, in
our setup, one threshold per tag, therefore making a manual tuning impossible. Instead,
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we treat quality information about tag usages as a first class citizen, used not only in the
scoring function, but also in the way we select promising centers of interest groups.

Recently, Sozio and Gionis [SG10] presented an approach to find subgraphs given a set
of nodes as a query that have to be contained in the answer graph, i.e., aim at identify-
ing a community around a given set of users. Limiting the search space with this input
is in contrast to our approach which aims at extracting communities based on semantic
descriptions of the users by inspecting the global graph.

For the index creation, we make use of existing work from the area of keyword search
over graphs (cf., e.g., [HP02, HWY07, BHN+02]) which has been extensively studied
in the past years. In particular, the way we create our index is similar to the concept of
keyword-node lists in [HWY07] where for any keyword a list is created containing for
each node the distance to the keyword, i.e., the distance of a user to the user that has used
the tag in the past, in our scenario. We extend these lists to also contain quality information
on frequency of tag usages, and maintain for each node and for a configurable number of
distances, one list (per-tag, per-distance) representing for each user the best quality score
to be found its its neighborhood with the given distance. This enables the application of a
two level threshold algorithm over these lists.

3 Scoring Model

Before delving into the details of our approach we will introduce below the scoring
model which we use in order to select the most promising user groups that cover a spec-
ified query. As already sketched above, there are two ingredients that we require to be
reflected in the scoring model: (i) the relevance of the group w.r.t. the query terms, and
(ii) the compactness of the group.

In order to assess the relevance of the group we consider the tagging behavior of the
users that are part of that group. More precisely, we employ a standard mechanism by
relying on the tag frequencies (tf ) of the users for the tags that belong to the query. Given
a set of users U = {u1, u2, ...., um} that cover a query Q the score of a user ui w.r.t. the
query can be expressed as the sum of tag frequencies for every term of the query that also
belongs to the tag set of the given user: s(ui, Q) =

∑
t∈Q∧t∈Tui

tf(ui, t).

The compactness of a group is assessed in terms of the number of edges in the smallest
tree that connects all users in the specified community. To combine both relevance scores
and compactness scores we make use of a weighted sum. Given a group of users U which
covers the query Q and given a spanning tree that connects the users in U , G(E,U ′) with
edges E and users U ′ where U ⊂ U ′, the score of this group is computed as

s(U,Q) := α ∗
∑
ui∈U

s(ui, Q) + (1− α) ∗ 1

|E|+ 1
(1)

The first part of the scoring formula represents the quality of the users in the group w.r.t. the
query, while the the second part reflects its compactness. In this work we opted for using
the edge count of the spanning tree as an indicator for compactness, but other choices, like
taking the radius of the tree is a potential measure, too. The weighting parameter α is used
to give more weight to the tag score than to the compactness, or vice versa. The main rea-
son for introducing this parameter is that the decision whether a returned interest group is
good or bad is highly subjective; one could prefer to settle for larger trees if the connected
users are particularly promising in terms of tag scores. On the other hand, one could prefer
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trees that are as compact as possible, even at the expense of a lower tag-based quality score.

A naive way to use the scoring model now to find the best communities is to execute a
brute-force enumeration of all possible sets of users that jointly cover the query tags, con-
sidering all users that are associated with at least one tag out of the query tag set. For each
set of users we would then generate the minimal tree connecting all users in that set and as-
sess its utility w.r.t. our scoring model. This method would indeed calculate the “best” tree
that covers the query tags, however, it is prohibitively expensive due to: (i) the extremely
large number of candidate user sets to be assessed, and (ii) the compactness assessment
function which involves calculating the so-called Steiner tree for each given user set.

We could choose to address these two subproblems separately – first find the most rel-
evant users w.r.t. the query and then return the smallest subgraph which connects all of
them. However, it is obvious that when adopting this solution we will end up with users
being far away from each other, albeit being of high quality w.r.t. the tags. These kind of
results do clearly not correspond to our desired solution.

In our approach, we deal with both requirements at the same time – construct the al-
gorithm in such a way as to return compact trees that contain the “best” possible nodes,
according to our scoring function.

4 Index Creation

Assume for each tag a list of (user, tf)-pairs sorted by tf (i.e., the number of (distinct)
documents the user has annotated with this tag). This resembles the basic inverted index
paradigm from standard Information Retrieval that can be efficiently used to compute the
most relevant users w.r.t. a query by applying Fagin’s TA algorithm or variants like the
NRA algorithm [FLN03]. The number of index list entries is actually much smaller than
in traditional document retrieval tasks, as we only deal with entries that represent the tag
sets of each user and this is at least one order of magnitude lower than the number of docu-
ments, even for large networks. Instead of using the plain tag frequency count (tf), we can
plug in any tf based variant, such as tf*idf, as the choice is independent of our algorithmic
solution.

In order to combine the compactness and the relevance information, we will integrate
the network structure into the traditional inverted index lists by propagating the tags along
the edges of the user graph. As a result, we will express the pairwise distances among
users solely in terms of inverted lists of users and tags, which allow us to compute the
relevance of a user w.r.t. a query, by implicitly considering the user’s neighborhood.

Below we give a more detailed description on how the tag propagation is implemented.
Subsequently, Section 5 will focus on the query processing task, which uses Fagin’s thresh-
old algorithm to identify what we call seed users, promising centers of relevant groups,
solely working on tag specific lists of (user, tf)-pairs, which have been enhanced through
our tag propagation mechanism.

4.1 Propagating Tagging Behavior

For each (user, tag)-pair we compute the minimum distance from the given tag to the
user, based on the user graph. If a user holds a tag, then the distance between this user and
the tag is 0. However, if a user does not hold a tag, but has a neighbor that holds that tag
the distance between that user and the tag will be computed w.r.t. the distance between the
neighbor and the initial user, similar to the concept of keyword-node lists in [HWY07].
However, not only the distances but also the quality (frequency of tag usages) is taken into

371



account. In this way, each user will inherit the tagging behavior of her neighbors and will
act as an indicator of the suitability of her neighborhood w.r.t. the tags in the query.

We will propagate the tags in this manner over λ hops in the friendship graph. From the
implementation point of view, our so-called λ-extensions consist of additional index lists,
more precisely λ additional index lists per query term. For each (user, tag)-pair and for
each distance (≤ λ) we store the maximum inherited tf score from any neighbor that can
be found within that distance. Obviously, the lists for λ = 0 correspond to the original
index lists.

We propagate tags only through inlinks, i.e., links from so-called “idols” to “fans”, and
not in the opposite direction, in order to maintain the implicit trust relationship defined by
the users through friendship links (i.e., if a “fan” chose another user to be his “idol” we
assume that she is prepared to follow the tagging behavior of the latter).

More formally, for a user u and her set of tags Tu we compute the score for any tag t as
follows

score(u, t) = maxu′∈U∧|path(u,u′)|<=λ(tf(u
′, t))

We precompute for each tag an index list of all users and their corresponding score w.r.t.
that tag (including the tags and tf values inherited from their neighbors, up to a distance λ).

5 Query Processing

For the query evaluation over the λ-enriched index lists we employ Fagin’s NRA al-
gorithm, one of the standard threshold algorithms, which uses only sorted (sequential)
accesses to the lists. The result of this computation will be a set of top-k seed users which
represent the “centers” of our interest groups. Since these users are chosen according to
the λ-enriched lists, we are sure that in their close neighborhood we will find a set of users
that covers our query. Furthermore, we implicitly assess the quality of the user tree and
estimate its size, directly through the seed user retrieval process.

Note that the number of tags per query is assumed to be quite large, hence, we opted
for a disjunctive query evaluation mode where we do not require all tags to be present at
the top-k most suitable users. This avoids empty results as it can happen that we cannot
identify a user group that covers the query as we restrict the diameter of the returned group
to 2 ∗ λ. However, we still favor users which cover a larger number of tags, although their
tag frequency values might not be very large.

To use this algorithm, we normalize the tag based scores by 1/
∑
s where

∑
s is the sum

over all original tf scores. In addition, for each non-zero score observed in a list, we add
a value of 1 to favor users that have many query tags over those with few but high-score
tags. In particular, this means, that given an aggregated score s for a user we know that
she contributed to bsc tags. Contributing to a tag does not mean that she actually owns
the tags (i.e., has annotated documents herself), it means that bsc tags can be found in her
λ-neighborhood.

Due to the λ-extension, we keep for each tag t and value of λ a separate index list
Lt,λ which contains (userid, tf)-pairs for tag t sorted by tf in descending order. The
tf values in these lists are basic scores inherited from the λ-neighborhood, with no score
adjustments applied so far as this is defined at runtime using Equation 1 (i.e., the database
contains only the raw information). This scoring function is applied on the fly, which
causes no problems as it is order preserving and computationally trivial.
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With a given score sraw := Lt,λ(u) and λ we adjust this score according to the follow-
ing formula:

score(sraw, λ) := α ∗ sraw + (1− α) ∗ 1

λ+ 1
(2)

In the initialization step, for each tag t ∈ Q and for each value of λ a sequential read to
the database is opened. In total there are |Q| ∗ λ index lists to be accessed. The algorithm
performs a round robin read over the index list groups (grouped by tag) and inside each
tag group reads an entry from the list with the currently highest score, as in [TSW05].

Hence, overall, for a user u and a query Q the final score is given by:

score(u,Q) :=
∑
t∈Q

maxλ{score(Lt,λ(u)} (3)

where score(Lt,λ(u)) denotes the score of user u in the index list for tag t for given λ.
This scoring function follows the goal of finding seed users, i.e., users whose neighbor-
hood contains a tree with “optimal” score w.r.t. the query (cf., Equation 1).

Following the standard principles of the NRA algorithm as explained in the beginning
of this section, during the sequential scans we maintain for each observed user a score
range given by lower and upper bound scores, denoted as W and B, respectively.

To calculate B for a particular user w.r.t. a tag t (note that B is computed for those
tags for which we don’t know the user’s tf values yet), we look at the current scan line
scores for the lists corresponding to t Lt,λ=0 =: τ0, ..., Lt,λ=l−1 =: τl−1, where l denotes
the number of lists per tag. Note that these scores are obviously known and that the al-
gorithm always reads from the list that provides the largest score. We then calculate the
best possible score by looking at the τi values, considering their λ values and applying the
aggregation function, i.e., τ̂ := maxi∈{0,..,l−1}{score(τi, i)}.

Let the set E(u) denote all tags for which a user user u has been observed in any of the
index lists, τ̂(t) the max possible score for a tag t, and W the worstscore as explained
above, then the bestscore B for that user can be calculated as:

B(u,Q) :=W (u,Q) +
∑

t∈Q−E(u)

τ̂(t) (4)

While the aggregation function mentioned in Equation 2 is monotone it does not cor-
respond to Equation 1 which is easy to see. However, it gives the correct bound w.r.t.
Equation 2 that defines the computed scores in the index lists.

6 Spanning Tree Computation

Given a set of query tags Q and a user u that has been selected as a seed user as ex-
plained in the previous section our next task is to return the interest group around this user
that covers our query and assess its compactness. We treat each seed user independently
and therefore consider only a single user in this section.

Assume τ = score(u,Q) to be the score of user u w.r.t. Q given the aggregation model
above. It is clear that in the λ neighborhood of the user we will observe bτc distinct tags
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t1, ..., tbτc, ti ∈ Q. Our task is to identify the most relevant users holding these tags and
we solve this through an iterative process.

We start by executing the query on the λ neighborhoodN of the seed user and select the
highest ranked user u according to the scoring model. Then the query is reduced by those
tags answered by user u and the user is added to a set of terminal users, that contains those
users that will be returned by our method. This process is iterated until the set of remaining
query tags is empty, or has size smaller than |Q|− bτc. For the terminal users the pairwise
distances are retrieved from the database (we recompute these up to level 2 ∗ λ) and the
minimum spanning tree (MST) is computed, which is known to be a 2-approximation of
the true Steiner tree.

Note that when computing the top-k seed users we do not have any information attached
to the λ index list entries that indicates the exact size of our final trees. We only know that
a seed user represents a tree with a set of edges |E| ≤

∑
i λi. The implication of this is that

lower ranked seed users can indeed provide better trees, as the upper bound of the tree size
might not be tight enough. We will see this behavior in the experimental evaluation when
we observe that higher ranked seed users are not necessarily superior to lower ranked seed
users. However, the variation in terms of tree size and tree tag score is relatively small.

7 Experimental Evaluation

We have implemented our algorithm in Java 1.6 and executed on a Windows 2003
server with a quad core 2.33 GHz Intel Xeon CPU, 16GB RAM, and a 800GB RAID-5
disk. The data is stored in an Oracle 11g database in form of (userid, tag, score)-entries,
separated in different tables for different values of λ with B+ indexes on (tag, score
DESC, user) for fast access. The user graph is kept in main memory. The precomputed
pairwise user distances up to distance 2 are kept in the database, too, with an B+ index on
(user1, user2, distance) for random reads.

We use a partial crawl of the delicious1 portal which consists of approximately 120, 000
html pages, annotated by 13, 515 users with 59, 143 distinct tags. As our approach is
purely annotation based, we disregard the content of the annotated pages and solely focus
on (i) the friendship graph among users and (ii) the tagging behavior of users. For (ii),
we consider for each user and each tag t the frequency with which the user has annotated
pages with t. As there are often users which use particular tags very rarely, we introduce a
threshold value to disregard these very rarely used tags. We will see its interpretation later.

In order to run our experiments we need to propagate the tags along the links of the
friendship graph, as presented in Section 4. We propagate the tagging behavior only
within a certain number of hops λ, where we pick a value of λ = 2 for this paper, which
is sufficient, given the small world property and that this value actually means that we are
considering user groups with a diameter of 4.

In order to generate the queries for testing our approach, we have parsed the high level
categories for three different topics out of Open Directory Project (dmoz.org), for instance
dmoz.org/Health/ for the topic health, ending up with the following topics with corre-
sponding numbers of terms (in parenthesis): Computers (72), Health (61), Physics (35).
We assemble queries by randomly selecting an equal number of terms from each of these
topics. The total number of terms is varied in the experiments.

We run our experiments on a set of 100 queries and vary the following parameters: (i)
α - the parameter of our scoring function (c.f., Equation 1 ), (ii) min tf - a threshold used

1www.delicious.com
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to study the influence of a threshold based (i.e., tag count) noise filter on the result quality
and fraction of queries that can be answered, (iii) the number of terms in the queries.

We report on the following measures: (i) Interest group (tree) score: this measure re-
flects the combined quality and compactness score of the returned user group and is com-
puted according to Equation 1. (ii) Number of edges: this is the size of the returned user
group in terms of number of edges. (iii) Query reponse time: to get a better insight for the
runtime of our algorithm, we measure the query response time and split it into the time
needed to identify the seed users and the time needed to build the trees in the subsequent
step.

7.1 Results

In our experiments we start by generating the top-k seed users for a given query and then
return the best user tree around each seed. When we report on the rank, we always refer to
the rank of the seed that returned a given user tree and not to the rank of the tree itself. In
order to make the results comparable we only take into consideration those queries that are
fully answered by all ranks of our seed nodes (except for the experiments corresponding
to Figure 3 (right)). Except for the cases where we vary these parameters explicitly, we fix
the value of α to 0.5 (in order to put the same weight on both terms in the scoring function),
the number of terms in the query to 21 (in order to better underline the performance of our
method) and the value of the min tf threshold to 1. We also apply a standard smoothing
on the tag score part as due to standard normalization issues it is not comparable to the
compactness score (in terms of different magnitudes of the score values).

Figure 1 (left) shows the average number of edges for different ranks and min tf thresh-
olds. Recall that this threshold specifies the tag frequency value from which on a user
is considered for a particular tag. The increasing trend in the figure follows the intuition
that with a higher value for this threshold, the number of suitable users decreases, which,
in turn, increases the expected number of edges in the answer tree. Clearly, the biggest
impact of the threshold is when going from 1 to 5, changing the average tree size (i.e.,
the size of the returned user group) from 3.7 to 7.7. The changes for higher values of the
threshold are less dramatic, but show the same trend. The fact that lower ranked seed users
lead to better trees is already explained in Section 6.

Figure 1 (right) reports on the overall tree score for different ranks of seed users, when
varying the min tf threshold. The scores of the trees generated by the top-5 seed users
are very close, which indicates the fact that we deal with many equally suitable interest
groups around these seeds. We also observe a clear increasing score trend with a bigger
min tf value. This is expected since a bigger tag frequency for our users should lead to a
better overall quality of the trees. On the other hand, as we observed from Figure 1 (left),
we would expect the number of edges in the trees to increase with min tf and this should
bring the score lower. However, we can observe that if the min tf values improve from 5
to 15 this means an improvement by a factor of three in the sum of tf values (the first term
of our scoring function); from Figure 1 (left) we can see that for such an improvement
we only have to pay a penalty of adding on average one extra edge. In other words, the
overall score of the trees increases with min tf because the penalty of adding extra edges
is entirely compensated by a large improvement factor of the tf scores.

Figure 2 (right) shows the quality values of the users w.r.t. different α values. This
corresponds to the first term of our scoring function and contains the sum of tag frequency
values for the users contained in the group. We can observe an increasing trend which
means that with a bigger α we give less weight to the tree size factor and, therefore, ex-
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Figure 1: Varying min tf, showing the number of edges (left) and the score (right) for different ranks
(α = 0.5, nr of terms/query = 21).
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Figure 2: Varying alpha, showing the edges (left) the score (right) (nr of terms/query = 21, min tf
= 1).

plore bigger interest groups in order to increase the quality of the potential nodes. When
looking at different ranks we can see that the first rank tends to dominate the others.

In Figure 2 (left) we see the impact of α on the average number of edges for different
ranks. The variation of α has a clear impact, as the trend shows for all ranks a larger tree
size for larger values of α. For α = 1.0 the trees are the largest, which is intuitive as this
means that the tree size does not matter at all in the score calculation, hence, users with
a high tag score component are selected, even though they are quite far away from each
other. This is also reflected in Figure 3 (left) which reports on the average number of edges
with varying rank, plotted for different values of α.
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Figure 3: Left: Varying the rank, showing the edges (nr of terms/query = 21, min tf = 1). Right:
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Figure 3 (right) shows the fraction of completely answered queries for different values
of the min tf threshold. Since we allow only users with a certain number of occurrences for
a particular tag to be selected, at a certain point, a query cannot be answered if the users are
less than λ edges away, which explains the decreasing trend. Nevertheless, the fraction of
full query answers is still big (88% for a tf threshold of 30), even for large threshold value.

7.2 Performance Study

We have measured the average query response time when varying the number of query
tags, i.e., the query size for a number of 5 queries and for α = 0.5 and min tf = 1 (the
plot has been omitted due to space constraints). As expected, the total query response
time increases with increasing query size. To get a better understanding where the time
is spent, we look at two ingredients separately, the time to identify the seed users and the
time needed to build the user tree in the seed users’ λ-neighborhood. As we can see, the
time to identify the seed users is clearly the dominating factor and also increases with
increasing query size. The time to build the tree is almost negligible and, furthermore,
remains almost constant with varying query size, varying from around 800ms for 6 tags
to 1200ms for 27 tags.

7.3 Baseline Comparison

We also conducted an experiment to compare our approach to a baseline using a small
subset of the original dataset (1000 users and the friendship links between them) as it is not
possible to apply the baseline method to a reasonably large graph. The baseline method
generates all possible subsets that cover a given query and ranks them based on our scoring
model. In order to compute the compactness scores we use the same 2-approximation of
the Steiner tree as for our method, which is based on pair-wise distances between nodes.
We ran our algorithm on the same subset of nodes and we compare our best achieved re-
sults with the results of the baseline. Figure 4 reports on query response time, tree score,
and number of edges for a set of 50 queries, when varying the number of query tags. Con-
sidering the query response time, Figure 4 (left) shows a linear scale-up of our approach
with the query size whereas the cost of the baseline grows exponentially. This is not a
surprise as the baseline exhaustively inspects all possible combinations of users that cover
the query tags. Looking at the tree score in Figure 4 (right), we see that we are a constant
factor away from the true answer and that the performance of our algorithm does not de-
grade with larger queries. The same happens for the number of edges (plot omitted due to
space constraints).
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8 Conclusion

We have presented an approach to identify interest groups in a social network based on
the tagging behavior of users. Our approach adapts a computationally expensive graph
problem to the common framework of top-k threshold algorithms following existing work
on keyword search on graphs, for an efficient query execution in order to find the “best”
groups. The rationale behind this approach is to propagate tagging behavior along edges
of the social friendship network, i.e., users inherit tagging behavior from their neighbors,
to transform the community identification task into the problem of selecting single users.
We have conducted an experimental analysis of the proposed algorithm using data ob-
tained from a partial crawl of delicious.com to demonstrate the suitability of the presented
framework.
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Abstract: In immer mehr sicherheitsrelevanten Bereichen werden biometrische Er-
kennungstechniken für die Zugangskontrolle oder die Identitätsfeststellung einer Per-
son eingesetzt. Da biometrische Merkmale hoch sensibel sind, müssen sie vor unbe-
fugtem Zugriff geschützt werden. Sogenannte Template Protection Verfahren ermög-
lichen eine biometrische Authentisierung, ohne dass sich diese Merkmale aus den ge-
speicherten Referenzdaten ermitteln lassen. Allerdings erschweren diese Verfahren die
Suche nach passenden Referenzdaten und machen daher die Identifikation innerhalb
umfangreicher Datenbestände ineffizient. In diesem Artikel werden erste Ansätze un-
tersucht um auch für große Datenmengen eine Identifikation auf Basis von geschützten
Fingerabdrücken durchführen zu können. Die vorgestellten Verfahren erstellen durch
Filtertechniken und Indexstrukturen eine geeignete Priorisierung der Datenbankein-
träge, sodass der aufwändige exakte Vergleich zwischen Anfrage und den transfor-
mierten Einträgen gezielt erfolgen kann.

1 Einleitung

Der Einsatz biometrischer Merkmale in Identifikationssystemen hat in den letzten Jah-
ren stark zugenommen. Biometrische Erkennungsmerkmale sind in der Regel universell,
einzigartig, persistent und personengebunden. Die Persistenz der biometrischen Daten be-
dingt jedoch, dass sie einmal korrumpiert unwiederbringlich als Identifikationsmerkmal
für das betreffende Individuum verloren sind. Zudem bergen biometrische Merkmale ne-
ben den benötigten Informationen für eine Identifikation auch sehr sensible Informationen,
z.B. über die ethnische Zugehörigkeit oder den Gesundheitszustand. Daher ist die Verwen-
dung biometrischer Daten aus Sicht des Datenschutzes nicht unumstritten.

Um die sensiblen Daten sicher zu speichern, haben sich sogenannte Template Protection
Verfahren etabliert, wobei das Fuzzy Vault-Verfahren [JS06] dabei zu den Bekanntesten
zählt. Hier werden die biometrischen Eigenschaften durch künstlich hinzugefügte Merk-
male gegen weit verbreitete Angriffstechniken geschützt. Da eine Suche in den transfor-
mierten Referenzdaten im Allgemeinen dann aber sehr ineffizient ist, ist der praktische
Einsatz für Identifikationszwecke bisher noch ein offenes Problem.

In der Publikation von Korte et al. [KMN09] wurde bereits ein Verfahren zum Abgleich
eines ungeschützten Fingerabdrucks mit einem geschützten Datenbankeintrag basierend
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Abbildung 1: Erzeugen eines kodierten Datenbankobjekts für den Identifikationsprozess.

auf Minutien vorgestellt. Dieses System implementiert jedoch nur den Authentifikations-
prozess, bei dem die Identität des Nutzers à priori bekannt ist. Um auch die Identifikation
in akzeptabler Zeit zu beantworten, ist neben einer effizienten Verifikation auch die An-
zahl der in Frage kommenden Datenbankobjekte geeignet einzuschränken. Indexstruktu-
ren sowie Filterarchitekturen ermöglichen eine entsprechende Vorauswahl durch verschie-
dene Approximationstechniken. Allerdings unterliegen die biometrischen Daten neben der
schützenden Transformation meist starkem Rauschen. So können die Finger beim Scannen
gedreht oder verschoben aufgelegt werden. Zudem kann der Abdruck durch unterschiedli-
chen Druck des Fingers auf den Sensor Verzerrungen aufweisen. Zusätzlich können Dele-
tionen oder Insertionen von Merkmalen auftreten. Es muss also davon ausgegangen wer-
den, dass prinzipiell kein Objekt mit Sicherheit für die anschließende Verifikation ausge-
schlossen werden kann.

Bisher sind keine effizienten Suchverfahren für eine Identifikationslösung mit Template
Protection Verfahren bekannt. Diese Arbeit beschreibt daher erste Ansätze, um effizien-
te Datenbanktechniken in das biometrische Anwendungsgebiet zu integrieren. Durch den
Einsatz effizienter Filterarchitekturen bzw. Indexstrukturen ermöglichen wir eine schnel-
le Identifikation von Personen auf Basis geschützter Fingerabdrucksbilder (vgl. Abbil-
dung 1), wobei die Herausforderung darin liegt, mit einem sehr starken Rauschen inner-
halb der Daten, verursacht durch das Fuzzy Vault und den zusätzlichen Rauscheffekten,
umzugehen. Zwei Fingerabdrücke werden dabei auf Basis ihrer zuvor extrahierten Minu-
tien (End- und Verzweigungspunkte der Papillarlinien) verglichen. Wir stellen zwei unter-
schiedliche Ansätze vor, die eine Rangfolge der Datenbankobjekte erstellen, sodass ten-
denziell ähnlichere Objekte für den anschließenden Verifikationsvorgang priorisiert wer-
den. Unsere Experimente zeigen, dass sich die Zahl der durchzuführenden Verifikationen
deutlich reduzieren lässt.

Der Rest dieses Artikels ist wie folgt gegliedert: Abschnitt 2 erläutert den allgemeinen
Identifikationsvorgang. Unsere beiden Verfahren GeoMatch und BioSimJoin werden in
Abschnitt 3 vorgestellt. Abschnitt 4 beschreibt den Prozess der Erstellung aller verwende-
ten biometrischen Datenbanken. Eine ausführliche Evaluierung unserer Verfahren folgt in
Abschnitt 5. Abschließend fassen wir diesen Artikel in Abschnitt 6 zusammen.
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2 Identifikationssysteme für Biometrische Datenbanken

Bei der biometrischen Identifikation steht die Identität des Benutzers nicht à priori fest. Sie
entspricht daher einem Scan über die komplette Datenbank, bis eine Übereinstimmung ge-
funden wird. Als biometrische Merkmale eines Fingerabdrucks verwenden wir die karte-
sischen Koordinaten seiner Minutien m = (mx,my). Im Folgenden wird ein Finger stets
durch die Menge seiner Minutien repräsentiert. Sei die Anfrage repräsentiert durch ein
Template Q, das gegen eine Datenbank R = {R1, R2, · · · , Rn} von Referenztemplates
verglichen werden soll. Alle Referenztemplates Rj werden schon beim Enrolment durch
das Fuzzy-Vault Verfahren transformiert. Im Folgenden wird zunächst das Enrolment, also
das Erstellen von Rj , sowie die anschließende Verifikation von Q, beschrieben.
Enrolment. Das Verfahren Fuzzy-Vault [JS06] zählt zu den bekanntesten und meist ak-
zeptierten Template Protection Verfahren und wurde für ungeordnete biometrische Merk-
male unterschiedlicher Länge entwickelt. Aus diesem Grund eignet es sich zum Schutz
der Minutien aus Fingerabdrücken. Beim Enrolment wird ein Polynom p(α) mit Grad k
bestimmt, dessen Koeffizienten Z = [a0, · · · , ak] : p(α) =

∑k
i=0 ai · αi zufällig gewählt

werden. Die Koordinaten (mx,my) jeder Minutie des Fingers werden zusammen als ein
Element α des endlichen Körpers Fq dargestellt, wobei q so groß gewählt werden muss,
dass alle Minutienpositionen eindeutig darin abgebildet werden können. Die Minutien-
Informationen bilden zusammen mit den jeweiligen Funktionswerten β = p(α) die Stütz-
punkte des Polynoms. Zusätzlich werden sogenannte Chaff-Punkte generiert, die nicht auf
p liegen. Diese dienen dazu, die echten Minutien zu verschleiern. Dazu werden für alle
Chaff-Punkte zufällige β 6= p(α) generiert. Die Stützpunkte von p werden mit den Chaff-
Punkten vermischt und als Datenbanktemplate Rj zusammen mit dem Hashwert h(Z)
gespeichert.
Verifikation. Bei der Verifikation werden die Minutien mQ ∈ Q mit denen des Refe-
renztemplates Rj verglichen. Anhand konkreter globaler Translationen und Rotationen
von Q, sowie einer Toleranz bzgl. Positionsabweichungen werden die übereinstimmenden
Punkte ermittelt. Diese werden zusammen mit den entsprechenden Werten βi aus Rj zur
Rekonstruktion des Polynoms mit Hilfe des Reed-Solomon-Dekoders [RS60] verwendet,
welches anschließend mit dem in der Datenbank hinterlegen Wert h(Z) verglichen wird.

3 Effiziente Filter-Techniken

Für die Identifikation einer Person könnten naiv Authentisierungssysteme, wie beispiels-
weise das in [MIK+10] publizierte Verfahren, derart eingesetzt werden, dass sequentiell
die gesamte Datenbank durchsucht wird bis ein Treffer erfolgt. Da diese Verfahren durch
das explizite Austesten aller natürlichen Transformationen (Rotation, Translation) des An-
fragefingers sehr ineffizient sind, ist dies jedoch für große Datenbanken nicht praktikabel.
Stattdessen muss die Menge der zu überprüfenden Referenztemplates zuvor geeignet ge-
filtert werden, damit die exakte Verifikation nur auf einer reduzierten Menge von Personen
durchgeführt wird. Die von uns vorgeschlagenen Verfahren dienen beide dazu, ein Ranking
der Personen aufzustellen, absteigend sortiert nach Ähnlichkeit bezüglich der angefragten
Person PQ, wodurch die Zeit für den gesamten Identifikationsprozess verringert wird.
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Um die Sicherheit vor Brute-Force Angriffen zu erhöhen, bietet es sich an, eine Person
über mehrere Finger zu identifizieren. Eine Anfrage PQ und das entsprechende Referenz-
objekt einer Datenbank Pj ∈ DB bestehen somit allgemein aus θ ∈ {1, · · · , 10} Templa-
tes: PQ = {Q1, · · · , Qθ} und Pj = {Rj,1, · · · , Rj,θ}. Ein Template der AnfrageQf ∈ PQ
ist eine Menge von Minutienkoordinaten mQ = (mx,my). Alle Referenztemplates Rj,f
einer Person Pj werden zusätzlich durch zufällig eingestreute Chaff-Punkte verschleiert.
Da für jedes Template Rj,f der zugehörige Fingertyp f ≤ θ bekannt ist, kann angenom-
men werden, dass jeder Fingertyp in einem separaten Datenraum DBf verwaltet wird.

3.1 GeoMatch

Der Vergleich zweier TemplatesQf undRj,f des entsprechenden Fingertyps f stellt durch
das typischerweise vorliegende Rauschen und vor allem durch die Verschleierung eine
Herausforderung dar. Ein einfacher Abgleich der Koordinaten beider Punktmengen ist
hier nicht zielführend, stattdessen muss eine sehr große Menge von Transformationen in
Betracht gezogen werden. Für diesen ersten Ansatz GeoMatch bedienen wir uns einiger
Prinzipien aus dem verwandten Dockingproblem für Proteine. Ein typischer Ansatz hier ist
es, das Problem in kleinere Elemente zu zerlegen, auf deren Basis individuelle Matchings
durchgeführt werden. Anschließend werden diese lokalen Lösungen auf globale Konsis-
tenz hin überprüft. Um einen Großteil der fraglichen Transformationen ausschließen zu
können, wird beispielsweise in [Len95] ein Vergleich von Dreiecken, gebildet durch Zen-
tren relevanter Moleküle, zu Grunde gelegt.

Für das vorliegende Problem des Vergleichs zweier PunktmengenQf undRj,f werden für
beide Mengen Tripel berechnet, deren paarweise euklidischen Distanzen einen Schwell-
wert lu übersteigen, sowie einen Schwellwert lo unterschreiten. Die so gebildeten Dreie-
cke DQf

des Anfragetemplates werden mit den Dreiecken DRj,f
des Datenbanktemplates

anhand der Seitenlängen (euklidiche Distanz zweier Minutien) auf Ähnlichkeit getestet.
Der Vergleich der lokalen Strukturen erfolgt somit unabhängig von Koordinatenwerten
und vernachlässigt sowohl ihre globale Ausrichtung als auch ihre globale Positionierung.
Um den Einfluss lokaler Positionsfehler der Minutien, begründet durch Ungenauigkeiten
beim Enrolment oder bei der Minutienextraktion, zu schwächen, wird bei dem Vergleich
der Seitenlängen eine Fehlertoleranz δ berücksichtigt. Sind zwei Dreiecke da ∈ DQf

und
db ∈ DRj,f

ähnlich, so wird ihre relative Rotation γ zueinander ermittelt. Für eine globale
Prüfung auf Konsistenz wird im Anschluss überprüft, für wie viele Dreiecke in DQf

ein
Dreieck in DRj,f

mit gleicher relativer Rotation vorliegt. Eine hohe Anzahl solcher Drei-
ecke lässt neben der vielen lokalen Matches auch Rückschlüsse auf eine globale Drehung
ähnlicher Gesamtstrukturen zu. Je höher also die Anzahl ähnlicher lokaler Rotationen, de-
sto wahrscheinlicher die Ähnlichkeit beider Templates. Die Ähnlichkeit zweier Templates
Qf und Rj,f bestimmt sich somit wie folgt, wobei A = {0◦, · · · , 360◦} die Menge aller
Winkel in einer zu wählenden Diskretisierung (z.B. 2◦-Schritte) ist:

sim(DQf
, DRj,f

) = max
γ∈A

{∣∣{da ∈ DQf
| ∃db ∈ DRj,f

. |da − db| ≤ δ ∧ ∠(da, db) ≈ γ
}∣∣}
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Für alle Referenztemplates Rj,f ∈ DBf wird die maximale Anzahl der Anfragedreiecke
bestimmt, für die eine gleiche relative Rotation bzgl. Qf ermittelt wurde. Dieser Prozess
wird parallel für alle θ Finger der Anfrage Q durchgeführt. Für alle Personen Pj ∈ DB
werden anschließend die θ Ähnlichkeiten aller Finger Rj,i ∈ Pj aufaddiert:

sim(PQ, Pj) =
∑
f∈θ

sim(DQf
, DRj,f

)

Im Anschluss kann die Datenbank anhand dieser Anzahl absteigend sortiert und so für den
Verifikationsprozess priorisiert werden.

Das Verfahren GeoMatch zeichnet sich durch seine Robustheit gegenüber globaler Ver-
schiebung, sowie globaler Rotation der Templates aus, da lediglich Distanzen zwischen
Minutien, nicht aber ihre Koordinaten verglichen werden.

3.2 BioSimJoin

Der Nachteil von GeoMatch ist die hohe Laufzeit, die der Abgleich mehrerer Dreieckss-
trukturen zwischen Q und einem Referenztemplate Rj mit sich bringt. Aus diesem Grund
werden bei BioSimJoin nicht die geometrischen Beziehungen zwischen Minutien und
Chaff-Punkten betrachtet, sondern vielmehr Vergleiche der Punktmengen mittels Bereichs-
anfragen unterstützt durch eine Indexstruktur durchgeführt.

BioSimJoin speichert die Minutien bzw. Chaff-Punkte aller Personen mRj,f
∈ Rj,f in ei-

nem Datenraum des entsprechenden Fingertyps f . Dabei werden die x- und y-Koordinaten
aller Minutien bzw. Chaff-Punkte in einer Indexstruktur aus der Familie der R-Bäume
[Gut84] organisiert. Diese hierarchischen Indexstrukturen, die ursprünglich zur Speiche-
rung von hochdimensionalen Daten entwickelt wurden, eignen sich daher für die Verwal-
tung von biometrischen Punktdaten. Sie ermöglichen eine effiziente Beantwortung von
Bereichsanfragen (d. h. Rechtecks- bzw. Intervall-Anfragen), und sind zudem dynamisch,
d.h. durch effiziente Einfüge- bzw. Lösch-Operationen kann die Struktur bei Veränderung
des Datenbestandes effizient aktualisiert werden.

Aufgrund der vorliegenden Rauscheffekte wie Rotation bzw. Translation zwischen der
Anfrage Qf und den Datenbanktemplates Rj,f kann kein direkter Punktvergleich durch-
geführt werden. Daher wird bei der Anfrage für jede Minutie mQf

∈ Qf eine Bereichsan-
frage mit Radius r durchgeführt. Für jede dieser MinutienmQf

werden im Datenraum des
entsprechenden Fingertyps f diejenigen Punkte (Minutien oder Chaff-Punkte) bestimmt,
die sich innerhalb des Bereiches mit Radius r um mQf

befinden, d.h. deren euklidischer
Abstand r nicht überschreitet. Die Information, ob es sich bei den Punkten um Minutien
oder Chaff-Punkte handelt ist dabei nicht bekannt, lediglich welcher Person Pj sie zuge-
ordnet sind. Falls eine Minutie mRj,f

einer Person Pj in den Radius der Anfrageminutie
mQf

fällt, wird die Anzahl der Treffer für Pj um 1 erhöht. Die resultierende Kandida-
tenliste entspricht einer Liste an Personen Pj die absteigend nach Anzahl der Treffern für
diese Person sortiert ist. Der algorithmische Ablauf von BioSimJoin ist in Algorithmus 1
zusammengefasst. Wie auch bei GeoMatch kann die Berechnung für verschiedene Finger-
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typen parallelisiert erfolgen. Schließlich werden die Treffer aller Finger für jede Person
aufsummiert.

Algorithm 1 filterBioSimJoin(Qf , r)
candidates = [(P1,0), (P2,0), ..., (Pn,0)]
DBf = [(x1,f ,y1,f ,R1,f ),..., (xn,f ,yn,f ,Rn,f )]
for all minutia mQf

in Qf do
for all minutia mRj,f

in DBf do
if dist(mQf

,mRj,f
) ≤ r then

candidates[j].increment()
end if

end for
end for
return Kandidatenliste sortiert nach Anzahl der Treffer

4 Biometrische Datenbanken

Für die Evaluierung beider Verfahren verwenden wir die zwei Datenbanken für Fingerab-
drucksbilder NIST SD14 [WGT+07] und FVC-2002 DB1 [MMJP09]. Während die Bilder
der wesentlich größeren NIST-Datenbank durch Scans von Tintenabdrücken entstanden
und somit sehr starkes Rauschen enthalten, wurden die Aufnahmen der für heutige Er-
kennungssysteme wesentlich repräsentativeren FVC-Datenbank direkt digital erfasst. Um
ein möglichst praxisnahes Enrolment zu simulieren, haben wir uns an die in [MIK+10] be-
schriebenen Anforderungen an eine biometrische Datenbank gehalten. Gleichzeitig gewähr-
leisten wir einen hohen Schutz der Daten vor bekannten Angriffen, wie in [MMT09] for-
muliert. Die Minutien wurden mittels des NIST Algorithmus mindtct [WGT+07] extra-
hiert, nach Qualität gefiltert und anschließend mit Hilfe des Fuzzy Vault [JS06] geschützt.

Multi-Finger. Die Verwendung mehrerer Finger pro Person für das Enrolment steigert
exponentiell die Sicherheit vor Brute-Force Attacken. Aus diesem Grund identifizieren
wir eine Person anhand von drei Fingern, wie in [MIK+10] empfohlen.

Feature-Selektion des Referenztemplates Rj. Um eine möglichst hohe Qualität der Re-
ferenztemplates zu garantieren und Ungenauigkeiten aus Scanvorgang sowie Minutienex-
traktion zu verringern, werden lediglich zuverlässige Minutien verwendet. Dazu werden,
wie in [MIK+10] beschrieben, die Minutien ermittelt, die aus mehreren Aufnahmen eines
Fingers extrahiert wurden. Diese werden zudem anhand ihres von mindtct ausgegebenen
Qualitätswerts rel derart gefiltert, dass über alle drei Finger einer Person hinweg die bes-
ten 90 Minutien gewählt werden. Diese 90 Minutien werden anschließend durch insgesamt
112 zufällig eingestreute Chaff-Punkte verschleiert.

Diese Parameter gewährleisten ein Sicherheitslevel von 270 gegen Angriffe, die versuchen,

”echte“ von ”unechten“ Minutien, also Chaff-Punkten, unterscheiden zu können [MIK+10].

Feature-Selektion des Anfragetemplates Q. Da für Q in der Regel nur eine Aufnahme
vorliegt, entfällt die Feature-Extraktion hinsichtlich korrespondierender Minutien meh-
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rerer Aufnahmen. Stattdessen erfolgt die Filterung ausschließlich mittels des Qualitäts-
kriteriums rel, wobei dieser jedoch einen Mindestwert von 0.25 übersteigen muss.

Die original Datenbank FVC-2002 DB1 enthielt ursprünglich jeweils acht Aufnahmen für
110 Finger. Nach allen Vorverarbeitungsschritten resultiert eine Datenbank, in der jeweils
drei Finger zu insgesamt 27 Personen zusammengefasst wurden. Für diese Personen sind
insgesamt 2.430 Minutien und 3.024 Chaff-Punkte gespeichert.

Die original NIST SD14 enthält zu 2.700 Personen jeweils zwei Aufnahmen für alle zehn
Finger. Da die Qualität dieser Datenbank nicht an den heutigen Standard heranreicht,
und einige Aufnahmen beispielsweise durch handschriftliche Bemerkungen stark verun-
reinigt sind, wurden nur die Bildpaare verwendet, die durch den BOZORTH Matchingal-
gorithmus [WGT+07] als Abdrücke des gleichen Fingers erkannt werden. Für die ver-
bleibenden 2.365 Personen werden die drei Anfragefinger gemäß folgender Priorisierung
gewählt: linker/rechter Zeigefinger, linker/rechter Mittelfinger, linker/rechter Ringfinger,
linker/rechter Daumen und linker/rechter kleiner Finger. Das entspricht einer Reihenfolge
von (7, 2, 8, 3, 9, 4, 6, 1, 0, 5) gemäß der Codierung des Fingertyps nach [WGT+07]. Ins-
gesamt enthält der erstellte Datenbestand 212.850 Minutien und 264.880 Chaff-Punkte.

5 Experimente

Zunächst untersuchen wir die Parametereinstellung beider Verfahren sowohl anhand der
Datenbank FVC-2002 DB1 als auch der Datenbank NIST SD14. Die so ermittelten op-
timalen Parameter werden hinterher zur Untersuchung der Effektivität, sowie der Effizi-
enz der Verfahren auf beiden Datenbanken eingesetzt. Anschließend evaluieren wir die
Robustheit beider Verfahren gegenüber gedrehten oder verschobenen Daten und untersu-
chen, inwieweit Insertionen bzw. Deletionen von Minutien die Ergebnisse beeinflussen.
Alle Ergebnisse sind stets über alle Personen der entsprechenden Datenmenge gemittelt.
Das bedeutet, dass in allen Experimenten jede Person ein Mal als Anfrage verwendet wird.
Die Resultate entsprechen somit jeweils repräsentativen Durchschnittswerten.

Die Zeitmessungen wurden für jeden Finger parallelisiert auf folgenden Rechnern durch-
geführt: Intel Dual Core Xeon 7120 M CPUs bzw. Intel XEON E5345 CPUs mit je 2.33
bis 3.0 GHz und 16 GB RAM. Alle Verfahren wurden mittels Java JDK 6.0 implementiert.

5.1 Parameterevaluierung

Die Seitenbeschränkungen für das Verfahren GeoMatch lu und lo wurden so gewählt, dass
für nahezu alle Minutien aller Referenztemplates ein Dreieck ohne Chaff-Punkte kon-
struiert werden kann und gleichzeitig die Gesamtzahl aller Dreiecke möglichst gering ist.
Diese Bedingungen erfüllt beispielsweise die gewählte Beschränkung der Seitenlänge der
Dreiecke auf 14 − 80 Pixel. Für die Fehlertoleranz zeigte ein Wert von δ = 1 Pixel die
besten Ergebnisse.
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Abbildung 2: Bestimmung der optimalen Parameter von BioSimJoin.

Bei BioSimJoin müssen der Radius der Bereichsanfrage r und die maximale Kapazität
einer Indexseite c geeignet gewählt werden. Da c lediglich die Effizienz des Verfahrens
beeinflusst, kann zunächst eine Optimierung von r alleine durchgeführt werden. Abbil-
dung 2(a) zeigt die entsprechenden Ergebnisse auf einem 10%igem Sample der Daten-
bank SD 14. Die durch Dreiecke und Quadrate markierten Kurven illustrieren die durch-
schnittlich benötigte Laufzeit, um die Kandidatenliste mit und ohne Indexunterstützung
zu ermitteln. Ein höherer Radius impliziert die Überprüfung einer größeren Zahl von Da-
tenbankelementen und daher eine erhöhte Laufzeit. Die mit Rauten markierte Kurve stellt
die durchschnittliche Position der angefragten Person PQ innerhalb der Kandidatenliste
dar. Wenn r zu klein gewählt wird, kann PQ erst relativ spät verifiziert werden. Den bes-
ten Kompromiss erzielt ein Radius ropt = 38. BioSimJoin liefert nach durchschnittlich
6.23 ms bzw. 45.97 ms (ohne Indexunterstützung) eine Kandidatenliste, innerhalb derer
sich PQ durchschnittlich an Position 37.94 befindet. Unsere Experimente auf anderen bio-
metrischen Datenbanken mit gleichem Setting ergaben, dass dieser Radius-Wert allgemein
gute Ergebnisse verspricht.

Abbildung 2(b) zeigt den Zeitaufwand für die Indexierung, Abbildung 2(c) für die an-
schließende Suche, jeweils in Abhängigkeit von c. Diese Experimente wurden für un-
terschiedliche Datenbankgrößen durchgeführt. Die initialen Schwankungen sind durch
Implementierungs-Overhead zu erklären. Für steigende Werte von c kann eine Zunahme
der Laufzeit für den Indexaufbau beobachtet werden, da beim Splitten einer Seite se-
quenziell auf deren Elemente zugegriffen wird. Sobald c groß genug ist um alle Ein-
träge in einer einzigen Seiten zu speichern, nimmt die Laufzeit der Indexierung rapi-
de ab, wodurch allerdings auch keinerlei Indexunterstützung mehr für die anschließende
Ähnlichkeitssuche gegeben ist. Diese Experimente lassen vermuten, dass eine optimale
Kapazität 32 ≤ copt < 512, unabhängig von der Größe der angegebenen Datenbanken,
sowohl für die Indexierung als auch die darauf aufbauende Suche gewählt werden sollte.
Mittels eines sechsstufig gewichteten Mittelwerts der Laufzeiten für den relevanten Wer-
tebereich 32 ≤ copt < 512 ergab sich ein globales Minimum bei copt = 46.

Diese Parametrisierungen beider Verfahren zeigten auf beiden Datenbanken gute Ergeb-
nisse, sodass diese für alle folgenden Experimente übernommen wurden.
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5.2 Effektivität

Für die FVC Datenbank gibt Tabelle 1 für GeoMatch sowie BioSimJoin jeweils die Posi-
tion an, die eine angefragte Person PQ gemittelt über alle 27 Anfragen in der Kandidaten-
liste einnimmt. Bei BioSimJoin wird die Kandidatenliste im Schnitt in 16.29 ms erzeugt,
und PQ ist auf Position 11.44 zu finden. Das Verfahren GeoMatch erzielt hier eine deutlich
bessere Positionierung der korrekten Referenz in der Datenbank, benötigt für die entspre-
chenden Berechnungen allerdings signifikant mehr Zeit.

Abbildung 3 stellt das Ergebnis von GeoMatch und BioSimJoin anhand der Datenbank
SD14 für unterschiedliche Datenbankgrößen dar. Trotz starkem Rauschen bei dieser Da-
tenbank finden beide Verfahren die angefragte Person im Schnitt im vorderen Drittel der
Kandidatenliste. Bei einer Datenbank bestehend aus 2.300 Personen kann mit GeoMatch
die bei der anschließenden Verifikation zu überprüfende Anzahl an Personen um 69% re-
duziert werden. BioSimJoin schließt für die Verifikation 66% der Personen aus.

GEOMATCH BIOSIMJOIN

Position 2.07 11.44
Laufzeit 91.19 ms 16.29 ms

Tabelle 1: Effektivität bzgl. Datenbank FVC.
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Abbildung 3: Effektivität bzgl. Datenbank
SD14.

5.3 Effizienz

Abbildung 4 untersucht die Skalierbarkeit von
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Abbildung 4: Skalierbarkeit der Verfahren.

GeoMatch und BioSimJoin anhand der Daten-
bank SD14. GeoMatch zeigt hier eine lineare
Laufzeit mit zunehmender Anzahl an Datenbank-
einträgen (Minutien bzw. Chaff-Punkten). Durch
den Einsatz einer Indexstruktur erzielt BioSim-
Join eine deutlich geringere Laufzeit. So benötigt
BioSimJoin für eine Anfrage auf eine Daten-
bank bestehend aus knapp 500.000 Einträgen
lediglich 2.4 Sekunden, GeoMatch hingegen 2
Minuten und 10 Sekunden.
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Abbildung 5: Robustheit von GeoMatch und BioSimJoin gegenüber unterschiedlichem Rauschen.

5.4 Evaluierung der Robustheit anhand synthetischer Daten

Um die Stabilität von GeoMatch und BioSimJoin gegenüber Rotation, Translation, fehlen-
den oder zusätzlichen Minutien zu testen, wurden jeweils die Minutien von 200 zufällig
ausgewählten Personen der Referenzdatenbank SD14 gezielt manipuliert und als Anfrage
verwendet. Für jedes Experiment ist die Position der angefragten Person PQ innerhalb der
Kandidatenliste gemittelt über 200 Anfragen angegeben.

Rotation. Um die Auswirkung eines rotierten Anfragetemplates Q auf die Effektivität der
Verfahren zu untersuchen, drehten wir das Koordinatensystem von Q um einen Rotations-
winkel φ im Intervall [2◦, 4◦, 6◦, . . . , 20◦]. In der Regel wird beim Enrolment lediglich
eine Rotation um bis zu 20◦ toleriert. Minutien, die durch die Rotation aus dem Bildbe-
reich fallen, wurden verworfen. Abbildung 5(a) zeigt, dass die Effektivität von BioSimJoin
mit zunehmender Drehung der Minutien aus Q leicht abnimmt, da die Minutien der Refe-
renz nicht mehr optimal in die entsprechenden Anfrageradien fallen. Allerdings liegt PQ
bei einer starken Drehung von 20◦ im Mittel in der Kandidatenliste immer noch auf ei-
nem guten Platz 54 von insgesamt 200, obwohl die Drehung bei BioSimJoin nicht explizit
berücksichtigt wird. Das Verfahren GeoMatch ist robust gegen Rotationen.

Translation. Um abweichende Auflagepositionen des Anfragefingers auf dem Scanner
zu simulieren, wurden die Minutien-Koordinaten aus Q einheitlich um jeweils x Pixel
verschoben. Auch hier wurden verschobene Minutien außerhalb des Bildbereichs ausge-
schlossen. Bei einer Verschiebung um einen Wert kleiner dem Radius r der Bereichsanfra-
ge von BioSimJoin bleiben die gesuchten Personen innerhalb der Kandidatenliste stabil auf
dem ersten Platz (vgl. Abbildung 5(b)). Erst bei einer darüber hinausgehenden Verschie-
bung, fallen einige Minutien der Referenz aus der Bereichsanfrage, sodass die Effektivität
leicht abnimmt. GeoMatch ist hier robust und zeigt konstant optimale Ergebnisse.

Insertionen und Deletionen. Bedingt durch Ungenauigkeiten im Scanvorgang oder der
Minutienextraktion werden für Q teilweise andere Minutien erkannt als für die Referenz.
Für entsprechende Untersuchungen wurden Q im Vergleich zu den Referenzdaten zufällig
Minutien hinzugefügt bzw. entfernt. Abbildung 5(c) zeigt, dass für das Verfahren BioSim-
Join das Fehlen bzw. Hinzukommen von bis zu 40 Minutien keine Auswirkung auf die
optimale Erkennungsleistung haben. Die Ergebnisse von GeoMatch unterliegen hingegen
leichten Schwankungen. Besonders bei einer großen Anzahl zusätzlicher Minutien kommt
es vor, dass einige der zusätzlichen Minutien im Anfragetemplate auf Chaff-Punkte frem-
der Referenztemplates matchen, wodurch diese fälschlich im Ranking begünstigt werden.
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6 Zusammenfassung

Wir haben erste Ansätze vorgestellt, die eine Personenidentifikation anhand ihres geschütz-
ten Fingerabdrucks effizient ermöglichen. Bisherige Verfahren unterstützen lediglich ei-
ne Identifikation auf ungeschützten Daten oder eine Authentifikation auf sehr kleinen
Datenmengen. Die von uns entwickelten Filtertechniken erzeugen ein priorisiertes Ran-
king, anhand dessen ein genauer Abgleich von Anfrage und geschütztem Referenzobjekt
durchgeführt wird. Experimente auf realen und synthetischen Daten zeigen, dass trotz star-
kem Rauschen wie Rotation, Translation und Insertionen bzw. Deletionen bei der Anfra-
ge, und der Verschleierung der Referenzdaten, eine effektive und effiziente Identifikation
ermöglicht wird. Während sich das Verfahren GeoMatch haupsächlich durch Rotations-
und Translationsinvarianz auszeichnet, werden starke Effizienzsteigerungen in erster Li-
nie durch das zweite Verfahren BioSimJoin erzielt. In naher Zukunft werden wir uns damit
beschäftigen, beide Kriterien in ein Verfahren zu integrieren.

Danksagung: Diese Arbeit wurde innerhalb des Projekts BioKeyS des Bundesamt für
Sicherheit in der Informationstechnik (BSI) durch den Zukunftsfond gefördert. Wir dan-
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Nickel, Alexander Nouak, Alexander Opel und Xuebing Zhou für die erfolgreichen Dis-
kussionen und zahlreichen Kommentare.

Literatur

[Gut84] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In SIGMOD
Conference, Seiten 47–57, 1984.

[JS06] A. Juels und M. Sudan. A Fuzzy Vault Scheme. Des. Codes Cryptography, 38(2):237–
257, 2006.

[KMN09] U. Korte, J. Merkle und M. Niesing. Datenschutzfreundliche Authentisierung mit Fin-
gerabdrücken. Datenschutz und Datensicherheit - DuD, 33(5):289–294, May 2009.

[Len95] H.-P. Lenhof. An Algorithm for the Protein Docking Problem. In Bioinformatics: From
Nucleic Acids and Proteins to Cell Metabolism, Seiten 125–139, 1995.

[MIK+10] J. Merkle, H. Ihmor, U. Korte, M. Niesing und M. Schwaiger. Performance of the Fuzzy
Vault for Multiple Fingerprints (Extended Version). CoRR, abs/1008.0807, 2010.

[MMJP09] D. Maltoni, D. Maio, A.K. Jain und S. Prabhakar. Handbook of Fingerprint Recogniti-
on. Springer Publishing Company, Incorporated, 2009.

[MMT09] P. Mihailescu, A. Munk und B. Tams. The Fuzzy Vault for Fingerprints is Vulnerable
to Brute Force Attack. In BIOSIG, Seiten 43–54, 2009.

[RS60] I. S. Reed und G. Solomon. Polynomial Codes Over Certain Finite Fields. Journal of
the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[WGT+07] C.I. Watson, M.D. Garris, E. Tabassi, C.L. Wilson, R.M. McCabe, S. Janet und K. Ko.
User‘s Guide to NIST Biometric Image Software (NBIS), National Institute of Stan-
dards and Technology, 2007.

389



Benchmarking Hybrid OLTP&OLAP
Database Systems

Florian Funke Alfons Kemper
{first.last}@in.tum.de

Thomas Neumann

Technische Universität München
Fakultät für Informatik

Boltzmannstr. 3
85748 Garching, Germany

Abstract: Recently, the case has been made for operational or real-time Business
Intelligence (BI). As the traditional separation into OLTP database and OLAP data
warehouse obviously incurs severe latency disadvantages for operational BI, hybrid
OLTP&OLAP database systems are being developed. The advent of the first gener-
ation of such hybrid OLTP&OLAP database systems requires means to characterize
their performance.

While there are standardized and widely used benchmarks addressing either OLTP
or OLAP workloads, the lack of a hybrid benchmark led us to the definition of a new
mixed workload benchmark, called TPC-CH. This benchmark bridges the gap between
the existing single-workload suits: TPC-C for OLTP and TPC-H for OLAP. The newly
proposed TPC-CH benchmark executes a mixed workload: A transactional workload
based on the order entry processing of TPC-C and a corresponding TPC-H-equivalent
OLAP query suite on this sales data base. As it is derived from these two most widely
used TPC benchmarks our new TPC-CH benchmark produces results that are highly
comparable to both, hybrid systems and classic single-workload systems. Thus, we
are able to compare the performance of our own (and other) hybrid database system
running both OLTP and OLAP workloads in parallel with the OLTP performance of
dedicated transactional systems (e.g., VoltDB) and the OLAP performance of special-
ized OLAP databases (e.g., column stores such as MonetDB).

1 Introduction

The two areas of online transactions processing (OLTP) and online analytical processing
(OLAP) constitute different challenges for database architectures. While transactions are
typically short-running and perform very selective data access, analytical queries are gen-
erally longer-running and often scan significant portions of the data. Therefore customers
with high rates of mission-critical transactions are currently forced to operate two separate
systems: one operational database processing transactions and one data warehouse dedi-
cated to analytical queries. The data warehouse is periodically updated with data that is
extracted from the OLTP system and transformed into a schema optimized for analysis.
Early attempts to run analyses directly on the operational systems resulted in unacceptable
transaction processing performance [DHKK97].
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While this data staging approach allows each system to be tuned for its respective work-
load, it suffers from several inherent drawbacks: Two software and hardware systems must
be purchased and maintained. Additional systems may be required depending on the data
staging implementation. All systems have to store redundant copies of the same data,
but most importantly, analyses do not incorporate the latest data, but work on the stale
snapshot in the data warehouse.

Recently, the case has been made for so called real-time Business Intelligence. SAP’s co-
founder Hasso Plattner [Pla09] criticizes the separation between OLTP and OLAP deplor-
ing a shift of priorities towards OLTP. He emphasizes the necessity of OLAP for strategic
management and compares the expected impact of real-time analysis on management with
the impact of Internet search engines on the world.

Real-time business intelligence postulates novel types of database architectures, often
based on in-memory technology, such as the Hybrid Row-Column OLTP Database Ar-
chitecture for Operational Reporting [SBKZ08, BHF09, KGT+10] or HyPer [KN11].
They address both workloads with a single system, thereby eliminating the aforementioned
shortcomings of the data staging approach.
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Figure 1: Classification of DBMS and Benchmarks

Different strategies seem feasible to reconcile frequent inserts and updates with longer
running BI queries: Modifications triggered by transactions may be collected in a delta and
periodically merged with the main dataset which serves as a basis for queries [KGT+10].
Alternatively, the DBMS can devise versioning to separate transaction processing on the
latest version from queries operating on a snapshot of the versionized data.

This novel class of DBMS necessitates means to analyze their performance. Hybrid sys-
tems need to be compared against each other to evaluate the different implementation
strategies. They must also be juxtaposed to traditional, universal DBMS and specialized
single-workload systems to prove their competitiveness in terms of performance and re-
source consumption.

We present TPC-CH, a benchmark that seeks to produce highly comparable results for
all types of systems (cf. Figure 1). The following section evaluates related benchmarks.
Section 3 describes the design of the TPC-CH. Section 4 describes the systems under test.
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Section 5 shows setups and results produced with different types of DBMS and Section 6
concludes the paper.

2 Related Work

The Transaction Processing Performance Council (TPC) specifies benchmarks that are
widely used in industry and academia to measure performance characteristics of database
systems. TPC-C and its successor TPC-E simulate OLTP workloads. The TPC-C schema
consists of nine relations and five transactions that are centered around the management,
sale and distribution of products or services. The database is initially populated with ran-
dom data and then updated as new orders are processed by the system. TPC-E simulates
the workload of a brokerage firm. It features a more complex schema and pseudo-real con-
tent that seeks to match actual customer data better. However, TPC-C is far more pervasive
compared to TPC-E [Tra10c, Tra10d] and thus offers better comparability.

TPC-H is currently the only active decision support benchmark of the TPC. It simulates an
analytical workload in a business scenario similar to TPC-C’s. The benchmark specifies 22
queries on the 8 relations that answer business questions. TPC-DS, its dedicated successor,
will feature a star-schema, around 100 decision support queries and a description of the
ETL process that populates the database. However, it currently is in draft state.

Note that composing a benchmark for hybrid DBMS by simply using two TPC schemas,
one for OLTP and one for OLAP, does not produce meaningful results. Such a benchmark
would not give insight into how a system handles its most challenging task: The concurrent
processing of transactions and queries on the same data.

The composite benchmark for online transaction processing (CBTR) [BKS08] was pro-
posed to measure the impact of a workload that comprises both OLTP and operational
reporting. CBTR is no combination of existing standardized benchmarks, but uses an en-
terprises’ real data. The authors mention the idea of a data generator to produce results that
allow comparisons between systems. Yet the focus of CBTR seems to be the comparison
of different database systems for the specific use case of a certain enterprise.

3 Benchmark Design

Our premier goal in the design of TPC-CH was comparability. Therefore, we leverage a
combination of TPC-C and TPC-H. Both benchmarks are widely used and accepted, rela-
tively fast to implement and have enough similarity in their design to make a combination
possible.

TPC-CH is comprised of the unmodified TPC-C schema and transactions and an adapted
version of the TPC-H queries. Since the schemas of both benchmarks (cf. Figure 2) model
businesses which “must manage, sell, or distribute a product or service” [Tra10a, Tra10b],
they have some similarities between them. The relations ORDER(S) and CUSTOMER exist
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in both schemas. Moreover, both ORDER-LINE (TPC-C) and LINEITEM (TPC-H) model
entities that are sub-entities of ORDER(S) and thus resemble each other.

Warehouse
W

Stock
W · 100k

District
W · 10

Item
100k

Customer
W · 30k

Order
W · 30k+

Orderline
W · 300k+

Neworder
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History
W · 30k+

Part
SF · 200k

Partsupp
SF · 800k

Supplier
SF · 10k

Nation
25

Customer
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Orders
SF · 1, 500k

Lineitem
SF · 6, 000k

Region
5

Figure 2: TPC-C and TPC-H schemas

TPC-CH keeps all TPC-C entities and relationships completely unmodified and integrates
the likewise unchanged relations SUPPLIER, REGION and NATION from the TPC-H sche-
ma. These relations are frequently used in TPC-H queries and allow a non-intrusive in-
tegration into the TPC-C schema. The relation SUPPLIER is populated with a fixed num-
ber (10,000) of entries. Thereby, an entry in STOCK can be uniquely associated with
its SUPPLIER through the relationship STOCK.S I ID × STOCK.S W ID mod 10, 000 =
SUPPLIER.SU SUPPKEY.

The original TPC-C relation CUSTOMER contains no foreign key that references the asso-
ciated NATION. Since we keep the original schema untouched to preserve compatibility
with existing TPC-C installations, the foreign key is computed from the first character of
the field C STATE. TPC-C specifies that this first character can have 62 different values
(upper-case letters, lower-case letters and numbers), therefore we chose 62 nations to pop-
ulate NATION. The primary key N NATIONKEY is an identifier according to the TPC-H
specification. Its values are chosen such that their associated ASCII value is a letter or
number (i.e. N NATIONKEY ∈ [48, 57] ∪ [65, 90] ∪ [97, 122]). Therefore no additional
calculations are required to skip over the gaps in the ASCII code between numbers, upper-
case letters and lower-case letters. Database systems that do not provide a conversion
routine from a character to its ASCII code may deviate from the TPC-H schema and use a
single character as a primary key for NATION. REGION contains the five regions of these
nations. Relationships between the new relations are modeled with simple foreign key
fields (NATION.N REGIONKEY and SUPPLIER.SU NATIONKEY).

3.1 Transactions and Queries

As illustrated in the overview in Figure 4, the workload consists of the five original TPC-C
transactions and 22 queries adopted from TPC-H. Since the TPC-C schema is an unmodi-
fied subset of the TPC-CH schema, the original transactions can be executed without any
modification:

New-Order This transaction enters an order with multiple order-lines into the database.
For each order-line, 99% of the time the supplying warehouse is the home ware-
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Figure 3: TPC-CH schema. Entities originating from TPC-H are highlighted.

house. The home warehouse is a fixed warehouse ID associated with a terminal. To
simulate user data entry errors, 1% of the transactions fail and trigger a roll-back.

Payment A payment updates the balance information of a customer. 15% of the time, a
customer is selected from a random remote warehouse, in the remaining 85%, the
customer is associated with the home warehouse. The customer is selected by last
name in 60% of the cases and else by his three-component key.

Order-Status This read-only transaction is reporting the status of a customer’s last order.
The customer is selected by last name 60% of the time. If not selected by last name,
he is selected by his ID. The selected customer is always associated with the home
warehouse.

Delivery This transaction delivers 10 orders in one batch. All orders are associated with
the home warehouse.

Stock-Level This read-only transaction operates on the home warehouse only and returns
the number of those stock items that were recently sold and have a stock level lower
than a threshold value.
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Figure 4: Benchmark overview: OLTP and OLAP on the same data

The distribution over the five transaction types conforms to the TPC-C specification (cf.
Figure 4), resulting in frequent execution of the New-Order and Payment transactions.
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TPC-CH deviates from the underlying TPC-C benchmark by not simulating the termi-
nals and by generating client requests without any think-time, as proposed by [Vola].
This way, very high transaction rates can be achieved on relatively small database con-
figurations. Since the transactions themselves remain the same as in TPC-C, TPC-CH
results are directly comparable to existing TPC-C results with the same modifications,
e.g. VoltDB [Vola]. Moreover, these changes can be easily applied to existing TPC-C
implementations in order to produce TPC-CH-compatible results.

For the OLAP portion of the workload, we adopt the 22 queries from TPC-H to the TPC-
CH schema. In reformulating the queries to match the slightly different schema, we made
sure that their business semantics and syntactical structure were preserved. E.g., query 5
lists the revenue achieved through local suppliers (cf. Listing 1 and 2). Both queries join
similar relations, have similar selection criteria, perform summation, grouping and sorting.

SELECT n_name, SUM(ol_amount) AS revenue
FROM customer, "order", orderline, stock, supplier, nation, region
WHERE c_id=o_c_id AND c_w_id=o_w_id AND c_d_id=o_d_id

AND ol_o_id=o_id AND ol_w_id=o_w_id AND ol_d_id=o_d_id
AND ol_w_id=s_w_id AND ol_i_id=s_i_id
AND mod((s_w_id * s_i_id),10000)=su_suppkey
AND ascii(SUBSTRING(c_state, 1, 1))=su_nationkey
AND su_nationkey=n_nationkey AND n_regionkey=r_regionkey
AND r_name=’[REGION]’ AND o_entry_d>=’[DATE]’

GROUP BY n_name ORDER BY revenue DESC

Listing 1: TPC-CH Query 5
SELECT n_name, SUM(l_extendedprice * (1 - l_discount)) AS revenue
FROM customer, orders, lineitem, supplier, nation, region
WHERE c_custkey = o_custkey AND l_orderkey = o_orderkey

AND l_suppkey = s_suppkey AND c_nationkey = s_nationkey
AND s_nationkey = n_nationkey AND n_regionkey = r_regionkey
AND r_name = ’[REGION]’ AND o_orderdate >= DATE ’[DATE]’
AND o_orderdate < DATE ’[DATE]’ + INTERVAL ’1’ YEAR

GROUP BY n_name ORDER BY revenue DESC

Listing 2: TPC-H Query 5

TPC-CH does not require refresh functions, as specified in TPC-H, since the TPC-C trans-
actions are continuously updating the database. The following section particularizes, when
queries have to incorporate these updates.

3.2 Benchmark Parameters

TPC-CH has four scales: First, the database size is variable. As in TPC-C, the size of
the database is specified through the number of warehouses. Most relations grow with the
number of warehouses, with Item, Supplier, Nation and Region being the only ones of
constant size.
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The second scale is the composition of the workload. It can be comprised of analytical
queries only, transactions only or any combination of the two. The workload mix is spec-
ified as the number of parallel OLTP and OLAP sessions (streams) that are connected to
the database system. An OLTP session dispatches random TPC-C transactions sequen-
tially with the distribution described in the official specification [Tra10a]. An analytical
session performs continuous iterations over the query set which is comprised of all 22
queries. Each session starts with a different query to avoid caching effects between ses-
sions as depicted in Figure 4.

The third input parameter is the isolation level. Lower isolation levels like read committed
allow for faster processing, while higher isolation levels guarantee higher quality results
for both transactions and queries.

Finally, the freshness of the data that is used as a basis for the analyses is a parameter
of the benchmark. It only applies if the workload mix contains both, OLTP and OLAP
components. Data freshness is specified as the time or the number of transactions after
which newly issued query sets have to incorporate the most recent data. This allows for
both, database architectures that have a single dataset for both workloads and those that
devise a delta to run the benchmark.

3.3 Reporting requirements

In addition to a description of the hard- and software employed, the following character-
istics of the system are reported: The OLTP engine’s performance is quantified by the
throughput of New-Order transactions and all transactions. On the OLAP side, the query
response time is measured for each query in each iteration and session. The median value
and the query throughput are reported. In addition to the freshness parameter, the maxi-
mum dataset age is reported. For in-memory systems, the total memory consumption of all
processes over time is reported. This includes allocated, but not yet used memory chunks.
Figure 5 shows a sample report.
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Figure 5: Reporting Requirements of the TPC-CH Benchmark

4 Systems under Test

In Figure 1, we grouped DBMSs in four segments. We use TPC-CH to analyze the perfor-
mance of one representative of each category.
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4.1 OLAP-focused Database Systems

MonetDB is the most influential database research project on column store storage schemes
for in-memory OLAP databases. An overview of the system can be found in the summary
paper [BMK09] presented on the occasion of receiving the 10 year test of time award of
the VLDB conference. Therefore, we use MonetDB as a representative of the “strong in
OLAP”-category. Other systems in this category are TREX (BWA) of SAP, IBM Smart
Analytics Optimizer and Vertica Analytic Database.

4.2 OLTP-focused Database Systems

The H-Store prototype [KKN+08], created by researchers led by Michael Stonebraker
was recently commercialized by a start-up company name VoltDB. VoltDB is a high-
performance, in-memory OLTP system that pursues a lock-less approach [HAMS08] to
transaction processing where transactions operate on private partitions and are executed
in serial [Volb]. VoltDB represents the “strong in OLTP”-category. This category also in-
cludes the following systems: P*Time [CS04], IBM solidDB, TimesTen of Oracle and the
new startup developments Electron DB, Clustrix, Akiban, dbShards, NimbusDB, ScaleDB
and Lightwolf.

4.3 Universal Database Systems

This category contains the disk-based, universal database systems. We picked a popu-
lar, commercially available one (“System X”) as a representative of the universal DBMS
category.

4.4 Hybrid Database Systems

This category includes the new database development at SAP as outlined by Hasso Plat-
tner [Pla09] and our HyPer [KN11] system. A special-purpose OLTP&OLAP system is
Crescando [GUMG10] that has, however, limited query capabilites.

4.4.1 HyPer: Virtual Memory Snapshots

We have developed a novel hybrid OLTP&OLAP database system based on snapshotting
transactional data via the virtual memory management of the operating system [KN11].
In this architecture the OLTP process “owns” the database and periodically (e.g., in the
order of seconds or minutes) forks an OLAP process. This OLAP process constitutes a
fresh transaction consistent snapshot of the database. Thereby, we exploit the operating
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systems functionality to create virtual memory snapshots for new, duplicated processes.
In Unix, for example, this is done by creating a child process of the OLTP process via the
fork() system call. To guarantee transactional consistency, the fork() should only be
executed in between two (serial) transactions, never in the middle of one transaction. In
section 4.4.1 we will relax this constraint by utilizing the undo log to convert an action con-
sistent snapshot (created in the middle of a transaction) into a transaction consistent one.

The forked child process obtains an exact copy of the parent processes address space, as
exemplified in Figure 6 by the overlayed page frame panel. This virtual memory snapshot
that is created by the fork()-operation will be used for executing a session of OLAP
queries – as indicated on the right hand side of Figure 6.
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c

OLAP Queries

c

OLTP Requests /Tx

Virtual Memory

Read a
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b

d

c
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OLAP Queries

Figure 6: Forking a new Snapshot (left) and copy-on-update/write (right)

The snapshot stays in precisely the state that existed at the time the fork() took place.
Fortunately, state-of-the-art operating systems do not physically copy the memory seg-
ments right away. Rather, they employ a lazy copy-on-update strategy – as sketched out
in Figure 6. Initially, parent process (OLTP) and child process (OLAP) share the same
physical memory segments by translating either virtual addresses (e.g., to object a) to the
same physical main memory location. The sharing of the memory segments is highlighted
in the graphics by the dotted frames. A dotted frame represents a virtual memory page
that was not (yet) replicated. Only when an object, like data item a, is updated, the OS-
and hardware-supported copy-on-update mechanism initiate the replication of the virtual
memory page on which a resides. Thereafter, there is a new state denoted a′ accessible by
the OLTP-process that executes the transactions and the old state denoted a, that is acces-
sible by the OLAP query session. Unlike the figure suggests, the additional page is really
created for the OLTP process that initiated the page change and the OLAP snapshot refers
to the old page – this detail is important for estimating the space consumption if several
such snapshots are created (cf. Figure 7).

So far we have sketched a database architecture utilizing two processes, one for OLTP and
another one for OLAP. As the OLAP queries are read-only they could easily be executed
in parallel in multiple threads that share the same address space. Still, we can avoid any
synchronization (locking and latching) overhead as the OLAP queries do not share any
mutable data structures. Modern multi-core computers which typically have more than ten
cores can certainly yield a substantial speed up via this inter-query parallelization.

Another possibility to make good use of the multi-core servers is to create multiple snap-
shots. The HyPer architecture allows for arbitrarily current snapshots. This can simply be
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achieved by periodically (or on demand) fork()-ing a new snapshot and thus starting a
new OLAP query session process. This is exemplified in Figure 7. Here we sketch the one
and only OLTP process’es current database state (the front panel) and three active query
session processes’ snapshots – the oldest being the one in the background. The successive
state changes are highlighted by the four different states of data item a (the oldest state),
a′, a′′, and a′′′ (the youngest transaction consistent state). Obviously, most data items do
not change in between different snapshots as we expect to create snapshots for most up-to-
date querying at intervals of a few seconds – rather than minutes or hours as is the case in
current separated data warehouse solutions with ETL data staging. The number of active
snapshots is, in principle, not limited, as each “lives” in its own process. By adjusting the
priority we can make sure that the mission critical OLTP process is always allocated a core
– even if the OLAP processes are numerous and/or utilize multi-threading and thus exceed
the number of cores.

A snapshot will be deleted after the last query of a session is finished. This is done by
simply terminating the process that was executing the query session. It is not necessary to
delete snapshots in the same order as they were created. Some snapshots may persist for
a longer duration, e.g., for detailed stocktaking purposes. However, the memory overhead
of a snapshot is proportional to the number of transactions being executed from creation
of this snapshot to the time of the next younger snapshot (if it exists or to the current
time). The figure exemplifies this on the data item c which is physically replicated for the
“middle age” snapshot and thus shared and accessible by the oldest snapshot. Somewhat
against our intuition, it is still possible to terminate the middle-aged snapshot before the
oldest snapshot as the page on which c resides will be automatically detected by the OS-
/processor as being shared with the oldest snapshot via a reference counter associated with
the physical page. Thus it survives the termination of the middle-aged snapshot – unlike
the page on which a′ resides which is freed upon termination of the middle-aged snapshot
process. The youngest snapshot accesses the state c′ that is contained in the current OLTP
process’es address space.
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5 Results

In this section, we present cursory results with TPC-CH. Our experiments are performed
on a machine with two quad-core 2.93 GHz Intel R© Xeon R© processors and 64GB of mem-
ory running Red Hat Enterprise Linux 5.4. All databases are scaled to 12 warehouses and
we performed 5 iterations over the query sets.

For MonetDB, we evaluate an instance of the benchmark that performs a pure-OLAP
workload. We excluded OLTP because the absence of indexes in MonetDB prevents ef-
ficient transaction processing. We present results of setups with three parallel OLAP ses-
sions in Figure 9. Since there are no updates to the database in this scenario, the freshness
and the isolation level parameter are lapsed. Increasing the number of query streams to 5
hardly changes the throughput, but almost doubled the query execution times. Running a
single query session improved the execution times between 10% and 45% but throughput
deteriorates to 0.55 queries per second.

For VoltDB, the workload-mix includes transactions only. One “site” per warehouse/-
partition (i.e. 12 sites) yields best results on our server. Differing from the TPC-CH
specification, we allow VoltDB to execute only single-partition transactions, as suggested
in [Vola] and skip those instances of New-Order and Payment that involve more than one
warehouse. The isolation level in VoltDB is serializable.

For System X, we use 25 OLTP sessions and 3 OLAP sessions. The configured isolation
level is read committed for both OLTP and OLAP and we use group committing with
groups of five transactions. Since the system operates on a single dataset, every query op-
erates on the latest data. Figure 9 shows the results of this setup. Increasing the OLAP ses-
sions from 3 to 12 enhances the query throughput from 0.38 to 1.20 queries/s, but causes
the query execution times to go up by 20 to 30% and a decline of the OLTP throughput by
14%. Adding more OLTP sessions drastically increased query execution time as well.

For HyPer, we use a transaction mix of 5 OLTP sessions and 3 parallel OLAP sessions
executing queries. We do not make the simplification of running single-partition transac-
tions only, as for VoltDB, but challenge HyPer with warehouse-crossing transactions as
specified in Section 3.1. In one setup, the OLAP sessions operate on the initially loaded
data (cf. Figure 9). In a second one, a fresh snapshot is created for every new query stream
(cf. Figure 9). Queries are snapshot-isolated from transactions. On the OLTP side, the
isolation level is serializable.

Since HyPer does not feature separate client and server processes yet, the results are pro-
duced by a single driver that incorporates both components. Thus, potential performance
loss caused by inter-process communication is ruled out for HyPer, but not for the others
systems under test. HyPer’s strong OLTP performance results from the compilation of
transactions to machine code. VoltDB uses stored procedures written in Java instead.

Figure 9 shows the memory consumption of HyPer and VoltDB. We do not include Mon-
etDB results here, because the MonetDB database does not grow over time. HyPer runs
three query sessions concurrently to the 5 OLTP sessions and spawns a fresh VM snap-
shot after each iteration. VoltDB executes a pure-OLTP workload. The figure shows the
memory consumption after the initial load was performed.

400



Sy
st

em
X

H
yP

er
co

nfi
gu

ra
tio

ns
M

on
et

D
B

Vo
ltD

B
3

qu
er

y
st

re
am

s
8

qu
er

y
se

ss
io

ns
(s

tr
ea

m
s)

3
qu

er
y

se
ss

io
ns

(s
tr

ea
m

s)
no

O
LT

P
no

O
L

A
P

25
JD

B
C

cl
ie

nt
s

si
ng

le
th

re
ad

ed
O

LT
P

5
O

LT
P

th
re

ad
s

3
qu

er
y

st
re

am
s

on
ly

O
LT

P
O

LT
P

Q
ue

ry
re

sp
.

O
LT

P
Q

ue
ry

re
sp

.
O

LT
P

Q
ue

ry
re

sp
.

Q
ue

ry
re

sp
.

Q
ue

ry
th

ro
ug

hp
ut

tim
es

(m
s)

th
ro

ug
hp

ut
tim

es
(m

s)
th

ro
ug

hp
ut

tim
es

(m
s)

tim
es

(m
s)

Q
1

new order: 221.91 tps; total: 493.14 tps

42
21

new order: 25166 tps; total: 55924 tps

76

new order: 112217 tps; total: 249237 tps

70
72

new order: 16273.80 tps; total: 36159.07 tps
According to [Volb]:
53000 tps (total) on one node; 560000 tps (total) on 12 nodes

Q
2

65
55

28
2

15
6

21
8

Q
3

16
41

0
11

2
72

11
2

Q
4

38
30

34
8

22
7

81
68

Q
5

15
21

2
24

89
18

71
12

02
8

Q
6

38
95

24
15

16
3

Q
7

82
85

26
22

15
59

24
00

Q
8

16
55

56
3

61
4

30
6

Q
9

35
20

45
7

24
1

21
4

Q
10

15
30

9
42

88
24

08
92

39
Q

11
60

06
48

32
42

Q
12

56
89

32
4

18
2

21
4

Q
13

91
8

40
3

24
3

52
1

Q
14

60
96

42
0

17
4

91
9

Q
15

67
68

14
07

82
2

58
7

Q
16

60
88

21
57

15
23

77
03

Q
17

51
95

18
7

17
4

33
5

Q
18

14
53

0
24

0
12

3
29

17
Q

19
44

17
29

2
13

4
40

49
Q

20
37

51
31

3
14

4
93

7
Q

21
93

82
48

47
33

2
Q

22
88

21
10

9
16

7
T

hr
ou

gh
pu

t
0.

38
qu

er
ie

s/
s

10
.4

9
qu

er
ie

s/
s

5.
96

qu
er

ie
s/

s
1.

21
qu

er
ie

s/
s

Figure 8: Performance Comparison: System X, HyPer OLTP&OLAP, MonetDB (OLAP only),
VoltDB (OLTP only)
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Transactions

A. VoltDB
D. HyPer OLTP+OLAP (respawn)

C. HyPer OLTP+OLAP (no respawn)
HyPer: OLAP VM Snapshot 1 terminated
HyPer: OLAP VM Snapshot 2 terminated
HyPer: OLAP VM Snapshot 3 terminated

Figure 9: Memory consumption (after load) of VoltDB and HyPer

6 Summary

We presented TPC-CH, a benchmark for hybrid OLTP&OLAP database systems. TPC-
CH is based on the standardized TPC-C and TPC-H benchmarks. It is not only suited for
hybrid DBMS, but also allows to compare them with systems specialized on either of the
two workloads as well as traditional, universal systems. We substantiate this claim with
results of representatives of each type of database system.

Acknowledgment We acknowledge the fruitful discussions about this benchmark dur-
ing the Dagstuhl Workshop on “Robust Query Processing” (September 2010). Stefan
Krompaß helped to implement the System X benchmark.
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A Schema

WAREHOUSE

ID
integer

NAME
varchar 10

STREET_1
varchar 20

STREET_2
varchar 20

CITY
varchar 20

STATE
char 2

ZIP
char 9

TAX
decimal

YTD
decimal

DISTRICT

ID
integer

W_ID
integer

NAME
varchar 10

STREET_1
varchar 20

CITY
varchar 20

STATE
char 2

ZIP
char 9

TAX
decimal

YTD
decimal

STREET_2
varchar 20

D_NEXT_O_ID
integer

CUSTOMER

ID
integer

D_ID
integer

LAST
varchar 16

STREET_1
varchar 20

CITY
varchar 20

STATE
char 2

ZIP
char 9

PHONE
char 16

STREET_2
varchar 20

W_ID
integer

FIRST
varchar 16

MIDDLE
char 2

CREDIT_LIM
decimal

DISCOUNT
decimal

YTD_PAYMENT
decimal

PAYMENT_CNT
decimal

DELIVERY_CNT
decimal

DATA
varchar 500

BALANCE
decimal

SINCE
date

CREDIT
char 2

HISTORY

C_ID
integer

C_D_ID
integer

C_W_ID
integer

D_ID
integer

W_ID
integer
DATE
date

AMOUNT
decimal

DATA
varchar 24

NEW-ORDER

O_ID
integer

D_ID
integer

W_ID
integer

ORDER

ID
integer

D_ID
integer

W_ID
integer

C_ID
integer

O_ENTRY_D
date

CARRIER_ID
integer

OL_CNT
decimal

ALL_LOCAL
decimal

ORDER-LINE

O_ID
integer

D_ID
integer

W_ID
integer

NUMBER
integer

I_ID
integer

SUPPLY_W_ID
integer

DELIVERY_D
date

QUANTITY
numeric

AMOUNT
numeric

DIST_INFO
char 24

ITEM

ID
integer

IM_ID
integer

NAME
varchar 24

PRICE
decimal

DATA
varchar 50

STOCK

I_ID
integer

W_ID
integer

QUANTITY
numeric

DIST_01
char 24

DIST_02
char 24

DIST_03
char 24

DIST_04
char 24

DIST_05
char 24

DIST_06
char 24

DIST_07
char 24

DIST_08
char 24

DIST_09
char 24

DIST_10
char 24

YTD
decimal

ORDER_CNT
decimal

REMOTE_CNT
decimal

DATA
varchar 50

NATION

NATIONKEY
integer

REGIONKEY
integer
COMMENT
varchar 152REGION

REGIONKEY
integer

NAME
char 55

COMMENT
varchar 152

NAME
char 55

SUPPLIER

SUPPKEY
integer

NAME
char 25

NATIONKEY
integer

PHONE
char 15

ACCTBAL
numeric

COMMENT
varchar 101

ADDRESS
varchar 40

B Queries

All dates, strings and ranges in the queries are examples only. Due to space constraints, we
had to relinquish pretty-printing, but include the queries formatted suitable for copy&paste.

Q1: Generate orderline overview

SELECT ol_number,SUM(ol_quantity) AS sum_qty,SUM(ol_amount) AS
sum_amount,AVG(ol_quantity) AS avg_qty,AVG(ol_amount) AS
avg_amount,COUNT(*) AS count_order FROM orderline WHERE
ol_delivery_d>’2007-01-02 00:00:00.000000’ GROUP BY ol_number
ORDER BY ol_number

Q2: Most important supplier/item-combinations (those that have the lowest stock level for certain
parts in a certain region)

SELECT su_suppkey,su_name,n_name,i_id,i_name,su_address,su_phone,
su_comment FROM item,supplier,stock,nation,region,(SELECT s_i_id
AS m_i_id,MIN(s_quantity) AS m_s_quantity FROM stock,supplier,
nation,region WHERE mod((s_w_id*s_i_id),10000)=su_suppkey AND
su_nationkey=n_nationkey AND n_regionkey=r_regionkey AND r_name
LIKE ’Europ%’ GROUP BY s_i_id) m WHERE i_id=s_i_id AND mod((s_w_id
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* s_i_id),10000)=su_suppkey AND su_nationkey=n_nationkey AND
n_regionkey=r_regionkey AND i_data LIKE ’%b’ AND r_name LIKE ’
Europ%’ AND i_id=m_i_id AND s_quantity=m_s_quantity ORDER BY
n_name,su_name,i_id

Q3: Unshipped orders with highest value for customers within a certain state

SELECT ol_o_id,ol_w_id,ol_d_id,SUM(ol_amount) AS revenue,o_entry_d
FROM customer,neworder,"order",orderline WHERE c_state LIKE ’A%’

AND c_id=o_c_id AND c_w_id=o_w_id AND c_d_id=o_d_id AND no_w_id=
o_w_id AND no_d_id=o_d_id AND no_o_id=o_id AND ol_w_id=o_w_id AND
ol_d_id=o_d_id AND ol_o_id=o_id AND o_entry_d>’2007-01-02
00:00:00.000000’ GROUP BY ol_o_id,ol_w_id,ol_d_id,o_entry_d ORDER
BY revenue DESC,o_entry_d

Q4: Orders that were partially shipped late

SELECT o_ol_cnt,COUNT(*) AS order_count FROM "order" WHERE
o_entry_d>=’2007-01-02 00:00:00.000000’ AND o_entry_d<’2012-01-02
00:00:00.000000’ AND EXISTS (SELECT * FROM orderline WHERE o_id=
ol_o_id AND o_w_id=ol_w_id AND o_d_id=ol_d_id AND ol_delivery_d>=
o_entry_d) GROUP BY o_ol_cnt ORDER BY o_ol_cnt

Q5: Revenue volume achieved through local suppliers

SELECT n_name,SUM(ol_amount) AS revenue FROM customer,"order",
orderline,stock,supplier,nation,region WHERE c_id=o_c_id AND
c_w_id=o_w_id AND c_d_id=o_d_id AND ol_o_id=o_id AND ol_w_id=
o_w_id AND ol_d_id=o_d_id AND ol_w_id=s_w_id AND ol_i_id=s_i_id
AND mod((s_w_id * s_i_id),10000)=su_suppkey AND ascii(SUBSTRING(
c_state,1,1))=su_nationkey AND su_nationkey=n_nationkey AND
n_regionkey=r_regionkey AND r_name=’Europe

’ AND o_entry_d>=’
2007-01-02 00:00:00.000000’ GROUP BY n_name ORDER BY revenue DESC

Q6: Revenue generated by orderlines of a certain quantity

SELECT SUM(ol_amount) AS revenue FROM orderline WHERE
ol_delivery_d>=’1999-01-01 00:00:00.000000’ AND ol_delivery_d<’
2020-01-01 00:00:00.000000’ AND ol_quantity BETWEEN 1 AND 100000

Q7: Bi-directional trade volume between two nations

SELECT su_nationkey AS supp_nation,cust_nation,o_year,SUM(
ol_amount) AS revenue FROM supplier,stock,orderline,(SELECT o_w_id
,o_d_id,o_id,o_c_id,EXTRACT(YEAR FROM o_entry_d) AS o_year FROM "
order") o,(SELECT c_id,c_w_id,c_d_id,c_state,SUBSTRING(c_state
,1,1) AS cust_nation FROM customer) c,nation n1,(SELECT
n_nationkey,n_name,code(n_nationkey) AS n_nationkeyasc FROM nation
) n2 WHERE ol_supplier_w_id=s_w_id AND ol_i_id=s_i_id AND mod((
s_w_id * s_i_id),10000)=su_suppkey AND ol_w_id=o_w_id AND ol_d_id=
o_d_id AND ol_o_id=o_id AND c_id=o_c_id AND c_w_id=o_w_id AND
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c_d_id=o_d_id AND su_nationkey=n1.n_nationkey AND cust_nation=n2.
n_nationkeyasc AND ((n1.n_name=’Germany ’ AND n2.
n_name=’Cambodia ’) OR (n1.n_name=’Cambodia

’ AND n2.n_name=’Germany ’)) AND
ol_delivery_d BETWEEN TIMESTAMP ’2000-01-01’ AND TIMESTAMP ’
2099-01-01’ GROUP BY su_nationkey,cust_nation,o_year ORDER BY
su_nationkey,cust_nation,o_year

Q8: Market share of a given nation for customers of a given region for a given part type

SELECT EXTRACT (YEAR FROM o_entry_d) AS l_year,SUM(CASE WHEN n2.
n_name=’Germany ’ THEN ol_amount ELSE 0 END)/SUM(
ol_amount) AS mkt_share FROM item,supplier,stock,orderline,"order"
,customer,nation n1,nation n2,region WHERE i_id=s_i_id AND ol_i_id
=s_i_id AND ol_supplier_w_id=s_w_id AND mod((s_w_id * s_i_id)
,10000)=su_suppkey AND ol_w_id=o_w_id AND ol_d_id=o_d_id AND
ol_o_id=o_id AND c_id=o_c_id AND c_w_id=o_w_id AND c_d_id=o_d_id
AND n1.n_nationkey=ascii(SUBSTRING(c_state,1,1)) AND n1.
n_regionkey=r_regionkey AND ol_i_id<1000 AND r_name=’Europe

’ AND su_nationkey
=n2.n_nationkey AND o_entry_d BETWEEN ’2007-01-02 00:00:00.000000’
AND ’2012-01-02 00:00:00.000000’ AND i_data LIKE ’%b’ AND i_id=

ol_i_id GROUP BY l_year ORDER BY l_year

Q9: Profit made on a given line of parts,broken out by supplier nation and year

SELECT n_name,EXTRACT(YEAR FROM o_entry_d) AS l_year,SUM(ol_amount
) AS sum_profit FROM item,stock,supplier,orderline,"order",nation
WHERE ol_i_id=s_i_id AND ol_supplier_w_id=s_w_id AND mod((s_w_id *
s_i_id),10000)=su_suppkey AND ol_w_id=o_w_id AND ol_d_id=o_d_id

AND ol_o_id=o_id AND ol_i_id=i_id AND su_nationkey=n_nationkey AND
i_data LIKE ’%BB’ GROUP BY n_name,l_year ORDER BY n_name,l_year

DESC

Q10: Customers who received their ordered products late

SELECT c_id,c_last,SUM(ol_amount) AS revenue,c_city,c_phone,n_name
FROM customer,"order",orderline,nation WHERE c_id=o_c_id AND

c_w_id=o_w_id AND c_d_id=o_d_id AND n_nationkey=ascii(SUBSTRING(
c_state,1,1)) AND ol_w_id=o_w_id AND ol_d_id=o_d_id AND ol_o_id=
o_id AND o_entry_d>=’2007-01-02 00:00:00.000000’ AND o_entry_d<=
ol_delivery_d GROUP BY c_id,c_last,c_city,c_phone,n_name ORDER BY
revenue DESC

Q11: Most important (high order count compared to the sum of all ordercounts) parts supplied by
suppiers of a particular nation

SELECT s_i_id,SUM(s_quantity) AS ordercount FROM stock,supplier,
nation WHERE mod((s_w_id * s_i_id),10000)=su_suppkey AND
su_nationkey=n_nationkey AND n_name=’Germany ’
GROUP BY s_i_id HAVING SUM(s_quantity)>(SELECT SUM(s_quantity) *
.0001 FROM stock,supplier,nation WHERE mod((s_w_id * s_i_id)

405



,10000)=su_suppkey AND su_nationkey=n_nationkey AND n_name=’
Germany ’) ORDER BY ordercount DESC

Q12: Determine whether selecting less expensive modes of shipping is negatively affecting the
critical-priority orders by causing more parts to be received late by customers

SELECT o_ol_cnt,SUM(CASE WHEN o_carrier_id=1 OR o_carrier_id=2
THEN 1 ELSE 0 END) AS high_line_count,SUM(CASE WHEN o_carrier_id
<>1 AND o_carrier_id<>2 THEN 1 ELSE 0 END) AS low_line_count FROM
"order",orderline WHERE ol_w_id=o_w_id AND ol_d_id=o_d_id AND
ol_o_id=o_id AND o_entry_d<= ol_delivery_d AND ol_delivery_d<’
2020-01-01 00:00:00.000000’ GROUP BY o_ol_cnt ORDER BY o_ol_cnt

Q13: Relationships between customers and the size of their orders

SELECT c_count,COUNT(*) AS custdist FROM (SELECT c_id,COUNT(o_id)
FROM customer LEFT OUTER JOIN "order" ON (c_w_id=o_w_id AND c_d_id
=o_d_id AND c_id=o_c_id AND o_carrier_id>8) GROUP BY c_id) AS
c_orders (c_id,c_count) GROUP BY c_count ORDER BY custdist DESC,
c_count DESC

Q14: Market response to a promotion campaign

SELECT 100.00 * SUM(CASE WHEN i_data LIKE ’PR%’ THEN ol_amount
ELSE 0 END) / 1+SUM(ol_amount) AS promo_revenue FROM orderline,
item WHERE ol_i_id=i_id AND ol_delivery_d>=’2007-01-02
00:00:00.000000’ AND ol_delivery_d<’2020-01-02 00:00:00.000000’

Q15: Determines the top supplier

with revenue (supplier_no,total_revenue) AS (SELECT supplier_no,
SUM(ol_amount) FROM orderline,(SELECT s_w_id,s_i_id,mod((s_w_id *
s_i_id),10000) AS supplier_no FROM stock) s WHERE ol_i_id=s_i_id
AND ol_supplier_w_id=s_w_id AND ol_delivery_d>=’2010-05-23
12:00:00’ GROUP BY supplier_no) SELECT su_suppkey,su_name,
su_address,su_phone,total_revenue FROM supplier,revenue WHERE
su_suppkey=supplier_no AND total_revenue=(SELECT MAX(total_revenue
) FROM revenue) ORDER BY su_suppkey

Q16: Number of suppliers that can supply parts with given attributes

SELECT i_name,brand,i_price,COUNT(DISTINCT (mod((s_w_id * s_i_id)
,10000))) AS supplier_cnt FROM stock,(SELECT i_id,i_data,i_name,
SUBSTRING(i_data,1,3) AS brand,i_price FROM item) i WHERE i_id=
s_i_id AND i_data NOT LIKE ’zz%’ AND (mod((s_w_id * s_i_id),10000)
) NOT IN (SELECT su_suppkey FROM supplier WHERE su_comment LIKE ’%
bad%’) GROUP BY i_name,brand,i_price ORDER BY supplier_cnt DESC

Q17: Average yearly revenue that would be lost if orders were no longer filled for small quantities
of certain parts

SELECT SUM(ol_amount) / 2.0 AS avg_yearly FROM orderline,item
WHERE ol_i_id=i_id AND i_data LIKE ’%b’ AND ol_quantity<(SELECT
0.2 * AVG(ol_quantity) FROM orderline WHERE ol_i_id=i_id)
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Q18: Rank customers based on their placement of a large quantity order

SELECT c_last,c_id,o_id,o_entry_d,o_ol_cnt,SUM(ol_amount) FROM
customer,"order",orderline WHERE c_id=o_c_id AND c_w_id=o_w_id AND
c_d_id=o_d_id AND ol_w_id=o_w_id AND ol_d_id=o_d_id AND ol_o_id=

o_id GROUP BY o_id,o_w_id,o_d_id,c_id,c_last,o_entry_d,o_ol_cnt
HAVING SUM(ol_amount)>200 ORDER BY SUM(ol_amount) DESC,o_entry_d

Q19: Machine generated data mining (revenue report for disjunctive predicate)

SELECT SUM(ol_amount) AS revenue FROM orderline,item WHERE (
ol_i_id=i_id AND i_data LIKE ’%a’ AND ol_quantity>=1 AND
ol_quantity<= 10 AND i_price BETWEEN 1 AND 400000 AND ol_w_id IN
(1,2,3)) OR (ol_i_id=i_id AND i_data LIKE ’%b’ AND ol_quantity>=1
AND ol_quantity<= 10 AND i_price BETWEEN 1 AND 400000 AND ol_w_id
IN (1,2,4)) OR (ol_i_id=i_id AND i_data LIKE ’%c’ AND ol_quantity
>=1 AND ol_quantity<= 10 AND i_price BETWEEN 1 AND 400000 AND
ol_w_id IN (1,5,3))

Q20: Suppliers in a particular nation having selected parts that may be candidates for a promotional
offer

SELECT su_name,su_address FROM supplier,nation WHERE su_suppkey IN
(SELECT mod(s_i_id * s_w_id,10000) FROM stock,orderline WHERE

s_i_id IN (SELECT i_id FROM item WHERE i_data LIKE ’co%’) AND
ol_i_id=s_i_id AND ol_delivery_d>’2010-05-23 12:00:00’ GROUP BY
s_i_id,s_w_id,s_quantity HAVING 2*s_quantity>SUM(ol_quantity)) AND
su_nationkey=n_nationkey AND n_name=’Germany ’

ORDER BY su_name

Q21: Suppliers who were not able to ship required parts in a timely manner

Q21: SELECT su_name,COUNT(*) AS numwait FROM supplier,orderline l1
,"order",stock,nation WHERE ol_o_id=o_id AND ol_w_id=o_w_id AND
ol_d_id=o_d_id AND ol_w_id=s_w_id AND ol_i_id=s_i_id AND mod((
s_w_id * s_i_id),10000)=su_suppkey AND l1.ol_delivery_d>o_entry_d
AND NOT EXISTS (SELECT * FROM orderline l2 WHERE l2.ol_o_id=l1.
ol_o_id AND l2.ol_w_id=l1.ol_w_id AND l2.ol_d_id=l1.ol_d_id AND l2
.ol_delivery_d>l1.ol_delivery_d) AND su_nationkey=n_nationkey AND
n_name=’Germany ’ GROUP BY su_name ORDER BY
numwait DESC,su_name

Q22: Geographies with customers who may be likely to make a purchase

SELECT country,COUNT(*) AS numcust,SUM(c.c_balance) AS totacctbal
FROM (SELECT c_phone,c_balance,c_id,c_w_id,c_d_id,c_balance,
SUBSTRING(c_state,1,1) AS country FROM customer) c WHERE SUBSTRING
(c_phone,1,1) IN (’1’,’2’,’3’,’4’,’5’,’6’,’7’) AND c.c_balance>(
SELECT AVG(c2.c_balance) FROM customer c2 WHERE c2.c_balance>0.00
AND SUBSTRING(c2.c_phone,1,1) IN (’1’,’2’,’3’,’4’,’5’,’6’,’7’))
AND NOT EXISTS (SELECT * FROM "order" WHERE o_c_id=c_id AND o_w_id
=c_w_id AND o_d_id=c_d_id) GROUP BY country ORDER BY country
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C Relations

NATION

NATION-
KEY

NAME REGION-
KEY

48 Australia 4
49 Belgium 5
50 Cameroon 1
51 Denmark 5
52 Ecuador 2
53 France 5
54 Germany 5
55 Hungary 5
56 Italy 5
57 Japan 3
65 Kenya 1
66 Lithuania 5
67 Mexico 2
68 Netherlands 5
69 Oman 1
70 Portugal 5
71 Qatar 1
72 Rwanda 1
73 Serbia 5
74 Togo 1
75 United States 2
76 Vietnam 3
77 Singapore 3
78 Cambodia 3
79 Yemen 1
80 Zimbabwe 1
81 Argentina 2
82 Bolivia 2
83 Canada 2
84 Dominican Re-

public
2

85 Egypt 1

NATION-
KEY

NAME REGION-
KEY

86 Finnland 5
87 Ghana 1
88 Haiti 2
89 India 3
90 Jamaica 4
97 Kazakhstan 3
98 Luxembourg 5
99 Morocco 1
100 Norway 5
101 Poland 5
102 Peru 2
103 Nicaragua 2
104 Romania 5
105 South Africa 1
106 Thailand 3
107 United King-

dom
5

108 Venezuela 2
109 Liechtenstein 5
110 Austria 5
111 Laos 3
112 Zambia 1
113 Switzerland 5
114 China 3
115 Papua New

Guinea
4

116 East Timor 4
117 Bulgaria 5
118 Brazil 2
119 Albania 5
120 Andorra 5
121 Belize 2
122 Botswana 1

REGION

REGIONKEY NAME . . .
1 Africa
2 America
3 Asia
4 Australia
5 Europe
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Simulating Multi-Tenant OLAP Database Clusters
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Abstract: Simulation of parallel database machines was used in many database re-
search projects during the 1990ies. One of the main reasons why simulation ap-
proaches were popular in that time was the fact that clusters with hundreds of nodes
were not as readily available for experimentation as it is the case today. At the same
time, the simulation models underlying these systems were fairly complex since they
needed to capture both queuing processes in hardware (e.g. CPU contention or disk
I/O) and software (e.g. processing distributed joins). Todays trend towards more spe-
cialized database architectures removes large parts of this complexity from the mod-
eling task. As the main contribution of this paper, we discuss how we developed a
simple simulation model of such a specialized system: a multi-tenant OLAP cluster
based on an in-memory column database. The original infrastructure and testbed was
built using SAP TREX, an in-memory column database part of SAP’s business ware-
house accelerator, which we ported to run on the Amazon EC2 cloud. Although we
employ a simple queuing model, we achieve good accuracy. Similar to some of the
parallel systems of the 1990ies, we are interested in studying different replication and
high-availability strategies with the help of simulation. In particular, we study the ef-
fects of mirrored vs. interleaved replication on throughput and load distribution in our
cluster of multi-tenant databases. We show that the better load distribution inherent
to the interleaved replication strategy is exhibited both on EC2 and in our simulation
environment.

1 Introduction

Implementing distributed systems and conducting experiments on top of them is usually

both difficult and a lot of work is required to “get things right”. When conducting research

on a distributed system, such as for e.g. a multi-node database cluster, the turnaround time

for changing an aspect of the system’s design from implementation to testing is thus often

high. At the same time, research on distributed systems is often experimental, i.e. the

cycle of implementing and validating ideas on different system designs is repeated fairly

often.

The simulation of software systems can serve as one possible tool to shortcut the evalua-

tion of system designs, although it cannot replace building (and experimenting with) actual

systems. Especially in the light of new hardware becoming available and being deployed
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Figure 1: Example Layouts of Tenant Data

at cloud infrastructure providers simulation allows the prediction of cluster behavior based

on predicted performance increases on a cloud platform. In fact, simulation models were

a prominent means to evaluate parallel database systems such as Bubba [BAC+90] and

Gamma [DGS+90] in the late 1980ies and 1990ies. These simulation models underly-

ing these systems are fairly complex, since they capture the most important components

of computer systems and their inter-dependencies, from the CPU and the main-memory

sub-system to disk and network I/O, not to forget the multitude of software components

involved in database query processing. The recent trend in database research towards spe-

cialized systems with simplified architectures [Sto08] does, however, also simplify the

creation of simulation models.

In this paper, we describe our experience with building a simulation model for a multi-

tenant OLAP cluster based on TREX, SAP’s in-memory column database [Pla09, SBKZ08,

JLF10]. TREX was designed to support interactive business intelligence applications that

require a) sub-second response times for ad-hoc queries to facilitate exploratory analysis

and b) incremental insertions of new data to provide real-time visibility into operational

processes. In previous work, we ported TREX to run in the Amazon EC2 cloud [Ama]

and built a clustering framework round TREX, called Rock, that supports multi-tenancy,

replication, and high availability.

In-memory databases perform disk I/O only during write transactions to ensure durabil-

ity. Our data warehousing workload is however read-mostly in the sense that writes occur

only during ETL periods and have batch character. Also, column-databases are known be

CPU-bound for scan-intensive workloads (such as for e.g. data warehousing) [SAB+05].

All this allows us to build a much simpler simulation model which is yet accurate in com-

parison to execution traces of the real system.

Similar to some of the parallel systems of the 1990ies, we are interested in studying dif-

ferent replication and high-availability strategies with the help of simulation. This paper

experimentally compares two data placement strategies for Analytic Databases in a Cloud

Computing environment, mirroring and interleaving. Example layouts from these strate-

gies are shown in Figure 1, where the large boxes represent databases and the small boxes

within them represent data for individual tenants.
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When using the mirrored strategy, two copies of each database are maintained, both of

which contain the same group of tenants. To ensure acceptable response times during

recovery periods, each server must have sufficient capacity to handle the entire workload

on its own, thus the system must be 100% over-provisioned [MS03]. This strategy is used

by many on-demand services today.

Two copies of each tenant’s data are maintained, when using the interleaving strategy.

The data is distributed across the cluster so as to minimize the number of pairs of tenants

that occur together on more than one server. This strategy reduces the amount of over-

provisioning that is required to handle failures and load surges because the excess work is

distributed across many other servers.

We show that, without failures or variations in the request rate, the interleaved strategy

achieves higher throughput than the mirrored strategy. For the moderately-sized tenants

used in our experiments in the real system, the improvement is 7%. This improvement

occurs because the interleaved strategy smoothes out statistical variations in the workload

that depend on which queries are submitted to which servers. We wanted to make sure

that this effect is a result of the chosen placement strategy and not a random effect coming

from random variations in capacity of Amazon EC2 VMs. We therefore parameterized our

simulator with a similar setup and were able to produce a similar result. We also evaluate

the impact of server crashes for both mirrored and interleaving on the real cluster and using

simulation.

This paper is organized as follows: Section 2 describes the Rock clustering infrastructure.

Section 3 introduces the benchmark which was used for all experiments in this paper. Sec-

tion 4 we analyze the requirements and discuss our implementation of our discrete event

simulator based on the Rock clustering infrastructure and the benchmark. Section 5 dis-

cusses or data placement experiments both in the real system and the simulator. Section 6

discusses related work. Section 7 concludes the paper.

2 The Rock Framework

The Rock clustering framework runs in front of a collection of TREX servers and pro-

vides multi-tenancy, replication of tenant data, and fault tolerance. Figure 2 illustrates the

architecture of the Rock framework. Read requests are submitted to the cluster by the ana-

lytics application. Write requests are submitted by the batch importers, which periodically

pull incremental updates of the data from transactional source systems. The Rock frame-

work itself consists of three types of processes: the cluster leader, routers, and instance

managers. Each instance manager is paired one-to-one with a TREX server to which it

forwards requests.

The cluster leader exists only once in the landscape and assigns tenant data to instance

managers. The cluster leader as well as the batch importer are assumed to be highly avail-

able by replicating state using the Paxos[Lam98] algorithm, which would provide fail-safe

distributed state for these critical components. The actual implementation is considered

future work at this point. Each copy of a tenant’s data is assigned to one instance manager
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Figure 2: The Rock Analytic Cluster Architecture

and each instance manager is responsible for the data from multiple tenants. The cluster

leader maintains the assignment information in a cluster map, which it propagates to the

routers and instance managers so all components share a consistent view of the landscape.

The cluster leader tracks changes to the state of the cluster based on information it collects

from the Amazon EC2 API such as IP addresses, instance states, and geographic location.

The cluster leader is not directly involved in request processing.

The routers accept requests from outside the cluster and forward them to the appropriate

instance managers. Routing is based on the tenant who issued the query and the chosen

load balancing strategy. Our current implementation supports round-robin, random, and

server-load-based load balancing. The experiments in this paper use the latter algorithm.

Load is taken to be the CPU idle time of the TREX server averaged over a 10 second

window. The small window size is crucial for the router’s ability to re-direct queries to

the least utilized replica during a load burst. Load information is piggy-backed onto query

results as they are returned to the router.

Rock offers master/master replication [GHOS96]: a router may forward a write request

to any one of the instance managers for a tenant, which then propagates the write to the

other instance managers for that tenant. We assume there is a single batch importer per

tenant and that writes are sequentially numbered, thus master/master replication is straight-

forward to implement without introducing inconsistencies in the data. Read consistency is

required to support multi-query drill down into a data set, and TREX implements it using

multi-version concurrency control (MVCC) based on snapshot isolation [BBG+95].

According to [JA07], multi tenancy can be realized in the database by adopting a shared-

machine, shared-process, or shared-table approach. The shared-table approach, where

each table has a tenant id column, can be made efficient if accesses are index-based.

However analytic queries on column databases generally entail table scans, and scan times

are proportional to the number of rows in the table. Rock therefore uses the shared-process

approach and gives each tenant their own private tables.
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3 Experiments on the Amazon EC2 Cloud

The experiments in this paper are based on a modified version of the Star Schema Bench-

mark (SSB) [OOC07], which is an adaptation of TPC-H [TPC].

To produce data for our experiments, we used the data generator of SSB, which is based

on the TPC-H data generator. As stated in Section 2, we give each tenant their own private

tables, thus there is one instance of the SSB data model per tenant. In the experiments

presented in this paper, all tenants have the same size, i.e. 6,000,000 rows in the fact table.

As a point of comparison, a Fortune 500 consumer products and goods enterprise with a

wholesale infrastructure produces about 120 million sales order line items per year, which

is only a factor of 20 greater than the tenant size chosen for this paper. Using TREX’s

standard dictionary compression, the fully-compressed data set consumes 204 MB in main

memory.

While TPC-H has 22 independent data warehousing queries, SSB has four query flights

with three to four queries each. A query flight models a drill-down, i.e. all queries compute

the same aggregate measure but use different filter criteria on the dimensions. This struc-

ture models the exploratory interactions of users with business intelligence applications.

We modified SSB so all queries within a flight are performed against the same TREX

transaction ID to ensure that a consistent snapshot is used.

In our benchmark, each tenant has multiple concurrent users that submit requests to the

system. Each user cycles through the query flights, stepping through the queries in each

flight. After receiving a response to a query, a user waits for a fixed think time before

submitting the next query. To prevent caravanning, each user is offset in the cycle by a

random amount.

The number of users for a given tenant is taken to be the size of that tenant multiplied

by a scale factor. Our experiments vary this scale factor to set the overall rate of requests

to the system. In reporting results, we give the maximum number of simultaneous users

rather than the throughput, since users are the basis of pricing and revenue in the Software

as a Service setting. TPC-DS also models concurrent users and think times [PSKL02].

Following [SPvSA07], which studies web applications, we draw user think times from a

negative exponential distribution with a mean of five seconds.

A benchmark run is evaluated as follows. The first ten minutes are cut off to ensure that

the system is warmed up. The next ten minutes after the warmup are called the benchmark

period. All queries submitted after the benchmark period are cut off as well. A run of

the benchmark is considered to be successful only if, during the benchmark period, the

response times at the 99-th percentile of the distribution are within one second. Response

times are measured at the router. Sub-second response times are essential to encourage

interactive exploration of a dataset and, in any case, have become the norm for web appli-

cations regardless of how much work they perform. The focus on performance at the 99-th

percentile is also common; see [DHJ+07] for example.

The results presented in this paper are highly dependent on specific configuration choices

described in this section. Nevertheless we believe these results are applicable in most prac-

tical situations. Our tenants are relatively large by SaaS standards and, for smaller tenants,
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interleaving would distribute excess work more evenly across the cluster. Five second

think times are perhaps too short for more complex applications, but the system behaves

linearly in this respect: doubling the think time would double the maximum number of

simultaneous users.

All experiments are run on large memory instances on Amazon EC2, which have 2 virtual

compute units (i.e. CPU cores) with 7.5 GB RAM each. For disk storage, we use Amazon

EBS volumes, which offers highly-available persistent storage for EC2 instances. The

disks have a performance impact only on recovery times. An EBS volume can be attached

to only one EC2 instance at a time.

4 Simulation Model

For the simulation, we need to model the real system and benchmark, which have been

described in Sections 2 and 3. In this section, we analyze the requirements and discuss our

implementation of a discrete event simulator.

4.1 Problem Statement

Given a special-purpose clustering framework (Rock) and a commercial in-memory database

system (TREX), we can assess the viability of using simulation techniques to estimate the

performance characteristics exhibited by such a system. The goal is to accurately model

the most relevant environmental parameters as well as the different load balancing, data

placement and high availability techniques employed in the real cluster system.

The simulation should provide results that allow a relevant assessment of various strategies

in the context of a cluster setup. The accuracy of the simulation results shall be validated

against the empirical results for a static cluster configuration. The simulation does not take

into account message passing latency between system components or network bandwidth,

but focuses on the kernel execution time of the in-memory column database, which is

composed of CPU execution time and time waiting for the operating system to schedule a

CPU for the execution thread.

We will begin with discussing the fundamentals of the simulation model, such as the mod-

eling of the query processing components and the user load model as well as describing the

implementation of the simulator. The simulation results will be presented in the following

section.

4.2 Simulation Model of the In-Memory Database Cluster

Discrete Event Simulation using a process-oriented paradigm allows an integrated simula-

tion of the most important components and processes in the cluster. In a process-oriented
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simulation model, different active components are modularized in processes. The execu-

tion of parallel processes is serialized by explicit wait statements that allow simulation

time to skip ahead to the next occurring event. This approach is more modular and CPU

efficient than the activity oriented paradigm and, therefore, allows simulation of user ac-

tivities using a more fine-grained queuing model of the involved components and their

users.

The simulation model consists of resources and processes. In the case of the simulated

Rock cluster, the resources are compute Nodes (virtual machine instances running instance

manager/TREX pairs). Nodes have an immutable number of processors and amount of

main memory. It is assumed that these virtual machines are used for serving database

requests exclusively. Queues are established when simulation processes need to wait for a

shared resource.

Processes are actors within the simulator. For example, the activity of a single user, of

which there are multiple for each tenant data-set, is modeled as a User process. Multiple

processes of the User type are active in parallel. Users create Query processes that simulate

the execution of queries on the limited Node resources.

To simulate a behaviour of a system, we have to understand and model the behaviour

of a system. One common approach to model a system is Queueing Network Modeling.

According to Lazowska et al., Queueing Network Modeling is a an approach in which a

computer system is represented as a network of queues which is evaluated analytically

[LZGS84]. A network of queues consists of several service centers which are system

resources and are used by customers that are the users of the system. If customers arrive

at a higher rate than the service center can handle, customers are queued. The time which

is necessary for a transaction to be finished is, then, not only the time the service center

requires, but also the waiting time in the queue.

If more queries arrive than can be executed by all query threads, subsequent queries will

be queued. In a queueing network model, each query thread is represented by a service

center. Each query thread uses one of the two CPUs which itself are represented by two

further service centers. The threads are sharing the processing unit resources using a time

slice model.

4.3 Modeling Query Processing Components

The goal of the simulation is to model a cluster of in-memory columnar database instances.

The cluster’s response time profile has been studied empirically using the SSB benchmark,

which yields as raw data the query processing times for individual requests. At the core

of the discrete event simulation is the statistical model of the kernel execution times, or

service-center processing times, based on query type. For the purpose of establishing the

internal processing times, we have analyzed a long-running benchmark on the experimen-

tal framework with only a single user in order to establish a baseline without queuing

interference. Based on this data we determined which statistical distribution best matches

the real distribution. In general, one often uses exponential distributions for “neutral”
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simulation-to-simulation comparisons of scenarios, because the exponential distribution

has favorable properties in regards to calculations. However, for modeling our Rock clus-

ter infrastrcture, it turns out that the gamma distribution is the best choice.
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Figure 3: Distribution Fitting for Query 2.2

As can be seen for the example of SSB Query 2.2 in Figure 3, the distribution of query

times from the single-user baseline run shows that the real distribution resembles a head-

and-shoulders pattern, but has a strong peak around the mean processing time. We observe

similar peaks for all other SSB query types as well. The diagram also shows how various

distributions are fitted to the query.

We model the processing times of all queries fitting a gamma distribution to each query

type using different parameters for shape k and scale Θ. Table 1 shows the corresponding

parameters for each query. The following equation shows the gamma distribution:

f(x; k, Θ) = xk−1 e−x/Θ

ΘkΓ(k)
, for x ≥ 0 and k, Θ > 0 (1)

One essential challenge is that the distribution of response times in the real cluster contains

spikes, whereas statistical distributions typically look smooth. The gamma distribution is

useful for our scenario, as it best resembles most of the queries shapes and allows us to

smooth out the smaller spikes occuring in the real system. Still, the sample space remains

usable because a greater variation is introduced around the mean due to the continuous

random sampling in the simulator, which imitates the effect of the discrete hot-spots in the

real system. The distribution drives a separate random number generator for each Node

to generate internal kernel execution times for each query type. Because the sampled

times from the calibration run are gross times that include networking and processing

overheads, which are not part of the actual internal service center times, we establish an
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internal speed-up factor1, which is variably adapted for the baseline test, that shifts the

distribution in favor of a faster internal execution, while preserving the system-inherent

distribution characteristics. This approach has been superior to using a distribution based

on the minimum response time, which did not accurately reflect the overheads resulting in

occasional processing slowdowns in the real systems.

Shape k Scale Θ
Query 1.1 343.794 2.685

Query 1.2 18.452 0.685

Query 1.3 3.547 0.54

Query 2.1 188.744 2.257

Query 2.2 42.997 1.061

Query 2.3 15.319 0.564

Query 3.1 379.154 2.525

Query 3.2 96.046 1.595

Query 3.3 13.693 0.568

Query 3.4 12.536 0.529

Query 4.1 311.531 2.28

Query 4.2 70.306 0.636

Query 4.3 122.473 1.705

Table 1: Gamma Distribution Parameters for SSB Queries

4.4 Simulation Accuracy

In order to evaluate our simulation model’s accuracy we use a benchmark trace taken from

experiments on a Rock cluster instance running on Amazon EC2 and compare the trace

against the output of our simulation, which mimics the real system trace output. A trace

contains query response times for all tenants’ users’ queries submitted during a 900 second

test period, from which all data after a warmup period of 300 seconds is analyzed.

When comparing non-aggregated query execution times as shown in the Q-Q plot in Fig-

ure 4, one can see that the plot forms an almost identical line with the reference line,

indicating that the individual query times generated by the simulation come from the same

distribution as the execution times in the empirical system. This also validates our as-

sumption that by closely modeling the underlying internal execution with a statistical dis-

tribution, reducing these times by measured overhead, and then adding queuing-theoretic

waiting times, we can model the multi-tenant cluster with good accuracy.

The fact that the execution time plot is slightly above the reference line for faster queries

shows that the real system has a larger fractional overhead for smaller queries than we are

actually simulating. For a minority of slow queries, the simulator again returns too fast

response times, indicating that these have a larger overhead on the real system, in spite of

1The factor for the comparisons in this paper was 0.85
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Figure 4: QQ-plot of simulated query times and actual cluster query times

our threading implementation, but this only applies to few queries. Nevertheless, the plots

show that the simulator produces a very close match of the distribution indicated by the

straight nature of the plot.

Therefore we can support our implementation goal to have a simulator that is accurate

enough to enable the comparison of multiple scenarios with varying parameters and con-

figurations to each other, while maintaining a close match to results obtained from real

systems. This result is possible due to the very predictable performance characteristics of

in-memory databases, due to the absence of complicated disk I/O scheduling.

Nevertheless, real systems have many influencing factors, which require re-calibration of

the simulator after major changes in the underlying database software or virtualized PaaS

environment. As a consequence, effects discovered in simulation still need to be backed

by experiments on the real system.

Simulation Real execution

# Users 3500 users 4000 users

# Queries 397265 341560

Mean response time 305.9 ms 338.6 ms

Table 2: Maximum Number of Concurrent Users Before SLO Violation

We can see in the Table 2 that the number of queries in a given period of time is higher

in the simulation than in the real test. The reason is that we are using an idealized model

which is a strong simplification of the system. For example, some locking interdepencies

that might cause queries to stall in the real system are not captured in the simulation model.

We only model a single queue in front of the processors, which is not accurate since there

is also queuing around network resources.

In summary, the response times of individual queries are accurately reproduced by the sim-

ulator, as shown in the Q-Q plot in Figure 4, while the total number of queries executed
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within a benchmark run and the maximum number of users in the system before violating

the response time goal are not perfectly aligned. However, the goal of our simulator is to

test different cluster deployment options such as for e.g. mirrored vs. interleaved replica

placement. We are interested in the relative performance difference of a choice of deploy-

ment options in the simulator. Our simulation model is suitable for this purpose, as we

shall see in the next section.

5 Simulation Results

In this section, we analyze the simulation results and compare them with measurements

conducted on our real system.

5.1 Distribution of Response Times Under Low and High Load
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Figure 5: Query time histogram (frequency over response time in ms) for normal behavior (a),
overload (b) and overload with threading (c)

The behavior of the simulated database cluster is greatly influenced by the cluster’s capac-

ity in terms of available CPU resources. Without load spikes, the system shows a response

time profile as shown in the histogram in Figure 5(a), looking much like an exponential

distribution with many fast queries. The simulator can simulate time-slice scheduling,

and we are currently using a time slice of 30 ms, modeled after the scheduling quantum

of the adapted Xen environment of Amazon EC2. Of course, scheduling in real systems

would also include the priority-based scheme of the operating system, with more complex

interactions between processes, but in our experimental research system all processes are

CPU-bound and not mixed with I/O bound tasks on the same kernel instance, allowing

us to get our good matches between real and simulated benchmarks using the fixed time

slice. Yet, when threading is enabled, the absolute number of queries processed during

the overall simulation run is much higher (528413 vs 351422 queries), but the mean pro-
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cessing time is also higher (180 ms vs. 125 ms mean). Threading allows faster queries to

fast-track slow-running queries and therefore increases overall throughput at the expense

of execution speed for slower queries.

When looking at a simulated run where we have increased the number of total users hitting

the system at once beyond the capacity limit, the benefit of admitting more queries at once

is clearly visible. While in Figure 5(b) the overload in the dedicated CPU system produces

a load profile that is shaped like a normal distribution with a much higher mean. This is due

to the fact that too many queries are queuing up in the system and are pushing all following

queries up in their response time. The shared CPU run with 4 threads on 2 simulated CPUs

in Figure 5(c) shows clearly that smaller queries are still being processed quickly, while

only the slower queries suffer from the overload. Therefore, threading clearly reduces the

visible latency for users with fast queries at the expense of those with slower queries.

Valuable insight can be gained from the behavior under overload conditions, when the re-

sources required for all user requests exceed the available capacity. The way the system

behaves in such overload conditions depends on system configuration parameters such as

the maximum response time before a query is considered to have failed or how quickly

additional resources can be acquired from the underlying cloud infrastructure. Another

fundamental decision is whether to enable simulated time-slice multitasking in such a

CPU-bound processing problem. The real system uses a maximum of four computing

threads on a system with two virtual processors, therefore overcommitting the CPU re-

source while at the same time throttling the maximum number of parallel requests in the

execution state. This two-times overcommitment has been shown to deliver the best re-

sults for the SSB workload and is explained by the fact that generated plan operations

synchronize well before the activation of the next plan step.

5.2 Distribution of Response Times in the Presence of Failures

As stated in Section 2, Rock uses an active/active load balancing scheme in the presence of

multiple replicas. If a server goes down, the workload which was handled by the crashed

server is re-distributed to the servers holding the other copy of the tenants’ data. The re-

distribution of workload in the event of a server failure differs depending on how the tenant

replicas are assigned to the servers in the cluster.

Using the off-the-shelf replication capabilities as offered by most modern databases would

result on replicating the data on the granularity of a whole server. In doing so, all tenants

appearing together on one server will also co-appear on a second server in the cluster. This

technique is often referred to as mirroring (cf. Figure 1). The downside of mirroring is

that in case of a failure all excess workload is re-directed to the other mirror server. In

that case, the mirror server becomes a local hotspot in the cluster until the failed server

is back online. A technique for avoiding such hotspots is to use interleaving, which was

first introduced in Teradata [Ter85]. Interleaving entails performing replication on the

granularity of the individual tenants rather than all tenants inside a database process. This

allows for spreading out the excess workload in case of a server failure across multiple
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machines in the cluster.

The following experiment in the real system demonstrates the impact of the chosen replica

placement strategy on a cluster’s ability to serve queries without violating the SLO both

during normal operations and failures: We set up a cluster with 100 tenants, where we

put 10 tenants on each server. All tenants had exactly the same size (6 million rows in

the fact) table and there were two copies per tenant, hence 20 servers in total. We as-

signed the tenant replicas to the server both using the mirrored strategy, where groups

of 10 tenants where mirrored on one pair of servers each, and the interleaved strategy,

where we manually laid out the tenants such that no two tenant replicas appear together

on more than one server. Automatic generation of interleaved placements and incremental

self-configuration of the cluster is ongoing research in our group and not in the scope of

this paper, but discussed in our work on performance prediction[SEJ+ar]. We than ran

both placement configurations under normal conditions and under failures. In the failure

case, 1 out of the 20 TREX instances in the cluster was killed every 60 seconds. Given

the average recovery time in our experiment, 1 out of 20 servers was thus unavailable for

approximately 50% of the benchmark period in the failure case. Note that this is a very

high failure rate which is unlikely to occur in practice.

Table 3 shows the results of the experiment on the EC2 cluster. Even under normal operat-

ing conditions, interleaving allows for 7% more throughput before the response time goal

of one second in the 99th percentile is violated. The reason is that statistical variations oc-

cur when the number concurrently active users is high. These variations create short-lived

load spikes, which the interleaved configuration spreads out better in the cluster than mir-

roring. As expected, the maximum throughput that the mirrored configuration can sustain

in the failure case before an SLO violation occurs drops by almost 50% when compared to

normal operations. Interleaving, in contrast, completely hides the failure from a through-

put perspective. Notably, the interleaved configuration can even support 32 more users

than the mirrored configuration without failures.

Mirrored Interleaved Improvement

Normal operations 4218 users 4506 users 7%

Periodical failure 2265 users 4250 users 88%

Table 3: Maximum Number of Concurrent Users Before SLO Violation

On the real system in the Amazon EC2 cloud it could be shown that the layout, meaning

how tenants are placed on the nodes in the cluster, had an impact on system performance,

especially in the event of failures. We are interested in proving that this effect is a real

property of the system, rather than a random effect which stems from external factors,

such as for example non-uniformity in the capacity of the virtual machines procured by

EC2. To do so, we enhance the queuing model of the simulator to model node crashes: The

Fault is modeled as an optional process that can inject fault events into the query process

based on its own failure distribution model. In our case we chose to inject failures at static

times during the simulation, although an exponential distribution could also be used in

repeated experiments to study the independence of failure behaviors and failure time.
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(a) mirrored/no failure (b) mirrored/failure

Figure 6: Simulated response times (ms) over simulation time (ms) for mirrored placement without
failure(a), with injected failure (b)

Figure 6 shows the trace of query response times produced by our simulator using mirrored

replica placement. During normal operations, as shown in Figure 6(a), the query load is

distributed evenly among the nodes to which a tenant is assigned. Almost all queries are

executed in less than 300 ms. Figure 6(b) shows the trace of a simulation run where 1

out of 20 nodes was failed at the beginning of the simulation. After the failure event, all

queries were sent only to the remaining node until the failed node was unavailable. The

simulation does not drop queries after a timeout but rather tries to process all queries to

completion. As can be seen in Figure 6(b), the system does not recover from the 30 second

failure injected at the beginning of the simulation using a mirrored configuration. While

most of the queries are still executed in less than 300 ms, there is a considerable number

of queries in the system which take up to 2 seconds to execute. This is a result of the two

nodes affected by the failover trying to “catch up” with the query load. The load exceeds

the capacity of the two nodea and therefore the amount of lost work cannot be regained.

This leads to very high response times for the affected tenants, which can be seen in the

scatterplot, which negatively affect the mean response time.

Figure 7 shows simulator response time traces based on the interleaved layout. Figure

7(a) shows the same behavior as the mirrored setup under normal operating conditions,

therefore there is no inherent disadvantage to an interleaved setup. In fact, the mirrored

configuration processes 359181 simulated queries with a 78 ms mean response time, while

the interleaved setup processes slightly more queries (359577) with a slightly better mean

response time of 72 ms. The improvement of the mean response time in the interleaved

setup amounts to 8%. Although both numbers are not directly comparable, recall that a

7% improvement in throughput was observed in the real system under normal operating

conditions when using an interleaved layout. As it can be seen in Figure 7(b), the inject-

ing a failure has almost no impact for the interleaved configuration. The mean response

time is 75 ms in spite of the failure, which is still lower than the mean response time in
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Figure 7: Simulated response times over time for interleaved placement without failure(a), with
injected failure (b)

the non-failure mirrored configuration. The mean response time for the mirrored config-

uration with failure was 158. This 50% drop in performance is also consistent with our

experiments on the EC2 cluster.

In this section, we have argued that the performance effects of deployment choices such as

mirrored vs. interleaved replica placement can be shown using simulation. The simulation

environment is however less complex than the real system. While changing the replication

strategy in the real cluster is tedious to implement, changes to the simulator can be done

much faster. Therefore, we see simulation as a tool for fast exploration of cluster con-

figuration trade-offs, using which we are able to identify what configurations are worth

implemented in our EC2 environment.

6 Related Work

Discrete event simulation has been successfully applied to many research areas in com-

puter science [Cas05]. Discrete event simulation is based on the idea, that the observed

system can be modeled as queuing network processes. Events created within or outside the

system are based on a reference dataset. Therefore, reference datasets heavily influence

the accuracy of the simulation.

Many standard tools supporting the design of such simulations have been made avail-

able to the research community, such as simulation languages (i.e. SimScript[KVMR75])

and simulation libraries like Simjava[HM98] or SimPy[Tea06] as used in our project.

Frameworks and underlying techniques are continuously improved towards higher sim-

ulation accuracy and performance. In order to speedup the simulation methods for dis-

tributed an parallel discrete event simulations have been developed [FT96]. One actual
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framework to be mentioned here is Parsec, which aims at parallel simulation of complex

systems[BMT+98].

A wide variety of application specific simulators have been developed that incorporate the

specifics of certain technologies, such as large-scale wired or wireless networks [ZBG98].

In the study of specific network-intensive workloads Saidi et al. “determine how accurately

we can model the overall behavior of a complex system using appropriately tuned but

relatively generic component models” [SBHR05], an approach we are trying to adapt for

the modeling of the well-predictable in-memory execution components.

Also, widely distributed, job-oriented grid computing environments and the effects of

scheduling on overall grid performance have been studied using simulation based on the

modeling of applications [Cas02, BM02]. Many other examples exist, each showing that

for the comparison of scenarios and the study of the impact of parameters simulation re-

mains a verifiable complementing activity to empirical study.

Distributed systems and in particular Web server farms have previously been studied using

simulation. Particularly similar to our method of studying in-memory database systems,

which resemble dynamic web page generation in their CPU-bound nature, Teo studied the

effect of load balancing strategies in clusters using simulation [TA01]. In this work, the

client and Web server service times used in the simulator were also determined by carrying

out a set of experiments on an actual testbed.

More specifically in the field of distributed database systems simulation has been used on a

micro-level to study the performance of operators in a CPU-bound context [MD95], where

it can also be seen that a CPU-bound application profile is always preferred in simulation,

and that closed-loop systems always follow similar patterns in modeling user think times

in their load model.

The data placement problem for relations has been previously studied in the context of par-

allel databases with large relations and a fixed cluster size. The Bubba parallel database

prototype uses a statistics-driven variable declustering algorithm, that takes the access fre-

quency and size of the relations into account [CABK88]. It therefore focuses on a single

tenant placement problem within a fixed cluster of nodes and shows that load-balancing

improves with increasing declustering. The prototyping of the Bubba system was sup-

ported by a simulation to “accurately predict the scalability of Bubba’s performance over

the entire range of configuration sizes” [BAC+90]. A comprehensive simulation study

of data placement in shared-nothing systems [MD97] has been conducted to find a con-

sensus on the most efficient placement algorithm, following previous simulation studies

specialized on data placement strategies such as multi-attribute declustering [GDQ92].

An autonomic and self-tuning cloud-based data warehousing framework has been de-

scribed in our work on performance prediction[SEJ+ar]. By applying a load model to

the entire cluster state, the framework can automatically conduct administrative actions

on the cluster to optimize overall performance. Even though existing systems often con-

tain self-management components that optimize threading, query admission and memory

allocation, these systems do not consider data placement in a dynamically sized cluster

in a multi-tenant context, where incremental re-organization is required rather than “big-

bang” reorganization. Also, our research does not focus on distributing large relations, but
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rather on heuristics for optimal redistribution of small relations. Also, the case for a cloud

database service provider requires that optimization is not for minimizing response times

but for maximizing utilization of resources under response-time constraints.

7 Conclusion

In this paper, we have presented the implementation of a simulation of a static cluster

serving multiple tenants with analytic database services. The simulation results have been

evaluated against the real system results and show that the simulator delivers adequate

results for the evaluation of scenarios, such as failure conditions or overload. This simula-

tion data can be used for system planning and design, for the detection of unexpected run-

time behavior of real-life systems or to identify and validate hypotheses on multi-tenant

database systems. Especially for the validation of proposed Service Level Agreements,

simulation can compare many scenarios in parallel and compare the resulting economic

benefit. For autonomic systems, a simulator can be used to train artificial intelligence

algorithms, such as neural networks, in much shorter time and at lower cost, than using

a real system. Also, a simulator has predictable runtime behavior that is not influenced

by the measurement itself. Therefore simulation complements the empirical study of real

systems in many useful ways. In our particular case, we could show that the interleaved

placement performs much better than the mirrored placement when failures occur using a

real experiment setup as well as using the simulation.

Future work on the simulation will involve the integration of cluster control in the Rock

framework, with live system visualization and the simulation facilities. This might re-

quire the enhancement of the simulator to include on-line placement of tenants, cluster

expansion, and memory resource management on an individual tenant basis. Additional

simulation enhancements could include the simulation of merging the columnar data struc-

tures [KGT+10] using the simulated threading to study the impact of such maintenance

tasks on the cluster performance, especially when considering the trade-off of losing ex-

cess capacity in the cluster vs performance improvements yielded by the merge. Another

very interesting enhancement of the simulation would be to include the impact of disk I/O

resource contention when using dynamic loading of inactive tenants to main memory or in

situations where failures require re-loading the data from disk.

On the query simulation end, the support for delta-table performance impact simulation

and its resulting write performance penalty because of queuing disk I/O for log-writing is

regarded as future work, as is the impact of network communication overhead for multi-

node joins.

Generally, the simulation evaluation component could be extended to apply the results to

various SLA scenarios to calculate a profit or cost, which could be a basis to compare

various configurations to each other on the basis of a single monetary figure. The dynam-

ically adaptable cloud computing environment is especially suited for such a cost model,

because the resources in the cluster have a clearly defined pricing based on their usage and

the financial profile of each simulated scenario heavily depends on its computing resource
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allocation and actual usage. The difficulty in such an assessment lies in the fact, that to-

day’s SaaS offerings usually define neither clear agreements in terms of clear boundaries

for cases when the reliability of the service is insufficient (other than complete unavail-

ability) nor any failure indemnification reimbursement policies which would make such

an SLA-based loss-reduction calculation possible.
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Abstract: Solid-state disks are promising high access speed at low energy consump-
tion. While the basic technology for SSDs – flash memory – is well established, new
product models are constantly emerging. With each new SSD generation, their behav-
ior pattern changes significantly and it is therefore difficult to make out characteristics
for SSDs in general. In this paper, we accomplish empirical, database-centric perfor-
mance measurements for SSDs, explain the results, and try to derive common charac-
teristics. By comparing our measurement results, we detect no ground truth valid for
all solid-state disks. Furthermore, we show that a number of prevalent assumptions
about SSDs, which several SSD-specific DBMS optimizations are based on, are ques-
tionable by now. As a consequence of these findings, tailor-made DBMS algorithms
for specific SSD types may be unsuitable and optimal use of SSD technology in an
DBMS context may require careful design and rather adaptive algorithms.

1 Introduction

Solid-state disks gained a lot of attention lately. While many research papers present new
algorithms to exploit performance of SSDs, enterprises are thinking of ways to incorpo-
rate them in their own products. Hence, flash chips and solid-state disks have become
established products by now. SSDs offer dramatically improved random access behavior
compared to conventional spinning disks. Due to their lack of mechanical parts, they are
able to answer requests much faster than disks. That makes them perfect candidates for
incorporating into database systems to speed up data processing. Due to the absence of
spinning platters, SSDs also promise to come with a smaller energy footprint. Still, SSDs
are not the swiss army knife of storage devices, they come with some limitations we have
to deal with, for example read/write asymmetry. The market for solid-state disks is con-
stantly changing and newer SSD generations are steadily improving their performance.
With every new SSD generation, new product characteristics are emerging. Some draw-
backs of earlier SSDs have been resolved in recent models. The constant change in the
devices’ properties makes it difficult for upper-layer algorithms to exploit the underlying
storage. Optimizations tailored to a dedicated SSD model can have even negative effects
on differently behaving models.
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In this paper, we measure performance and energy consumption of five solid-state disks
and compare them to manufacturer-provided data sheets. By pinpointing the specific char-
acteristics of each drive, we claim that it is unwise for research to reveal the DB per-
formance benefits of this disruptive technology change by relying on a single SSD type.
We also derive common characteristics of flash drives in order to support research of the
database community and leverage the exploration of flash-specific algorithms. This pa-
per is structured as follows: In Section 2, we briefly summarize the internal structures of
SSDs. Next, we outline important related work in Section 3. In Section 4, we are pre-
senting our measurement methodology and the solid-state disks used for our performance
study. Section 5 shows our experimental results. We interpret our results and compare
them to the properties and facts listed in the data sheets of the manufacturers. In Section 6
we derive common characteristics and review some assumptions made about SSDs in re-
search papers. In Section 7, we reflect our measurement setup and point out some possible
limitations to our approach. Finally, we draw our conclusion in Section 8.

2 General SSD Characteristics

Solid-state disks are using flash chips for persistently storing data. An abstraction layer
(FTL) on top of the chips provides a block device interface and hides the specific flash
chip characteristics.

Flash Chips Flash chips are used to store persistent data on SSDs in a matrix of storage
cells. The cells can either embody NOR or NAND gates. Modern cells, called Multi-Level
Cells (MLC), can store more than one bit per cell. Todays solid-state disks are mostly
composed of MLC NAND chips; we focus our description on that technology.

Reading from flash chips can only be done pagewise, where each page contains about 1 –
4 KB. It takes about 50 µs per page. Writing pages requires higher voltages, it takes about
10 times as long as reading (∼500 µs). Furthermore, each cell has to be erased prior to
writing new values to it. Erasing is even more cost-intensive and can only be done in larger
blocks, not by one page at a time. Typically, a block is 32 – 256 KB in size. It takes about
20 times as long to erase a block as reading a page (∼1000 µs). Erasing flash blocks leads
to a slow but constant destruction of the cells. After about 105 erase cycles, cells will start
to wear out and the block is no longer able to retain data.

Flash chips can be grouped together in so-called planes to increase storage capacity. Mul-
tiple planes can be accessed in parallel to enhance data throughput.

Flash Translation Layer To cope with the limitations of bare-metal flash chips, a mit-
igation layer is used on top of the chips/planes, called Flash Translation Layer (FTL). It
provides a block-device interface to the upper layers, making the SSD look like a common
storage disk. Therefore, the SSD user does not have to worry about erasure-before-write
and handling worn-out blocks; these jobs are handled by the FTL. Because overwriting
data on flash chips requires special treatment, the FTL must provide an erase-before-write
mechanism that is able to save neighboring flash pages from being erased. Further, the
FTL has to take care of worn-out cells.
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Based on these basic functionalities, todays FTLs provide a lot more logic to further im-
prove SSD performance. First of all, to avoid the need for erasing hot-spot areas over
and over again, a page mapping is introduced to redirect logical page accesses to different
physical locations on every new write. This helps to save erase cycles and, therefore, also
improves performance. To free up unused areas of the SSD, a garbage collection schema
can be implemented allowing the SSD to asynchronously perform erase and cleanup oper-
ations when the device is idle. Further reorganization tasks such as summarizing sparsely
filled blocks can be employed. Like conventional hard disks, SSDs usually have an inter-
nal DRAM cache to buffer write requests or store prefetched pages. This buffer enables
solid-state disks to backup and restore pages during erase cycles and to keep in-memory
information, e.g., page-mapping structures. By using an FTL, it is possible to avoid most
drawbacks of flash chips while making use of the advantages. Therefore, the FTL is a
major performance-critical part of every SSD and manufacturers are eager to keep the im-
plementation details a secret. A more detailed explanation of flash memory, SSDs, and
their internal structures can be found in [RKM09, CPP+06].

3 Related Work

SSDs have been intensively explored in recent years with a focus on the characteristics of
SSDs, on its integration into (existing) hardware systems and on its effective exploitation.

Operating Systems At the device level, Wang et al. [WGK09] propose non-in-place
updates when writing to SSDs, which results in a performance improvement in their
work, but which is automatically performed inside modern SSDs to mitigate wear-out.
The same holds for flash-optimized file systems (e.g., YAFFS [Man02]) which employ
journaled writes to avoid random and in-place updates. FTL implementation proposals
[CPP+06, LPC+07, KKN+02] show different techniques that yield a logical-to-physical
block mapping. As the FTL is embedded inside the device firmware, it is unknown whether
any of theses techniques or which particular technique has been adopted by the SSD man-
ufacturers.

System Architecture Approaches concerning the system architecture try to find suit-
able solutions where to place SSDs in computer systems and how to incorporate them.
Three main strategies [RKM09] are feasible using SSDs: as extended system memory, as
storage accelerator, or as alternative storage device. Other works use a hybrid approach
of SSDs and conventional HDDs where the SSD serves as persistent buffer for HDDs in
order to mitigate I/O latency [CMB+10, KJKM09] or – depending on their workload – to
adaptively place pages on one of these device types [KV08].

DBMS-specific Optimizations The exploitation of SSDs to increase the performance of
data-intensive workloads still is in focus of the database systems community. An overview
of the knobs and layers which can be made SSD-aware in a database system is given by
Graefe [Gra09]. Of course, several components which interact and rely on external storage
have been incorporated to be aligned to the characteristics of flash memory, so a lot of
different proposals have been made in recent years. This includes amongst others SSD-
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tailored DB buffer replacement algorithms [OHJ09], page layouts [THS+09], and index
structures [AGS+09, KJKK07, WKC07]. Do et al. [DP09] show the impact of SSDs on
join processing, mainly the tendency to become CPU-bound rather than being I/O-bound
when HDDs are used. Tsirogiannis et al. [THS+09] recommend late materialization for
speeding up join processing on SSDs.

SSD Measurements Papers in this area try to find out more about the SSD behavior and
how to react to certain situations in reality. Most of them are based on micro-benchmarks
used to reveal internal characteristics. Bouganim et al. [BJB09] and Chen et al. [CKZ09]
were the first who tried to derive the intrinsic characteristics of different SSDs. They
conclude that SSDs have to be considered as black boxes, as they follow no common
rule. SSDs in RAID configurations have been examined in [BdNSS10] and [PABG10],
where the latter one states that some effects of SSDs, e.g., the read-write asymmetry,
are amplified due to the RAID mechanism. Overall, some characteristics are differently
interpreted. [BJB09] state that they did not observe any performance improvements from
submitting I/Os in parallel, [BdNSS10] use long queue depths and asynchronous I/O in
order to increase the bandwidth.

As SSD advance, aspects covered by some approaches are already mitigated by the FTL.
Others base their finding on a theoretical flash model, mostly by applying the metrics for
read, write, and erase for raw flash chips or derive their results purely based on simulation.
Even though theoretical effectiveness can be proven in this way, there can be quite a sub-
stantial discrepancy with regard to real-life SSDs. This can be seen in some papers, where
the approaches are also verified on real SSDs, but the results are not as good as anticipated
or derived by simulation. Moreover most papers base their experiments on only one type
of SSD, neglecting the fact that their results could differ attributed to the employed SSD.

4 Methodology

For getting insights into SSD behavior, the read and write performance of the solid-state
disks was measured. To stress all devices with the same access patterns, we developed a
tool (similar to uFlip1 and IOmeter2) that allows us to perform benchmarks on the devices.
The tool is able to read and write different access patterns from/to the devices. The page
size the tool uses is adjustable. Figure 1 outlines the access patterns we used to bench-
mark the SSDs. The first test pattern is sequentially accessing n pages. This pattern is

  1  2  3  4  5           
(a) sequential access 

    5      2    3  1      4
(b) random acccess 

    1      2    3  4      5
(c) skip‐sequential access 

 

Figure 1: Access Patterns

full

empty

read

write

sequential

random

skip-sequential

Figure 2: Measurement Combinations

1http://uflip.inria.fr/∼uFLIP/
2http://www.iometer.org
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common in database servers when scanning through a table where no tailored access paths
are available. Similarly, sequential writes are typical during log-flush operations. The sec-
ond pattern is randomly accessing all pages of the test file. We ensured that each page
gets accessed only once and that the pattern is repeatable. This pattern is often seen in
databases when accessing pre-selected leaf pages in a B-tree. Random writes occur when
updating several database tuples at a time or when flushing modified pages back to disk.
The final pattern we tested is called skip-sequential, which accesses pages sequentially,
but skips randomly over some pages. This pattern can be observed when a set of pages
needs to be accessed, e.g., when – upon reading scattered database pages – the I/O requests
are performed using ascending/descending physical addresses. Hence, this pattern evolves
from the random pattern by pre-sorting the page numbers. This helps conventional disks
to minimize head movement and, thus, reduces access times.

We set up a testing environment to benchmark all SSDs using the same hardware platform.
To measure the device’s energy consumption, we attached the computer to a measurement
device. This enables us to keep detailed track of the devices’ power consumption in addi-
tion to the performance measurements. A detailed description of the measurement setup
can be found in [SHH10]. Using the previously described setup, we ran several tests
against all SSDs and recorded their performance and energy consumption. The tests were
run on a 1GB file filled with random data. We repeated the tests using varying page sizes
and queue depths. First, we measured read and write patterns on a nearly empty drive (de-
noted by empty in Figure 2). After these measurements, we filled the drive with random
data, while preserving the 1GB test file, and ran the same tests again. Figure 2 shows the
benchmark combinations we ran for each device. We verified our results for sequential
and random access by comparing it to results obtained by IOmeter and got more or less
the same performance figures (±10%).

5 Experimental Results

In this section, we will present our measurement results for each SSD individually and
discuss the observations. We measured using 32K pages for bandwith and 2 – 8K pages
for IOPS measurements.3 After we have shown all results, we will compare them and
derive common patterns.

SSD1 – SuperTalent FSD32GC35M 32GB This SSD is the oldest one we tested. Re-
sults clearly show slow performance under all tested patterns as well as heavily degraded
write performance. On the other hand, as the results show, random read is as fast as
sequential read. SuperTalent states in the data sheet that this device can perform over
58,000 IOPS, a number we could not even get close to. Unfortunately, no further informa-
tion about page sizes or queue depths is given.

SSD2 – Mtron MSP-SATA7525 The next SSD shows improved performance compared
to SSD1, as depicted in Figure 5. Still, random writing is tremendously slower than other
access methods. The SSD’s data sheet tells a lot more about the parameters used for

3According to [BJB09], 32KB is the preferable page size for SSDs.
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Figure 3: Performance Measurements Using Different SSD Types

testing. It documents page sizes, queue depths, and access patterns used; therefore, the
measurements are far more comprehensible. Though, we could not reproduce the stated
performance, but get closer to it than we could for the first SSD we tested.

SSD3 – Intel X25-M G1 SSD3 represents the first Intel generation. As shown in Fig-
ure 5, this drive is really good at sequential reading, while random reading is comparatively
slow. Then again, all write patterns are performing equally well. This is a significant oper-
ational difference compared to the first two SSDs. Intel’s data sheet documents the queue
depth, but not the page size used for benchmarking sequential access patterns. For random
accesses, the page size is mentioned. We were unable to get the same performance, even
with the same parameters as in the data sheet.

SSD4 – Intel X25-M G2 The next generation of Intel SSDs came with the additional
feature TRIM support4. Figure 5 indicates improved overall performance for all patterns.
Nevertheless, the disk is showing the same challenges as the first generation. We could
get closer to the performance reported in the data sheet, but were still unable to reach
the advertised 35,000 IOPS. At least, we were able to measure the same sequential read
bandwidth as stated (not shown in this figure).

SSD5 – Crucial RealSSD According to the manufacturer’s data sheet, the device can
read up to 60,000 and write up to 45,000 pages/second. Our own measurements show
quite a different picture. While reading on SSD5 is faster than on all other SSDs we
tested, random writing stresses this device remarkably. Although the data sheet promises
60,000 IOPS for random read, we could not get even close to this number.

6 Results Interpretation

After we presented individual measurement results for each SSD, we are going to examine
some common patterns observed on more than one device. In this section, we will also

4http://t13.org/Documents/MinutesDefault.aspx?keyword=trim
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examine common assumptions regarding SSDs and show that not all of them are true.

Random Access Interestingly, though SSDs do not have moving parts and therefore
should not suffer from random access, in fact, they do. Our measurements show that
random access may be substantially slower than sequential access. Dependent on the
device, this effect ranges from -5% performance on SSD1 and SSD2 up to -50% on SSD3
and SSD4. Therefore, sequential accesses should still be preferred over random accesses,
although it is not as vital as on hard disks.

Considering the break-even point for selecting index-based access over sequential table
scan, there is now a shift on SSDs. For conventional hard disks, a rule of thumb says
to use an index-based scan only if the selectivity is below 1 - 3%, otherwise to scan the
whole table sequentially. On solid-state disks, the selectivity factor can be shifted to higher
percentages. Because of the different performance characteristics of solid-state disks, it is
not possible to spot a clear break-even point. For example for SSD1 and SSD2, break-
even would be at ∼90%, while on SSD3 and SSD4, break-even is at only ∼50%, due
to their worse random access performance. On SSD5, break-even lies at ∼75%, thus a
considerable divergence is visible for SSDs. Our results show that there is a trend towards
faster write support on SSDs. Clearly, SSD1 and SSD2 suffer heavily from random writes,
whereas the newer SSDs from Intel cope with them much better. SSD5, on the other hand,
is again performing badly at random writing while providing fastest sequential writes.

Database query optimizers can decide between random and sequential access based on
configurable disk parameters.Hence, the same care that has to be taken for conventional
disks also has to be applied when using SSDs. Unfortunately, performance characteris-
tics of SSDs are much harder to quantify than for spinning disks: On conventional disks,
RPM, cache size, and bus delay are the only vital characteristics to estimate performance.
On SSDs, there are no key performance indicators and characteristics can only be derived
from measurements. The decision whether to write random pages (logically) in-place or
to employ log-structured sequential writes strongly relies on the behavior of the under-
lying SSD. Therefore, optimizing algorithms for wrong device models can make overall
performance even worse. Especially developers for flash-aware buffer algorithms have to
consider that device-specific tweaks might be obsolete in no time.

Unstable Behavior While verifying the results using IOmeter, we observed another ef-
fect on SSD3. We did some changes to the source code of IOmeter to enable per-second
tracking of measurement values. Using this tweaked version, we were able to get more
detailed performance data from our devices. Figure 4 visualizes the write performance
of SSD3 in pages/second on a per-second basis. As illustrated, every 4 to 5 seconds,
performance is heavily degraded for about 3 seconds. We conclude, the drive is perform-
ing internal re-organization like freeing up flash blocks or searching for another writable
block. We measured the same behavior for sequential writes, though the timespan between
drop-offs was about 3 times longer. On SSD4 – the successor of SSD3 –, we measured
similar behavior, although the performance drops during writes were not that severe.

While benchmarking SSD4, we had a look at the TRIM command introduced for this
model and observed an interesting behavior. Figure 5 depicts our write-performance mea-
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surement right after deleting ∼130 GB of files on the drive and issuing corresponding
TRIM commands to the drive. In this graph, a heavily degraded performance in the first
half of the measurement is evident. Apparently, the SSD tries to free up flash blocks while
we were simultaneously applying a write load to it. The proprietary FTL mapping partic-
ularly concerns device caching, block allocation, and garbage collection. All these mech-
anisms are software controlled and entirely hidden to the upper software layers. Hence,
optimization decisions in the OS or DBMS may be counterproductive and sometimes even
worsen the time-consuming house-keeping activities. As inferred from Fig. 4, write la-
tency may extremely vary. While less than ∼400 µs in the best case, we have observed
outliers of more than some hundred ms, that is a device-dependent variance of more than
∼200 – 500.5 Compared to that, a magnetic disk with a device-dependent variance of ∼2
- 5 exhibits quite a stable access behavior and lends itself to reliable optimizer decisions.

Another aspect is a kind of heterogeneity among the SSD types present in a DBMS envi-
ronment, where several heterogeneous SSDs may coexist in an application (or they may
be dynamically exchanged). As a consequence, tailor-made algorithms for specific SSD
types, e.g., concerning indexing or buffer management, are not very useful. The same
arguments apply for specific workload optimizations (pure OLTP or OLAP processing,
mixed workloads with varying degrees of reads/writes). A continuous adjustment or ex-
change of algorithms affected is not very practical in productive DBMS applications.

Read/Write Asymmetry As mentioned in the literature, reading flash pages is about
10 times faster than writing them because of intrinsic electrical properties. In conclusion,
writing to SSDs should be equally slower than reading. Our measurements show that this
is not true in general. SSD1 and SSD2, for example, do not exhibit degraded performance
for (sequential) write, they are equally fast as sequential read. On all other SSDs, an
asymmetry is measurable, but still not as bad as advertised.

Especially for buffer management algorithms, read/write asymmetries introduce a big po-
tential for optimizations. On conventional disks, reading and writing cost the same; there-
fore, it does not make a big difference whether a clean or a dirty page gets evicted from
the buffer. Considering solid-state disks, dependent on the device, the difference can now
be significant. As mentioned earlier, current research papers already gave attention to this
and flash-aware access algorithms were introduced. Nevertheless, it is crucial for these al-
gorithms to know the exact properties of the underlying device, i. e., the precise read/write
behavior, to enable optimizations.

5Note, we observed similar variance factors at the level of DBMS operations, e.g., splits in B*-trees, but these
were provoked by algorithmic or implementation weaknesses.

437



Slower When Full? SSDs have to erase flash blocks prior to writing new values to it. As
a consequence, overwriting some blocks on a full disk should be much slower than writing
to an empty disk. We verified this assumption by filling all drives with random data and
repeating our tests afterwards. No significant differences were measurable. Therefore, the
common advice to leaving some empty space on the SSD to help the FTL find free/erasable
pages can be abandoned. In fact, this is a waste of storage space, since our measurements
do not indicate differences between empty and full drives.

Impact of Queue Depth As mentioned earlier in this paper, the queue depth (QD), that
is, the number of concurrent requests needing access to the device, can make a great dif-
ference to the overall performance. Due to a technique called Native Command Queueing
(NCQ), the device can re-order the sequence of requests in the queue to optimize its in-
ternal access path and improve throughput. This was primarily invented for hard disks to
optimize their access path along the spinning platter. SSDs can still increase performance
by optimizing switches between different flash planes. Furthermore, because access la-
tency of SSDs is very low, bus delays gain greater influence in the overall access delay.
To minimize communication overhead, higher queue depths in combination with NCQ
can also be used to send bulk requests to the drive [Gas08]. This reduces the overhead to
1/bulk size of the original overhead. SSD manufacturers know this fact and tweak their
performance measurements accordingly. A high queue depth results in increased overall
data throughput and higher IOPS, while a queue depth of 1 primarily minimizes access
latency.

To gain more insights, we repeatedly measured various queue depths. By using a random
read pattern, we give the FTLs a fair chance to optimize the queue. As Figure 6 indi-
cates, the only significant improvement is between QD 1 and QD 2. Beyond this point,
extending the QD did not improve data throughput. We did not expect this result, be-
cause manufacturers use even higher queue depths for their performance measurements.
Also, current database servers do benefit from increased queue depths on conventional
hard disks. As mentioned, some papers observed the same behavior [BJB09], while other
papers explicitly recommend using longer queues [BdNSS10]. We see that it is not nec-
essary to maintain long request queues for SSDs, thus database applications do not have
to worry about getting maximum asynchronous I/O rates. A fair amount of outstanding
requests is sufficient to keep an SSD at high bandwidth.

Energy Consumption As energy efficiency is getting a more and more critical factor
for large data centers nowadays, we evaluated the SSDs’ energy consumption. Figure 7(a)
shows the absolute power consumption of the SSDs we tested. For this test, a sequen-
tial read pattern is used. Write patterns might consume even more energy. Obviously,
the drives do consume energy when being idle; therefore, they are not as energy sav-
ing as expected. The SSDs’ power profiles are similar to those of conventional hard disks,
although their peak power consumption is considerably lower. Power consumption of con-
ventional disks ranges from 4 – 6 Watts for mainstream disks to 9 – 14 Watts for enterprise
server hardware. Figure 7(b) shows how many pages can be read by each SSD consum-
ing one Joule of energy. As illustrated, pages/Joule are constantly rising, thus newer
SSDs are getting more energy efficient. On conventional disks we measured only 600 –
1800 pages/Joule. Anyway, a more differentiated comparison is cumbersome, because
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Figure 7: Energy Consumption Measurements

of the different performance characteristics and their implications on energy efficiency. In
general, the best performing SSDs are still the most energy efficient.

7 Limitations

We explored the performance of I/O patterns typically occurring in a DBMS environment.
However, we were and still are not aware of the tricks and assumptions, e.g., massive I/O
parallelism, of the manufacturers under which their performance behavior was achieved as
reported in the data sheets. Our results sometimes indicate substantial deviations confirm-
ing that the “promised” device behavior may not be fully exploited by DB applications.
Although we took care that our measurements are accurate and reliable, there might be
some limitations to our approach. In order to keep up fair publishing policies, we do not
want to hide them from the readers. We mainly focused on two ideas, why our measure-
ments might not be 100% reliable.

SSD Choice The solid-state disks we tested were not fresh out-of-the-box, but were
rather used by our research group for several benchmarks previously. Ranging from SSD1,
which is approximately 3 years old, to our recently bought SSD5, all drives were used in
varying degrees. Therefore, the observations and claims we made in this paper might only
be true for our particular devices. Since the older drives (SSD1 to SSD3) do not support
the TRIM command to free up flash pages, these devices might be worn out exceptionally.
Due to a limited budget, we tested only one device for every model; therefore, we cannot
not make assumptions for whole product models, but rather for single product instances.

Measurement Platform Choice The original use for our measurement track was to
measure and optimize energy consumption. For this reason, we only used a small server
board for testing, which might not have a high-performance SATA bus controller. This
might bottleneck our measurements. In order to eliminate this possibility, we verified our
measurements using a dedicated SAS controller card. Nevertheless, the results stayed the
same and we were unable to get the performance promised in the data sheets. We even
switched the entire hardware to a different system, which did not lead to an improvement.
We can not resolve all doubts for sure, but we assume our measurements were correct
and there is in fact a major gap between manufacturer’s data sheets and real-world perfor-
mance.
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8 Conclusion

As the measurements clearly discover, each SSD exhibits a differing performance profile.
We were able to identify some common patterns and outlined areas that are improving
continuously, e.g., write performance. Still, manufacturers’ claims about their drives’ per-
formance can not be blindly trusted. Because a common benchmarking procedure does not
exist, performance claims of data sheets can hardly be reproduced in real-world scenarios.
Due to the advancement of the internal FTL, larger write caches, and TRIM support, we
believe that the often mentioned drawbacks of SSDs, e.g., slow writes, will soon disappear.
Also, write endurance of SSDs is constantly rising and we do no longer have to care about
destroying the disk by constantly writing to it. As we have proven by our experiments,
every drive has its own characteristics. Optimization towards a single drive or against
flash-chip access characteristics is no longer suitable under these circumstances. A lot of
literature focuses on improved algorithms for flash chips, although there are no bare-metal
flash chips in server systems. As we have shown in Section 6, current solid-state disks
embody unpredictable behavior and performance may sometimes drop unexpectedly. In
order to use SSDs in time-critical operations, like meeting deadlines in a real-time DBMS,
algorithms have to be aware of these characteristics to anticipate even worst-case situa-
tions. More generic algorithms – not adjusted to single SSD types, but able to handle
a widespread of different device characteristics – would be better suited and rather eli-
gible for DBMS use. To suit a specific device, its characteristics could be determined
either offline – prior to using the device in a productive environment – or online – during
use. Then, according to the measured properties, the algorithm could automatically tune
itself to maximize its performance. We propose that this approach would be more sustain-
able, even over SSD generations with changing behavior and be, therefore, more useful
than highly specialized algorithms fitting particular SSDs only. Our benchmarks of todays
solid-state disks unveiled a lot of pitfalls, although these measurements are far from be-
ing complete. For example, focusing on smaller grained, longer running benchmarks could
help identify a lot more peculiarities of SSDs. For example, long running stress tests could
reveal resource exhaustion inside the FTL or, by cutting power to the SSDs, persistence
tests could be performed. Nearly all of the measurements we ran have discovered another
fact for SSDs; therefore, we think there is a lot more to detect. Hopefully, future SSD
generations will no longer need special treatment by the upper layers, because FTLs will
contain more and more logic. We propose that SSDs will soon unite the advantages of
conventional hard disks combined with faster random access behavior.
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Abstract: The popularity of Peer-to-Peer networks is increasing rapidly but develop-
ing new protocols for P2P systems is a very complex task as testing and evaluating
distributed systems involves high effort. P2P simulators are being developed to tackle
this difficulty, to reduce cost and to speed up development. We describe HiSim, a
modular and highly scalable P2P network simulator based on the simulation frame-
work PeerSim which we use to simulate HiSbase, a P2P framework for efficient pro-
cessing of multidimensional data. Because of its modular design, HiSim can easily
be extended, e.g., to fit other application domains. Basic design problems, related to
query processing, are introduced in general and concretely solved within HiSim. Ad-
ditionally, HiSim provides mechanisms to evaluate new protocols using an integrated
statistics component. We demonstrate the high scalability by performing simulations
of up to2 · 104 peers and2 · 107 queries.

1 Introduction

The popularity of Peer-to-Peer (P2P) networks is increasing rapidly [RD10]. Not only
filesharing protocols like, e.g., BitTorrent1 but also the science community is utilizing
them heavily. E-science communities form data grids to process huge amounts of data
(e.g. the Large Hadron Collider at Cern2) by combining their available resources using
P2P technology.

Developing new mechanisms and protocols for P2P systems is a very complex task as it
requires a distributed testing infrastructure to verify and evaluate the protocols. Such an
infrastructure should be as realistic as possible but, especially in the case of large-scale
P2P networks, this is hard to achieve as costs are increasing rapidly with higher numbers
of peers. The distributed testing process itself is very time-consuming and complex be-
cause each system needs to be monitored individually and the gathered data needs to be
combined and analyzed. Additionally, evaluating new protocols for a certain task implies
a complete distributed implementation of these protocols. Sometimes this is too costly or
not possible due to time limits, especially, if these protocols are only prototypes which
should only give a first impression if the desired approach is working.

1www.bittorrent.com
2lhc.web.cern.ch/lhc
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To overcome these problems, P2P network simulators are used. A simulator can run on
only one single workstation and provide a central interface to attach and detach protocols
easily. It allows faster and more clear testing as the whole P2P network runs centralized
and the testing data does not need to be combined from several peers. In this paper we
present HiSim, a highly scalable and easily extensible P2P network simulator based on the
PeerSim simulation engine [JMJV], which realizes all the above mentioned advantages.
We use the simulator to evaluateHiSbase, a P2P framework for managing and processing
multidimensional E-science data. However, because of its modular design, the simulator
can easily be extended to fit arbitrary application domains. The rest of the paper is struc-
tured as follows. Section 2 introduces the basics of HiSbase. Then the design of HiSim
is explained. In section 4 the extensibility of the simulator is demonstrated by some ex-
amples. The next section provides a scalability analysis and sections 6 and 7 give a short
overview of other simulator projects and summarize the main aspects.

2 HiSbase

HiSbase is the P2P framework for which the simulator was built. The framework provides
functionality for data partitioning of multidimensional data and efficient query process-
ing with the focus on preserving data locality and processing range queries [SBG+07],
[SBM+09].

HiSbase is built upon the distributed hash table overlay structurePastry [RD01]. Pas-
try coordinates the communication between the peers (ornodes) and provides a routing
mechanism. It uses a one-dimensional ring topology where data and peers are mapped to.
Additionally, Pastry optimizes the routing by implementing a proximity neighbor selection
algorithm [CDHR03] which prefers physical neighbors when routing messages.

(a) Sample data (b) Buckets (c) Linearization (d) Peer mapping

Figure 1: A sample fordata placement in HiSbase [SBG+07].

HiSbase deploys histograms to partition multidimensional data and to create buckets con-
taining approximately the same number of data elements (see Figure 1(b)). It partitiones
the data recursively, using a quadtree, and maps the leaves (orregions) to the overlay ring
topology, using the Z-order (see Figure 1(c)). The combination of quadtrees and space-
filling curves handles data skew and preserves data locality when mapping n-dimensional
data to the 1-dimensional ring. Peers and regions are mapped to the key space by using
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a hash function and regions are assigned to peers by their closest distance to peers (see
Figure 1(d)). These histograms enable efficient query processing of region-based queries
[SRK09]. Therefore a coordinating region is chosen from all regions covered by the query.
A special message is routed to the node (thecoordinator) responsible for this particular
region. The coordinator then sends messages to all queried regions, and the responsible
nodes look up the data in their local databases. They send the data back to the coordinator
which combines all answers and sends the complete data back to the query initiator. As the
space-filling curve preserves locality, it is very likely that only few nodes are responsible
for the whole area covered by the query and that these nodes are neighbors in the ring.

3 The Simulator

We now introduce HiSim. We briefly present the deployed PeerSim API followed by
an overview of problems occurring, when simulating large-scale P2P networks. We pro-
vide solutions to these problems and explain the main design of the simulator. HiSim
is designed for HiSbase where we use it to conduct query simulations, create large-scale
networks, evaluate new protocols and gather statistics on network load distribution.

3.1 PeerSim

PeerSim is a P2P simulation environment, implemented in Java [MJ09]. Its simulation
engine provides the basic functionality for simulating and managing network connections
and passing messages. A network is represented as a list of nodes, each of them main-
taining a list of protocol objects. Additionally, initializer objects (executed before the
simulation) and control objects (passive simulation monitors executed periodically) exist.
PeerSim supports two main simulation approaches, cycle-driven and event-driven. In the
cyclic model, protocols are executed periodically while in the event-driven case, protocol
execution is triggered by messages which are sent via the simulated transport layer. The
simulation is controlled by a configuration file which offers an easy way to set the different

Figure 2: A sample execution of a PeerSim simulation.
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simulation parameters. The PeerSim engine itself is single-threaded and all events (peri-
odic and non-periodic) are written to one central event queue. The execution order of the
events is determined by a scheduler which schedules the events according to their internal
simulator timet (see Figure 2; isochromatic arrows indicate that the corresponding actions
are performed in one atomic step). We decided to use PeerSim as its scalability outnum-
bers other common used simulators [NLB+07] and its API is well-designed and provides
a good basis for extensibility. Additionally it is in wide use by the research community
(see [JMJV] for a list of publications).

3.2 Design Issues for Large-Scale P2P Networks

When designing a P2P simulator architecture, usually two basic design issues arise: the
choice between cycle- and event-based simulations and between single-threaded and com-
pletely parallel (one thread per node) execution.

Using a cycle- or an event-driven simulation approach heavily depends on the application.
A cyclic engine can be used to simulate gossiping mechanisms, swarm intelligence tech-
niques or to gather simulation statistics periodically. Event-driven scenarios involve the
simulation of messages or queries. PeerSim provides engines for both cases and even the
possibility to combine them. We use the event-based engine for simulating queries and ap-
ply the cyclic model to periodically gather statistics on the network load (see section 4.2).
We deploy the combined approach in one protocol which processes queries and performs
periodic checks on a node’s load (see section 4.1).

The choice between single- or multi-threaded takes several aspects into account. The
single-threaded approach (as implemented in PeerSim) has certain advantages compared
to the multi-threaded one. A sequential simulator needs no scheduling by the operating
system and can be executed on standard single-core processors which limits the network
size only to main memory [MJ09]. Multi-threaded simulators on the other hand need mas-
sive scheduling efforts or large high performance computing clusters to run. Otherwise,
the scheduling effort grows with the networks and limits scalability. Additionally, no par-
allelization techniques are needed when running a single-threaded simulator which makes
development and evaluation much easier. One disadvantage, however, is that sequential
simulators can not achieve true realistic behavior concerning aspects like throughput mea-
sures or modeling database lookups, as the particular nodes are not autonomous. Addi-
tionally, they run on only one single processor and hence, can not utilize the full available
power of common multi-core systems. Besides these two separate approaches, one could
also think of a hybrid approach, combining the features of single-threaded and multi-
threaded simulators. Such simulators could deploy the existing computational power by
running a certain number of peers on all available processor cores in parallel. Hence, each
core executes its peers sequentially, the scheduling effort stays low as the different cores
are running real parallel and multi-core architectures can be used to boost the simulator
scalability. This approach could also be applied to HiSim. However, developing such sim-
ulators is much more complex than developing single-threaded simulators because hybrid
simulators need to be thread-safe and the particular cores have to be synchronized. Making
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HiSim a hybrid simulator is subject to future work as we only present the basic simula-
tor here. In the following section we list some problems associated with single-threaded
simulations and propose solutions.

3.3 Achieve Realism in Single-Threaded Simulator Environments

In a P2P system like HiSbase a high ratio of processing time depends on the database
lookup of queried data. After receiving a query, a node looks up the queried data in its
database. While the other nodes keep on processing, this node waits until the lookup has
been completed before sending the corresponding answer. In a parallel simulation, we
can stop the thread for a certain time to easily model the lookup. In a single-threaded
environment, we can not keep a node waiting as this would interrupt the whole simulation,
i.e. all other nodes. To solve this problem we manipulate the PeerSim event queue. Note
that in the following we omit network latencies and message delays caused by physical
factors due to clarity reasons. Assume that the lookup for queryi to nodek is scheduled at
positionp1 in the event queue. The submission of the corresponding answer is scheduled
at positionp2. Then,p2 = p1+q with q being the number of events, scheduled betweenp1
andp2 (see Figure 3(a)). Note that theseq events can be any kind of events triggered by any
node or control object and have nothing to do with the query and thus, do not model a delay.
They only lie betweenp1 andp2 because we operate in a single-threaded environment. In

(a) Model with no lookup delay (b) Model containing a lookup delay

Figure 3: Modeling query lookup delays in single-threaded environments.

a parallel simulation, they would be processed simultaneously by different threads. Figure
3(b) now shows how we model a delay. We simply add a valued to the time, when the
answer message would originally be scheduled. This postpones the message to the back
of the event queue byp positions and hencep′2 = p1 + q + p holds. Consequently, the
message arrives later at its target which represents our desired lookup.d can either be
chosen as a constant or determined dynamically according to the amount of data the query
demands.

Another problem occurs if load aspects are analyzed by the simulator. In HiSbase, each
node maintains a FIFO query queue where incoming queries are listed. Currently pro-
cessed queries are removed. The load of a node is defined by the number of queries,
waiting in this queue. Transferring this load definition to the simulator is not possible due
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to the single-threaded environment. A query comes in, is processed and the answeris sub-
mitted, all in one computational step which means that during that time no other actions
can be performed by any other node and the whole simulator. Thus, no other queries can
queue at the node while it processes a query. As a result, the load of a node would at
most be1. This situation is shown in Figure 4(a) (recall, that isochromatic arrows repre-
sent atomic simulation steps). To overcome this problem we could scan the simulator’s

(a) Load model with load at most1 (b) Model with correct load values

Figure 4: Modeling load in single-threaded environments.

event queue, looking for queries which have been sent to a node and have already ar-
rived at their target. The resulting count would be the load. As the event queue can grow
very large for huge networks, this is no efficient solution. Our solution is to introduce a
DBLookupEvent (DBLE). Assume that a node’s query request is scheduled at position
p1 in the event queue. After receiving the request the node sends aDBLE to itself (sched-
uled by the PeerSim Scheduler atp2) but does not answer the query yet. The answer to
the query is not submitted until the correspondingDBLE is received. The node can now
queue additional query requests, scheduled at positions betweenp1 andp2 which makes
load values> 1 possible (see Figure 4(b)). This load now conforms to our load defini-
tion. Note that theDBLE event models the time, a query waits in a node’s query queue to
be processed. The actual lookup delay is realized with the above described mechanism.
Hence, the number ofDBLE events scheduled for a node corresponds to the load of this
node and the simulator time betweenp1 andp2 represents the time, the query waits in the
queue.

3.4 Modular Architecture

Besides extending the simulation framework with aspects of query evaluation and load,
our simulator is also characterized by its easy extensibility. PeerSim itself provides a solid
basis for extensibility but for the HiSbase application and to keep our simulator generic,
we added some new features.

For P2P systems built on top of overlay topologies, the question arises, which one to
choose. Protocol behavior might differ on various overlay structures and the most suitable
needs to be determined. To simplify this task, we provide theOverlayProtocol inter-
face (see Figure 5(a)). This interface partially coincides with the KBR (key-based routing)
API, proposed in [DZD+03]. This API comprises several operations which should be pro-
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(a) TheOverlayProtocol interface (b) TheQueryScenario interface

Figure 5: Interfaces for overlay networks and query simulations.

vided by structured overlays, including aroute operation. In HiSim, overlay topologies
can be implemented using this interface which requires each overlay protocol to provide
aroute() method for message routing. Top-level protocols can be built on this generic
overlay protocol by just deploying the genericroute() method from the underlying
overlay and hence, overlays can be exchanged simply by specifying them via the config-
uration file. As HiSbase is built upon Pastry, HiSim completely simulates the FreePastry3

layer, including join and routing mechanisms.

One major part of HiSbase is its query processing functionality. Thus, the query simulation
engine is an essential part of HiSim. When simulating queries, different scenarios are
possible. A query scenario defines, how a node reacts after it received the answer to a
previously sent query. One scenario might be that a node waits a random time period after
receiving an answer and then submits a random number of queries. Another imaginable
scenario is, when all nodes have batch-jobs ofn queries (maximum load scenario) which
they submit to the network always keepingm parallel queries in the network (MPL m).
After receiving an answer, a node immediately submits a new query to the network to
keep itsm queries within the network. With ourQueryScenario interface we provide
an easy way to add new scenarios and to switch between them. Scenarios are added by
implementing this interface and nodes only callhandleProcessedQuery after they
finished processing a query. The scenario then reacts accordingly. HiSim provides an
implementation of a maximum load scenario and a cyclic scenario where in each cycle, a
random number of queries is submitted from a random node.

4 Extensibility of HiSim

Different aspects can be thought of, when it comes to the extensibility of a given simulator.
For HiSim, we show how easily new protocols can be added, statistics can be collected and
additional functionalities, like storing and loading networks, can be realized.

4.1 A Sample Protocol for Dynamic Replication in HiSbase

As a first application, the simulator is used to evaluate a dynamic replication protocol
(DRP) for HiSbase. Basically, the DRP works as follows. A node’s current load is moni-

3http://www.freepastry.org/FreePastry/
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tored periodically and if it increases above a specified level, it replicates partsof its data,
placing it on other nodes determined according to their interest in the data and their load.
If the load decreases again, the node revokes its replicas.

The DRP requires an extended query processing mechanism as it needs to take care of
replicas. This mechanism differs from the standard processing mechanism in HiSbase and
hence, we encapsulate it as one dedicated protocol. With the above described interfaces we
can easily place it on top of our Pastry implementation and run it with the already imple-
mented query scenarios without the need of further adaption. As stated above, protocols
can combine the event- and cycle-driven approaches. We use this feature for the dynamic
replication to perform the periodic checks on a node’s load status and the query processing
in the same protocol. As a result we receive a completely autonomous protocol, selectable
via the configuration file and runnable instantly with different query simulation scenarios
on top of Pastry. Other protocols can be added in the same way which obviously is fast
and easy and keeps the design of the simulator clean. As a next task, we want to evaluate
the DRP by gathering statistics from the network.

4.2 Recording Simulator Statistics

For evaluating, comparing, and analyzing different protocols, monitoring and recording
statistics from the network is inevitable. We introduce a statistics component, imple-
mented as a control object (see section 2) which periodically collects network statistics.
We provide statistics on the total network load, on single node loads and on the number
of queries, submitted to a HiSbase histogram region. The output format of the statistics
files are tab separated values which allow convenient further processing, e.g., by using
gnuplot4. Figures 6(a) and 6(b) show examples of such plots and were created by just
passing the output files of the statistics observer to gnuplot. Adding further statistics as
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Figure 6: Sample statistics output.

e.g. a message counter, involves only low additional effort.

4http://www.gnuplot.info/
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4.3 Saving and Loading Existing Network Configurations

As it is computationally intensive to create large-scale networks, our simulator provides
a store and load mechanism for already created network configurations. Each simulation
consists of a creation phasepc and a simulation phaseps. In ps, the main simulation
part, the query processing, is performed while inpc, the network is built by using the join
protocol of the specified overlay structure. When developing and evaluating new protocols
it is inevitable to execute runs with the exact same characteristics as the results should be
reproducible and comparable. With the store and load functionality, the state of a network
(consisting of all node states) afterpc and beforeps is retained and can be reused later.
Especially for large-scale networks of104 or more nodes, saving a network configuration
is very useful as creation time increases exponentially (see also section 5) and just reading
network configurations is more than 90% faster.

5 Scalability Analysis

To analyze the scalability we performed two types of measurements. At first we measured
how long network creation takes for different network sizes. We then simulated maximum
load scenarios (see section 3.4) with various numbers of queries, using the previously
created networks. All measures were performed on a workstation equipped with two Intel
Xeon quadcore processors (2.93 Ghz) and 64 GB RAM.
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Figure 7: Scalability results.

Figure 7(a) shows the times it takes to create a network of2 · 104 nodes. Times were
recorded each time 100 new nodes joined the network. We see that these times increase
exponentially with the number of nodes. This is due to the fact that the more nodes exist,
the more messages a node needs to send to join the network. Thus, creating a Pastry
network of size104 with HiSim takes about 15 minutes while2 · 104 nodes already take
about 2 hours. With our store-and-load functionality this effort only has to be taken once
and is thus reduced to a minimum.
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To simulate the query batch-jobs, we used a query set of2 ·104 queries, collectedfrom log
files on a real database, storing two-dimensional astrophysical data. We conducted runs
with 10, 100, 500, 1000 and 2000 queries per node. The queries were picked randomly
and submitted to the network of104 nodes with an MPL of 10 (for the 10 and 100 queries
per node scenarios) resp. 100 (for the rest). The results in Figure 7(b) show the durations
of the complete simulations. They span from2.3 minutes for10 queries per node to481
minutes for2000 queries. Looking at the results, we observe that the query simulations
scale approximately linearly in the number of queries. The same setup was carried out
with 2 · 104 nodes and the results confirm the linear scalability.

The performance measures show that we can simulate large-scale networks with high
query load within a reasonable time period. The simulation durations are especially tol-
erable as we do not have the resources to set up such systems in reality. Additionally,
evaluating different new protocols is much easier when operating on a single workstation.
As a result we save a lot of time by deploying our simulator for these tasks.

6 Related Work

Many different network simulators exist to investigate P2P systems. HiSbase itself already
has an integrated simulator which uses the FreePastry simulation engine. This engine
allows simulating FreePastry code without any adaption but the engine is very lightweight
as delays, message drops etc. are not modeled. Additionally, as the simulator is multi-
threaded, network sizes of only up to103 nodes are possible which brought up the need
for a new simulator. Other simulator examples are NS-2 [Ber], NeuroGrid [Jos03] or
GPS [YAg05] to mention only a few. NS-2 is a widely used simulator which simulates
the network layer on packet-level. This is useful to analyze networks on lower layers but
comes with the loss of scalability. It can be used on multiple machines and runs in parallel.
GPS and NeuroGrid are two single-threaded simulation engines. NeuroGrid was initially
designed for comparative simulations between Freenet-, Gnutella- and NeuroGrid-based
systems. GPS is implemented in Java and completely driven by messages. No cyclic
protocols are supported.

According to [NLB+07] most of the published research in P2P systems, conducted with
the help of simulators, is based on custom software. This software does not deploy a
standard API like the ones mentioned above or simply does not mention the underlying
simulator architecture. P2PRealm [KVK+06], for example, is a simulator especially de-
signed for studying neural network algorithms. With HiSim, we present a simulator which
is built on a common basis and provides the extensibility to fit special applications.

7 Summary and Future Work

Our work was driven by the need of a P2P network simulator which can be easily extended
and provides high scalability to implement and evaluate new protocols for HiSbase, a P2P
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framework for handling multidimensional data. The presented HiSim meets these require-
ments. Its design allows adding and exchanging new protocols easily and thus, HiSim
can also be deployed in other domains. It is based on PeerSim, a highly scalable P2P
simulation framework which provides a single-threaded simulation engine. HiSim utilizes
PeerSim to manage low level tasks like passing messages and manage physical connec-
tions. Beyond that, HiSim provides functionality especially designed for query processing
applications built on top of overlay networks. The introduced design allows convenient
management of various query scenarios which can easily be executed on different overlay
structures. We showed that single-threaded engines are arbitrarily scalable in theory, be-
cause no thread limits caused by the operating system apply, but that other problems arise
from this fact. The key idea to solve these problems is to manipulate the simulator’s event
queue. HiSim presents solutions to query-related problems occurring in single-threaded
environments and can thus provide more realistic query behavior. With some examples we
demonstrated the possibilities to extend and adapt HiSim to fit many additional tasks. We
analyzed the scalability by running simulations with different node and query numbers.
The results show that network creation time increases exponentially but we can reduce
that effort to a minimum with the provided store-and-load mechanism. Additionally we
demonstrated that the query simulation time scales linearly in the number of queries.

Future work will include more specific analyses which will compare real time system runs
and simulation runs. These tests will help to determine optimal parameter settings for the
query delay and for the lookup delay. We will also add new protocols and evaluate them to
improve and extend the HiSbase system itself. Another major task is to equip HiSim with
multi-core support.
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Abstract: To enable analyses and decision support over historic, forecast, and es-
timated data, efficient querying and modification of probabilistic data is an important
aspect. In earlier work, we proposed a data model and operators for the analysis and the
modification of uncertain data in support of what-if scenario analysis. Naturally, and
as discussed broadly in previous research, the representation of uncertain data intro-
duces additional complexity to queries over such data. When targeting the interactive
creation and evaluation of scenarios, we must be aware of the run-time performance
of the provided functionalities in order to better estimate response times and reveal
potentials for optimizations to users. The present paper builds on our previous work,
addressing both a comprehensive evaluation of the complexity of selected operators
as well as an experimental validation. Specifically, we investigate effects of varying
operator parameterizations and the underlying data characteristics. We provide exam-
ples in the context of a simple analysis process and discuss our findings and possible
optimizations.

1 Introduction

In the decision making process, we need to consider risks and chances of future devel-
opments. To this end, the derivation and evaluation of scenarios based on different as-
sumptions about the future is a powerful technique. However, as per definition, applying
an assumption always introduces uncertainty to the data at hand. This uncertainty must
be appropriately represented in the data. Existing uncertainty management approaches
mostly address applications in the fields of scientific and sensor data processing, spatial
databases, information extraction, or data cleansing. Decision support over large volumes
of data including both uncertain data and certain information, e.g., from a data warehouse,
has received comparatively little attention so far. A prominent exception is the work pre-
sented in [JXW+08], which relies completely on a sample-first approach. In previous work
(see [ERM+10]), we in contrast apply a model-extension approach to represent, analyze,
and modify uncertain data. Our primary goal is to support users in the flexible creation
and evaluation of what-if scenarios over (partially) uncertain data represented through ar-
bitrary distributions. We consider the process of what-if analysis as an iteration of steps of
data analysis and scenario creation as described in [ER10]. Apart from its iterative nature,
we also point out that we aim to enable users to conduct the analysis process in a highly
interactive fashion. In the best case, a user should be able to derive a scenario, analyze it,
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change some of its underlying data, and analyze the resulting alternative scenario within
seconds. Naturally, the additional complexity implied by the representation of uncertainty
poses a major challenge when aiming at low response times. A comprehensive analy-
sis of run-times is therefore a major contribution when assessing the overall performance
and general applicability of our approach. Moreover, it can serve us to discover room for
improvements.

To exemplify the application scope of our solution, consider the following use cases:

• Use case UC 1: An analyst wants to prospect next year’s revenue in a newly de-
veloped region Rnew. He takes the past development of a similar region Rref as
reference for his prediction. Additionally, he wants to take into account available
forecasts about the general economic development.

• Use case UC 2: A user analyzes the process of delivery and deployment of orders.
He wants to investigate possible resource costs caused by deployment personnel
during a specific time frame. To this end, he applies different assumptions regarding
temporally uncertain delivery times and deployment durations.

As noted above, most of the existing approaches for uncertain data management focus on
efficient querying and analyses of (mainly discrete) probabilistic information. The aspect
of modifying data to create scenarios, which is a central aspect of our work, is mostly
out of their scope. In the remainder of the paper, we will therefore foremost discuss those
operators, yet emphasize that the ’traditional’ aspect of data analysis is also an integral part
of our approach. We briefly describe important aspects of our data model and an operator
set for deriving and converting uncertain values, as well as analysis and modification of
such values in Section 2. We then evaluate the complexity of the selected set of operators
(Section 3) and provide an experimental validation of their costs based on a prototypical
implementation (Section 4). We address opportunities for optimizing the computation
of steps in an analysis process in Section 5. We present related work in Section 6 and
summarize our findings in Section 7.

2 Data Model and Functionalities

What-if analyses and decision support over uncertain data require a flexible data model and
powerful operators which both are introduced in our previous work, see [ER10, ERM+10].
Our data model allows for the use of both symbolic and histogram-based representations
of uncertainty, similar to [SMM+08]. An uncertain value xi1 is associated with a dis-
tribution Pi which can be represented symbolically or as a histogram P̄i. A histogram
comprises βi bins Bi = {b1, . . . , bβi

} within a lower support (boundary) li and an upper
support (boundary) hi. Each bin bj ∈ Bi is associated with a density wj . Similarly, we
use two-dimensional histograms to represent two-dimensional distributions Px,y. The dis-
cussion in this work is focused on the usage of equi-width histograms (EWH). Alternative

1Where possible, we omit the subscript for reasons of readability.
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partitioning schemes are conceivable but imply higher costs and are out of the scope of the
current work.

By investigating typical questions for what-if analyses and processes implementing such
analyses (see [ER10]), we identified a set of operations we deem specifically important in
this context as discussed in the following.

Introducing and converting uncertain information First, at the start of an analysis
process, no specific knowledge about a value’s distribution is given in many cases. Users
therefore may want to derive information about an (expected) distribution from historic
fact data. For example, in UC 1 the user assumes next year’s revenue development in re-
gion Rnew to follow the distribution observed in a similar region Rref . To introduce this
information, he derives and stores a histogram over last year’s recorded revenue values
for cities in Rref by using our operator DRV . Another basic operation (CNV ) serves
to change the representation of such derived or externally provided uncertain values. This
step can be applied explicitly, e.g., when users want to convert a symbolic into a histogram-
based representation as basis for flexible modifications. Moreover, it can be adopted im-
plicitly, e.g., when an input is given in symbolic form but the executed operator requires a
histogram-based representation. The derivation and conversion of the predicted (relative)
economic growth ince and the (relative) regional revenue increase increv are schemati-
cally depicted in the left portion of Figure 1 and further discussed in Sections 3.1 and 3.2.

Figure 1: Overview of exemplary representation and processing of distributions

Evaluating the uncertain information Once (uncertain) data is available in appropriate
representations, users need analysis capabilities such as computing aggregates, or selecting
and viewing values based on a provided threshold. While such data analysis functionality
is a natural part of our approach (contributing to the analysis part of the what-if analysis
process), it is not the focus of this paper. Rather, we mainly concentrate on (i) the mod-
ification of uncertain data, (ii) the handling of dependency in data, and (iii) the issue of
temporal indeterminacy, all of which are particularly estimable aspects in the context of
scenario-based planning:
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Modifying uncertain data: The modification of uncertain data is essential to support the
application of assumptions about the development of selected aspects to derive scenarios
representing potential future states of the world. For example, considering the increv value
in UC 1, a user might want to discard “outlier” information or apply the assumption that
extremely low revenues will be avoided due to appropriate marketing measures. This is
reflected by modifying (MOD) part of the distribution of increv, as depicted in the middle
portion of Figure 1. In other cases, users want to update an old value altogether to assume a
new distribution for a future value. In both cases, we can view the applied modification as a
creation of a new scenario. To retain the relation between values in different scenarios, we
do not replace the original value but store the modification result together with a reference
to the original value. When modifying histograms, we use a delta approach, that is, we
keep the (bin-wise) delta of the new value to the old value. Besides enabling users to
investigate the lineage of values, the delta approach enables more efficient incorporation
of modification results in further processing steps (see Sections 3.3 and 5).

Introducing dependencies: Unlike many other approaches for probabilistic data manage-
ment, we explicitly target the representation and processing of arbitrary correlation struc-
tures between uncertain values. Specifically, we address the case where a user wants to
introduce an assumed correlation between two values when no dependency information
can be faithfully derived. This can be the case, e.g., when underlying fact data is too
sparse or when two values are provided as independent data. The latter occurs in UC 1,
where we dispose of separate values for the forecast economic development (ince) and
the derived revenue increase increv. To model arbitrary forms of correlation (e.g., linear
correlation or high dependencies of extreme values) we apply the approach of copula func-
tions as described in [ER10]. Rather than constructing copulas at run-time (implying calls
to statistical functions and corresponding costs) we precompute, store, and process them
in the form of a histogram-based approximative correlation representation (ACR). The
introduction of correlation is depicted in the right-hand portion of Figure 1, where two
univariate distributions (Pincrev and Pince ) are combined into a joint distribution based on
correlation information from an ACR. Details of the ACR approach are discussed further
in Section 3.4.

Temporal uncertainty in planning processes: Finally, in addition to representing and pro-
cessing uncertainty of (measure) values, we also enable the representation of temporal
indeterminacy, i.e., uncertainty in the temporal allocation of data [ERM+10]. For exam-
ple, use case UC 2 rises the necessity to compute costs for the deployment of ordered
products following their uncertain delivery times and assuming an uncertain duration of
deployment. In this context, we consider the handling of indeterminate ”events“ occurring
during some uncertain time interval. In Section 3.5 we consider the aggregation (AGGT )
over measures associated with such events within a time interval T .

For a more detailed description of the set of operators and their application in the decision
support context, we refer to [ER10, ERM+10].
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3 Analytical Evaluation

In this section, we analyze the complexity of the operators lined out above under different
parameterizations and varying input data characteristics. In general, except for the case
of converting representations, we assume input values to be represented in the histogram-
based form; i.e., we do not consider the application of our operators for modification,
correlation introduction, and temporal aggregation on symbolic representations. In case
a distribution is given in symbolic form, we can use the conversion operator to yield the
respective histogram-based representation. Consequently, the number of bins β used to
represent univariate distributions is the most relevant factor as regards the complexity of
the evaluated operators. Further, for the derivation of distributions, the number of under-
lying facts (nF ) is crucial. Similarly, where sampling is applied, the number of sample
elements (nS) naturally influences not only the ”accuracy” of results but also the implied
costs for their derivation. When processing or constructing symbolic representations of
distributions, costs for computing specific statistics, such as quantiles, can vary. We do not
consider such distribution- and implementation-dependent costs in this section, but rather
examine them experimentally in Section 4.

3.1 Derivation of Representations

We support the derivation of distributions over values of fact data, which users can then use
as a basic input for their analyses. The intuition is that such a distribution may constitute
a proper reference for the development of another value in some similar context. For
example, in our use case UC 1, the analyst wants to utilize knowledge about the past
revenue increases in region Rref as reference for the prospective revenues in a newly
developed region Rnew with no historic data available. To this end, he needs to construct
a distribution from the historic revenues of all stores in Rref .

The DRV (F, tgt) operator serves exactly this purpose, essentially enabling the introduc-
tion of uncertainty based on fact data. It receives a number nF of facts from a column in
the fact table F of our database. The target distribution P is specified via the tgt parame-
ter, including the representation type and further parameters determining P . In particular,
the representation form can be either histogram-based or symbolic. In the former case, a
user must further provide the number of bins β and the lower and upper support (l, h) of
the desired histogram P . In the latter case, a user must provide the assumed function of
the distribution based on some insight or expectation about the underlying facts.

Histogram Representation When deriving a histogram over the fact values, we assume
they are provided in a non-sorted order. In the case of equi-width histograms, which we
focus in this paper, we statically compute bin boundaries based on the desired lower and
upper support (l, h) and the number of bins β and assign each of the nF values, resulting in
complexityO(nF ). In the general case, for each of the nF values underlying the histogram
to-be derived, we apply a bisection algorithm for sorting it into one of the β bins of the
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target histogram, resulting in a complexity of O(nF · log2(β)).

Symbolic Representation In our prototype, we support the derivation of uniform, Gaus-
sian, and Gamma distributions, while further functions could be added. Finding the lower
and upper bounds of the distribution support of an assumed uniform distribution requires
one scan of the underlying facts to determine their maximum and minimum. For a Gaus-
sian, we similarly need to process each of the nF values to iteratively compute the mean
and variance. We currently estimate the scale and shape parameters of a Gamma distri-
bution from those parameters. Hence, for all considered distribution functions, the com-
putation implies a complexity of O(nF ). The specific costs for a given target function
naturally depend on the individual calculations conducted over each fact value.

3.2 Conversion of Representations

The operatorCNV (x, tgt) allows users to flexibly change the way of managing the uncer-
tain data, converting the symbolic distribution representation of a value x to a histogram
and vice versa, depending on the parameters specifying the target distribution tgt. Further,
users can change the resolution of a histogram, e.g., for statistical error analysis, by set-
ting a new number of bins β. Returning to UC 1, a user wants to incorporate information
about the economic forecast for the region Rnew. This forecast is provided by means of
an expected value and an associated confidence interval and is represented in the system
as a Gaussian with appropriate mean and variance. In order to further process this value,
the user converts it to a histogram-based form. Another application of CNV arises when
users want to test a (derived) distribution for goodness of fit with actual data; such tests
(i.e., the χ2-test) often rely on binned data.

Similar to the DRV operator, users must provide parameters specifying the desired dis-
tribution tgt, including the type of representation and representation-specific parameters.
The three potential cases of conversion are as follows:

Symbolic Distribution into Histogram For constructing a histogram from a given dis-
tribution function, such as a Gaussian, the user defines the lower and upper support (l,h)
of the target histogram and the desired number of bins β or, alternatively, an optimal β
can be estimated using a basic heuristic aiming at an optimal approximation of the interval
with β bins (e.g., Sturges rule). For each of the β bins, the source distribution is integrated
within the lower and upper bin boundary, implying a complexity of O(β). In the case of
a uniform source distribution, density values for β bins based on l and h equally results
in O(β).

Histogram into Symbolic Distribution To compute parameters of an assumed uniform
distribution from a histogram we need to find its lower and upper bounds by reading β bins
or, if available, exploit stored metadata about l and h, inducing a complexity of O(β) or a
constant access cost O(1), respectively. To estimate parameters of a Gaussian or Gamma
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distribution, we compute the required parameters (mean and variance or scale and shape,
respectively) through an iterative run over all bins, inducing a complexity of O(β).

Histogram into Histogram As a third alternative, we can convert a source histogram P̄x
with βx bins into a new histogram P̄y with βy bins. This conversion serves, e.g., to provide
users with a changed granularity of information or to ensure two histograms have the same
bin resolution. This might be required for a succeeding operation such as testing the fit
of two distributions to each other. The conversion proceeds by finding the bin boundaries
of the βy bins of P̄y and computing the area covered by the βx bins in P̄x within the
boundaries of each bin of P̄y . The imposed complexity of the computation is O(βx +βy).

3.3 Modification of Uncertainty

Modification of an uncertain value is necessary to introduce a new assumption about its
concrete distribution in a potential scenario or adapt its value otherwise. For example, in
UC 1, the derived distribution for the (relative) regional revenue increase increv might
include large tails due to outlier data. If the user assumes those tails of the distribution
irrelevant for his current analysis (or does not want to consider this part of the distribution
in his scenario), he can modify P increv by setting the densities associated with relevant
bins of P increv to 0, as illustrated in Figure 1. In UC 2, the analyst can modify expected
deployment start times of selected orders to analyze the potential influence on the resulting
deployment costs within the time slot under consideration.

The operatorMOD(xold, xnew, cond) is applied to histogramsP xold
andP xnew

to change
the represented distributions. A modification causes the frequencies associated with se-
lected bins of P xold

to be changed, optionally depending on a specified condition cond.
This way, a user can explicitly specify both the affected bins and their target density
through xnew; alternatively, he can provide a condition for determining the bins whose
density shall be changed as well as their new density value. An example is the application
of a predicate to modify a certain part (e.g., the tail) of a distribution by specifying a con-
dition on the (new) lower and upper support of xnew. To ensure that modified values can
be traced back to the original value, we do not replace xold but insert a new value xnew
with a reference to xold. This way, we can further apply and compare multiple modifica-
tions. Physically, the modification is written back as the delta P∆ (bin-wise difference)
from P xold

to P xnew
. A worst case complexity of O(β) is induced by reading β bins

and writing delta density values for all bins. The influence on actual costs depends on the
resulting degree of modification (fm), i.e., the fraction to which a distribution is actually
affected by a conditional modification.
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3.4 Introduction of Correlation

The possibility to introduce correlation to previously independent (or independently rep-
resented) values is a valuable means to investigate effects of dependencies between values
in data, e.g., to analyze the probability of extreme values occurring jointly. In UC 1, we
assume that the user wants to evaluate a correlation among values that were provided sep-
arately; they are represented by the revenue increase distribution Pincrev and the forecast
economic growth Pince .

We use the operator COR(x, y,H, d) to enable the introduction of a correlation structure
determined by H and d between two distributions Px and Py . As noted before, the pro-
cessing of COR is based on the usage of copulas. In brief, a copula C is a distribution
function representing the relation between two marginals F and G and their joint distri-
bution H . The formal foundation is Sklar’s Theorem [Skl59, MST07], which states that,
given H as a bivariate2 distribution with F and G as univariate marginal distributions,
there exists a (copula) function C : [0, 1]

2 → [0, 1] so that H(x, y) = C(F (x), G(y)).
Using the inversion approach (see, e.g., [Nel06]), we can construct a copula C(u, v) =
H(F−1(u), G−1(v)), u and v being uniforms over [0, 1]. We write CH,d to denote a cop-
ula where the structure of the represented correlation is determined by the distribution H
and the correlation degree d. To correlate two arbitrary distributions Px and Py , we then
again apply Sklar’s Theorem, substituting F and G with the desired marginals Px and
Py . We investigate both the complexity of the native (sampling-based) approach and our
approach based on approximate correlation representations (ACRs).

(a) nS = 500 samples of
a copula CG,0.8

(b) ACR C̄G,0.8 with
α2 = 102 bins

(c) nSACR
=

∑
wi,j

samples are drawn from
α2 bins bi,j

Figure 2: Factors influencing the performance of correlation introduction

Sampling-based copula approach For the sampling-based approach, we must consider
the costs for both constructing and applying the copula. We first draw nS samples of its
underlying bivariate distributionH with correlation d. We transform the samples using the
cumulative distribution function of each of F and G to construct the copula as distribution
over [0, 1]

2. See Figure 2(a) for an example of a Gaussian copulaCG,0.8 with 500 samples.
2Without loss of generality, we restrict our considerations to the bivariate case, i.e., only consider the corre-

lation amongst two variables.
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The copula construction requires 3·nS computations applying calls to statistical functions,
inducing a complexity of O(nS). Applying the constructed copula implies, for the two
coordinates of each of the nS samples, a computation of the quantiles of the distributions
Px and Py (provided as histograms P̄x and P̄y). The computation of quantiles requires
a binary search over the frequency values of the βx, βy bins of P̄x and P̄y succeeded by
computing the concrete distribution within the bin based on a uniform spread assumption.
In total, the sampling-based approach – including the construction and application of the
copula – results in a complexity of O(nS + nSlog2(βx) + nSlog2(βy)).

ACR-based approach Aiming at lower response times and an independence from sta-
tistical library calls at run-time, we pre-compute copulas CH,d and store them as ACRs
with α2 bins, denoted by C

α

H,d (see Figure 2(b)). Then, to correlate two values, the sys-
tem chooses and applies an appropriate ACR based on the desired correlation parameters.
This way, no costs for copula construction are induced at run-time. Rather, we use the
aggregated information stored in the ACR, i.e., the coordinates of the α2 bins bi,j and
their respective weights (densities) wi,j . As discussed in [ER10], we decrease the neg-
ative influence of discretization by applying inversion based on artificial samples from
each bin bi,j . This is indicated for an individual bin in Figure 2(c). Those samples are
uniformly distributed within each bi,j , the sample number per bin being relative to its
weight wi,j . The correlation introduction then proceeds exactly as for the sampling-based
approach. Using a total of nSACR

samples over all bins, this implies a complexity of
O(nSACR

log2(βx) + nSACR
log2(βy)) for computing quantiles of Px and Py for each

sample. In the usual case, we consider nSACR
to be similar to or higher than nS to ensure

comparable result accuracy. A very basic approach is to invert the coordinates of the α2

bin centers only (instead of inverting nSACR
sample coordinates), resulting in a complexity

of O(α2log2(βx) + α2log2(βy)). In a usual case, α2 is a magnitude smaller than nSACR
,

resulting in, e.g., α2 = 402 = 1600 rather than nSACR
= 40000 quantile computations for

Px and Py . However, those savings come at the cost of mostly unacceptable discretization
errors.

3.5 Indeterminate Temporal Aggregation

In order to enable the handling of temporal indeterminacy of plans, we consider the anal-
ysis over indeterminate events. The indeterminacy of an event ei is reflected through
an uncertain start time ti and a duration di. As an example, to implement UC 2, we
need to compute the prospective overall deployment costs implied by a number of in-
determinate deployments ei ∈ Edep during a specified interval, e.g., T = [1, 5]. We
use the operator AGGT (X,E, T ) to compute the aggregate (sum, minimum, or maxi-
mum) of values of an attribute X = {x0, . . . , xn} associated with temporally indeter-
minate events E = {e1, . . . , en} within a time interval T =

[
lT , hT

]
. To compute

the aggregate, we must consider all events that have a potential overlap with T (i.e.,
lti < hT ∧ hti + hdi > lT ). In the following, we consider the aggregation over a single
event e ∈ E (omitting the subscript for reasons of readability). Essentially, we need to
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(a) Start t and du-
ration d of event e

(b) Aggregation over indeterminate events illustrated over the single event e

Figure 3: Representation and processing of temporal indeterminacy associated with indeterminate
events

compute the fraction φ to yield the contribution φ · x of the measure value x associated
with e. The fraction φ depends both on the position of T and on the set of all possible
intervals Ipq ∈ I =

{[
tstartp = vp, t

end
pq = vp + vq

]}
, vp ∈ It, vq ∈ Id in which e can

occur. To give an example, Figure 3(a) depicts the start time t, βt = 3 and duration d,
βd = 2 of the event e while Figure 3(b) shows how aggregation works over this single
event. In Figure 3(b), the fraction φ of e results from six possible occurrence intervals
I = {I11, I12, . . . , I32}. For each possible interval, we need to compute joint probabili-
ties P (t = vp) ·P (d = vq) (assuming independence between t and d) and the fractions of
overlaps, i.e., the part of Ipq that lies within T = [1, 5].

We denote the average number of potential occurrence intervals of all considered events
ei ∈ E as nI = (

∑
i=0...N βti · βdi)/|E| and the fraction of those intervals that actually

overlap T (and therefore contribute to the aggregate result) as fφ . Temporal aggregation
implies |E| · nI · fφ complete computations of overlaps and joint probabilities. The worst
case therefore is of complexity O(nF · nI).

4 Experimental Evaluation

In this section, we report on experiments evaluating the discussed operators. The goal
of those experiments is the validation of our analytical results for the selected operators.
Further, based on concrete results, we can quantify the costs for reading and writing data
and the specific computations involved in operator processing steps.

4.1 Implementation and Setup

We extended an existing proprietary engine that computes complex analytical queries by
means of so-called Calculation Views (CV). Those views enable OLAP analysis function-
ality as well as applying custom operations provided as Python or C++ implementations.
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For a more detailed explanation of the underlying architecture and the concept of CVs, see
[JLF10]. Further, for the computation of statistic functions (e.g., for copula construction
at runtime) we rely on the statistic library IMSL3. Physically, the data are stored and ac-
cessed per column. Since our operators operate only on one or two columns at most of the
time, this setting is beneficial for many operations.

Experimental Setup For the following experiments, we used a dual CPU workstation
with 4GB of main memory running Windows Vista 64bit. The goal was to investigate the
required run-times for selected operators. To validate the influence of factors identified in
Section 3 above on actual run-times, we varied both the parameterization of operators and
the scaling factors of the underlying TPC-H4 data as well as the characteristics of uncertain
input data (represented mostly by histograms). Note that, in the general case, intermediate
results derived by an operator are not persisted unless stated otherwise.

4.2 Experiments

Loading Histogram Data As a basis for most of the other operators, histogram data
needs to be loaded from the database into our internal histogram structure. Figure 4 shows
the costs induced by loading histograms with varying numbers β of bins. Note that for
the current prototype, those costs are far from optimal due to the fact that we access the
internal tables storing our histogram data via SQL statements rather than internal table
searches. Clearly, load times increase linearly with the number of fetched histograms.
However, repeated access to individual values or small sets of values causes relatively
higher costs.

Figure 4: Times for loading histograms for a number of uncertain values

Derivation Subsequently, we use the lineitem table from the TPC-H benchmark as a
basis for deriving distributions. We derive both histogram-based representations with vary-

3http://www.vni.com/products/imsl/
4http://tpc.org
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ing numbers of bins and symbolic representations over the values of the extendedprice
attribute. We assume that the considered data follows either one of a uniform, a Gaus-
sian, or a Gamma distribution. Using scaling factors s = 0.1 and s = 1.0 results in
nF = 600k and nF = 6M attribute values, respectively. Depending on an optional
grouping, we derive a total distribution over all values, or 20k and 200k distributions for
each lineitem.partkey, respectively. As shown in Table 1, run-times increase al-
most linearly with the size of nF when we derive one distribution from all fact values.
In the grouped derivation, we observe a slightly stronger increase in the case of histogram
derivations, which we attribute to the high memory allocation costs. This factor also causes
slightly rising run-times as β increases, even though the bin allocation as such is constant
atO(1). For the derivation of symbolic representations, run-times increase perfectly linear
with nF .

Table 1: Run-times (sec) for derivation of different distribution representations over a to-
tal of nF = 600k values (s = 0.1) and nF = 6M values (s = 1.0) of attribute
lineitem.extendedprice.

Scale
Distribution Representation

(Equi-width) Histogram Symbolic
β = 10 β = 20 β = 100 Uniform Gaussian Gamma

s = 0.1, total 0.165 0.156 0.28 0.28
s = 0.1, grouped 0.57 0.60 0.61 0.65 0.92 0.92

s = 1.0, total 1.62 1.55 2.82 2.82
s = 1.0, grouped 6.55 6.87 6.96 6.50 8.95 8.95

Table 2: Run-times (sec) for converting 1000 val-
ues from symbolic to histogram representations.

Source Target Histogram Representation β
10 20 50 100

Uniform 0.136 0.19 0.3 0.556
Gaussian 0.115 0.173 0.338 0.619
Gamma 0.136 0.176 0.364 0.692

Table 3: Run-times (sec) for convert-
ing 1000 histogram-based representa-
tions to symbolic representations.

Source Target Distribution
Uniform Gaussian Gamma

β = 10 0.025 0.06 0.062
β = 50 0.028 0.067 0.068
β = 100 0.035 0.080 0.082

Conversion Tables 2 and 3 show results for converting symbolic into histogram repre-
sentations with varying β and for converting histograms into assumed symbolic represen-
tations, respectively. We can see in Table 2 that the observed costs are relatively higher
for low values of β, which results from setup and loading costs. Beyond this initial cost,
run-times increase almost linear with β, due to the fact that we must compute discrete
density values by integration within each of the β bins as discussed in Section 3.2. Note
that the concrete cost for potential further distribution functions will vary depending on
the concrete implementation (e.g., through a call to an external library) of their integra-
tion. Table 3 shows run-times for deriving function parameters of assumed distribution
functions from source histograms. Computation costs increase only slightly with the size
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of β. The total costs are strongly dominated by loading times, increasing linearly with β
as already shown in Figure 4.

Modification We evaluated both the modification of values based on an update value
xnew provided a priori and applying value-based conditions. Different from the other
operators, in the case of MOD, we write back the bin-wise delta from the old to the new
value. Figure 5 shows the results of modifying histograms with varying β based on a
threshold on the distribution support; that is, all bins with right bounds below a threshold
were modified (e.g., set to 0). The threshold was varied so that the modified fraction fm
increased from 0.0 to 1.0. One can see that run-times increase linearly with fm as only
modified bins are written back. The increase of run-times is also linear in β. We observe
a stronger increase for β = 100, which is due to current implementational restrictions of
our prototype.

Figure 5: Run-times for modifying 100 histograms, applying (value-based or frequency-based) con-
ditions affecting various fractions of the histograms

Correlation Introduction To evaluate run-times of the COR operator, we varied the
characteristics of the copulas underlying the sampling- and ACR-based approaches as well
as the distributions to be correlated. First, we evaluated the application of different copulas
CH,d built from a bivariate Gaussian and T-student distributionH with correlation degrees
d = 0.4 and d = 0.8, respectively. We further varied the number of samples (nS) per
copulaCH,d and the number of bins (α) per ACRC

α

H,d. BothCH,d andC
α

H,d were applied

to two histograms P
20

x and P
20

y to yield a result histogram P
20,20

x,y . Table 4 displays the

run-times required for computing P
20,20

x,y , averaged over 100 runs each. For the sampling-

based approach, we must include the times for copula construction and for deriving P
20,20

x,y .
In contrast, for the ACR-based approach, we exclude copula construction times since we
only need to access the precomputed ACR histograms and compute the quantiles for the
nSACR

artificially derived samples. In this case, we fix nSACR
= 100k. Table 4 shows

that the run-times of the ACR-based cases are almost constant at about the time required
for processing the respective copulas CT (1),d and CG,d using nS = 5k and nS = 10k
samples, respectively. The constant behavior is due to the fact that we keep the number of
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nSACR
constant for all applied ACRs, irrespective of the number of α. The displayed run-

times for the sampling-based approach increase linearly with the used number of samples
nS . As an indication – although the issue of accuracy is not further discussed in this paper
– the result accuracies reached by using copulas of 20k and 40k samples are comparable
to those achieved when using the respective ACR with α = 40 bins.

Table 4: Run-times (in ms) for deriving P
20,20
x,y through sampling approach and ACR processing

Copula
nS ACR-based (α)

5k 10k 40k 10 20 40

CGauss,0.4, CGauss,0.8 123 157 361 150 150 150
CT (1),0.4, CT (1),0.8 140 189 474 150 150 150

Figure 6: Run-times for ACR-based correlation introduction with varying parameters

We further varied the number of βx and βy used to represent Px and Py as well as the
number of nSACR

. The resulting run-times are shown in Figure 6. We can see that there
is an initial cost for setting up the operator and loading the data, which clearly dominates
run-times especially for small β and nSACR

. Beyond this initial cost factor, we see an
increase linear in nSACR

due to the cost for each additional sample inversion (quantile
computation). With increasing numbers of βx and βy (simultaneously set to 10, 20, 50,
or 100 bins, respectively) we can see increasing run-times slightly below the assumed
logarithmic increase due to the increased cost of each quantile computation, as discussed
in Section 3.4.

Temporal Aggregation The efficiency of AGGT is subject to many variations as de-
scribed above. We now evaluate the influence of βti and βdi , as well as the fraction fφ
of the potential occurrence intervals Iipq overlapping T . We apply SUM [10,15] for 1000
artificial events ei ∈ E. Start times ti and durations di are uniformly distributed over
[0, 5], each represented by a corresponding histogram with βti = βdi = 5. The results are
displayed in Figures 7(a) and 7(b).

We investigate the variation of β by aggregating over a number of 1000 events associated
with varying βti and βdi , respectively. The portion fφ of overlapping occurrence intervals
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(a) Varying βti from 0 to 50 (b) Varying fraction of overlaps fφ from 0.0 to 1.0

Figure 7: Temporal aggregation over 1k events with varying start time and duration characteristics

is kept stable (at 100%) by ensuring that, for every variation, hti < lT ∧ lti + ldi > lT .
The results are shown in Figure 7(a). Results for varied βdi are similar given the portion of
potential overlaps is similarly kept stable at 100%. To vary the portion fφ of overlapping
Iipq from 0.0 to 1.0, we keep ti and T constant and calculate AGGT for ldi = 0, . . . , 10
and hdi = ldi + 5. The resulting run-times are shown in Figure 7(b). In both experiments,
the observed behavior is in line with the results of Section 3.5, reflecting a linear rising in
run-times for increased βti , βdi , and fφ, respectively. An exception occurs for fφ = 1/25,
where we observe an initially stronger increase. This is due to the fact that for fφ = 0.0 all
events lie outside T and do not induce any costs for testing of overlapping intervals, while
for any fφ > 0.0 those tests imply an initial cost.

5 Efficiency and Optimization of the Analysis Process

So far, we discussed the efficiency of individual operators with respect to their specific
characteristics. We now address selected issues of optimization in the face of large amounts
of input data and the application of composed operator sequences in order to enable lower
response times for their interactive and iterative application in analysis processes.

An example process In Figure 8 we illustrate the subsequent application of selected op-
erators implementing UC 2. Recall that we want to analyze costs associated with a set
of indeterminate deployments Edep during a specified time interval, where the deploy-
ment of a part follows its uncertain delivery. Consider as the basis for our analysis a data
warehouse storing information about line items and associated orders as represented in the
lineitem and order tables. We want to prospect the probable deployment costs for a
group of line items during the next weeks. We assume that their times to delivery (ttd)
(computed from the order.orderdate and lineitem.receiptdate attributes)
will behave similar to the distribution of delivery times observed in the historic data. To
reflect this assumption, for each lineitem.partkey, we derive a histogram (EWH)
P̄ti over ttd for all delivered items. We view Pti as the distribution of the start time of a
prospective deployment event ei for an item ordered today (viewing ”today” as day 0). For
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Figure 8: Process illustrating UC 2 and the incremental derivation of scenarios

simplicity, we assume a constant cost ci = 100 and a duration di following a uniform dis-
tribution in [0, 5] (converted to P̄di ) for all deployment events ei ∈ Edep. The aim of our
analysis is (i) to compute prospective deployment costs induced by selected orders during
time intervals [5, 10] and [10, 15] and (ii) to investigate, in the case of an unfavorable cost
situation, alternative delivery scenarios. The first step is achieved through an application
of SUM [5,10](Edep, C) and SUM [10,15](Edep, C). The latter involves the modification of
deployment start times ti based on the user’s assumption followed by a second aggregation
over Edep, now including the modified temporal information.

5.1 Iterative creation and computation of scenarios

In our exemplary use case UC 2, the user wants to analyze the influence of applying
express delivery on the deployment costs induced during a considered time frame. To this
end, as shown in Figure 8, he modifies the start times ti of a selected subset of Edep,
creating a new scenario S2. He then needs to analyze the modified data underlying S2,
e.g., by repeating the described aggregation over intervals [5, 10] and [10, 15]. The results
scenarios can be compared, stored, or further processed. Naturally, we want to reuse as
many results as possible throughout this process. To this end, we must provide information
about their derivation and evaluate it in the processing of operators. It is important to note
that most of the derived results are kept in memory as intermediate results, enabling fast
access and iterative application of different operators. Of course, we can persist results to
enable their reuse at a later point in time.

Incorporating modifications and insertions The creation of a new scenario virtually
always goes along with modifications to some minor part of the underlying data. For ex-
ample, the scenario described above is derived on the assumption of modified delivery
times for a group of items. Note that we can calculate the succeeding aggregation very
efficiently given the fraction of modified times is relatively small. In particular, rather than
applying AGGT to all ei ∈ Edep, we only need to compute SUMT over the affected
events, using the delta values t∆i that represent the previous modification. We can then
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compute sumS2 as sumS2 = sumS1 + sum∆. Modifications can be incorporated in
the described iterative fashion only if we can preserve the semantics of the applied oper-
ators. For example, we can apply a similar step to update previously derived histograms
or distribution parameters to incorporate modified or new fact data in an iterative fashion,
rather than recomputing the complete distribution. Similarly, we can update a bivariate
distribution (derived using COR) when one of the marginals is modified. This is be-
cause internally, COR essentially relies on summing up the joint densities in the result
histogram. Thus, the same iterative approach as above can be applied. Note that we can
not use this approach when the analysis process includes operators whose semantics are
not preserved under modifications, e.g., for the computation of extrema (both in the sense
of standard aggregation and the computation of MINT and MAXT ). A comprehensive
consideration of how new data and modifications can be incorporated in the execution of
(sequences of) operators is yet outstanding.

5.2 Parallelization

Besides optimizing the calculation of succeeding operators based on the provenance of
intermediate results, we also need to address the issue of long response times due to large
amounts of data processed by operators such as DRV . To this end, we considered dif-
ferent forms of parallelization. For many of our operators, a large part of their overall
costs is determined by loading and processing individual columns. Those can be executed
independently, returning relatively small results which are merged in a final step. In pre-
vious work, we applied alternative ways of parallel loading and processing of underlying
input data. We evaluated parallelization of computations executed within an operator and
parallel processing of operators between cores in [ERM+10], where we exemplified our
approaches using the data-intensive operator DRV . The reported results show that in
cases of large amounts of input data, parallel loading and processing of partitioned data
over many cores is beneficial due to dominant loading times. Conversely, when operators
process relatively small amounts of data, we can apply threaded execution within a single
operator.

6 Related Work

Existing approaches for uncertain data management foremost focus on areas such as the
management of sensor data, information extraction results, or scientific data. In this con-
text, those approaches mainly address the representation, indexing, and analysis of data
represented through tuple alternatives [HAKO09, SD07, ABS+06] and values distributed
over discrete or continuous domains [SMM+08, AW09]. The generally high complexity
of queries over uncertain data is a well-known problem and has been discussed – among
other issues – with respect to join evaluation [Che06], range predicates [DS07, CXP+04],
and exact and approximate aggregate computation [MIW07].
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The abovementioned aspects serve as valuable building blocks for the analysis part of
the planning processes we envision. However, our work focuses on the specific aspects
of derivation and modification of uncertainty and interdependencies in data. To incorpo-
rate those aspects, we apply symbolic and equi-width histogram representations of dis-
tribution functions. The use of histograms and the performance of different partition-
ing schemes, such as equi-depth or MaxDiff, have been investigated in depth (see, e.g.,
[PHIS96]) with respect to both their construction efficiency and accuracy. Likewise, the
usage of histogram-based and symbolic representations for uncertain data management
has been previously discussed, e.g., in [SMM+08, AW09]. We similarly exploit the his-
togram model to represent arbitrary distributions generically; in addition, our data model
employs uni- and multivariate histograms to represent and efficiently handle modifications
(deltas) and correlation information. The aspect of correlations in data was addressed pre-
viously primarily for the case of tuple alternatives and discrete value distributions. The
approach reported in [SD07] uses graphical models to represent such dependencies in a
factored fashion and discusses efficient inference-based query evaluation over the graphs.
Although, in general, the graphical representation can be applied in the face of continuous
distributions, [SD07] does not address the computation or introduction of correlation in-
formation by users. While the authors in [KO08] discuss efficient approaches for the intro-
duction of ”conditioning” constraints (e.g., implications and mutual exclusion) and queries
over conditioned data, they similarly do not discuss the separate representation and intro-
duction of arbitrary correlation to data as we do. Our previous work [ER10, ERM+10]
introduced the general ideas of our support for scenario-based planning, but lacked a com-
prehensive discussion and evaluation of our operators’ efficiency, foremost as regards the
COR and AGGT operators. In this paper, we addressed this open issue as a basic pre-
requisite to judge their practical applicability. The challenge of efficiently incorporating
modified data in the face of scenario creation relates to the topic of data lineage. Lin-
eage handling has been previously discussed in the context of probabilistic data, e.g., in
[ABS+06, STW08] and in the broader context of view maintenance in data warehouses
[CWW00] and data-centric workflows. Its application for optimizing scenario-based plan-
ning process constitutes an interesting new facet complementing previous research.

7 Conclusion and Future Work

In this paper, we extended our previous work on operators for derivation, analysis and
modification of uncertain data in the context of scenario-based planning processes. We
derived and discussed the complexity of these operators and created a basis for assessing
them in different application scenarios. We also validated the analytical results through
an experimental evaluation. Generally, we observe a dominating cost factor for loading
histogram structures from the database, while the computation routines themselves are
highly efficient and introduce only small additional costs with growing data complexity.
We further highlighted opportunities for optimization concerning both parallelization and
the incremental execution of steps in an analysis process, including the efficient derivation
of related scenarios. Finally, we addressed related research topics touching on various
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aspects of both the functional and performance-related aspects of the presented work.

Apart from enabling provenance handling in the scenario derivation process, another highly
important factor of future work is an assessment of the accuracy of results derived in this
process. Naturally, we cannot quantify the “correctness” of a computed result scenario
since the future fulfillment of the applied assumptions is unknown. Still, we can measure
discretization errors introduced through operator applications and quantify the resulting
trade-offs between accuracy and efficiency. In this respect, both varying aspects of the
data model and the applied operators can help enable manual and automatic optimization
based on users’ preferences. For example, applying an alternative histogram partitioning
scheme such as equi-depth could decrease approximation errors at the cost of lower con-
struction and update efficiency. Conversely, a user might resort to approximate operators
for the benefit of lower run-times. In this context, a complementary track of our work
investigates approximate temporal aggregation based on a clustering of events with simi-
lar temporal associations. A comprehensive investigation of the exemplified trade-offs is
subject to future work.
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Abstract: Recent trends in information extraction have allowed us to not only extract
large semantic knowledge bases from structured or loosely structured Web sources,
but to also extract additional annotations along with the RDF facts these knowledge
bases contain. Among the most important types of annotations are spatial and tem-
poral annotations. In particular the latter temporal annotations help us to reflect that
a majority of facts is not static but highly ephemeral in the real world, i.e., facts are
valid for only a limited amount of time, or multiple facts stand in temporal dependen-
cies with each other. In this paper, we present a declarative reasoning framework to
express and process temporal consistency constraints and queries via first-order logi-
cal predicates. We define a subclass of first-order constraints with temporal predicates
for which the knowledge base is guaranteed to be satisfiable. Moreover, we devise ef-
ficient grounding and approximation algorithms for this class of first order constraints,
which can be solved within our framework. Specifically, we reduce the problem of
finding a consistent subset of time-annotated facts to a scheduling problem and give
an approximation algorithm for it. Experiments over a large temporal knowledge base
(T-YAGO) demonstrate the scalability and excellent approximation performance of
our framework.

1 Introduction

Despite the great advances of Web-based information extraction (IE) techniques in recent
years, the resulting knowledge bases still face a significant amount of noisy and even in-
consistent facts. These knowledge bases are typically captured as RDF facts, with some
of the most prominent representatives being DBpedia, FreeBase, and YAGO. The very
nature of the largely automated extraction techniques that these projects employ however
entails that the resulting RDF knowledge bases may face a significant amount of incorrect,
incomplete, or even inconsistent factual knowledge (which is often summarized under the
term uncertain data). A knowledge base becomes inconsistent only through the presence
of additional consistency constraints, which are typically provided by a human knowledge
engineer according to some real-world-based domain model. In general, we call a knowl-
edge base inconsistent if not all these provided consistency constraints are satisfied with
∗The author has partially been supported by the Saarbrücken Graduate School of Computer Science which

receives funding from the DFG as part of the Excellence Initiative of the German Federal and State Governments.
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respect to the facts captured by the knowledge base. Resolving these inconsistencies thus
requires some form of consistency reasoning, for example, by selecting a consistent sub-
set of the facts contained in the knowledge base, and by considering only this subset for
answering queries.

By default, we assume facts in the knowledge base to be true, and (implicitly) all facts not
contained in the knowledge base to be false, an approach generally known as closed-world
assumption. Consistency constraints may however put two or more facts in the knowledge
base into conflict with each other, thus rendering the knowledge base inconsistent (i.e., un-
satisfiable) under the assumption that all facts contained in it are true. For example, an ex-
tractor might erroneously extract two different birth places of David Beckham, expressed
as the two RDF facts bornIn(David Beckham, Leytonstone) and bornIn(David Beckham,
Old Trafford) in our knowledge base. Without an explicit constraint, which puts these two
facts into conflict with each other, there is no formal inconsistency in a knowledge base
containing these two facts. Therefore, queries asking for the birth place of David Beckham
would return both answers. With an explicit (first-order) logical consistency constraint of
the form

∀x, y, z bornIn(x, y) ∧ bornIn(x, z)→ y = z

however, we can express that only one of the two above facts may be true in the real world.
Hence, the reasoner (ideally at query-time) could decide which of the two facts to return
as answer. Moreover, multiple of these constraints may overlap, such that the truth value
of a fact may depend on multiple constraints. In turn, the constraints may put multiple,
partially overlapping (sub-)sets of facts contained in the knowledge base into conflict with
each other. Generally, Boolean reasoning within this family of SAT problems is NP-hard,
and for general first-order formulas the constraints may not be satisfiable at all. In other
words, there may exist no truth assignment to facts (even regardless of the actual facts) in
the knowledge base such that all constraints are satisfied.

Temporal annotations add another dimension of complexity to reasoning with RDF facts.
With temporal annotations, we can not only express general constraints among facts but
also add a finer granularity to the consistency reasoning itself. Only with time information,
we can, for example, express that a person should only be married to at most one other
person at a time, that a soccer player can play for only one club at a time, or that a person
had to be married to another person before they got divorced, and so on. Even when using
simple time intervals for the representation of temporal annotations with such disjointness
and precedence constraints, the satisfiability problem is known to be NP-hard [GS93].

Thus, our goal in this work is to identify a canonical set of first-order constraints, for which
we know that they are satisfiable over a given knowledge base, and to provide an efficient
framework for resolving temporal conflicts directly at query-time.

1.1 Contributions

The contributions of the work presented in this paper are three-fold:

• Declarative reasoning framework for consistency constraints and queries. We fo-
cus on temporal consistency reasoning over large, uncertain, and potentially incon-
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sistent knowledge bases. Our constraints are expressed as first-order logical Horn
formulas with temporal predicates, a setting which leaves the satisfiability problem
NP-hard1, and which may result in unsatisfiable constraints. We thus define a sub-
class of Horn constraints with temporal predicates whose satisfiability is guaranteed,
and which we can solve efficiently in terms of both grounding the first-order formulas
and resolving conflicts among the grounded facts (Section 3.1). Both constraints and
queries can be specified by the user in a fully declarative way.
• Efficient Approximation Algorithm. We develop a linear-time algorithm for check-

ing whether a general set of first-order constraints is included in our previously defined
solvable subclass of constraints (Section 3.1). Moreover, we introduce a grounding
procedure whose running time linearly depends both on the constraints and the number
of query-matches contained in the knowledge base (Section 3.2). Finally, we present
a procedure for efficiently and effectively resolving temporal conflicts among facts
contained in the knowledge base (Section 3.2), which remains an NP-hard problem
also for our class of constraints, and for which we devise an efficient approximation
algorithm (based on results from event scheduling) for solving these conflicts.
• System and Experiments. We experimentally evaluate our system over the T-YAGO

[WZQ+10] knowledge base, consisting of 270,000 temporal facts, and handcrafted
consistency constraints (Section 4). Our evaluation shows that the system scales very
well and at the same time features excellent performance in terms of approximation
quality.

The remainder of this paper is organized as follows. In Section 2, we provide a formal
definition of our data model and the first-order constraints. In Section 3, we define the
subclass of constraints we tackle, and we discuss offline and online computations required
to solve these constraints over a set of given base facts (the knowledge base). Our exper-
imental results are shown in Section 4. Continuing with related work in Section 5, we
conclude our work in Section 6.

2 Data Model, Constraints, and Problem Statement
2.1 Data and Representation Model

Uncertain Temporal Knowledge Base. We define a knowledge base KB = 〈F , C〉
as a pair consisting of a set of (weighted and temporal) facts F and a set of first-order
(temporal) consistency constraints C (the latter are discussed in Section 2.2). To encode
facts, we employ the widely used Resource Description Format (RDF), in which facts
F ⊆ Rel × Entities × Entities are stored as triples consisting of a relation and a pair of
entities. Moreover, we extend the original RDF triplet structure in two ways: first, to ex-
press uncertainty about a fact’s correctness, we associate a positive, real-valued confidence
weight w(f) with each fact f ∈ F (denoted by the function w : F → R+); and second,
to include time information into our knowledge base, we also assign a time interval of the
form [tb, te) to each fact f . The weights w(f) can be interpreted as the confidence for the

1The satisfiability problem of propositional Horn-SAT is in P , whereas first-order Horn-SAT (with variables
being all-quantified) is NP-hard.
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fact being true, where a higher value denotes a higher confidence, while the time interval
[tb, te) specifies the begin time tb and end time te during which the fact may be valid, i.e.,
during which it may be true. Outside their validity intervals, facts are assumed to be false.
Time intervals, as well as temporal predicates for logical reasoning with these intervals,
are defined more formally in the next subsection.

Time Intervals and Temporal Predicates. In our setting, the set of time intervals T ⊆
N0 × N0 is composed of all possible (half-open) time intervals of the kind [tb, te) with
tb < te. For presentation purposes, we will denote intervals as if they range over years, like
the interval [1990, 2010) which starts in 1990 and ends in 2009. Our reasoning framework
however supports arbitrary continuous intervals over real numbers.

The set of relations is Rel = RelE ∪̇ RelA is split into a set of extensional relations
RelE (like, e.g., bornIn or graduatedFrom), which are captured purely by facts stored in
the knowledge base, and a set of arithmetic relations RelA (e.g., equal “=”, or notEqual
“6=”), which are evaluated by the reasoner “on demand” based on their arguments (i.e., all
their arguments become constants when the formulas are grounded).

In addition to the common arithmetic predicates for expressing the equality and inequality
of two arguments, we deploy temporal predicates RelT ⊆ RelA as a subset of the arith-
metic predicates we consider in our reasoning framework. Temporal predicates enable us
to reason about the temporal relationships among facts based on their time intervals. For
example, we say that two time intervals overlap if they share a common time interval;
otherwise they are disjoint. Further, a time interval [tb1 , te1) is before another interval
[tb2 , te2) if te1 ≤ tb2 , which also implies that they are disjoint (see, for example, seminal
work by Allen et al. [All83] for an overview of temporal relations among intervals).

Example 1. Besides the first line expressing that David Beckham was born in Leytonstone
in 1975 with weight 9.0, Figure 1 contains four additional facts related to him.

fbornBL := bornIn(David Beckham, Leytonstone, [1975, 1976))9.0

fbornBOT := bornIn(David Beckham, Old Trafford , [1999, 2000))2.0

fplaysBMU := playsForClub(David Beckham, Manchester United , [1993, 2004))8.0

fplaysBB := playsForClub(David Beckham, 1 .FC Barcelona, [1999, 2001))6.0

fplaysBE := playsForNational(David Beckham, England National Team, [1992, 2011))1.0

Figure 1: The content of F in our running example.

2.2 Constraints and Queries

Consistency Constraints. A consistency constraint in our reasoning framework is a first-
order logical Horn formula with exactly two extensional predicates relE1 , relE2 ∈ RelE ,
an optional arithmetic (but non-temporal) predicate relA ∈ RelA\RelT in the body, and
exactly one temporal predicate relT ∈ RelT ∪ {false} as head literal. Constraint (1)
denotes the general template of consistency constraints we consider in the following.

relE1(e1, e2, t1) ∧ relE2(e1, e3, t2) ∧ relA(e2, e3)→ relT (t1, t2) (1)
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All occurring variables, where e1, e2, e3 represent entities and t1, t2 stand for time in-
tervals, are implicitly universally quantified. We require relE1 and relE2 to share e1 as
their first argument, and the optional arithmetic predicate relA must hold the remaining
variables e2 and e3 as its arguments.

Queries. As opposed to constraints, queries are conjunctions of extensional predicates,
where all variables are implicitly existentially quantified. For example, the query

playsForClub(David Beckham, club) (2)

may be imposed by a user to ask: “Which clubs did David Beckham play for?”

2.3 Reasoning Framework and Semantics

When we instantiate (i.e., ground) the literals in the first-order consistency constraints C
and replace them by facts, we obtain propositional formulas. Then the facts represent
propositional literals, which can be either set to true or false by the reasoner. Arithmetic
predicates with constants are immutable in a propositional sense, i.e., they are always ei-
ther true or false, depending on the constants and the semantics of the predicate. For
example, the two entities Beckham and Ronaldo are never equal under the Unique Name
Assumption of the underlying RDF data model, and the two time intervals [1999, 2003)
and [2004, 2006) can never overlap. Thus, in each grounded instance of a constraint, only
the two literals with extensional predicates become actual Boolean variables and can be as-
signed a truth value by the reasoner. According to the structure of the constraints described
above, two facts are in conflict with each other if they are contained in a propositional in-
stance of a constraint whose (temporal) head literal is false, which implies that the entire
constraint evaluates to false given that both facts are true. Hence, in order to resolve such
an inconsistency, we have to set at least one of the extensional facts to false.

2.4 Constraint Types

Depending on the choice of the constraints, the combinatorial complexity of resolving
conflicts is varying, making it crucial to decide which constraints we allow to be formu-
lated. In the following, we consider three kinds of constraints, which handle a significant
number of possible scenarios:

• Temporal disjointness • Temporal precedence • Mutual exclusion

Disjointness. To express that the intervals of any two facts from the same extensional
relation relE (e.g., playsForClub) are non-overlapping, we utilize the following template
to express disjointness constraints.

relE(e1, e2, t1) ∧ relE(e1, e3, t2) ∧ e2 6= e3 → disjoint(t1, t2) (3)

Example 2. We express that a player can only play for one club at a time by replacing
relE in (3) by playsForClub:

playsForClub(e1, e2, t1) ∧ playsForClub(e1, e3, t2) ∧ e2 6= e3 → disjoint(t1, t2) (4)
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The facts fplaysBMU , fplaysBB are in conflict with respect to (4), as their time intervals
[1993, 2004), [1999, 2001) share a time interval, which makes them non-disjoint.

Precedence. Restricting that the time interval of an instance of relE1 ends before the
interval of a fact with relE2 starts is reflected by the following template for precedence
constraints.

relE1(e1, e2, t1) ∧ relE2(e1, e3, t2)→ before(t1, t2) (5)

We note that in both other constraints (see Equations (3) and (7)), there is only one exten-
sional relation. Here there are two, namely relE1 and relE2 .

Example 3. A very natural constraint in the sports domain is that the birth date of a person
should precede the participation in a sports club.

bornIn(e1, e2, t1) ∧ playsForClub(e1, e3, t2)→ before(t1, t2) (6)

Now, neither fplaysBMU nor fplaysBB are in conflict with fbornBL with respect to the
constraint in (6), because [1975, 1976) ends before both [1993, 2004) and [1999, 2001)
start. The situation is different for fbornBOT , having the interval [1999, 2000) and hence
being in conflict with fplaysBMU , fplaysBB under our precedence constraint (6).

Mutual Exclusion. Mutual exclusion, as the last type of constraints we consider, defines
a set of facts which are all in conflict with each other, regardless of time. In general, a
relation relE with a differing argument must not occur as expressed by the template:

relE(e1, e2, t1) ∧ relE(e1, e3, t2) ∧ e2 6= e3 → false (7)

Example 4. Another very natural constraint in the domain of people is that a person cannot
be born in multiple places.

bornIn(e1, e2, t1) ∧ bornIn(e1, e3, t2) ∧ e2 6= e3 → false (8)

In our example, the two facts fbornBL and fbornBOT are in conflict with respect to (8).

2.5 Problem Statement

Assumptions. Our approach is based on two assumptions. First, the cardinality of F can
be huge. Second, the knowledge base may be evolving as new facts are extracted, i.e.,
the set of facts F might be updated as the extraction process proceeds, or the constraints
C might be changing if we learn new relation types. Thus, enforcing consistency of the
entire knowledge base might be both very expensive and abrasive with respect to changing
constraints, which we aim to avoid by resolving conflicts between facts dynamically at
query-time.

Problem Definition. Given a knowledge baseKB = 〈F , C〉, with weighted temporal facts
F , temporal consistency constraints C and a query Q, we define FQ ⊆ F as the closure of
all facts which are in conflict to a fact that matches Q.

Next, our goal is to resolve the conflicts by selecting a consistent subset of facts FQ,C ⊆
FQ. In general, there may be several consistent subsets with the same cardinality, so
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we extend our search by requiring that the sum of the weights of the consistent facts is
maximized, as it is expressed by the following optimization problem:

max
FQ,C⊆FQ

∑
f∈FQ,C

w(f)

with the constraints:
∀C ∈ C. Eval(C,FQ,C) ≡ true

Here, Eval is the logical evaluation of all instances of the formula C by setting all facts in
FQ,C to true and all facts in FQ\FQ,C to false.

Finally, we return the matches to Q within FQ,C as answers to the query.

Hardness. We show that the above problem contains the NP-hard Maximum Weight
Independent Set problem.

Imagine a general graph. We introduce one relation for each vertex and one precedence
constraint (5) for each edge, such that the constraint holds exactly the corresponding two
relations which are connected by the edge. Finally, we create one fact for each relation
while using always the same arguments, the same time-interval, and the weight of the
corresponding vertex. It follows that a solution to the above problem is a solution to the
Maximum Weight Independent Set problem, which is NP-hard.

3 Algorithm

The core of our framework is a scheduling algorithm which we employ to resolve con-
flicts between facts. In short, scheduling problems enclose a number of scheduling jobs
which should be assigned to time slots on a number of scheduling machines, such that the
machines do not exceed their capacities. In this section, we develop an algorithm which
maps each fact to a scheduling job and consistency constraints to scheduling machines,
such that a maximum-weight feasible schedule corresponds to a maximum-weight sub-
set of conflict-free facts. This section is structured in accordance to the general flow of
our framework as described in Algorithm 1. There are two phases, where the former deals
with precomputations (Section 3.1, corresponding to Lines 1–4) and the latter (Section 3.2,
corresponding to Lines 6–12) with computations at query-time.

As a first step, in Line 1 we translate the constraints C to an equivalent, more compact
representation as a constraint graph GC (Section 3.1.1), where vertices and edges cor-
respond to extensional relations and corresponding constraints, respectively. In Line 4,
we cover the constraint graph with a number of subgraphs called machine graphs GM
(Section 3.1.2). Each of the machine graphs represents a scheduling machine. Before-
hand, Algorithm 1 checks in Lines 2 and 3, whether such a covering with machine graphs
(scheduling machines) is possible and otherwise rejects the constraints.

Turning to the computations at query-time, in Line 6 (and more detailed in Section 3.2.1)
the constraint graph is leveraged to obtain the set of facts FQ comprising the matches
to the query together with their closure of conflicting facts. Then we strive to obtain the
consistent subsetFQ,C ⊆ FQ in Line 12 to display the answer. Thereby, we exploit that the
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extensional predicates in a constraint share a variable (see Section 2.2), which enables us to
resolve the conflicts separately for each entity e ∈ FirstArg = {e | relE (e, e2, t) ∈ FQ}
which instantiates this variable. Hence, FQ,e = {f | f ∈ FQ, f = relE (e, e2, t)} denotes
the set facts, which are relevant to the query and which contain the entity e as their first
argument. In Line 10, we invoke the actual scheduling algorithm (Section 3.2.2) for each
of the subsetsFQ,e passing the machine graphs (scheduling machines) GM as an additional
argument. It finally returns the set of query-relevant, consistent facts FQ,C,e with respect
to the entity e. The union of all sets FQ,C,e forms FQ,C , which is the set of consistent facts
which are relevant to the query Q.

Algorithm 1 Framework
Require: A knowledge base 〈F , C〉
Require: A set of queries Q

1: Construct GC from C . Section 3.1.1
2: if GC is not solvable then
3: return error
4: Construct the set of machine graphs GM from GC . Section 3.1.2
5: for all Q ∈ Q do
6: Ground Q to obtain the set FQ ⊆ F of relevant facts for Q . Section 3.2.1
7: FQ,C := ∅
8: for all e ∈ FirstArg := {e | relE (e, e2, t) ∈ FQ} do
9: FQ,e := {f | f ∈ FQ, f = relE (e, e2, t)}

10: FQ,C,e := RESOLVECONFLICTS(FQ,e,GM ) . Algorithm 2, Section 3.2.2
11: FQ,C := FQ,C ∪ FQ,C,e
12: Display matches of Q in FQ,C as answer

3.1 Precomputations

3.1.1 Constraint Graph

A constraint graph is an equivalent, more compact representation of the constraints C.
More formally, a constraint graph GC = (V,E) is a pair consisting of vertices V ⊆ Rel
and labeled edges E ⊆ Eu ∪ Ed . The set of edges E is in turn composed of undirected
edges Eu ⊆ V × V × {mutEx , disjoint} and directed edges Ed ⊆ V × V × {before}.
Thus, edges are triples consisting of two vertices (i.e., relations) that are connected by an
edge with a label representing the constraint type. We remark that our notion of constraint
graphs is inspired by the constraint graphs apparent in constraint satisfaction problems.
See, for example, [RNC+96] for an introduction.

To construct the constraint graph GC from a set of constraints C, we define a bijective
function c : C → E as follows (relation arguments are replaced by dots):

c (relE1(.) ∧ relE2(.) ∧ . 6= .→ relT (.)) =

 (relE1 , relE2 , relT )
if relT

.= disjoint
or relT

.= before
(relE1 , relE2 ,mutEx) if relT = false

It is worthwhile to accentuate that constraint graphs are solely about constraints among
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relations. That is, GC represents a higher level of abstraction than considering temporal
conflicts among actual facts. It only needs to be precomputed once for a given set of
constraints C and can then be reused for processing an arbitrary amount of queries.
Example 5. If we apply the function c to the constraint in Formula (6), we receive the
triple (bornIn, playsForClub, before). In Figure 2(a), the triple is indicated by the edge
connecting the vertex named bornIn with playsForClub. Formulas (4) and (8) are shown
in Figure 2(a) as well, both depicted as self loops, since their two relations coincide.

(a) Constraint graph GC of our running example,
where each edge represents one of the constraints
depicted in Appendix A.

(b) The maximal machine
graph Gmax

M , where n ∈ N,
n ≥ 4.

(c) The minimal set GM of common subgraphs of Gmax
M (Figure 2(b)) and GC (Figure 2(a)) covering

all edges of GC .

Figure 2: Graphs expressing constraints.

Constraint graphs can describe any combination of pairwise temporal constraints among
relations, which might be unsatisfiable, so we focus on a subclass to be defined in the next
section.

Solvable Constraint Graphs. We call a constraint graph GC = (V,E) solvable if its
vertices can be partitioned in three sets V = Vbegin ∪̇Vmiddle ∪̇Vend . Every v ∈ Vbegin ∪
Vend must have exactly one loop labeled by mutEx, and every v ∈ Vmiddle can have a loop
labeled by disjoint . Furthermore, precedence edges can point from Vbegin to Vmiddle ∪
Vend and from Vmiddle to Vend .
Example 6. Figure 2(a) contains a solvable constraint graph, where Vbegin = {bornIn},
Vmiddle = {playsForNational , playsForClub, hasWonPrize}, and Vend = {diedIn}.

We note that solvable constraint graphs are satisfiable, as there are no cycles of precedence
constraints and each pair of facts can be constrained by at most one (precedence, disjoint-
ness, or mutual-exclusion) constraint, which is the reason for limiting (3) and (7) to one
extensional predicate only.

482



Computing Solvable Constraint Graphs. An implementation of Line 1 of Algorithm
1, which translates a set of constraints C to a constraint graph GC , can run in O(|C|) by
iterating over the constraints, thereby creating a vertex for each relation in GC (if not yet
present), and then adding the edges as defined by the bijective function c. The condition in
Line 2 of Algorithm 1 can also be implemented in O(|C|) by checking the following three
conditions for every vertex (which are equivalent to the definition of solvable constraint
graphs of the previous paragraph):

1) ¬∃relE ∈ V s.t. (relE , relE ,mutEx ) ∈ E ∧ (relE , relE , disjoint) ∈ E

2) (relE1 , relE2 , before) ∈ E →
(

(relE1 , relE1 ,mutEx ) ∈ E
∨(relE2 , relE2 ,mutEx ) ∈ E

)
3) ¬∃relE , relE1 , relE2 ∈ V s.t.

 (rel , rel ,mutEx ) ∈ E
∧(relE1 , relE , before) ∈ E
∧(relE , relE2 , before) ∈ E


3.1.2 Machine Graphs

A machine graph corresponds to the combination of constraints to be enforced by one
scheduling machine. A single scheduling machine cannot carry any combination of con-
straints, but at most the graph Gmax

M displayed in Figure 2(b). Intuitively, a machine graph
GM is a subgraph of Gmax

M or to put it differently, a scheduling machine is a part of the
maximal machine.

Now, we cover a given constraint graphGC with a set of machine graphs GM , all enclosing
different combinations of constraints. As we have to respect all constraints encoded inGC ,
we require that every edge in GC is part of at least one machine graph GM ∈ GM . Based
on the scheduling machines defined by GM the scheduling algorithm in Section 3.2.2 will
implement all constraints.

More formally, the set of machine subgraphs is a set of graphs GM which are all iso-
morphic to connected, vertex-induced subgraphs of both Gmax

M and GC = (VC , EC). A
vertex-induced subgraph is a subset of the vertices together with all the edges connecting
vertices in the subset. Furthermore, we demand that

⋃
(VM ,EM )∈GM

EM = EC and that
|GM | is minimal in the number of subgraphs it contains. The former requirement expresses
that all edges (each representing a constraint) of GC are covered by at least one graph in
GM . The latter requirement calls for a minimum number of graphs in GM , thus making
scheduling more efficient.

As constraints are encoded in edges, a subgraph with no edge would be meaningless. An
effect of both requirements is that subgraphs consisting of only one vertex but no edge
(although being isomorphic to, for example, rel 4 inGmax

M ) are always removed from GM ,
as they do not cover an edge of GC .

Example 7. ForGC as in Figure 2(a) andGmax
M as in Figure 2(b), a set of common induced

subgraphs covering all edges of GC is depicted in Figure 2(c).

Computing Machine Subgraphs. The problem of finding a maximal isomorphic sub-
graph of two graphs is known to be NP-hard. Nevertheless, in the case ofGmax

M , it suffices
to compare the vertices rel 1,. . . ,rel 4 with the vertices in GC . At every comparison, we
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try to expand the common subgraphs following the edges in both GC and GmaxM . This is
how we find one common subgraph.

To compute the full set, we aim for a minimum number of subgraphs covering all edges
of GC . If we think of the edges as elements of sets and of the subgraphs as sets, then
any procedure solving the NP-hard set-cover problem can tackle our problem. For this
set-cover problem, a greedy approximation algorithm, which chooses sets of maximum
size first, is well established [CLRS01]. Hence we apply the same idea, by determining a
maximum common subgraph with respect to the number of edges in every iteration.

3.2 Computations at Query Time

Having introduced all the precomputation steps, we move on to the procedures to be exe-
cuted for each query, which builds on these precomputed data structures. Since we strive
for computing a consistent set of facts, which are all relevant for answering the query,
there are two major steps at query-time. The first is the retrieval of the relevant facts from
a database (grounding), and the second determines the consistent subset of these facts
(scheduling).

3.2.1 Grounding

One main observation is that for facts, which are not in a temporal conflict with each
other, constraints do not even have to be grounded because the temporal head literal would
already evaluate to true, such that the grounded clause would already be satisfied. Facts
that do not occur in any grounded clause thus remain true, while only between conflicting
facts, the reasoner needs to decide for a different truth assignment. Since (typically) a
majority of facts is not in conflict with any other fact, this observation helps to keep the
grounding phase more efficient.

Line 6 of Algorithm 1 is implemented in two steps. First, all matches to the query from
the knowledge base are collected in the set FQ. Second, all facts possibly conflicting with
them are added toFQ as follows. We begin by identifying all vertices inGC corresponding
to the relations of facts in the matches of the query. Then we traverse GC in a breath-first
manner starting from the identified vertices. During the traversal, we ground the occurring
relations and add the retrieved facts to FQ.

A feature of GC is that every connected component shares the first argument resulting
from (1). Hence we have to execute a breath-first traversal for every member in FirstArg ,
which results in an implementation with O(|GC | · |FirstArg |) run-time.

Example 8. Let Q be from (2), GC from Figure 2(a), and F from Figure 1. The initial
matches of Q are FQ = {fplaysBMU , fplaysBB}. So FirstArg = {David Beckham},
which means there is only one traversal. We start from playsForClub, visit bornIn and
diedIn in the first stage, and finally playsForNational and hasWonPrize. So, fbornBL

and fbornBOT are added to FQ first, followed by fplaysBE , which results in FQ = F .
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3.2.2 Scheduling Problem

Once we have retrieved all relevant facts FQ, we continue by identifying a maximum-
weight consistent subset of the facts FQ,C . We map this problem to a scheduling problem,
consisting of scheduling machines and scheduling jobs.

• A scheduling machine is a time interval of T with a capacity ∈ R+.
• A scheduling job is a weighted time interval of T coming with different sizes for each

machine, i.e., size : Jobs ×Machines → [0, capacity ].

We note that all scheduling machines share the same capacity.

A scheduling problem is a set of scheduling machines Machines and a set of scheduling
jobs Jobs, where the task is to find a subset J ′ ⊆ Jobs of jobs which maximize the sum of
weights

max
J′⊆Jobs

∑
j∈J′

weight(j) · xj

such that

∀m ∈ Machines, ∀t ∈ N0

∑
j∈J′|begin(j)≤t<end(j)

size(j,m) · xj ≤ capacity

and xj ∈ {0, 1}.
In words, we are looking for a maximum-weight subset of the jobs, such that the capacity
of each machine is not exceeded by the sum of the sizes of the jobs running on them. The
variable xj indicates whether the job belongs to the solution (xj = 1) or not (xj = 0).

We remark, that the above optimization problem is NP-hard, as we obtain the Knapsack
problem as a special case, i.e., by considering only one scheduling machine for all con-
straints and one time interval [0,+∞) for all facts.

Mapping Constraint Graphs to Scheduling Machines. Next, we map the search for a
consistent subset of facts to the above scheduling problem by relating every fact in FQ
with a scheduling job and every graph in GM with a scheduling machine. To encode a
conflict between two facts in the scheduling problem, we ensure that the intervals of the
corresponding jobs are overlapping, and there is at least one machine which cannot process
both jobs at the same time.

We begin with the assignment of different sizes to facts on different machines as defined
by the function size : FQ × GM → [0, capacity ] where

size(frel︸︷︷︸
∈FQ

, (V,E)︸ ︷︷ ︸
∈GM

) =



0 if rel /∈ V
capacity if rel ∈ V and rel represented by

‘rel 1’ or ‘rel 2’ in Gmax
M

capacity
2 + ε if rel ∈ V and rel represented by ‘rel 3’ in Gmax

M
capacity

2 −ε
|FQ| if rel ∈ V and rel represented by ‘rel 4’ in Gmax

M

and we use frel to denote a fact with relation rel.
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If a fact is not constrained byGM ∈ GM , we set its size to zero, so no conflicts result. Sec-
ond, if a fact is an instance of vertices rel 1 or rel 2, then it is subject to a mutual exclusion
constraint. Hence, the size is fixed to capacity, which makes its job mutually exclusive
to all overlapping jobs of non-zero size. In the third case, by assigning capacity

2 + ε (for
an ε > 0) to the size of the fact (job), we achieve that all facts of rel 3 become mutually
exclusive if they overlap. Finally, the fourth case sets the size of jobs corresponding to

facts matching rel 4 in Gmax
M to

capacity
2 −ε
|FQ| , which admits all of them to be scheduled even

though a job related to case three is scheduled at the same time.

The above construction models disjointness correctly, but it fails for precedence and mutual-
exclusion. For example, two facts, which are supposed to be mutually exclusive but have
no overlap in their intervals, could be scheduled.

So we continue with the translation from intervals of facts to intervals of jobs as defined
by the functions begin : F × 2GM → N0 and end : F × 2GM → N0 ∪ {+∞} where,

begin(frel,[tb,te),GM ) = min{tb}∪
{

0
∣∣∣∣∃GM ∈ GM . GM = (V,E), rel ∈ V,

rel isomorphic to rel 1 in Gmax
M

}
and

end(frel,[tb,te),GM ) = max{te}∪
{

+∞
∣∣∣∣∃GM ∈ GM . GM = (V,E), rel ∈ V,

rel isomorphic to rel 2 in Gmax
M

}
and we use frel,[tb,te) to represent a fact with relation rel and interval [tb, te). Again, the
weight w(j) of a scheduling job j is simply the weight w(f) of the associated fact f .

Both functions leave all interval limits of facts not being subject of a mutual-exclusion
constraint untouched. On the contrary, the interval limit is either set to the very begin or
the very end, depending on the possible precedence constraints. As a result, all intervals
of mutual-exclusive facts overlap either in 0 or +∞. At the same time, facts of rel 1
cannot be preceded by other facts, as they start at 0, thus correctly modeling precedence.
A symmetric argument holds for instances of rel 2.

Computing the Mapping. Regarding complexity, the mapping from a set of facts |FQ|
to the corresponding scheduling jobs can be done in O(|FQ|), since we can compute the
mapping for each fact independently by applying the functions size, begin, and end.

f ∈ F size(f, left) size(f,middle) size(f, right) begin(f, all) end(f, all)
fbornBL capacity capacity capacity 0 1976
fbornBOT capacity capacity capacity 0 2000
fplaysBMU 0 0 capacity

2 + ε 1993 2004
fplaysBB 0 0 capacity

2 + ε 1999 2001
fplaysBE 0 capacity

2 + ε 0 1992 2011

Table 1: The translation of the facts F of Figure 1 to scheduling jobs using capacity = 1.0, where
the second argument of size and end refer to the graphs of Figure 2(c).
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Figure 3: Jobs (translated facts) of Table 1 for the scheduling machine (graph) at the right of Fig-
ure 2(c).

Example 9. The translation of the facts of Figure 1 to three scheduling machines with
respect to the graph GM of Figure 2(c) is shown in Table 1. Additionally, Figure 3 depicts
the facts fbornBL, fbornBOT , fplaysBMU , and fplaysBB to be scheduled on the machine
corresponding to the graph at the right of Figure 2(c).

Computing a Consistent Subset. Algorithm 2 presents an efficient approximation algo-
rithm for the NP-hard scheduling problem, whose performance is analyzed empirically by
the experiments in Section 4. It is inspired by the general scheduling framework presented
in [BNBYF+01].

Every connected component of a solvable constraint graph GC shares one variable as both
relations in (1) have the same variable as their first argument. As a result, only facts with
identical entities as their first argument can be in conflict. Thus, we invoke Algorithm 2
for every entity e ∈ FirstArg (see Lines 8 to 11 in Algorithm 1).

Algorithm 2 is based on the interplay with a stack and consists of a pushing phase (Lines 3
to 10) during which some facts are pushed onto the stack, and a popping phase (Lines 12 to
17) during which facts are popped from the stack and possibly included in the solution. In
the first step of the pushing phase, the fact f with minimum end(f,GC) is pushed onto the
stack, while the weight of every interval in conflict with f is decreased by w(f). Intervals
with negative weights are then removed and ignored from further consideration. In the
next step, the fact whose end time is minimal among the remaining ones is pushed onto
the stack, while the weights of its conflicting facts are decreased and all facts with negative
weights are removed. These steps are iterated until every fact is either on the stack or is
deleted. In the popping phase, facts are iteratively popped from the stack and included in
the solution if this maintains feasible, or—in the scheduling sense—if the fact does fit on
the machines. The algorithm ends when the stack becomes empty.

The worst-case complexity of Algorithm 2 is O(|FQ,e|2|GM |), which is dominated by the
three nested loops in Lines 3 to 5. After the example, we will explain how to improve this
worst-case run-time, while we keep Algorithm 2 for its easier presentation.

Example 10. We execute Algorithm 2 for the problem setting of Figure 3, where we as-
sume ε = 0.1 and capacity = 1.0. The loop in Line 3 inspects the facts ordered by
end as fbornBL, fbornBOT , fplaysBB , and fplaysBMU , where only fbornBOT does not get
pushed to the stack as its weight becomes negative in a conflict with fplaysBB . Contin-
uing with the loop in Line 12 we schedule first fplaysBMU , then we omit fplaysBB , be-
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cause it exceeds the capacity at from 1999 to 2001. Finally, fbornBL is added, such that
FQ,C,e = {fplaysBMU , fbornBL}.

Algorithm 2 Resolving conflicts
Require: A set of facts FQ,e with identical first argument e
Require: A machine set GM

1: Initialize a stack S = 〈〉
2: Sort all f ∈ FQ,e by end(f,GM )
3: for all f ∈ FQ,e by increasing end(f,GM ) do
4: for all machine graphs GM ∈ GM do
5: for all f ′ ∈ S do
6: if f and f ′ intersect and size(f,GM ) > 0, size(f ′, GM ) > 0 then
7: w(f ′) := w(f ′)− size(f ′, GM ) · w(f)
8: if w(f ′) ≤ 0 then
9: Remove f ′ from S

10: Push f to S
11: FQ,C,e := ∅ . FQ,C,e ⊆ FQ,e
12: while S is not empty do
13: f[tb,te) := S.pop()
14: for all GM ∈ GM do
15: if ∀t ∈ [tb, te). capacityused(GM , t) + size(f,GM ) > capacity then
16: Continue with loop in Line 12
17: Add f[tb,te) to FQ,C,e
18: for all GM ∈ GM do
19: ∀t ∈ [tb, te). capacityused(GM , t) := capacityused(GM , t)− size(f,GM )
20: return FQ,C,e . FQ,C,e ⊆ FQ,e

Improving the Worst-Case Complexity. Following Section 3.3 of [BNBYF+01], the
worst-case complexity can be reduced toO(|FQ,e|log |FQ,e|+ |FQ,e||GM |), thus breaking
the quadratic barrier and allowing us to efficiently process huge sets of conflicting facts.

The main idea is to replace the stack of intervals by a sorted list of interval end-times (for
both begin and end). Then the pushing-phase is substituted by a forward-iteration over
the list. The weight of the intersecting intervals can be obtained implicitly by keeping
track of the total amount of weights of the iterated intervals and by comparing this value
at both end-times of the intervals. In a similar manner, the popping phase is changed to
a backwards-iteration over the list. In total, both iterations for each graph in GM require
O(|FQ,e||GM |) steps, where we have to add O(|FQ,e|log |FQ,e|) steps in order to create
the sorted list of interval end-times.

4 Experiments

System. Our system featuring the algorithms of the previous section was implemented in
Java 1.6 in about 3k lines of code. As a back-end, a Postgres 8.3 database is deployed to
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store the RDF triples along with their corresponding weights and time intervals. Both the
program and the database are run on the same Intel E8200 machine with 4 GB RAM.

Competitors. We can reduce the optimization problem of Section 2.5 to the Maximum
Weight Independent Set problem (MWIS)2 by considering facts as vertices and drawing
an edge between them if they are in conflict. Then a maximum-weight subset of vertices
(facts), that do not share an edge (according to the definition of MWIS), coincides with
a conflict-free solution. Thus, we utilize a simple exponential time algorithm to compute
the optimal solution of MWIS as long as this remains feasible.

Additionally, we employ a greedy heuristic [BSK10] for the MWIS, which proved to per-
form best on our data among all the greedy methods we tried. There are other means of
approximating the MWIS problem, like stochastic optimization. However they are even
less scalable than greedy methods [BBPP99]. As the greedy methods are based on the
graph, the ingredients for choosing a fact (vertex), in order to remove or add facts to the
approximated MWIS, are the weights of the facts (vertices) and the number of conflicting
facts (degree of the vertex). Thus, the worst-case run-time is in Ω(|FQ|2), as there can
be quadratically many edges. Hence, in terms of run-time complexity, our scheduling al-
gorithm also asymptotically performs better than this greedy approach, as it is based on
sorting facts (vertices) represented by scheduling jobs, rather than enumerating all pairs of
facts (edges), which are in conflict with each other.

Parameters, Constraints & Queries. The only free parameter is 0.5 > ε > 0 (Section
3.2) which we fixed to ε = 0.49, as we have good experiences with values close to 0.5. As
constraints, we employ the formulas of Appendix A, and as query we use Equation (2).

Dataset. T-YAGO [WZQ+10] contains data about the playsForClub, playsForNational,
and hasWonPrize relations, which we extended manually by dates of birth and death. Nev-
ertheless, the data in T-YAGO is nearly conflict-free, thus we add synthetic facts to create
conflicts in the following manner.

First, we choose one of the consistent facts uniformly. Then we create a perturbed copy by
drawing the start-time of the interval, the length of the interval, and the confidence from
three different Gaussians N (µs, σ2

s), N (µl, σ2
l ), and N (µc, σ2

c ), respectively. The means
µs, µl, and µc are set to the original value of the fact contained in T-YAGO, whereas the
variances are varied during the experiments to produce problem instances of diverse nature
(see Figure 4(a)). By writing n, we refer to the number of added synthetic facts about the
queried entity.

Approximation Ratio. In order to evaluate the performance of the algorithms, we de-
fine the approximation ratio as W

W∗ , where W and W ∗ represent the sum of the weights
computed by a heuristic and the optimal exponential-time algorithm, respectively.

Results. Our algorithm showed impressive robustness with respect to the perturbed data
as shown in Figure 4(a). In particular, its average approximation ratio never dropped be-
low 0.98. In Figure 4(b) we show the distribution of approximation ratios for 1,000 runs,
whereas the previous three figures focused on the mean. The histogram of our scheduling
algorithm exhibits excellent behavior as in nearly every problem instance the optimal so-

2The opposite direction compared to the reduction in the hardness paragraph of Section 2.5.
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lution was found. The greedy heuristic for MWIS does little worse, but still is very good.
The run-time of the scheduling algorithm and the grounding algorithm (both described in
Section 3.2) is depicted in the left of Figure 4(c). Their complexities are sub-quadratic.
Finally, the run-times of the MWIS greedy heuristic and its grounding procedure are dis-
played in the right of Figure 4(c). Admittedly, the implementations were less optimized,
however optimization can only lower the constants, but not the quadratic complexity.
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(a) Measurements averaged over 100 runs using n = 20 varying σ2
c (left), σ2

l (middle), and σ2
s (right),

while the other two are fixed to 100.
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Figure 4: Experiments

5 Related Work

Temporal RDF. Temporal databases were introduced more than 25 years ago [JS99].
Early work on RDF and time, which discusses many design issues, can be found in
[GHV05], and which was later pursued in [GHV07]. A query language for RDF with
temporal capabilities was presented in [TB09], which is a complementary issue compared
to our work. Moreover, [PUS08] introduces an indexing scheme for time-annotated RDF
triples without confidence values. Its notion of consistency rejects contradicting state-
ments about the number of validity points in a time interval, whereas its temporal distance
metric is purely used for indexing purposes.

Temporal Constraints. The relations between temporal intervals probably were first in-
troduced in [All83] and were later extended in various ways, where [FGV05] provides a
comprehensive overview. Additionally, [FGV05] contains an outline of how to encode
time in first-order logic. In terms of Description Logics, there are several temporal exten-
sions, where [AF00, LWZ08] provide surveys. Temporal Constraint Satisfaction problems
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[SV98] are usually not based on data but focus on the search for a valid solution in terms of
variables representing time which fulfill given constraints. Regarding temporal constraints
on RDF graphs, purely theoretical work was carried out in [HV06].

Machine Learning. In the machine learning community, there exist frameworks [RY05]
and [RD06] for supporting general constraints on uncertain data whose performances are
rather slow compared to our algorithm, due to solving general ILP problems and the
grounding algorithm solely being based on typing, respectively.

Scheduling. Intensive research was conducted in the scheduling field with numerous ap-
plications [Pin08, LKA04]. Still, the combination of precedence and disjointness con-
straints is not well covered, and to our best knowledge, only [XP90] presents an algorithm
tackling the problem. Yet, its limited scalability makes it unsuitable for bigger data sets.

Maximum Weight Independent Set. In the past, many heuristics for the MWIS prob-
lem [BBPP99, JT96] have been developed, covering—among others—greedy approaches,
stochastic optimization like simulated annealing or genetic algorithms, and hybrid meth-
ods of these. However, our implicit representation of conflicts (see Section 3.2.2, last
paragraph) is more scalable than the explicit form using edges of a graph.

Uncertain and Probabilistic Databases. Recent work on uncertain data management and
probabilistic databases [OSH+08, AJKO08, DS07], including our own work [DSTW08,
DSTW10], have shown how to represent and handle dependencies of data objects inside an
SQL-like environment. Yet, only very few database-oriented works on handling temporal
inconsistencies in a first-order reasoning setting have been proposed so far. In [WYT10],
we devised a probabilistic model, based on time histograms and data lineage, for a first-
order, rule-based reasoner with temporal predicates. The rules considered in that work
do not consider the inclusion of actual consistency constraints, where only some facts out
of a given set may be set to true while other facts are considered false. Technically, this
resolves to including also negation into the constraints, while [WYT10] considers posi-
tive lineage (i.e., conjunctions and disjunctions) only. Moreover, our approach resembles
some similarity to probabilistic extensions to Datalog [Fuh95], however, no resolution of
inconsistencies or forms of temporal reasoning had been considered in this context.

6 Conclusions

We have presented a declarative framework for temporal consistency reasoning in uncer-
tain and inconsistent knowledge bases. Our approach works by identifying a subclass of
first-order consistency constraints, which can be efficiently mapped to constraint graphs
and be solved using results from scheduling theory. Our experiments show that our ap-
proach performs superior to common approximation heuristics that directly operate over
the underlying Maximum Weight Independent Set problem in terms of both run-time and
approximation quality. As for future work, we aim to investigate in further generalizing
the class of constraints we can solve with our approach, and we also aim at making our
interval operations more fine-grained, for example, by cutting off conflicting intervals, or
by incorporating time histograms that may capture different confidences in a fact’s validity
at different points in time.
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A Constraints Used for Experiments
(bornIn(p, l1, t1) ∧ bornIn(p, l2, t2) ∧ l1 6= l2)→ false
(bornIn(p, l1, t1) ∧ diedIn(p, l2, t2))→ before(t1, t2)
(bornIn(p, l, t1) ∧ playsForClub(p, c, t2))→ before(t1, t2)
(bornIn(p, l, t1) ∧ playsForNational(p, n, t2))→ before(t1, t2)
(bornIn(p, l, t1) ∧ hasWonPrize(p, pr , t2))→ before(t1, t2)
(playsForNational(p, n1, t1) ∧ playsForNational(p, n2, t2) ∧ c1 6= c2)→ disjoint(t1, t2)
(playsForClub(p, c1, t1) ∧ playsForClub(p, c2, t2) ∧ c1 6= c2)→ disjoint(t1, t2)
(playsForClub(p, c, t1) ∧ diedIn(p, l, t2))→ before(t1, t2)
(playsForNational(p, n, t1) ∧ diedIn(p, l, t2))→ before(t1, t2)
(diedIn(p, l1, t1) ∧ diedIn(p, l2, t2) ∧ l1 6= l2)→ false
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Zusammenfassung. Die traditionelle Auswertung einer Datenbankan-
frage ermittelt für jedes Tupel entweder den Wahrheitswert Wahr oder
Falsch. Für viele Anwendungsszenarien ist diese Auswertungssemantik zu
restriktiv, insbesondere wenn ein differenzierteres Anfrageergebnis benö-
tigt wird. Ein etablierter probabilistischer Ansatz zum Erreichen dieser
Ausdifferenzierung ist die Verwendung sogenannter Relevanzwahrschein-
lichkeiten: Mit welcher Wahrscheinlichkeit ist ein Dokument oder ein
Datenobjekt bezüglich einer gestellten Anfrage relevant?
Neben den IR-motivierten Relevanzwahrscheinlichkeiten hat sich in der
Datenbankforschung das Gebiet der probabilistischen Datenbanken eta-
bliert. Auch hier wird ein striktes, deterministisches Auswertungsmodell
als nicht mehr ausreichend angesehen. In probabilistischen Datenbank-
systemen werden daher mehrere mögliche Zustände für ein und dasselbe
System in einer gemeinsamen Datenbank verwaltet.
Die vorliegende Arbeit verbindet diese beiden probabilistischen Ansätze
zu einem semantisch reicheren Anfragemodell.

1 Motivation

Die traditionelle Auswertung einer Datenbankanfrage ermittelt für jedes Tu-
pel entweder den Wahrheitswert Wahr oder Falsch. Alle wahren Tupel bilden
daraufhin die Ergebnismenge der Anfrage. Für viele Anwendungsszenarien ist
diese Auswertungssemantik zu restriktiv, insbesondere wenn ein differenzierte-
res Anfrageergebnis benötigt wird. Die Ausdifferenzierung des Ergebnisses setzt
oft eine Aussage über den Grad der Erfüllung einer gestellten Anfrage voraus.
Ein etablierter Ansatz, welcher vor allem im Bereich des Information Retrievals
weit verbreitet ist, drückt den Erfüllungsgrad mittels sogenannter Relevanzwahr-
scheinlichkeiten aus [20]: Mit welcher Wahrscheinlichkeit wird ein Dokument oder
ein Datenobjekt bezüglich einer gestellten Anfrage vom Anwender als relevant
eingestuft? Die Entscheidung, ob ein betrachtetes Dokument oder Datenobjekt
für den Anwender relevant oder nicht relevant ist, wird in dem hier betrachte-
ten Kontext in den Erfüllungsgrad einer logikbasierten Anfrage übertragen. Ein
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zentraler Bestandteil dieser Art von Anfragen sind Ähnlichkeitsprädikate, z.B.
Preis möglichst um 100 Euro oder Ort nahe Cottbus, deren reelle Auswertungs-
ergebnisse aus dem Interval [0; 1] als Relevanzwahrscheinlichkeiten interpretiert
werden können.

Neben den Relevanzwahrscheinlichkeiten aus dem Bereich des Information
Retrievals hat sich in der Datenbankforschung ebenfalls das Gebiet der probabi-
listischen Datenbanken etabliert. Auch hier wird ein striktes, deterministisches
Auswertungsmodell als nicht mehr ausreichend angesehen. Insbesondere wenn
Daten automatisch extrahiert werden oder aus verschiedenen Quellen stammen,
existiert oft eine Unsicherheit über die Genauigkeit der so gewonnenen Daten.
Neben der Unsicherheit von Daten sind menschliche Bewertungen oder Beob-
achtungen, welche auf Grund ihrer inhärenten Subjektivität oft mit einem Kon-
fidenzwert annotiert werden, ein typisches Anwendungsfeld für probabilistische
Datenbanken. Das vorherrschende Anfrage- und Datenmodell ist dabei die soge-
nannte Many-World-Semantik. Hier werden mehrere mögliche Zustände für ein
und dasselbe System in einer gemeinsamen Datenbank verwaltet.

Die vorliegende Arbeit verbindet diese beiden probabilistischen Ansätze zu
einem semantisch reicheren Anfragemodell. Insbesondere liefert sie Beiträge zu
folgenden Schwerpunkten:
– die Erweiterung der Many-World-Semantik um Relevanzwahrscheinlichkei-

ten in einem erweiterten probabilistischen Anfragemodell,
– das Konzept einer differenzierten Normalisierung von probabilistischen An-

fragen, sowie
– die praktische Umsetzung des entwickelten probabilistischem Anfragemo-

dells durch die SQL-Erweiterung QSQLp.

In den sich anschließenden Kapiteln sollen Beispielanfragen aus einem durch-
gängigen Szenario betrachtet werden. Das hier verwendete Beispielszenario be-
schäftigt sich mit der Beobachtung von Vögeln (Ornithologie). Hierfür werden
die beiden Relationen VBeob (Vogelbeobachtung, siehe Abb. 1) und VArt (Vo-
gelart, siehe Abb. 2) eingeführt. Für jedes Tupel der Relation Vogelbeobachtung
ist ein individueller Konfidenzwert hinterlegt (Attribut Pr). Dagegen sind in der
Relation Vogelart einzelne Eigenschaften, wie die Verbreitungsregion (Attribut
Region) und ein charakteristisches Foto (Attribut Bild) der jeweiligen Vogelart
abgespeichert.

2 Anfragemodelle

Um die graduelle Erfüllung von Anfragen zu ermöglichen wurden in der Ver-
gangenheit verschiedene Ansätze entwickelt, so z.B. die Fuzzy Logik [22] von
Zadeh, eine Vielzahl probabilistischer Verfahren (siehe Kapitel 6) und ein quan-
tenlogisches Auswertungsmodell von Schmitt [18]. In diesem Kapitel soll gezeigt
werden, wie die Anfrageergebnisse des quantenlogischen Auswertungsmodells als
Relevanzwahrscheinlichkeiten interpretiert werden können, um diese anschlie-
ßend mit der Many-World-Semantik zu kombinieren.
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VBeob (Vogelbeobachtung)
Art Ort Zeit Pr

Star Cottbus September 0.9
Fink Berlin Juni 0.5
Amsel Cottbus Mai 0.4
Star Cottbus August 0.3

Drossel Berlin Juni 0.4

Abb. 1. Relation VBeob

VArt (Vogelart)
Art Region Bild

Star Mitteldeutschland �1

Fink Norddeutschland �2

Amsel Mitteldeutschland �3

Star Süddeutschland �4

Abb. 2. Relation VArt

2.1 Relevanzwahrscheinlichkeiten im quantenlogischen
Auswertungsmodell

Im Folgendem wird eine kurze Einführung in die Arbeitsweise des quantenlo-
gischen Auswertungsmodells gegeben. Für eine tiefergehende Darstellung wird
auf [10] und [18] verwiesen, wobei in [10] lediglich ein mathematisches Grund-
verständnis vorausgesetzt wird.

Die Grundidee dieses Ansatzes ist die Anwendung eines mathematischen Vek-
torraummodells aus der Quantenmechanik und -logik. Die abgefragten Tupel,
sowie die gestellte Anfrage werden dabei als Bestandteile dieses Vektorraums
modelliert. So werden z.B. die Attributwerte des abgefragten Tupels in die Rich-
tung eines normierten Vektors abgebildet. Die gestellte Anfrage erzeugt dagegen
ein eingebetteten Vektorunterraum, welcher auch als Anfrageraum bezeichnet
wird. Der Anfrageraum verkörpert die gesamte Anfragesemantik. Das Auswer-
tungsergebnis wird dann durch den minimalen einschließenden Winkel zwischen
Tupelvektor und Anfrageraum bestimmt. Dabei bedeutet ein Winkel von 0◦ ei-
ne maximale Ähnlichkeit und ein Winkel von 90◦ repräsentiert eine maximale
Unähnlichkeit zwischen dem betrachteten Tupel und der formulierten Anfrage.
Setzt man den Winkel in die quadrierte Kosinus-Funktion ein, ergibt sich ein
reeller Wert zwischen 0 (für 90◦) und 1 (für 0◦). Dieser Wert, welcher auch als
Score-Wert bezeichnet wird, kann demnach als Ähnlichkeitsmaß interpretiert
werden.

Neben dieser geometrischen Deutung existiert eine weitere Interpretation für
den berechneten Score-Wert. Die Berechnung des Score-Wertes bezüglich eines
Anfrageraumes genügt den Eigenschaften eines additiven Wahrscheinlichkeits-
maßes [11].

Damit drückt der Score-Wert aus, wie wahrscheinlich es ist, dass der betrach-
tete Tupelvektor komplett im angefragten Anfrageraum liegt. In diesem Fall
würde ein einschließender Winkel von 0◦ und ein Score-Wert von cos2(0◦) = 1
vorliegen. Somit kann der Score-Wert auch als Relevanzwahrscheinlichkeit ei-
nes Tupels gegenüber einer Anfrage aufgefasst werden, was voraussetzt, dass die
komplette Erfüllung der Anfrage den betrachteten Tupels als relevant einstuft.
Das Wahrscheinlichkeitsmaß wird dabei über die Konstruktion des Tupelvektors
und des Anfragevektorraumes definiert.

Interessanterweise kann die Berechnung der Relevanzwahrscheinlichkeiten für
ein Tupel t, die in unserem Modell eine geometrische Interpretation besitzen, auf
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die logische Struktur einer Anfrage c und die Anwendung der bekannten Aggrega-
tionsfunktionen für Wahrscheinlichkeiten unabhängiger Ereignisse zurückgeführt
werden:

eval(t, c) = SFi(t, c) falls c ein Ähnlichkeitsprädikat ist,
eval(t, c1∧c2) = eval(t, c1) ∗ eval(t, c2)
eval(t, c1 ∨ c2) = eval(t, c1) + eval(t, c2)− eval(t, c1∧c2)

eval(t,¬c) = 1− eval(t, c)

Die Auswertung atomarer Ähnlichkeitsprädikate wird mittels sogenannter
Scoring-Funktionen (SFi) durchgeführt. Sie ermitteln einen reellen Wert aus dem
Interval [0; 1], der als Relevanzwahrscheinlichkeit bezüglich des jeweiligen Ähn-
lichkeitsprädikates interpretiert werden kann. Ähnlichkeitsprädikate werden ge-
mäß den verwendeten Auswertungsregeln als unabhängige Ereignisse verstanden.
Sie dürfen deshalb innerhalb einer Anfrage nicht mehrfach mit unterschiedlichen
Vergleichskonstanten auftreten. Damit wäre z.B. eine Kombination der Ähnlich-
keitsprädikate Ort in der Nähe von Cottbus und Ort in der Nähe von Berlin
unzulässig, da diese offensichtlich korrelieren. So könnten sie z.B. nicht gleich-
zeitig auf 1 (vollständig erfüllt) ausgewertet werden, da es sich um geographisch
unterschiedliche Städte handelt.

Des Weiteren wird für die semantisch korrekte Anwendung der obigen Aus-
wertungsfunktionen eine syntaktische Normalisierung der Anfrage notwendig,
welche u.a. identische Teilbedingungen zusammenfasst und sich negierende Teil-
bedingungen eliminiert. Der in [18] vorgeschlagene Normalisierungsalgorithmus
basiert auf bekannten, logischen Umformungsregeln, wie z.B. Idempotenz und
Distributivität. Diese können hier angewendet werden, da es sich bei der zu
Grunde liegenden mathematischen Strukur um eine Boolesche Algebra handelt.

In [14] wird aus diesem rein theoretischen Auswertungsmodell die Kalkülan-
fragesprache CQQL (Commuting Quantum Query Language) entwickelt. Sie er-
weitert den relationalen Bereichskalkül um die Behandlung von Ähnlichkeitsprä-
dikaten und Anfragegewichtung. Ein typisches Anwendungsgebiet von CQQL
sind Ähnlichkeitsprädikate, welche multimediale Inhalte einbeziehen. Im Kontext
des eingeführten Beispielszenarios könnte eine Anfrage folgendermaßen lauten:
Bestimme die Relevanzwahrscheinlichkeit einer Vogelart bezüglich eines Vorga-
bebildes (VBild), falls sie in der Region Mitteldeutschland ansässig ist. Die for-
malisierte CQQL-Anfrage ist gegeben durch:

{(Art,Region,Bild) | VArt(Art,Region,Bild)∧
Region = Mitteldeutschland ∧Bild ≈BV VBild}.

Diese Anfrage besitzt mit (Bild ≈BV VBild) ein Ähnlichkeitsprädikat, welches
durch eine spezielle Scoring-Funktion für Bildvergleiche (≈BV ) ausgewertet wird.

Allgemein gesprochen wird die Unsicherheit des Anfrageergebnisses auf die
Vagheit in der Anfrageformulierung zurückgeführt, wogegen die angefragten Da-
ten selbst als gesichert vorausgesetzt werden: Eine unsichere Anfrage wird auf
einer sicheren Datengrundlage ausgeführt.
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2.2 Many-World-Semantik

Ein weit verbreitetes Semantikmodell für probabilistische Datenbanken ist die
Many-World-Semantik [1]. Ausgangspunkt sind eine oder mehrere Tabellen, über
welche die Menge aller möglichen Instanzen (hier als Welten oder Zustände be-
zeichnet) der entsprechenden Relationenschematas betrachtet wird. Die Aus-
gangstabellen können somit entsprechend ihrer Relationenschemata eine maxi-
mal mögliche Menge von Tupeln besitzen. Jede Untermenge dieser maximalen
Tupelmenge repräsentiert einen möglichen Zustand der Tabelle. Als Beispiel soll
eine Tabelle mit maximal zwei Tupeln betrachtet werden R(A1) = {(1), (2)}. Die
möglichen vier Zustände lauten hier: RZ1

(A1) = {(1), (2)}, RZ2
(A1) = {(1)},

RZ3
(A1) = {(2)} und RZ4

(A1) = {}. Einer dieser Zustände stellt die Realität
dar. Welcher genau dies ist, ist jedoch unbekannt.

Vielmehr wird über Menge der Zustände ein Wahrscheinlichkeitsmaß defi-
niert. Es drückt aus, mit welcher Wahrscheinlichkeit Pr(Zi) ein bestimmter
Zustand Zi der reale Zustand ist. Zustände können hierbei auch eine Wahr-
scheinlichkeit von Null besitzen.

Die Wahrscheinlichkeiten der einzelnen Zustände werden anhand der Tupel,
welche in dem jeweiligen Zustand existieren definiert. Hierfür ist jedem Tupel
ti eine Eintrittswahrscheinlichkeit Pr(ti) zugeordnet, die ausdrückt, mit welcher
Wahrscheinlichkeit es in der Realität vorkommt.

Prinzipiell ist die Many-World-Semantik nicht auf eine bestimmte Klasse
von Wahrscheinlichkeitsmaßen festgelegt. Um jedoch eine möglichst einfache Be-
rechnung der Zustandswahrscheinlichkeiten Pr(Zi) zu gewährleisten, werden die
Eintrittswahrscheinlichkeiten der Tupel Pr(ti) als untereinander unabhängig an-
genommen. Dies bedeutet, die Eintrittswahrscheinlichkeit eines bestimmten Tu-
pels ändert sich nicht mit dem Vorhandensein oder dem Nicht-Vorhandensein
eines beliebigen anderen Tupels. Somit ergibt sich die Wahrscheinlichkeit eines
Zustandes als Pr(Zi) = Πti∈Zi

(Pr(ti)) ∗Πti /∈Zi
(1− Pr(ti)).

Mit Eintrittswahrscheinlichkeiten für Tupel lassen sich u.a. besonders gut
Beobachtungen und Bewertungen modellieren, welche einer bestimmten Unsi-
cherheit bzw. Subjektivität unterliegen. Die Eintrittswahrscheinlichkeiten/Kon-
fidenzwerte solcher Beobachtungen bzw. Bewertungen werden meist durch Ex-
pertenwissen bestimmt, das sich meist nur sehr unzureichend in Funktionen oder
automatischen Verfahren abbilden lässt.

In dem eingeführten Beispielszenario stellen die Tupel der Tabelle VBeob
solche subjektiven Beobachtungen dar. Die im Attribut Pr hinterlegten Ein-
trittswahrscheinlichkeiten sind von dem jeweiligen Beobachter auf Basis seines
eigenen individuellen Erfahrungshorizonts bestimmt worden.

Eintrittswahrscheinlichkeiten von Tupeln aus einer Datenrelation stellen sin-
guläre Basisereignisse dar. Dem gegenüber stehen komplexe Ereignisse, welche
im Zuge der Anfrageauswertung aus der Kombination von Basisereignissen kon-
struiert werden.

Eine typische Many-World-Anfrage mit komplexen Ereignissen könnte wie
folgt lauten: Bestimme alle Zweier-Kombinationen von unterschiedlichen Vogel-
arten, die am selben Ort beobachten worden sind. Wenn man die Beispielanfrage
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auf die Tabelle VBeob anwendet ergibt sich u.a. die Kombination Star und Am-
sel. Das Eintreten dieser Kombination stellt ein komplexes Ereignis dar, welches
sich aus zwei gleichzeitig eintretenden unabhängigen Basisereignissen zusammen-
setzt: Pr((Star,Amsel,Cottbus)) = Pr((Star,Cottbus,September))∗
Pr((Amsel,Cottbus,Mai)) = 0.36

Zusammenfassend kann festgestellt werden, dass im Gegensatz zum vorheri-
gen Semantikmodell hier die Daten als unsicher betrachtet werden: Eine sichere
Anfrage wird auf einer unsicheren Datengrundlage ausgeführt.

2.3 Die Erweiterung der Many-World-Semantik um
Relevanzwahrscheinlichkeiten

Die Kombination der beiden oben beschriebenen Semantikmodelle ergibt eine
erweiterte Klasse von Anfragen. Ausgehend von einem Tupel in einer bestimm-
ten Welt kann nun zusätzlich die Relevanz dieses Tupels bezüglich einer Ähn-
lichkeitsanfrage betrachtet werden. Als Beispiel soll folgende Anfrage gestellt
werden: Bestimme alle Vogelarten, welche beobachtet worden sind und zusätzlich
möglichst ähnlich einem Vorgabebild (VBild) sind. Die Bedingung kann wie folgt
formalisiert werden:

VBeob(Art,Ort, Zeit) ∧ VArt(Art,Region,Bild) ∧Bild ≈BV VBild.

In dieser Beispielanfrage wird die Eintrittswahrscheinlichkeit der Beobachtung
mit der Relevanzwahrscheinlichkeit der Beobachtung bezüglich des Ähnlichkeits-
prädikates Bild ≈BV VBild verknüpft.

Die Kombination beider Anfrageparadigmen wird immer dann interessant,
wenn konstruierte Datenobjekte mit komplexen Eintrittsereignissen assoziiert
werden und auf den Attributwerten dieser Datenobjekte logikbasierte Ähnlich-
keitsanfragen ausgeführt werden. Es wird somit eine Verbindung zwischen einer
subjektiven Quantifizierung von Ereignissen und der objektiven Berechnung von
Ähnlichkeitswerten realisiert.

In Anlehnung an die beiden vorangegangenen Abschnitte kann folgender
Grundsatz für die Kombination von Relevanzwahrscheinlichkeiten und Many-
World-Semantik formuliert werden: Eine unsichere Anfrage wird auf einer unsi-
cheren Datengrundlage ausgeführt.

3 CQQLp - Die probabilistische Erweiterung der
Anfragesprache CQQL

Im vorherigen Kapitel wurde die erweiterte Anfrageklasse vorgestellt, welche sich
aus der Kombination von Relevanzwahrscheinlichkeiten und der Many-World-
Semantik ergibt.

Die technische Berechnung der kombinierten Wahrscheinlichkeiten basiert
auf einem integrierten Wahrscheinlichkeitsmaß, welches auf einem Produktwahr-
scheinlichkeitsraum zwischen der Menge aller möglichen Welten und der Menge
aller Anfrageräume definiert wird [11].
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Die daraus resultierende probabilistische Erweiterung von CQQL wird als
CQQLp bezeichnet. In den folgenden Abschnitten werden grundlegende Kon-
zepte von CQQLp vorgestellt. Eine genaue Defintition von CQQLp wird in [9]
gegeben.

3.1 Probabilistische Relationen und probabilistische
Relationenprädikate

Als erster Schritt wird das Konzept der probabilistischen Relation in den Spra-
chumfang von CQQLp eingeführt. In probabilistischen Relationen besitzt jedes
Tupel eine individuelle Eintrittswahrscheinlichkeit. Die Eintrittswahrscheinlich-
keit stellt dabei kein explizites Attribut dar, d.h. sie kann nicht direkt manipuliert
werden. Die definierten Eintrittswahrscheinlichkeiten werden als untereinander
unabhängig vereinbart.

Bisher konnte eine CQQL-Formel aus drei verschiedenen Typen von Prädika-
ten bestehen [14]: (1) Relationenprädikate (z.B. R1(X1, X2)), (2) Boolesche Prä-
dikate (z.B. X1 = 2 oder X2 < 5) und (3) Ähnlichkeitsprädikate (z.B. X3 ≈ 4).
Für die Auswertung von probabilistischen Relationen wird in CQQLp der neue
Typ der probabilistischen Relationenprädikate (Notation: R≈i (X1, . . . , Xn)) ein-
geführt. Wird ein solches probabilistisches Relationenprädikat auf ein bestimm-
tes Tupel angewendet, ist der entsprechende Rückgabewert die Eintrittswahr-
scheinlichkeit dieses Tupels, falls es sich in der Relation befindet. Andernfalls
wird der Wert 0 zurück gegeben.

Als Anwendungsbeispiel wird folgende Anfrage betrachtet: Bestimme alle
Vogelarten, welche in Cottbus im September beobachtet worden sind. Die forma-
lisierte Anfrage in CQQLp lautet:

{(Art,Ort, Zeit) | VBeob≈(Art,Ort, Zeit) ∧Ort = Cottbus∧
Zeit = September}.

Die Auswertung der Anfrage ergibt für das Tupel (Star,Cottbus,September) der
Relation VBeob eine Wahrscheinlichkeit von eval(VBeob≈(Star,Cottbus,Septem−
ber))∗eval(Cottbus = Cottbus)∗eval(September = September) = 0.9∗1∗1 = 0.9
und für das Tupel (Fink,Berlin, Juni) von eval(VBeob≈(Fink,Berlin, Juni)) ∗
eval(Berlin = Cottbus) ∗ eval(Juni = September) = 0.5 ∗ 0 ∗ 0 = 0.

3.2 Probabilistische Normalisierung

Ein zentraler Bestandteil der CQQL-Auswertung ist die syntaktische Normali-
sierung von Anfragen. Sie garantiert die semantisch korrekte Aggregierung der
Relevanzwahrscheinlichkeiten von Ähnlichkeitsprädikaten. So wird etwa die Bei-
spielbedingung (Ort ≈OV Cottbus)∧(Ort ≈OV Cottbus) zu (Ort ≈OV Cottbus)
normalisiert, weil es sich semantisch um die Konjunktion ein und derselben Be-
dingung handelt (≈OV ist Ähnlichkeitsoperator für ein Ortsvergleich). Die direk-
te Auswertung der unnormalisierten Anfrage würde eine falsche Relevanzwahr-
scheinlichkeit von eval(Ort ≈OV Cottbus)∗eval(Ort ≈OV Cottbus) anstatt von
eval(Ort ≈OV Cottbus) ergeben.
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Die Normalisierung von Ähnlichkeitsprädikaten wird nun auf probabilistische
Relationenprädikate übertragen. Dadurch wird z.B. gewährleistet, dass Eintritts-
wahrscheinlichkeiten gleicher Tupel nicht mehrfach in die Gesamtwahrscheinlich-
keit eingehen. Als Beispiel wird der Schnitt der Relation VBeobmit sich selbst be-
trachtet: {(Art,Ort, Zeit) | VBeob≈(Art,Ort, Zeit)∧ VBeob≈(Art,Ort, Zeit)}.
Sobald man ein konkretes Tupel mit Hilfe dieser unnormalisierten Bedingung
auswertet, erkennt man, dass die Eintrittswahrscheinlichkeiten ein und dessel-
ben Tupels zweimal in die Gesamtwahrscheinlichkeit des Ergebnistupels eingehen
würde. Dies widerspricht der probabilistischen Many-World-Semantik. Auch hier
ist eine Normalisierung der Formel notwendig. In diesem Fall vereinfacht sich die
Bedingung zu VBeob≈(Art,Ort, Zeit).

3.3 Intra-Tupel versus Inter-Normalisierung

Im letzten Abschnitt wurde zum einen die Normalisierung von Ähnlichkeitsprä-
dikaten und zum anderen die Normalisierung von probabilistischen Relationen-
prädikaten vorgestellt. Die erste Normalisierung garantiert die korrekte Aggre-
gierung von Relevanzwahrscheinlichkeiten, die zweite ist dagegen dafür verant-
wortlich, dass Eintrittswahrscheinlichkeiten semantisch richtig zusammengefasst
werden.

Betrachtet man die Normalisierung von Ähnlichkeitsprädikaten genauer, er-
kennt man, dass sich die zu normalisierenden Ereignisse auf Attributwerte genau
eines Tupels bzw. genau einer Variablenbelegung beziehen. Dies entspricht ex-
akt dem quantenlogischen Auswertungsmodell, da hier die Auswertung für einen
einzelnen Vektor gegenüber einem Anfrageraum definiert wird. Eine Interakti-
on zwischen verschiedenen Vektoren innerhalb der Auswertung ist nicht vor-
gesehen. Daher kann die Normalisierung von Ähnlichkeitsprädikaten als Intra-
Tupel -Normalisierung bezeichnet werden. Sie wirkt nur innerhalb eines Tupels
bzw. einer Variablenbelegung.

Die Normalisierung von probabilistischen Relationenprädikaten unterstützt
dagegen die Bildung von komplexen Ereignissen, welche die Eintrittswahrschein-
lichkeiten von konstruierten Tupeln verkörpern. Komplexe Ereignisse dieser Art
beziehen sich definitionsgemäß auf mehrere Basistupel bzw. Variablenbelegun-
gen. Demnach findet eine Inter -Normalisierung zwischen mehreren Tupeln bzw.
Variablenbelegungen statt. Eine typische Operation, die eine Inter-Normalisie-
rung notwendig macht, ist die Projektion. Hier können mehrere Ausgangstupel
zu einem Ergebnistupel verdichtet werden. Die Wahrscheinlichkeit des Ergebni-
stupel ergibt sich aus einer disjunktiven Verknüpfung der Wahrscheinlichkeiten
der jeweiligen Ausgangstupel. Dies bedeutet, dass mindestens eines der Aus-
gangsereignisse eingetreten sein muss, um das Ereignis des verdichteten Tupels
zu erzeugen [6].

Die durch die Projektion erzeugte Disjunktion muss jedoch mit einer Inter-
Normalisierung behandelt werden, da Basisereignisse mehrfach in den möglicher-
weise komplexen Ereignissen der Ausgangstupel vorliegen können.
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Als Beispiel soll die folgende Anfrage betrachtet werden: Bestimme alle Vo-
gelarten, welche in der Nähe von Berlin oder in der Nähe von Berlin beobachtet
worden sind. Die formalisierte Variante dieser Anfrage lautet:

{(Art) | ∃Ort : ∃Zeit : VBeob≈(Art,Ort, Zeit)∧
(Ort ≈OV Berlin ∨Ort ≈OV Berlin)}.

Das doppelte Auftreten eines Ähnlichkeitsprädikates kann z.B. durch die auto-
matisierte Generierung von Anfragen oder durch die Anwendung von Sichten
auftreten.

Bei der Auswertung der Beispielanfrage muss sowohl eine Intra-Tupel- als
auch eine Inter-Normalisierung durchgeführt werden. Zunächst wird die Intra-
Tupel-Normalisierung auf die Bedingung (Ort ≈OV Berlin∨Ort ≈OV Berlin) an-
gewendet: (Ort ≈OV Berlin). Somit ergeben sich im ersten Schritt für das Tupel
(Star,Cottbus,September) die Wahrscheinlichkeit eval(VBeob≈(Star,Cottbus,
September)∧Cottbus ≈OV Berlin) und für das Tupel (Star,Cottbus,August) die
Wahrscheinlichkeit eval(VBeob≈(Star,Cottbus,August)∧Cottbus ≈OV Berlin).
Anschließend muss eine Inter-Normalisierung auf die Projektion1 des Attributes
Art durchgeführt werden. Da sich die Inter-Normalisierung nur auf probabi-
listische Relationenprädikate bezieht, verändert sie die disjunktiv konstruierte
Formel für das Ergebnistupel (Star) hier nicht mehr:

eval((VBeob≈(Star,Cottbus,September) ∧ Cottbus ≈OV

Berlin) ∨ (VBeob≈(Star,Cottbus,August) ∧ Cottbus ≈OV Berlin)) =
(1− (1− (0.9 ∗ 0.7))(1− (0.3 ∗ 0.7))) = 0.7077,

wenn eval(Cottbus ≈OV Berlin) als 0.7 angenommen wird2.

4 Die probabilistische Anfragesprache QSQLp

Die Anfragesprache SQL ist der etablierte Standard für den Zugriff auf objekt-
relationale Datenbanksysteme. Seit der Einführung von SQL in den 70er Jahren
ist ihre praktische Relevanz kontinuierlich gestiegen. Aus diesem Grund werden
die in Kapitel 3 vorgestellten Konzepte der Kalkülanfragesprache CQQLp auf
SQL übertragen. Dadurch werden sie in Form des SQL-Dialektes QSQLp einer
breiten Entwicklerschicht zugänglich gemacht. Der bisherige Funktionsumfang
von SQL bleibt dabei vollständig in QSQLp erhalten, d.h. alle SQL-Anfragen
können auch in QSQLp wie gewohnt formuliert und ausgewertet werden.

Tupel von probabilistischen Relationen besitzen eine individuelle Eintritts-
wahrscheinlichkeit. QSQLp benutzt als Eintrittswahrscheinlichkeit automatisch
die Werte des Attributes probvalue, falls es in der Relation vorhanden ist. An-
dernfalls wird für jedes Tupel implizit eine Eintrittswahrscheinlichkeit von 1 an-
genommen. Neben der expliziten Speicherung der Eintrittswahrscheinlichkeiten
1 Im Kalkül wird eine Projektion mittels (mehrerer) Existenzquantoren ausgedrückt,
welche die nicht projizierten Attribute binden.

2 Wegen der DeMorgan-Umformungsregel gilt: eval(A ∨ B) = eval(¬(¬A ∧ ¬B)) =
(1− (1− eval(A)) ∗ (1− eval(B)))
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können diese auch mittels von Unterabfragen berechnet werden. Die berechneten
Wahrscheinlichkeiten befinden sich dann wiederum in dem Attribut probvalue
der Ergebnisrelation.

Die Selektion von Tupeln aus einer oder mehreren Tabellen wird syntaktisch
wie in SQL formuliert. So wird die logische Anfragebedingung, welche sich aus
Booleschen Prädikaten, Ähnlichkeitsprädikaten, sowie den logischen Operatoren
and, or und not zusammensetzt, ebenfalls in der where-Klausel einer Anfrage
platziert. Gegenüber SQL können in QSQLp zusätzlich Ähnlichkeitsbedingungen
mittels des Ähnlichkeitsoperators ≈ formuliert werden. Eine Beispielanfrage in
QSQLp wird in Abschnitt 4.3 vorgestellt.

4.1 Der Auswertungsprozess von QSQLp

Java-Applikation

Normalisierung
Optimierung

JDBC-Treiber

Oracle DBS

QSQL -Bibliothek

QSQL

SQL-99

QAp

p

p

Abb. 3. Auswertungsprozess

Die interne Ergebnisberechnung einer QSQLp-
Anfrage wird mittels einer Transformation
zwischen den folgenden drei Anfragesprachen
realisiert: (1) QSQLp zur Formulierung der
Anfrage, (2) die Ähnlichkeitsalgebra QAp zur
Normalisierung und Optimierung, sowie (3)
SQL-99 zur eigentlichen Berechnung des Er-
gebnisses innerhalb eines DBMS (siehe Abbil-
dung 3).

In den nächsten Abschnitten wird die
Normalisierung und Optimierung von QAp-
Ausdrücken skizziert. Eine exakte Definiti-
on der Ähnlichkeitsalgebra QAp, sowie eine
detaillierte Beschreibung der Abbildung von
QSQLp nach QAp wird in [12] gegeben. Die
verwendeten Prinzipien für die finale Abbil-
dung nach SQL-99 wurden bereits in der bis-
herigen QSQL-Version eingesetzt und werden
in [13] vorgestellt.

4.2 Die Ähnlichkeitsalgebra QAp

Das Kernstück der Auswertung von QSQLp-Anfragen ist die Erzeugung von
semantisch äquivalenten Ausdrücken in QAp und deren Optimierung.

Die probabilistische Normalisierung von Prädikaten wurde bereits im Kon-
text von CQQLp in Kapitel 3 diskutiert. Die dort entwickelten Konzepte werden
nun auf die Ähnlichkeitsalgebra QAp angewendet. Damit werden die Ähnlich-
keitsalgebra QAp und die Menge der sicheren CQQLp-Anfragen gleichmächtig
[12]. Eine CQQLp-Anfrage gilt als sicher, wenn ihre Ergebnismenge endlich ist
und sie darüber hinaus in endlicher Zeit berechnet werden kann.

Die Operatoren der Ähnlichkeitsalgebra QAp werden in Tabelle 1 aufgeführt.
Das Ergebnis eines jeden Operators ist ein Tupel (R,Pr), welches aus dem re-
lationalen Datenanteil R und der Wahrscheinlichkeitsfunktion Pr besteht. Die
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Funktion Pr ordnet jedem Tupel aus R eine Wahrscheinlichkeit zu. Die Berech-
nung von R wird dabei mit den bekannten Operatoren aus der Relationalen
Algebra durchgeführt.

Probabilistische Auswertungsoperatoren werden gemeinhin in extensionale
und intensionale Operatoren unterteilt (siehe z.B. [4], [6]). Dabei aggregieren
extensionale Operatoren Wahrscheinlichkeiten ohne die zu Grunde liegenden
(komplexen) Ereignisse zu berücksichtigen. Die richtige Semantik muss vielmehr
durch die richtige Anordnung der Operatoren innerhalb des Ausdruckes garan-
tiert werden. Dagegen besitzen intensionale Operatoren zur Berechnung der rich-
tigen Ergebniswahrscheinlichkeiten eine interne Normalisierung. Diese stellt im
Allgemeinen einen signifikanten Mehraufwand dar.

Operation Semantik

(Prob.) Relation R,Rp R := R

Pr(t) := 1 für R bzw. Pr(t) wird gesetzt für Rp

Projektion -extens.- R := πRA
A (R1)

πe
A(E1) Pr(t) := 1−Πt̃∈{t̃∈R1 | t̃[A]=t}(1− Pr(t̃))

Projektion -intens.- R := πRA
A (R1)

πi
(A,F )(E1) Pr(t) := eval(norminter(∨t̃∈{t̃∈R1 | t̃[A]=t}F (t̃)))

Selektion R := {t ∈ R1 | Pr(t) > 0}
σF (E1) Pr(t) := Pr1(t) ∗ eval(normintra(F (t)))

Schnitt R := R1 ./
RA
natural β(A1←A2)(R2)

E1 ∩(A1,A2) E2 Pr(t) := Pr1(t[R1]) ∗ Pr2(t[R2])

Vereinigung R := R1 ./
RA
full outer β(A1←A2)(R2)

E1 ∪(A1,A2) E2 Pr(t) :=



Pr1(t[R1]) + Pr2(t[R2])− falls t[R1] ∈ R1∧
Pr1(t[R1]) ∗ Pr2(t[R2]) t[R2] ∈ R2

Pr1(t[R1]) falls t[R1] ∈ R1∧
t[R2] /∈ R2

Pr2(t[R2]) falls t[R1] /∈ R1∧
t[R2] ∈ R2

Differenz R := R1 ./
RA
left outer β(A1←A2)(R2)

E1 −(A1,A2) E2 Pr(t) :=


Pr1(t[R1])∗ falls t[R1] ∈ R1∧
(1− Pr2(t[R2])) t[R2] ∈ R2

Pr1(t[R1]) falls t[R1] ∈ R1∧
t[R2] /∈ R2

Kreuzprodukt R := R1 ×RA R2

E1 × E2 Pr(t) := Pr1(t[R1]) ∗ Pr2(t[R2])

Tabelle 1. Übersicht der QAp-Operatoren
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4.3 Die Abbildung von QSQLp nach QAp

Da die Auswertung einer QSQLp-Anfrage mittels QAp-Ausdrücke geschieht,
ist die Semantik von QSQLp mittels der Abbildung von QSQLp nach QAp

und der Definition der QAp-Operatoren festgelegt. Dies wiederum bedingt die
Gleichmächtigkeit zwischen der Kernfunktionalität von QSQLp und dem sicheren
CQQLp-Kalkül, da bereits eine Äquivalenz zwischen QAp und CQQLp festge-
stellt wurde. Der Begriff Kernfunktionalität bezieht sich auf den Umstand, dass
bestimmte SQL-Funktionalitäten wie die Gruppierung und die Multimengen-
Semantik nicht direkt in eine Kalkülsprache, welche auf Prädikatenlogik 1. Stufe
basiert, übertragen werden können.

Der Dreiklang von sicherem CQQLp (Kalkül), QAp (Algebra) und QSQLp

(SQL) spielt bei der Abbildung von QSQLp nach QAp eine wesentliche Rolle.
Der Ausgangspunkt für die folgenden Betrachtung ist eine in QSQLp formu-

lierte Anfrage. Als Grundlage für die Erzeugung eines entsprechenden gleichwer-
tigen QAp-Ausdrucks wird die Kalkülauswertung einer äquivalenten CQQLp-
Anfrage betrachtet.

In der Kalkülauswertung wird jede Variablenbelegung gegen eine normalisier-
te Bedingung F ausgewertet. Die Menge aller gebundenen Variablenbelegungen
wird hier als RVB bezeichnet. Die eigentlichen Ergebnistupel werden abschlie-
ßend anhand einer Menge von Ausgabeattributen A gebildet. Übersetzt man
dieses Vorgehen direkt in einen Algebraausdruck ergibt sich folgende Grund-
struktur für die Auswertung: πA(σF (RVB)).

In dem grundlegenden Algebraausdruck wird die Menge RVB als Eingangs-
relation benutzt. Offensichtlich kann diese Relation schnell anwachsen, da sie
alle benötigten Variablenbelegungen als Tupel beinhaltet und Projektionen bzw.
Selektionen, welche die Eingangsrelation verkleinern würden, erst abschließend
durchgeführt werden. Eine direkte Auswertung dieses Ausdruckes ist demnach
nicht praktikabel. Bevor im nächsten Abschnitt auf eine notwendige Optimie-
rung eingegangen wird, steht hier zunächst die Generierung der Grundstruktur
πA(σF (RVB)) im Vordergrund.

Die übergebene QSQLp-Anfrage wird hierfür in eine spezielle Datenstruktur,
dem sogenannten Select-From-Where-Baum, überführt. Er stellt die Grundlage
für den Abbildungsalgorithmus zwischen QSQLp und QAp dar. Im SFW-Baum
wird u.a. die syntaktische Struktur der QSQLp-Anfrage nachgebildet. Dement-
sprechend sind die Knoten des Baumes entweder SFW-Blöcke, Relationen oder
Relationsoperatoren (×,∪,∩,−). Jeder SFW-Block besitzt (1) eine Projektions-
liste, welche aus der select-Klausel generiert wird, (2) eine logische Bedingung,
welche auf der where-Klausel basiert, und (3) Konnektoren zu weiteren mögli-
chen Unterabfragen.

Als Beispiel wird die abstrakte QSQLp-Anfrage aus Quelltext 4.1 betrach-
tet. Die Anfrage drückt den Schnitt zweier probabilistischer Tabellen T1 und T2
aus, wobei die bereinigten Relationenschemata (ohne Attribut Pr) der benutz-
ten Tabellen R(T1) = (A1, A2, A3) und R(T2) = (B1, B2) lauten. Die Anfrage
beinhaltet u.a. die zwei Ähnlichkeitsbedingungen B1 ≈ 1 und A1 ≈ 1. Diese be-
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� �
select A1
from

( select A1, A2
from T1
where A3 ~ 3 and A2 > 2 )

intersect
( select *

from T2
where B1 ~ 1 and B2 ~ 2 )

where A1 ~ 1� �
Quelltext 4.1. Beispielanfrage in QSQLp

ziehen sich auf ein und dasselbe Attribut, wenn man die geschnittene Relation
als Grundlage betrachtet. Diese Überlappung von Ähnlichkeitsprädikaten muss
mittels einer Intra-Tupel-Normalisierung aufgelöst werden. Andernfalls wird auf
den ersten Attributwert eines jeden Tupels aus T2 die Bedingung ähnlich 1 dop-
pelt ausgeführt.

Der für die Beispielanfrage generierte SFW-Baum wird in Abbildung 4 ge-
zeigt.

S    F   W

UA1

S    F   W

A1,A2 T1 A3~3^
A2>2

S    F   W

B1,B2 T2 B1~1^
B2~2

A1~1

4

1 2

3

Abb. 4. SFW-Baum der Anfrage aus Quelltext 4.1

Mit Hilfe einer Traversierung des SFW-Baum werden knotenweise die drei
Bestandteile der initialen Grundstruktur πA(σF (RVB)) konstruiert, d.h. (1) die
Attributmenge A, (2) die Selektionsbedingung F und (3) der Algebraausdruck
zur Konstruktion von RVB .

Die Tabelle 2 beinhaltet die drei QAp-Bestandteile A, F und RVB für die
Knoten 1 bis 4 der Beispielanfrage. Die Formeln der beiden Knoten 1 und 2 er-
geben sich zu F1 und F2. Die Bereichsvariablen Xi stammen aus einem globalen
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A F RVB

1 A1 = {X1, X2} F1 = T≈1 (X1, X2, X3) ∧X3 ≈ 3 ∧X2 > 2 T1

2 A2 = {X4, X5} F2 = T≈2 (X4, X5) ∧X4 ≈ 1 ∧X5 ≈ 2 T2

3 A3 = {X1, X2} F3 = (T≈1 (X1, X2, X3) ∧X3 ≈ 3 ∧X2 > 2)∧ T1 ∩(A1,A2) T2

(T≈2 (X1, X2) ∧X1 ≈ 1 ∧X2 ≈ 2)

4 A4 = {X1} F4 = ((T≈1 (X1, X2, X3) ∧X3 ≈ 3 ∧X2 > 2)∧ T1 ∩(A1,A2) T2

(T≈2 (X1, X2) ∧X1 ≈ 1 ∧X2 ≈ 2)) ∧X1 ≈ 1

Tabelle 2. Berechnung des initialen Grundausdruckes

Variablenschemata und repräsentieren die jeweiligen Attribute der zu Grunde
liegenden Relationen T1 und T2. Die Relationen T1 und T2 wiederum erzeugen
die probabilistischen Relationenprädikate T≈1 und T≈2 . Sie werden genutzt um
die entsprechenden Eintrittswahrscheinlichkeiten einfließen zu lassen. Logische
Bedingungen aus der where-Klausel werden konjunktiv an die jeweiligen probi-
listischen Relationenprädikate gebunden.

Die beiden Zwischenformeln F1 und F2 werden in Knoten 3 zu der Formel F3

kombiniert. Der Schnittoperator kann dabei direkt in eine Konjunktion zwischen
F1 und F2 umgewandelt werden, wobei die beiden Variablenschemata einander
angepasst werden müssen. Dadurch können äußere Bedingungen (hier: A1 ≈ 1)
auf die Tupel beider Eingangsrelationen wirken.

Die Attributmengen Ai ergeben sich direkt aus den Projektionsattributlisten
der entsprechenden SFW-Blöcke. Der Algebraausdruck zur Berechnung von RVB

wird entsprechend den Abbildungsvorschriften aus [12] generiert.
Der initiale QAp-Ausdruck ergibt sich dann zu πi

({X1},F )(T1 ∩(A1,A2) T2),
wobei F = normintra(F4) = T≈1 (X1, X2, X3) ∧ T≈2 (X1, X2) ∧ X1 ≈ 1 ∧ X2 ≈
2 ∧X2 > 2 ∧X3 ≈ 3. In F ist nun die Überlappung der Ähnlichkeitsprädikate
aufgelöst, da B1 ≈ 1 und A1 ≈ 1 jeweils auf X1 ≈ 1 abgebildet und mittels der
Idempotenz-Regel zusammengefasst worden sind.

4.4 Optimierung in QAp

Um ein starkes Anwachsen von RVB zu vermeiden, muss der initiale Grund-
ausdruck optimiert werden. Die Optimierung von QAp-Ausdrücken setzt die
Möglichkeit einer separaten Normalisierung von Teilausdrücken voraus. Dies be-
deutet, dass zwischen zu trennenden Teilausdrücken keine Überlappungen von
Ähnlichkeitsprädikaten existieren dürfen, die aufgelöst werden müssten.

Ein optimierter QAp-Ausdruck kann extensionale, sowie intensionale Opera-
toren beinhalten. Ziel der Optimierung ist es einen Ausdruck zu erzeugen der
möglichst auf die Anwendung von intensionalen Operatoren verzichtet, da diese
einen internen Normalisierungsschritt (siehe Tabelle 1) notwendig machen. Zur
Verdeutlichung des Optimierungspotential, soll ein optimierter Ausdruck für das
eingeführte Beispiel in Abbildung 5 genutzt werden. Der optimierte Ausdruck
enthält nur noch extensionale Operatoren. Die Normalisierung der Ausgangs-
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πi
({X1},F )

∩{X1,X2},{X4,X5}

T1 T2

; πe
{X1}

σX1≈1

∩{X1,X2},{X4,X5}

πe
{X1,X2}

σT≈
1 ∧X2>2∧X3≈3

T1

πe
{X4,X5}

σT≈
2 ∧X5>2∧X5≈2

T2

Abb. 5. Optimierung des initialen Algebrabaumes

anfrage verschiebt sich auf die gezielte Anwendung extensionaler Algebraope-
ratoren und den Einsatz entsprechender Selektionsbedingungen. Die konzeptio-
nelle Konstruktion von RVB vereinfacht sich durch den Einsatz extensionaler
Projektionen zu einer einfachen Schnittoperation, wenn man den relationalen
Datenanteil des Operators ∩{X1,X2},{X4,X5} (siehe Tab. 1) als natürlichen Ver-
bund zwischen zwei Relationen mit gleichen Relationenschemata auflöst. Damit
gleicht der erzeugte Ausdruck stark der ursprünglichen QSQLp-Anfrage. Der ge-
wonnene Effekt neben der Wahrscheinlichkeitsberechnung ist die Normalisierung
der überlappenden Ähnlichkeitsprädikate B1 ≈ 1 und A1 ≈ 1, welche beide auf
X1 ≈ 1 abgebildet worden sind.

5 Experimente

Zur Evaluierung der Performanz wurde das Beispiel aus Quelltext 4.1 mit den un-
optimierten und optimierten Ausführungsplänen aus Abbildung 5 untersucht. Zu
Grunde lagen zwei Familien von Tabellen T1, T2, welche jeweils 100, 101, . . . , 106
Tupel enthielten. Zur Überprüfung wurde ein Sun UltraSPARC IV 1.4 GHz mit
8 GB RAM genutzt. Bei Experiment 1 enthielt Tabelle T1 konstant 104 Tupel.
Wie in Abbildung Tabelle 3 zu erkennen ist, wächst die Laufzeit der nicht opti-
mierten Anfrage linear mit der Größe von T2, während die optimierte Anfrage
deutlich weniger Zeit benötigt.

Bei Experiment 2 wuchsen beide Tabellen T1 und T2. In Tabelle 4 sieht
man, dass die Laufzeit des optimierten Verfahrens in diesem Fall linear wächst,
während die Laufzeit des nicht optimierten Verfahrens quadratisch wächst.

Das nicht optimierte Verfahren ist zwar semantisch korrekt, aber zu langsam.
Das äquivalente optimierte Verfahren ist also trotz seiner benötigten komplexe-
ren Konstruktion bei Anfragen auf große Tabellen zu bevorzugen.

6 Vergleichbare Ansätze

In der Literatur wurden eine Vielzahl von Systemen vorgeschlagen, welche die
probabilistische Verarbeitung von relationalen Daten unterstützen. In dem Kon-
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Anfragen Anzahl Tupel in T2

100 101 102 103 104 105 106

optimiert 0,5 0,5 1,5 1,5 2,0 9,0 82,3
nicht optimiert 0,5 0,6 3,5 30,1 297,3 - -
Tabelle 3. Auswertungszeit in Sekunden bei 104 Tupel in T1

Anfragen Anzahl Tupel in T1 = Anzahl Tupel in T2

100 101 102 103 104 105 106

optimiert 0,5 0,5 0,5 0,5 2,0 16,8 162,7
nicht optimiert 0,5 0,5 0,5 3,5 297,3 - -

Tabelle 4. Auswertungszeit in Sekunden

text von QSQLp sollen vor allem Ansätze untersucht werden, die eine logikbasier-
te Anfragesprache in Form eines Kalküls, einer Algebra oder eines SQL-Dialektes
anbieten.

Die betrachteten Systeme können bezüglich der Wahrscheinlichkeitsberech-
nung grob in zwei Klassen eingeteilt werden: extensionale und intensionale An-
sätze. Die konzeptionellen Charakteristika von extensionalen und intensionalen
Verfahren werden in [16] umfassend diskutiert.

Extensionale Systeme [3,2,5,4] können sehr effizient Wahrscheinlichkeiten be-
rechnen, wenn die unterstützte Klasse von Anfragen oder die Klasse der verwen-
deten Wahrscheinlichkeitsmaße eingeschränkt wird.

Zum Beispiel nehmen Cavallo und Pittarelli in [3] an, dass Tupel in dersel-
ben Relation disjunkte Ereignisse darstellen. Barbara et. al. [2] verallgemeinern
dieses Modell, sodass Tupel unabhängig und deren Attribute zusätzlich ungenau
sein können, was zu disjunkten Eintrittswahrscheinlichkeiten auf Attributebene
führt. Dabei muss jede Relation eine Menge von deterministischen Attributen
besitzen, welche den Schlüssel der Relation bilden. Dey und Sarkar [5] verbes-
sern dieses Modell, indem beliebige Schlüssel erlaubt werden. Es sind jedoch
nur Projektionen erlaubt, welche auch den jeweiligen Schlüssel der angefragten
Relation enthalten. In [4] wird für die Klasse der konjunktiven Anfragen ohne
Selbstverbund sichere (d.h. semantisch korrekte) Ausführungspläne erzeugt. Die
Ergebnisse von unsicheren Ausführungspläne werden approximativ angenähert.
Keines dieser Systeme kann somit mit beliebigen Anfragen korrekt umgehen,
da eine notwendige Normalisierung innerhalb des Auswertungsprozesses nicht
durchgeführt wird.

QSQLp berechnet für beliebige Anfragen korrekte Wahrscheinlichkeiten. Be-
züglich der einsetzbaren Wahrscheinlichkeitsmaße ist es jedoch z.B. gegenüber
[2,8,21] restriktiver, da momentan keine disjunkte Eintrittswahrscheinlichkeiten
auf Tupel- bzw. Attributebene unterstützt werden. Dieser Nachteil wird in [11]
konzeptionell aufgehoben und soll in einer späteren Version von QSQLp umge-
setzt werden.

Im Gegensatz zu extensionalen Ansätzen verarbeiten intensionale Systeme
[6,8,21] während der Ergebnisberechnung Ereignisse oder Zufallsvariabeln. Ab-
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schließend wird auf der Grundlage des finalen, normalisierten Ereignisses die ei-
gentliche Ergebniswahrscheinlichkeit ermittelt. Dies garantiert wie in QSQLp die
Berechnung von semantisch korrekten Ergebniswahrscheinlichkeiten. Für inten-
sionale Systeme wurden verschiedene Approximationsverfahren entwickelt um
die Wahrscheinlichkeitsberechnung auf Kosten der Ergebnisgenauigkeit zu be-
schleunigen [15,17].

6.1 Logikbasierte Ähnlichkeitsbedingungen in probabilistischen
Datenbanken

Neben der Art der Berechnung der Wahrscheinlichkeiten (extensional oder in-
tensional) stellt sich vor allem die Frage der Ausdruckskraft bereits existierender
Ansätze: Inwiefern ist es möglich in ihnen beliebige logikbasierte Ähnlichkeitsan-
fragen zu formulieren?

Insbesondere die wegweisenden Arbeiten [6] und [4] diskutieren explizit die
Einbindung von Ähnlichkeitsprädikaten. Zur Abgrenzung gegenüber QSQLp soll
deshalb auf diese beiden Ansätze im Detail eingegangen werden.

Ähnlichkeitsprädikate als Built-In-Prädikate Fuhr und Röllecke schlagen
in [6] vor die Scoring-Funktion eines Ähnlichkeitsprädikates mit Hilfe einer eigen-
ständigen probabilistischen Relation zu modellieren. Diese wird dann gemäß der
ursprünglichen Anfragestruktur mittels einer Verbundoperation in den Anfrage-
ausdruck integriert. Als Bespiel soll folgende Anfrage betrachtet werden: Bestim-
me alle Vogelarten, welche in der Nähe von Berlin beobachtet worden sind. Für
das Ähnlichkeitsprädikat Ort1 in der Nähe von Ort2 wird die probabilistische
Relation SFOV (Scoring-Funktion für Ortsvergleich) mit dem Relationensche-
mata (Ort1, Ort2, P r) und der Tupelmenge SFOV = {(Cottbus,Berlin, 0.7),
(Berlin,Berlin, 1.0)} vereinbart. Die Tupel beinhalten die Auswertung der Orts-
vergleiche zwischen Cottbus und Berlin, sowie Berlin und Berlin.

Der PRA-Algebraausdruck (siehe [6]) für die Beispielanfrage lautet:
VBeob ./Ort=Ort1 σOrt2=Berlin(SFOV ). Somit werden die Eintrittswahrschein-
lichkeiten der Tupel aus VBeob mit dem jeweiligen Ähnlichkeitswert des Orts-
vergleichs aus SFOV verbunden.

Problematisch bei diesem Vorgehen ist jedoch die Konstruktion von SFOV .
Sie verkörpert zwar ein Ähnlichkeitsprädikat, aber bezüglich der Auswertung
stellt sie kein eigenständiges Konzept dar. Vielmehr unterliegt sie den gleichen
Regeln, wie sie für alle probabilistische Relationen gelten. Somit müssen die Tu-
pel unabhängige Basisereignisse darstellen damit die entsprechenden Aggregati-
onsfunktionen angewendet werden können. Die Unabhängigkeit der Tupel ist in
einer SF -Relation jedoch nicht gegeben. Fuhr und Röllecke schlagen deshalb vor,
lediglich Anfragen zu benutzen, in denen keine Tupel aus gleichen SF -Relationen
kombiniert werden. So darf z.B. eine bestimmte SF -Relation nicht mehr als ein-
mal in einem Anfrageausdruck eingebunden werden und Projektionen können
nicht mehr beliebig eingesetzt werden.

510



QSQLp besitzt bezüglich der Anwendung von Ähnlichkeitsprädikaten mit
unterschiedlichen Vergleichskonstanten eine vergleichbare Restriktion (siehe Ka-
pitel 2.1), jedoch sind z.B. Projektionen innerhalb einer Anfrage beliebig an-
wendbar.

Ähnlichkeitsprädikate als Eintrittswahrscheinlichkeiten von Datenre-
lationen In [6] wurden Ähnlichkeitsprädikate als probabilistische Relationen
modelliert, welche während des Auswertungsprozess eingebunden werden. Im
Gegensatz dazu schlagen Dalvi und Suciu in [4] vor, die Wahrscheinlichkeiten für
die verwendeten Ähnlichkeitsprädikate vor der eigentlichen Anfrageauswertung
zu ermitteln. Die Ergebnisse dieser Vorberechnungen werden dann den Datenre-
lationen, auf welche sich die jeweilige Ähnlichkeitsprädikate beziehen direkt als
Eintrittswahrscheinlichkeiten zu gewiesen. Zur Verdeutlichung sollen die bereits
eingeführten Tabellen VArt und VBeob dienen, wobei die Tabelle VBeob hier
ohne die Spalte Pr betrachtet wird (notiert als VBeob′). Somit besitzen beide
Relationen keine individuellen Eintrittswahrscheinlichkeiten.

Es soll folgende Beispielanfrage betrachtet werden: Bestimme alle Vogelar-
ten, welche in der Nähe von Berlin beobachtet worden sind und möglichst ähnlich
einem Vorgabebild sind. Als Algebraausdruck kann die Anfrage wie folgt formu-
liert werden: πArt(σ(Bild≈BVVBild∧Ort≈OVBerlin)(VArt ./ VBeob′)). Bevor dieser
Algebraausdruck ausgewertet wird, werden die Ähnlichkeitsprädikate Bild ≈BV

VBild bezüglich der Tupel in VArt und das Ähnlichkeitsprädikat Ort ≈ Berlin
bezüglich der Tupel in VBeob′ berechnet. Die Ergebnisse werden als Eintritts-
wahrscheinlichkeiten in die Tabellen VArt und VBeob′ kodiert. Die Tabellen
VArt und VBeob′ werden somit zu den probabilistischen Relationen VArtp und
VBeobp. Der auszuwertendende Ausdruck ergibt sich dann zu πArt(VArt

p ./
VBeobp).

Da in einer Verbundoperation die Wahrscheinlichkeiten für die zu verbin-
denden Tupel beider Relationen konjunktiv verknüpft werden [4], ergibt sich
in der Ergebnisrelation die erwartete Wahrscheinlichkeit für die Konjunktion
Bild ≈BV VBild ∧Ort ≈OV Berlin.

Dieser Mechanismus funktioniert jedoch lediglich bei Anfragen mit konjunk-
tiv verknüpften Ähnlichkeitsprädikaten. Bereits bei einer einfachen Disjunktion
von Ähnlichkeitsprädikaten, welche sich jeweils auf verschiedene Relationen be-
ziehen, ist es nicht mehr möglich die Auswertung der disjunktiven Ähnlichkeits-
bedingung aufzuteilen und in die jeweiligen Relationen zu verschieben. Beispiel-
haft soll folgende Anfrage betrachtet werden: Bestimme alle Vogelarten, welche
in der Nähe von Berlin beobachtet worden sind oder möglichst ähnlich einem
Vorgabebild sind. Der entsprechende Algebraausdruck ist nun gegeben durch:
πArt(σ(Bild≈BVVBild∨Ort≈OVBerlin)(VArt ./ VBeob

′)).
Ein Verschieben der Ähnlichkeitsprädikate in ihre jeweiligen Relationen steht

der Widerspruch zwischen ihrer disjunkten Verknüpfung in der Selektion und der
konjunktiven Verknüpfung von Wahrscheinlichkeiten innerhalb der Verbundope-
ration entgegen.

511



In weiteren Ansätzen (z.B. [21] und [8]) können Eintrittswahrscheinlichkei-
ten auch auf Attributebene modelliert werden. Somit besteht hier die Option
die Auswertung der Ähnlichkeitsprädikate direkt in den abgefragten Attribu-
ten zu kodieren, bevor die eigentliche Anfrageauswertung gestartet wird. Dies
funktioniert jedoch wiederum nur bei konjunktiv verknüpften Ähnlichkeitsprä-
dikaten, da die Wahrscheinlichkeit für ein Tupel konjunktiv aus den einzelnen
Eintrittswahrscheinlichkeiten seiner Attributwerte gebildet wird.

Zusammenfassend kann festgestellt werden, dass im Gegensatz zu QSQLp in
den diskutierten Ansätzen [6], [4], [8] und [21] eine Integration beliebiger logik-
basierter Ähnlichkeitsbedingungen nicht gegeben ist.

6.2 Fuzzy Datenbanken

Fuzzy Datenbanken (z.B. [7]) können ebenfalls mit unsicheren Anfragen auf unsi-
cheren Daten umgehen. Es handelt sich hier jedoch nicht um ein probabilistisches
Anfragemodell. Vielmehr werden die hier verwendeten Tupel-Zugehörigkeitswerte,
ähnlich wie bei extensionalen probabilistischen Systemen, aggregiert ohne die
eigentliche Semantik der kombinierten Teilbedingungen zu berücksichtigen. Das
Konzept einer semantischen Normalisierung ist unbekannt.

Des Weiteren stellt die zu Grunde liegende Fuzzy Logik [22] im Allgemeinen
keine Boolesche Algebra dar. Bekannte logische Äquivalenzen und Transforma-
tionsregeln (z.B. Idempotenz und Distributivität) sind somit nicht gültig. Ein
detaillierter Vergleich zwischen Fuzzy Logik und Quantenlogik wird in [19] prä-
sentiert.

7 Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurde die etablierte Many-World-Sematik für proba-
bilistische Datenbanken um das Konzept der Relevanzwahrscheinlichkeiten er-
weitert. Diese werden in Form von logikbasierten Ähnlichkeitsanfragen auf einer
unsicheren Datengrundlage formuliert. Neben der konzeptionellen Kombination
beider Anfrageparadigmen wurde mit den Ähnlichkeitsanfragesprachen CQQLp,
QAp und QSQLp eine praktische Umsetzung diskutiert. Des Weiteren wurde
aufgezeigt, dass bisherige Ansätze beliebige logikbasierte Anfragen nicht aus-
reichend unterstützen. Als zukünftiges Forschungsvorhaben ist die Erweiterung
des hier entwickelten probabilistischen Anfragemodells um disjunktive Eintritts-
wahrscheinlichkeiten auf Tupel- und Attributebene zu nennen.
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Zusammenfassung Die Erstellung eines individuellen Programms aus einer Soft-

wareproduktlinie (Programmfamilie) erfordert auf Anwendungs- und Datenbank-

seite einen speziell angepassten und aufeinander abgestimmten Funktionsumfang.

Die Modellierung maßgeschneiderter Relationenschemata stellt z.B. aufgrund

der großen Anzahl an Programmen, die aus einer Produktlinie erstellt werden

können, eine Herausforderung dar. Wir präsentieren einen Lösungsvorschlag zur

Modellierung und Generierung von maßgeschneiderten Relationenschemata mit-

tels Superimposition. Wir zeigen anhand einer realen, produktiv eingesetzten

Fallstudie welche Vorteile unser Ansatz in den Bereichen Wartung und Weiterent-

wicklung erzeugt und welche Herausforderungen beispielsweise durch redundant

definierte Schemaelemente existieren.

1 Einleitung

Die Entwicklung von langlebigen Datenbank (DB)-Schemata stellt seit jeher eine Her-

ausforderung dar [21]. Moderne Anforderungen an Softwareimplementierungen in Be-

zug auf Wiederverwendbarkeit und individualisierten Funktionsumfang eröffneten auf

Anwendungsseite ein weites Forschungsgebiet und führten zu einer Vielzahl von Lö-

sungsvorschlägen [11]. Hingegen sind die Auswirkungen im DB-Schemabereich wei-

testgehend unbekannt [26]. Vor allem im Kontext von Softwareproduktlinien [19] (SPL)

entstehen neue Herausforderungen für die Entwicklung von DB-Schemata. SPLs werden

häufig zur Erstellung individuell auf den Nutzer zugeschnittener Produkte eingesetzt [2].

In ihr repräsentieren Merkmale eine für den Kunden sichtbare Funktion der Software [11].

Eine SPL zur Erstellung eines maßgeschneiderten Dokumentenverwaltungssystems kann

beispielsweise die Merkmale Nutzerverwaltung und Mehrbenutzersynchronisation ent-

halten, die unabhängig als Extrafunktionalität vermarktet werden. Entsprechend der

Kundenwünsche wird die Dokumentenverwaltungssoftware mit oder ohne diese Merk-

male generiert (Variante der Software). Je nach Funktion des Merkmals ist es auf die

Existenz gewisser DB-Schemaelemente zur Speicherung und Verarbeitung der für das

Merkmal relevanten Daten angewiesen. Die Nutzerverwaltung des Dokumentenverwal-

tungssystems benötigt z.B. Relationen in denen die Nutzer mit den zugehörigen Rechten
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hinterlegt sind. Häufig wird bisher ein globales Schema unabhängig von der Merk-

malauswahl ausgeliefert. Die derzeit verwendeten Vorgehen erzeugen die folgenden

Probleme:

◦ Es wird ein komplexes, schwer verständliches Gesamtschema erzeugt, von dem große

Teile in vielen Varianten nicht benötigt werden. Dies erschwert die Wartbarkeit eines

Variantenschemas und die Weiterentwicklung der Software.

◦ Die Ausdrucksfähigkeit der Modellierung wird beschränkt. Es können beispielsweise

Relationen in eine variable Anzahl von Fragmenten partitioniert werden oder es

kann kein Gesamtschema angeben werden, wenn die Modellierung konkurrierende

Schemaelemente enthält.

◦ Es entstehen Probleme in Bezug auf die Integrität der enthaltenen Daten.

◦ Die Skalierbarkeit des Ansatzes muss gewährleistet sein, da die Anzahl der gene-

rierbaren Varianten exponentiell zur Zahl der Merkmale wächst.

Wir sind hingegen daran interessiert, für jede Variante der Software ein maßge-

schneidertes DB-Schema zu generieren. Langfristig beabsichtigen wir die folgenden

Zielstellungen zu erreichen:

◦ Ziel ist es den Funktionsumfang des DB-Schemas individuell auf den Kunden

abstimmen. Dazu gehört u.a. die Optimierung auf bestimmte Anfragetypen (Exact

Match, Range Queries, etc.) oder die Einbeziehung von Sicherheitsaspekten, wie

Verschlüsselung der Daten oder Information Hiding.

◦ Ähnlich zur Anwendungsseite sollen DB-Elemente in Varianten der SPL wiederver-
wendet werden. Das bedeutet, dass Teile der Modellierung auf DB-Schemaebene in

ähnlichen Produkten erneut verwendet werden, um den Aufwand zur Erstellung von

Varianten zu verringern.

◦ Die Verständlichkeit der Modellierung sowie einzelner Variantenschemata der Soft-

ware soll verbessert werden, um sowohl die Weiterentwicklung der Software, als

auch die Wartung von Varianten zu vereinfachen.

In einem ersten Schritt zur Erfüllung der Ziele wird untersucht, inwiefern sich Varianten

eines Schemas für eine reale Fallstudie in einem konkreten Datenmodell erstellen lassen.

Weiterhin wird überprüft welche Probleme dabei auftreten, um daraus Erkenntnisse

abzuleiten, inwiefern die Komplexität eines solchen Vorgehens einen Einsatz in der

Praxis erlaubt. Aufbauend auf den Ergebnissen von SIEGMUND et. al. [26], die auf der

BTW 2009 einen ersten Ansatz zur Erstellung maßgeschneiderter ER-Schemata [8]

präsentierten, schlagen wir ein solches Vorgehen für das Relationenmodell [10] vor.

Hierbei handelt es sich unseres Wissens nach um die erste Arbeit ein maßgeschneidertes

DB-Schema für ein konkretes Datenmodell und für eine reale, produktiv eingesetzte

Fallstudie zu erzeugen, um die Praxistauglichkeit des Vorgehens besser beurteilen zu

können. Wir untersuchen die folgenden Problemstellungen:

1. Wie können variable DB-Schemata für das Relationenmodell im Kontext von SPLs

modelliert werden?

2. Wie lässt sich aus der Modellierung ein maßgeschneidertes DB-Schema für eine

Variante der SPL erstellen?
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3. Inwiefern existieren Interaktionen von Merkmalen auf DB-Schemaebene und welche

Auswirkungen haben sie auf die Erzeugung eines Variantenschemas?
4. In welchem Umfang zeigen sich die erkannten Probleme bei der Anwendung unseres

Lösungsvorschlags an einer produktiv eingesetzten Fallstudie?

2 Die Fallstudie ViT-Manager

Bei der Fallstudie ViT R©-Manager4 handelt es sich um ein Controlling-Tool mit dessen

Hilfe es möglich ist Verbesserungspotentiale in einem Unternehmen zu erfassen, zu

klassifizieren und die Ausschöpfung des Potentials nachzuvollziehen. Die Fallstudie

verfügt ohne externe Bibliotheken über ca. 50.000 Zeilen Quellcode, das DB-Schema

enthält 54 Relationen mit 309 Attributen. Sie wird produktiv sowohl in Mittelstands-

unternehemen, als auch in Großkonzernen eingesetzt. Weiterhin sind die einsetzenden

Unternehmen in verschiedenen Branchen angesiedelt. Aus den heterogenen Einsatz-

gebieten ergeben sich unterschiedlichste Anforderungen an die einzelnen Varianten

der Fallstudie. In Großkonzernen stehen beispielsweise das Aufdecken von Synergien,

umfangreiche Reportingfunktionen sowie die Unterstützung möglichst vieler Methoden
zur Ausschöpfung der vorhandenen Verbesserungspotentiale (MAP) im Vordergrund.

Hingegen legen Mittelstandsunternehmen vor allem Wert auf eine konsequente und

nachvollziehbare Ausschöpfung der aufgedeckten Potentiale anhand monetärer Größen,

wie z.B. eingesparter Arbeitszeit.

2.1 Die ViT-SPL

Die Fallstudie ViT-Manager entstand aus einer monolithischen Anwendung, die auf-

grund von neuen Kundenanforderungen durch zusätzliche Funktionen erweitert wurde.

Die zunehmende Komplexität und die unterschiedlichen Anforderungen der Kunden

ließen daher eine Überführung der monolithischen Anwendung in eine SPL sinnvoll

erscheinen. Bei einer SPL handelt es sich um eine Familie von Programmen, die eine

Anzahl gleicher und unterschiedlicher Merkmale besitzt [9] und häufig zur Erstellung

individueller Software genutzt wird [2]. Ein Merkmal beschreibt dabei eine für den

Nutzer wesentliche Funktion der Software [11]. Die Reportingfunktion oder die Nutzer-

verwaltung des ViT-Managers sind Beispiele für ein solches Merkmal. Die Generierung

eines individuellen Produktes erfolgt durch Auswahl der benötigten Merkmale. Das

Produkt wird anschließend durch eine zuvor definierte Erstellungsstrategie generiert. In

ViT erfolgt dies durch eine Plugin-Architektur [13].

2.2 Das Merkmalmodell der Fallstudie

Die zur Verfügung stehenden Merkmale und deren Beziehungen untereinander werden

im Merkmalmodell zusammengefasst und im Merkmaldiagramm visualisiert [14]. Das

Modell beschreibt die Variabilität einer SPL. Es können z.B. Beziehungen zwischen

Merkmalen und Bedingungen, wie Merkmal A benötigt B, definiert werden. Die Va-

riabilität einer SPL besagt, welche Kombinationen von Merkmalen zu einer gültigen

4 Verbesserung im Team (ViT) ist ein eingetragenes Warenzeichen der Karer Consulting AG.
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Variante führen und somit welche Funktionen miteinander kombiniert werden können.

Die Anwendung wurde, wie in Abb. 1 gezeigt, in Merkmale zerlegt um Varianten der
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Abbildung 1. Ausschnitt des Merkmaldiagramm des ViT-Managers Version 1.6.9b

SPL generieren zu können. Kern der Anwendung ist die Unterstützung der verschiedenen

MAPs, die in einem eigenem Merkmal implementiert und als Blätter des Workflowteil-

baums zu erkennen sind. Es handelt sich um optionale Merkmale, die nicht in jeder

Variante der Software enthalten sein müssen. Weiterhin kann der ViT-Manager entweder

auf Deutsch, Englisch oder Französisch ausgeliefert werden, unterstützt auf Wunsch

ein selbst definierbares Reporting und verfügt über weitere optionale Funktionen wie

Archivierungsfunktionen, bei denen die Daten zusätzlich anonymisiert werden können.

Die Anmeldung eines Nutzers an die Software ist auf verschiedenen Wegen, wie LDAP
oder Lokaler Anmeldung, möglich, von denen mehrere gleichzeitig in einer Variante

enthalten sein können. Insgesamt können mehrere tausend valide Varianten der SPL

erstellt werden.

Bei der Zerlegung der Anwendung in Merkmale wurde festgestellt, dass die Verwen-

dung eines monolithischen DB-Schemas Probleme wie mangelnde Übersichtlichkeit,

ungenutzte Schemaelemente und die fehlende Unterstützung alternativer Merkmale mit

sich bringt. Die Probleme auf DB-Schemaebene werden nachfolgend allgemeingültig

beschrieben, bevor wir in Abschnitt 6 zur Fallstudie zurückkehren, wobei sie solange als

durchgängiges Beispiel genutzt wird.

3 Problembeschreibung

Unterschiedliche Anwender haben verschiedene Anforderungen an Softwareprodukte.

Diese werden auf Anwendungsseite beispielsweise durch Varianten einer SPL erfüllt. Es

existiert eine Vielzahl von Ansätzen, die die Generierung von Varianten einer Software

z.B. mittels plugin-basierten Frameworks [13] erlaubt. Hingegen sind die bisherigen

Untersuchungen auf DB-Schemaebene nicht ausreichend [26]. Bei DB-Schemata handelt

es sich um langlebige Softwareprodukte, die nicht selten länger genutzt werden als

die Anwendungen in deren Kontext sie entwickelt wurden [21]. Somit kommt ihrer

Entwicklung besondere Bedeutung zu.
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3.1 Grenzen derzeitiger Ansätze

Nachfolgend werden die derzeit verwendeten Lösungsansätze vorgestellt und erläutert

welche in der Einleitung genannten Probleme bei ihnen auftreten.

Verwendung eines globalen Schemas. Häufig wird bisher für jede Variante einer SPL

ein statisches, globales und historisch gewachsenes DB-Schema unabhängig von der

Merkmalauswahl ausgeliefert [26]. Es enthält sämtliche Schemaelemente, die jemals

in einer der Varianten benötigt werden. Bei entsprechender Komplexität der Software

entsteht somit ein hochkomplexes, schwer verständliches DB-Schema. Die Auslieferung

eines monolithischen Schemas kann dazu führen, dass in einer Variante Schemaelemente

enthalten sind, die nicht benötigt werden. Somit entstehen, je nach Merkmalauswahl,

ungenutzte Tabellen und Attribute. Dies führt zu Integritätsproblemen bei leeren Spalten

auf denen beispielsweise Fremdschlüssel, Check oder Not Null Bedingungen definiert

sind oder es wird gänzliche auf Schemaelemente zur Integritätssicherung verzichtet.

Darüber hinaus erschwert ein solches globales Schema das Verständnis und beeinträchtigt

die Wartung und Weiterentwicklung. Ein weiterer entscheidender Nachteil besteht darin,

dass nicht in jedem Fall ein globales Schema angegeben werden kann. Dies ist der Fall,

wenn in einer SPL alternative, sich gegenseitig ausschließende Merkmale existieren.

Diese können sich widersprechende Schemaelemente definieren, die nicht gleichzeitig in

einem globalen Schema enthalten sein können.

Sichtbasierte Ansätze. Das Problem der fehlenden Variabilität auf DB-Schemaeb-

ene wurde bereits erkannt und Sichten aus dem globalen Schema generiert, die den

Varianten einer SPL entsprechen [7]. Das globale Schema wird dennoch in jeder Variante

der SPL ausgeliefert. Die Generierung solch maßgeschneiderter Sichten verringert die

Komplexität eines Schemas nicht, sondern verbirgt sie lediglich. Die Sichten erhöhen
die Komplexität des Schemas für den Entwickler und während der Wartung, da sie

zusätzliche Schemaelemente einführen, anstelle nicht benötigte zu entfernen. Somit wird

die Verständlichkeit des Gesamtschemas negativ beeinflusst.

Lösung in Frameworks. In Frameworks werden häufig Namensräume verwendet, die

verhindern, dass die einzelnen Plugins, welche als Merkmale angesehen werden können,

sich gegenseitig beeinflussen. Somit können plugin-übergreifend keine Integritätsbedin-
gungen verwendet werden oder es werden zusätzliche Abhängigkeiten wie Plugin A

benötigt B erzeugt. Die Sicherung der Konsistenz erfolgt daher meist auf Anwendungs-

ebene [26]. Aufgrund von Fehlern in der Anwendung oder durch direkten Zugriff auf die

DB ist es daher dennoch möglich inkonsistente Daten in der DB zu hinterlegen. Weiter-

hin führt dieses Vorgehen dazu, dass jedes Plugin für eine semantisch identische Relation

eine einzelne Partition dieser anlegt. Legen beispielsweise drei optionale Merkmale

horizontale Partitionen der Relation Mitarbeiter z.B. für verschiedene Unternehmensbe-

reiche an, ist die Ausgabe der Gesamtmitarbeiterzahl des Unternehmens nicht trivial. Ein

Reportingmerkmal müsste je nachdem welche Merkmale in der Variante enthalten sind,

auf die einzelnen Partitionen zugreifen. Es muss dazu wissen, in welchen Merkmalen

solche Partitionen angelegt werden und welche davon in der Variante existieren. Ein

solches Vorgehen erzeugt daher einen deutlich erhöhten Aufwand auf Anwendungsseite.
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3.2 Modellierung eines maßgeschneiderten Schemas

Ein intuitiver Ansatz zur Modellierung maßgeschneiderter DB-Schemata besteht dar-

in für jede Variante der Software ein eigenes Relationenschema zu modellieren. Der

Aufwand eines solchen Vorgehens ist in der Praxis jedoch nicht zu beherrschen. Die

Zahl der Varianten wächst exponentiell zur Anzahl der Merkmale. Die Fallstudie ViT

verfügt über 26 Merkmale aus denen sich mehrere tausend valide Varianten generieren

lassen. Daher ist es nicht möglich für jede Variante der Software ein eigenes Schema zu

entwerfen, sondern es müssen Teile der Modellierung wiederverwendet werden können.

Abgrenzung der Betrachtung. In unserem Ansatz wird ein maßgeschneidertes Re-

lationenschema erstellt, hierfür wird ein Ausschnitt des Relationenmodells betrachtet.

In der Modellierung sind vorerst die folgenden Elemente der Datendefinitionssprache

des SQL:1999 Standards [1] enthalten: Relationen, Attribute, der Wertebereich eines
Attributs und die Definition des Primärschlüssels einer Relation. Weiterhin wird zur

Vereinfachung der Betrachtung davon ausgegangen, dass die Modellierung der ersten

Normalform genügt. Es ist geplant zukünftig weitere Schemaelemente zu unterstüt-

zen. Wir konzentrieren uns in dieser Arbeit auf das DB-Schema, weitere Themen wie

beispielsweise Variabilität auf Datenebene werden nicht betrachtet.

3.3 Generierung eines Variantenschemas

Aus der Modellierung soll das individuell zugeschnittene DB-Schema erzeugt werden.

Es muss eine Technik zur Generierung des Variantenschemas gewählt werden, welche

die folgenden Anforderungen erfüllt.

Vollständigkeit. Alle Schemaelemente, die von den gewählten Merkmalen benötigt

werden, müssen im Schema der Variante enthalten sein.

Komplexitätsreduktion. Es sollen ausschließlich benötigte Schemaelemente im Vari-

antenschema vorhanden sein, um die Wartung dieses zu vereinfachen.

Komponierbarkeit. Ein Merkmal muss die Modellierung eines anderen erweitern

können. Insbesondere soll es möglich sein Attribute zu Relationen hinzuzufügen

ohne dass bekannt ist, in welchen Merkmalen die Relation definiert wurde, so dass

keine Kenntnisse über den Aufbau der anderen Merkmale vorhanden sein müssen.

Dies erleichtert sowohl die Weiterentwicklung als auch die Wartung.

Korrektheit. Alle Schemaelemente müssen in der korrekten Ausprägung im Varianten-

schema vorhanden sein. Das bedeutet, dass alle Attribute eines Merkmals den in

der Modellierung definierten Wertebereich erhalten und sie Bestandteil des Primär-

schlüssels der Relation sind, wenn dies in der Modellierung angegeben wurde.

3.4 Interaktion von Merkmalen auf DB-Schemaebene

Das Problem der Interaktion von Merkmalen ist ein wohlbekanntes Problem auf Anwen-

dungsseite und schränkt die Wiederverwendbarkeit von Softwareartefakten ein [15,20].

Es entsteht, wenn zwischen mehreren im Merkmalmodell unabhängigen Merkmalen,

aufgrund der Implementierung, Abhängigkeiten bestehen. Das bedeutet, dass einige laut

519



Merkmalmodell valide Varianten der SPL durch die zusätzlichen Abhängigkeiten der Im-

plementierung nur dann generiert werden können, wenn die zusätzlichen Abhängigkeiten

aufgelöst werden. Bezogen auf das Beispiel des Dokumentenverwaltungssystems benö-

tigt das Merkmal Nutzerverwaltung, nur dann wenn ebenfalls das optionale Merkmal

Mehrbenutzersynchronisation gewählt ist, zusätzliche Funktionen. Es muss beispiels-

weise feststellen können, welche Nutzer (exklusive) Schreibsperren auf Dokumenten

aufheben können. Es wird daher auf folgende Fragestellungen eingegangen:

◦ Existiert das Problem der Interaktion von Merkmalen auf Modellierungs- oder

Implementierungsebene des DB-Schemas in unserem Lösungsansatz?

◦ Welchen Einfluss hat es auf die Generierung von Variantenschemata?

◦ Wie und in welchem Umfang äußert sich dieses Problem in der Fallstudie?

4 Modellierung eines maßgeschneiderten DB-Schemas

In unserem Ansatz wird für jedes Merkmal festgehalten, welche Schemaelemente ein

Merkmal benötigt und aus dieser Modellierung für jede Variante ein maßgeschneidertes

Schema komponiert. Die Idee besteht darin, dass jedes Merkmal dem Variantenschema

die zusätzlich von ihm benötigten Schemaelemente hinzufügt und mehrfach definierte

Elemente dennoch lediglich einmal im Ergebnis vorhanden sind. Somit muss für jedes

Merkmal ein Teilschema modelliert werden und nicht für jede Variante ein komplettes

DB-Schema.

4.1 Zerlegung des DB-Schemas in Merkmale

Es existieren zwei Möglichkeiten ein variables Schema zu modellieren. Es kann von

Anfang an als variables Schema entworfen werden oder es wird aus einem zuvor ver-

wendeten globalen Schema erzeugt. In der Fallstudie ist bereits ein monolithisches

Gesamtschema vorhanden, deshalb konzentrieren wir uns auf diesen Fall. Bei der Re-

strukturierung der Anwendung in eine SPL muss daher ebenfalls das DB-Schema in

Merkmale untergliedert werden. Zu diesem Zweck wird nachfolgend ein allgemeingülti-

ger Zerlegungsprozess vorgestellt. Der von uns vorgeschlagene Prozess untergliedert

sich in die folgenden Teilprobleme.

1. Bestimmung der Merkmale in die das Schema zerlegt wird.

2. Definition eines Kriteriums, wann ein Schemaelement einem Merkmal zugeordnet

wird.

3. Ausführen der Zerlegung anhand des zuvor bestimmten Kriteriums.

Bestimmung der Merkmale in die das Schema zerlegt wird. Auf DB-Schemaebene wer-

den dieselben Merkmale, wie auf Anwendungsseite verwendet, da für die Anwendung

ein maßgeschneidertes Schema erstellt werden soll. Somit enthält ein Merkmal sowohl

die Implementierung des Anwendungs-, als auch die des DB-Teils einer für den Nutzer

wichtigen Funktionalität. Eine Variante der Software kann wie bisher durch Auswahl

der notwendigen Merkmale im Merkmalmodell der SPL erfolgen und muss nicht für

Anwendungs- und DB-Teil separat erfolgen [24].
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Wann wird ein Schemaelement einem Merkmal zugeordnet? Aus der Anforderung, dass

für jede Variante einer Software ein maßgeschneidertes DB-Schema erstellt werden soll,

ergibt sich, dass in dem Teilschema eines Merkmals alle Schemaelemente vorhanden

sein müssen, die das Merkmal zur korrekten Funktionsweise benötigt.

Definition 1. Ein Schemaelement wird einem Merkmal genau dann zugeordnet, wenn
das Element innerhalb des merkmalspezifischen Quellcodes lesend oder schreibend
verwendet wird.

Das Merkmal ViT Basic trägt beispielsweise die Beschreibung eines Verbesserungspoten-

tials in das Attribut beschreibung der Relation probleme ein, daher wird die Relation mit

dem genannten Attribut in die Modellierung des Merkmals aufgenommen. Vorkommen

von SELECT *-Anweisungen werden durch die Signatur sämtlicher in der FROM-

Klausel aufgeführten Relationen ersetzt. Analog wird bei INSERT INTO Statements

ohne Attributliste verfahren.

Ausführen der Zerlegung. Nach Definition 1 müssen alle DB-Aufrufe der Software

identifiziert und den entsprechenden Merkmalen zugeordnet werden. Dies kann entweder

über spezielle Eigenschaften der Implementierung auf Anwendungsseite der SPL, die

das Auffinden solcher Stellen im Quellcode erleichtern oder durch statische Analyse der

Anwendung [25] erfolgen. In der Fallstudie erfolgt jeder DB-Zugriff über das global

definierte DB-Objekt, so dass die Zugriffe mittels der vorhandenen Suchfunktion der

verwendeten Entwicklungsumgebung identifiziert werden können.

4.2 Modellierung eines Merkmals

Die Modellierung des Schemas eines Merkmals erfolgt mit Hilfe einer einfachen tex-

tuellen Syntax. In der Definition 1 wird erläutert, wann ein Schemaelement in die

Modellierung eines Merkmals aufgenommen wird. Das Kriterium stellt sicher, dass alle

benötigten Schemaelemente in ihr vorhanden sind.

In der Abb. 2 ist die Syntaxrepräsentation der Merkmale Login und Lokale An-
meldung aus Abb. 1 angegeben. Die Modellierung des Merkmals Login enthält eine

Relation login_daten mit den Attributen deaktiviert, loginname und personalnummer
mit den jeweiligen Wertebereichen. Über den Primärschlüssel Personalnummer wird

der Loginname eindeutig einem Benutzer der Software zugeordnet. Der eigentliche

Passwortabgleich erfolgt jedoch durch das Merkmal Lokale Anmeldung indem das für

den Loginnamen angegebene Passwort mit dem in der Datenbank hinterlegten vergli-

chen wird. Daher benötigt das Merkmal ebenfalls eine Relation login_daten und legt

die beiden Attribute loginname und passwort an. Somit ist z.B. das Attribut loginname
redundant in den Teilschemata beider Merkmale vorhanden.

Alternativ dazu könnte für jedes Merkmal eine eigene Relation angelegt werden.

Dies führt jedoch zu den selben Problemen, wie sie in 3.1 für Frameworks beschrieben

wurden.

4.3 Interaktionen auf Modellierungsebene

Interaktionen auf Modellierungsebene existieren in zwei Formen, die nachfolgend näher

erläutert werden. Sie treten auf, wenn
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Abbildung 2. Modellierung zweier Merkmale mit redundanten Schemaelementen

◦ semantisch identische Schemaelemente von mehreren Merkmalen redundant defi-

niert werden;
◦ aufgrund der Kombination der Merkmale die Modellierung eines Merkmals ange-

passt werden muss, da zusätzliche Schemaelemente benötigt werden.
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Abbildung 3. Interaktionen auf Modellierungsebene

Redundant definierte Schemaelemente. Redundant definierte Schemaelemente treten

auf, wenn beispielsweise zwei zueinander optionale Merkmale (Abb. 3 (a)) oder Merk-

male, die über eine oder-Beziehung (Abb. 3 (b)) miteinander verbunden sind, dieselben

Schemaelemente benötigen. Da Varianten existieren in denen lediglich eines der beiden

Merkmale vorhanden ist, muss jedes Merkmal alle benötigten Schemaelemente in seiner

Modellierung enthalten. Redundanzen treten in dem hier betrachteten Ausschnitt des

Relationenmodells auf Attributebene auf, wenn zu einer Relation dasselbe Attribut in

mehreren Merkmalen definiert wird. Mehrfach definierte Relationen können unterschied-

liche Attribute enthalten, so dass dieser Fall nicht als redundante Definition angesehen

wird. In ViT existieren solche Interaktionen beispielsweise zwischen den Blättern des

Workflowteilbaums aus Abb. 1. Hierbei handelt es sich um die Merkmale, welche die

Implementierung der verschiedenen MAPs enthalten. Sie sind zueinander optional und

enthalten eine große Anzahl an redundanten Schemaelementen (Abb. 3 (c)). Redundante

Schemaelemente erzeugen die folgenden Probleme.

◦ Für jede redundante Definition muss sichergestellt werden, dass jedes Attribut den-

selben Wertebereich erhält und keine widersprüchlichen Modellierungen entstehen,

aus denen kein valides Schema generiert werden kann.
◦ Die redundanten Schemaelemente erhöhen die Komplexität des Schemas eines

Merkmals und beeinträchtigen somit die Verständlichkeit der gesamten Modellie-

rung.
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Zusätzlich benötigte Schemaelemente. Bei einer bestimmten Kombination von ge-

wählten Merkmalen ist es, aufgrund der Interaktion dieser Merkmale, notwendig zusätzli-

che Schemaelemente zum Variantenschema hinzuzufügen. In der Fallstudie existiert bei-

spielsweise eine Funktion zur Archivierung der Daten der einzelnen MAPs. Je nachdem

welche MAPs in der Variante vorhanden sind, müssen die entsprechenden Archivtabellen

angelegt werden. Die Lösung alle theoretisch benötigten Schemaelemente in die Model-

lierung der Archivierung aufzunehmen erzeugt die in 3.1 beschriebenen Probleme eines

globalen Schemas. In unserem Ansatz werden die zusätzlich benötigten Schemaelemente

(siehe Abb. 3 (d)) der Modellierung des Merkmals durch Derivatives [17] hinzugefügt.

Hierbei handelt es sich um zusätzliche Merkmale, die dem Variantenschema automatisch

hinzugefügt werden, wenn die Merkmale auf die sie sich beziehen gleichzeitig in der

Variante enthalten sind. Das Derivative A1/A2 wird dem Variantenschema automatisch

hinzugefügt, wenn die Merkmale A1 und A2 in einer Variante vorhanden sind.

5 Generierung eines Variantenschemas

Es wurde bisher festgehalten, dass ein Merkmal auf DB-Schemaebene ein relationa-

les Teilschema enthält. Die Generierung einer Variante der Software erfolgt durch

Auswahl der benötigten Merkmale anhand der zuvor festgelegten Erstellungsstrategie.

Nachfolgend wird veranschaulicht, wie die Komposition eines Variantenschemas mittels

Superimposition (Überlagerung) in unserem Lösungsvorschlag erfolgt. Es wird weiterhin

untersucht welche Probleme während der Komposition auftreten können.

5.1 Superimposition - Sprachunabhängiger Kompositionsalgorithmus

Die Superimposition beschreibt einen sprachunabhängigen Kompositionsalgorithmus,

bei dem mehrere Merkmale durch Mischen ihrer zugrunde liegenden (Sub) Strukturen

vereinigt werden [3]. Diese Technik wird beispielsweise in der Sichtintegration [5] und

der merkmal-orientierten Softwareentwicklung [6] verwendet. Für die Superimposition

von Merkmalen (•-Operator) existiert von APEL et al. eine Algebraformalisierung die

zeigt, dass die Operation assoziativ und im allgemeinen Fall nicht kommutativ ist [4].

Ein Variantenschema (S) wird mittels Superimposition aller gewählten Merkmale (mi)

durch den Operator • erzeugt und repräsentiert selbst wieder ein Merkmal (M):

•:M ×M → M S = mn • . . . •m2 •m1 (1)

Struktur eines Merkmals auf DB-Schemaebene. Die Komposition zweier Merkmale

basiert auf der Vereinigung von Merkmalstrukturbäumen (MSB), welche die interne

Struktur eines Merkmals repräsentieren und als vereinfachter abstrakter Syntaxbaum

angesehen werden können [3]. In der Abbildung 4 ist der MSB des Merkmals Login
basierend auf der Modellierung aus Abb. 2 abgebildet. Die Wurzel des Baumes ver-

deutlicht, dass es sich um die Modellierung des DB-Schemas handelt, somit kann das

Merkmal sowohl das DB-Schema, als auch die Anwendungsimplementierung enthalten.

Die Kinder des Wurzelknotens enthalten alle vom Merkmal benötigten Relationen. Im
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angegebenen Beispiel definiert das Merkmal die Relation login_daten. Auf der Blattebe-

ne befinden sich die Attribute der Relationen. Sie verweisen auf die Implementierung des

Schemaelementes. Sie enthält den Wertebereich und die Angabe ob das Attribut Teil des

Primärschlüssel der Relation ist. Der Grafik ist zu entnehmen, dass das Merkmal Login

die Relation login_daten sowie die Attribute deaktivert, loginname und personalnummer
enthält. Die Implementierung des Attributs personalnummer definiert den Wertebereich

als varchar(255) und zeigt, dass das Attribut einziger Bestandteil des Primärschlüssels

der Relation ist.
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Abbildung 4. Merkmalstrukturbaum des Login-Merkmals

5.2 Vereinigung zweier Merkmale

Die Superimposition zweier Merkmale erfolgt, wenn beide Merkmale ausgewählt wur-

den und daher Bestandteile der zu erstellenden Variante sind. Der Kompositionsprozess

beginnt an den Wurzeln der zu vereinigenden MSBs und erfolgt dann rekursiv im ge-

samten Baum. Zwei Knoten werden miteinander verschmolzen, wenn ihre Elternknoten

miteinander verschmolzen wurden bzw. es sich um Wurzelknoten handelt und sowohl

Name als auch Typ übereinstimmen. In der Abb. 5 wird das Verschmelzen zweier Merk-

male in Gleichung (2) am Beispiel der bereits bekannten Merkmale Login und Lokale
Anmeldung veranschaulicht, welche als Teil einer zu erstellenden Variante ausgewählt

wurden.

mLokale Anmeldung •mLogin = mErgebnis (2)

Das Ergebnis besteht aus dem Teilschema des Merkmals Login, welches um das

zusätzliche Attribut passwort des Merkmals Lokale Anmeldung ergänzt wurde. Das red-

undant definierte Attribut loginname ist im Ergebnis, wie beabsichtigt, einmal enthalten.

Problematisch ist der Fall, wenn auf Blattebene ein Attribut mehrfach definiert ist. Dieser

Fall ist im Beispiel 5 durch das Attribut loginname gegeben, es repräsentiert das Problem

der Interaktion von Merkmalen auf Implementierungsebene (siehe 3.4).

5.3 Interaktionen auf Implementierungsebene: Verschmelzung von Blattknoten

Das Problem der Interaktion von Merkmalen tritt auf Implementierungsebene in unserem

Ansatz auf, wenn Attribute redundant definiert wurden (siehe 4.3). Für das Problem der
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Abbildung 5. Superimposition: Beispiel für Merkmale mit Redundanzen

Verschmelzung von Blattknoten besteht die Möglichkeit entweder die Komposition von

Blattknoten gänzlich zu verbieten oder Kompositionsregeln für diese anzugeben [4]. Das

Beispiel der Merkmale Login und Lokale Anmeldung zeigt, dass Interaktionen zwischen

den Merkmalen in der Praxis benötigt werden, so dass ein Verbot der Verschmelzung von

Blattknoten zu restriktiv ist und nachfolgend Kompositionsregeln angegeben werden.

Kompositionsregeln zur Verschmelzung von Attributen. Im untersuchten Ausschnitt

des relationalen Datenmodells befinden sich auf Blattebene die Attribute einer Relation.

Sie enthalten den Wertebereich und die Definition ob ein Attribut Teil des Primärschlüs-

sels der Relation ist. Die Kompositionsregel für Primärschlüssel besagt, sobald das

Attribut in mindestens einem der beiden Merkmale als Schlüssel deklariert wurde, bleibt

es Bestandteil des Primärschlüssels der Relation. Durch den von uns in 4.1 vorgestellten

Zerlegungsalgorithmus eines globalen Schemas können keine Probleme durch die Er-

weiterung des Primärschlüssels auftreten. Wird das Schema von Beginn an als variables

Schema entworfen, kann es vorkommen, dass durch die Erweiterung des Schlüssels

durch ein Merkmal in einem anderen beispielsweise ein INSERT Statement nicht mehr

funktionieren, weil es keine Kenntnis über das zusätzliche Schlüsselattribut hat und

daher einen NULL-Eintrag für dieses erzeugt. In solchen Fällen wird empfohlen Sur-

rogatschlüssel zu verwenden. Ist dies nicht sinnvoll, muss das Merkmal welches den

Schlüssel erweitert die DB-Zugriffe aller weiteren Merkmale entsprechend der neuen

Primärschlüsseldefinition anpassen. Bei der Komposition von Wertebereichen werden

zwei Fälle unterschieden.

Fall 1: Attribute mit identischem Wertebereich. Im ersten Fall wird der Wertebereich

in das Ergebnis übernommen. Somit ist die Implementierung des Wertebereichs aller

Knoten identisch. Dieser Fall tritt in Abb. 5 auf. In beiden Merkmalen ist für das Attribut

loginname der Wertebereich varchar(255) angegeben und wird daher in das Ergebnis

übernommen.

Fall 2: Attribute mit unterschiedlichem Wertebereich. Für den Fall, dass die Werteberei-

che unterschiedlich sind, wird davon ausgegangen, dass es sich hierbei um einen Fehler

handelt. Eine Superimposition der beiden Merkmale in Abb. 6 ist beispielsweise nicht

möglich, da für das Attribut loginname unterschiedliche Wertebereiche angegeben sind.

Alternativ könnte eine Regel angeben werden, so dass eine der beiden Modellierungen

übernommen wird indem sie eine vorherige überschreibt. Die Erfahrungen zeigen je-
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doch, dass es sich hierbei (bisher) immer um eine Inkonsistenz der Modellierung eines

Merkmals gehandelt hat, die behoben werden musste.
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Abbildung 6. Beispiel für Merkmale mit widersprüchlichen Definitionen

6 Anwendung des Ansatzes auf das DB-Schema der Fallstudie ViT

Wir haben bisher gezeigt, wie mittels Superimposition aus den verschiedenen Teilsche-

mata der Merkmale ein Variantenschema generiert wird und welche Probleme dabei

auftreten können. In diesem Abschnitt wird das Vorgehen an einer realen, nicht trivialen

Fallstudie angewendet, um zu ermitteln welche Vorteile das Verfahren mit sich bringt

und in welchem Umfang Probleme durch Interaktionen der Merkmale in der Fallstudie

auftreten.

6.1 Probleme des globalen Schemas in der Fallstudie

Laut der Befragung des METOP ViT-Entwicklerteams ergeben sich aus der Verwendung

eines globalen Schemas in den einzelnen Varianten des ViT-Managers folgende Probleme,

die durch die Verwendung unseres Verfahrens gelöst werden sollen:

Umständliche Wartung einer Variante. Die Wartung der produktiv eingesetzten Vari-

anten wird im First-Level vom Kunden selbst übernommen. Die Auslieferung des

globalen Schemas erschwert die Verständlichkeit desselben. Falls Daten beispiels-

weise versehentlich gelöscht wurden, muss zur Wiederherstellung aller Daten in

einem konsistenten Zustand das komplette DB-Schema verstanden werden. Momen-

tan ist dies ein komplexer Prozess, da nicht benötigte Schemaelemente vorhanden

sind und in dem historisch gewachsenen Schema nicht sofort ersichtlich ist, auf

welche Relationen sich die gesuchten Daten verteilen.
Aufwendige Weiterentwicklung der Software. Die Weiterentwicklung der Software

erzeugt Probleme, da die Identifizierung welche Merkmale ein Schemaelement

benötigen äußerst aufwendig ist. Wird ein Schemaelement während der Weiterent-

wicklung der Software modifiziert, kann dies Seiteneffekte auf den Anwendungsteil

anderer Merkmale ausüben. Es mussten bisher für alle Varianten der Anwendung

überprüft werden, inwiefern sie mit dem globalen Schema nach dessen Modifikation

kompatibel waren.
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Inkonsistente Daten. Erste Versuche Teile des Schemas aus Varianten zu entfernen,

führten zu Problemen mit Integritätsbedingungen. In einigen Varianten konnten in

einzelnen Relationen keine Daten eingefügt werden, weil der entsprechende refe-

renzierte Datensatz nicht vorhanden war oder Null-Werte für Attribute übertragen

wurden, auf denen Not-Null Bedingungen definiert waren. Das Löschen dieser Inte-

gritätsbedingung im globalen Schema führte anschließend zu inkonsistenten Daten,

die zuvor einen Abbruch der Transaktion erzeugt hätten.

6.2 Das variable DB-Schema

Das monolithische DB-Schema des ViT-Managers wurde, wie in 4.1 beschrieben in

Merkmale zerlegt, so dass jedes Merkmal die von ihm benötigten Schemaelemente

enthält. In der Tabelle 1 wird die Größe der Modellierung der einzelnen Merkmale

angegeben. Die Modellierung des ViT-Merkmals enthält beispielsweise 88 Attribute, die

sich auf 16 Relationen verteilen. Die Syntaxdarstellung des ViT-Merkmals (siehe 4.2)

benötigt 135 Zeilen Quellcode.

Tabelle 1. Größe der Merkmalmodellierung
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Aus der Modellierung können maßgeschneiderte Variantenschemata für die einzel-

nen Varianten des ViT-Managers erstellt werden. In der Abb. 7 sind die Größen der

Variantenschemata visualisiert. In der Maximalkonfiguration, in der alle zur Verfügung

stehenden optionalen Merkmale ausgewählt wurden, verfügt das DB-Schema über 309

Attribute. Wird das Merkmal BVW nicht gewählt, sind im Variantenschema 234 Attribute

vorhanden, wird zusätzlich zum BVW ViT-SPO nicht gewählt 210 usw. Sind die Merk-

male BVW, ViT-SPO, ViT Quadrat, ViT Basic und Terminplanung nicht in der Variante

enthalten, wird die Anzahl der Attribute nahezu halbiert. In der Minimalkonfiguration,

in der keines der optionalen Merkmale vorhanden ist, sind 146 Attribute enthalten.

6.3 Evaluierung der Ergebnisse der Zerlegung des DB-Schemas

Bei Anwendung des Ansatzes an der Fallstudie stehen Verbesserungen im Bereich War-

tung von Varianten und Weiterentwicklung der Software im Vordergrund. Weiterhin

soll die Existenz inkonsistenter Daten in Varianten verhindert werden. Eine quantitative

Analyse, etwa die Messung der durchschnittlichen Bearbeitungszeit der Wartungsauf-

träge, ist aufgrund der unterschiedlichen Komplexität der einzelnen Aufträge derzeit
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Abbildung 7. Anzahl der Attribute in den Variantenschemata

nicht möglich. Wir nutzen erneut Erkenntnisse aus einer Befragung des METOP ViT-

Entwicklerteams.

Wartung einer Variante. Die Wartbarkeit von Variantenschemata konnte deutlich ver-

bessert werden, indem die Komplexität der Variantenschemata reduziert wurde. In

Abb. 7 wird veranschaulicht, dass die Größe des Variantenschemas je nach Merk-

malauswahl halbiert werden kann. Zusätzlich ist bekannt welche Schemaelemente

ein Merkmal verwenden. Somit können z.B. die betroffenen Relationen eines verse-

hentlich gelöschten MAP-Datensatzes durch den First-Level Support beim Kunden

schneller aufgefunden und durch Umsetzen des Löschbits wiederhergestellt werden.

Weiterentwicklung der Software. Die Weiterentwicklung der Software wurde eben-

falls vereinfacht. Das optionale Merkmal zur Archivierung der MAP-Daten wurde

nach der Zerlegung des DB-Schemas in Merkmale implementiert. Durch die Zerle-

gung war bekannt, welche Daten der MAPs archiviert werden müssen, so dass die

Implementierung des DB-Schemas des Merkmals und insbesondere der Derivatives,

die die zusätzlich benötigten Schemaelemente enthalten, spürbar vereinfacht wurde.

Ohne die Zerlegung des Schemas in Merkmale hätten die entsprechenden MAP
Schemaelemente für jedes Derivative mühsam im Quellcode des MAP-Merkmals
identifiziert werden müssen. Ähnliche positive Effekte wurden bei der Implementie-

rung des Daten-Exports beobachtet.

Inkonsistente Daten. Auf die Wiedereinführung der zuvor gelöschten Integritätsbedin-

gungen wurde bislang verzichtet. Jedoch ist geplant zukünftig Integritätsbedingun-

gen, wie Fremdschlüssel, Not-Null, etc. in die Betrachtung mit einzubeziehen. Wir

erhoffen uns ähnlich gute Ergebnisse wie bei den anderen beiden Punkten.

6.4 Interaktionen der Merkmale

Die nach 4.1 erzeugte Zerlegung des monolithischen DB-Schemas erlaubt die Erstellung

von Variantenschemata. Nachfolgend wird untersucht in welchem Grad Interaktionen
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unter den Merkmalen auftreten. Somit ist es möglich den Einfluss des Problems beispiels-

weise in Bezug auf Konsistenz und Verständlichkeit der Modellierung besser Einschätzen

zu können.

Interaktionen durch redundante Schemaelemente. Redundanzen existieren aus-

schließlich auf Attributebene, da sie sich bei der Superimposition zweier MSB auf

der Blattebene befinden und dieses Problem ausschließlich auf Blattebene auftritt (sie-

he 5.2). An dieser Stelle wird untersucht ob redundant definierte Attribute existieren

und für jedes festgehalten, wie oft es definiert wurde. Die Ergebnisse der Analyse sind

in Abb. 8 visualisiert. Es sind insgesamt 309 verschiedene Attribute vorhanden. Die

Merkmale enthalten jedoch 550 Attributdefinitionen, somit existieren 241 redundante

Definitionen, dies entspricht nahezu 44 Prozent der Gesamtmodellierung. Einige Sche-

maelemente sind in bis zu sechs verschiedenen Merkmaldefinitionen vorhanden. Die

Ergebnisse bestätigen, dass das Problem der redundant definierten Schemaelemente in

der Fallstudie und somit in der Praxis auftritt. Es erzeugt in der Fallstudie die folgenden

Probleme.
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Abbildung 8. Interaktionen durch redundant definierte Schemaelemente

Unübersichtliche Größe der Modellierung. Die redundant definierten Schemaelemente,

die 44 Prozent aller Attributdefinitionen ausmachen, erhöhen sowohl die Größe der

gesamten Modellierung, als auch die Modellierung der einzelnen Merkmale und lassen

diese schnell unübersichtlich werden. In der Fallstudie entstehen Merkmale mit knapp

90 Attributen (siehe Tabelle 1). Dies entspricht fast einem Drittel aller im DB-Schema

vorhandener Attribute. Somit wird die Verständlichkeit der Merkmalschemata negativ

beeinflusst.

Wahrung der Konsistenz der Modellierung. Es muss sichergestellt werden, dass jedes se-

mantisch identische Attribut den selben Wertebereich erhält. Aufgrund der Generierung

der Teilschemata aus einem globalen Schema sind momentan keine widersprüchlichen
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Attributdefinitionen vorhanden. Bei der Modifikation eines Schemaelementes während

der Weiterentwicklung muss jedoch darauf geachtet werden, dass jede der bis zu sechs

redundanten Definitionen des Elementes angepasst wird. Andernfalls entstehen wider-

sprüchliche Definitionen, die die Generierung eines validen Variantenschemas verhindern

(siehe 5.3).

Interaktionen durch zusätzlich benötigte Schemaelemente. Das Problem (siehe 4.3),

dass aufgrund der Merkmalauswahl zusätzliche Schemaelemente benötigt werden, tritt

in der Fallstudie zwischen dem Merkmal Archivierung und den MAPs sowie zwischen

den MAPs und dem Datenexport auf. In der Abbildung 9(a) wird gezeigt, dass das

Merkmal Archivierung je nachdem welche MAPs gewählt wurden zusätzliche Schema-

elemente zum Archivieren der MAP-Daten benötigt. Hierbei handelt es sich um eine

Kopie der MAP-Relationen, in denen die Daten dauerhaft gespeichert werden, um z.B.

die Größe der operativen Relation zu verringern. Die zusätzlich benötigten Schema-

elemente werden je nach Merkmalauswahl der Basismodellierung durch Derivatives
hinzugefügt (Abb. 9(b)) in denen die zusätzlich benötigten Elemente enthalten sind.

Der Abbildung 9(a) ist weiterhin zu entnehmen, dass das Problem der redundanten

Definition ebenfalls an den Überschneidungen der Zusätze, die durch rote Schraffierung

gekennzeichnet sind, existiert. Es muss daher ebenfalls sichergestellt werden, dass keine

widersprüchlichen Definitionen in den Derivatives vorhanden sind.
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Abbildung 9. Modellierung des Merkmals Archivierung

Insgesamt konnten wir feststellen, dass sich unser Ansatz gut zur Erstellung von

maßgeschneiderten DB-Schemata für die Fallstudie eignet. Die Probleme durch Interak-

tionen der Merkmale sind beherrschbar und es wurden deutliche positive Effekte in den

Bereichen Wartbarkeit und Weiterentwicklung der Software erzielt.

7 Verwandte Arbeiten

Zur Generierung variabler DB-Schemata existieren bislang wenige Arbeiten. In seiner

Dissertation [18] verwendet MAHNKE einen komponenten-basierten Ansatz aus dem

Variantenschemata zusammengesetzt werden. Er konzentriert sich jedoch auf das objekt-

relationale Datenmodell, schließt Interaktionen explizit aus und schlägt zur Anwendung
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seines Ansatzes ABLE-SQL eine Spracherweiterung des SQL:1999 Standards [1] vor. Ei-

ne solche Modifikation des Standards oder des relationalen Datenmodells [10] wird von

dem hier vorgestellten Ansatz nicht benötigt. SIEGMUND et al. präsentieren in [26] eine

Anwendung der virtuellen und physischen Trennung der Belange auf das ER-Modell [8].

Wir gehen jedoch einen Schritt weiter und konzentrieren uns auf das relationale Modell.

Dies erlaubt die Verwendung des Ansatzes in realen Fallstudien, was wir ebenfalls in

dieser Arbeit gezeigt haben. Zusätzliche konnten wir erstmals Aussagen darüber treffen,

welche Probleme bei der Generierung maßgeschneiderter DB-Schemata durch Interak-

tionen der Merkmale auftreten. Weitere Arbeiten zur Anpassung eines DB-Schemas

an spezielle Nutzeranforderungen basieren auf Sichten eines globalen DB-Schemas.

Dazu gehören Arbeiten zum Thema Sichtintegration [5,22,27] und zur Generierung

maßgeschneiderter Sichten [7]. Bei sicht-basierten Ansätzen wird jedoch immer das

gesamte Schema ausgeliefert und die Komplexität desselben lediglich vor dem Nutzer

durch zusätzliche Sichten versteckt. Die zusätzlichen Sichten erhöhen somit sogar die

Komplexität des Schemas, anstatt die Komplexität durch Entfernen der nicht benötigten

Elemente zu reduzieren. Weiterhin ist die Erstellung eines Gesamtschemas ausschließ-

lich dann möglich, wenn keine alternativen Merkmale existieren. Mit der Komposition

von individuellen Softwarelösungen aus physisch getrennten Fragmenten beschäftigen

sich ebenfalls HERMANN et al. [12] und SABETZADEH et al. [23], jedoch liegt ihr Fokus

auf der abstrakten Ebene und sie betrachten nicht das relationale Datenmodell oder

spezifische Probleme das DB-Schema betreffend.

8 Zusammenfassung

Wir haben gezeigt, wie variable DB-Schemata für das Relationenmodell im Kontext von

SPLs modelliert werden können. Für jedes Merkmal wird festgehalten, welche Schema-

elemente es benötigt. Somit muss nicht für jede Variante der Software ein DB-Schema

modelliert werden, sondern lediglich für jedes Merkmal. Die Modellierung enthält einen

Ausschnitt der DDL des SQL:1999 Standards. Es wurde hierfür ein Vorgehen ange-

geben, mit dem ein zuvor verwendetes globales Schema in Merkmale zerlegt werden

kann. Die Generierung eines Variantenschemas erfolgt mittels Superimposition, einem

sprachunabhängigen Kompositionsalgorithmus. Hierbei fügen die gewählten Merkmale

dem Variantenschema alle von ihnen benötigten Schemaelemente hinzu.

Ziel der Anwendung unseres Ansatzes an der Fallstudie war es zu überprüfen, wel-

che Verbesserungen sich in den Bereichen Wartung, Weiterentwicklung der Software

und Vermeidung von Inkonsistenzen ergeben. Durch die Verwendung unseres Ansatzes

ließen sich deutliche Verbesserungen im Bereich Wartbarkeit und Vereinfachung der

Weiterentwicklung der Software erzielen (siehe 6.3). Somit wurden zwei der drei Ziele

erfüllt. Es wurden weiterhin vorbereitende Maßnahmen getroffen, die die Wiederein-

führung zuvor entfernter Integritätsbedingungen erlauben. Die Wiedereinführung ist

momentan nicht möglich, da wir die entsprechenden Schemaelemente in dieser ersten

Arbeit zur Erstellung von Variantenschemata für das relationale Datenmodell nicht be-

trachtet haben (vgl. 3.2). Hier zeigen sich Verbesserungsmöglichkeiten unseres Ansatzes

indem zukünftig weitere Schemaelemente integriert werden müssen.
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Weitere Probleme entstehen durch die Verwendung von SELECT * und INSERT

INTO TABLE (SELECT ...) Anweisungen, bei denen die Reihenfolge der Attribute in der

Relation von Bedeutung ist (vgl. 4.1). Wir haben die entsprechenden Vorkommen durch

die Attribute der in der FROM Klausel genutzten Relationen ersetzt. Somit konnten diese

Probleme für die Fallstudie gelöst werden, jedoch mag ein solches Vorgehen in weiteren

Fallstudien nicht in jedem Fall realisierbar sein. Probleme entstehen weiterhin, wenn

Merkmale den Primärschlüssel einer Relation durch zusätzliche Attribute erweitern

(vgl. 5.3). Dies kann dazu führen, dass INSERT Statements, die z.B. einen NULL Wert

für das neue Schlüsselattribut liefern, keine Daten in die Relation einfügen können. Durch

unseren Zerlegungsalgorithmus existieren solche Vorkommen nicht, da die Merkmale

aus einem globalen Schema erzeugt werden. Wird ein Schema jedoch von Anfang an

variabel entworfen, ist ein solcher Fall durchaus denkbar.

Insgesamt konnten gute Ergebnisse vor allem in den Bereichen Wartung und Weiter-

entwicklung, selbst mit der momentan begrenzten Zahl an unterstützten Schemaelemen-

ten, erzielt werden. Somit zeigt sich, welches Potential der von uns vorgestellte Ansatz

besitzt. Die Probleme des Ansatzes konnten jedoch nicht vollständig gelöst werden, so

dass weiterer Forschungsbedarf auf diesem Gebiet besteht. Weiterhin müssen zusätzliche

Schemaelemente in die Betrachtung mit aufgenommen und die Ergebnisse an weiteren

Fallstudien verifiziert werden.

9 Danksagung

Teile dieser Veröffentlichung entstanden aus dem Forschungsvorhaben „Digitale Fin-

gerspuren (Digi-Dak)“ mit der Projektnummer FKZ:13N10817, welches vom Bundes-

ministerium für Bildung und Forschung (BMBF) gefördert wird. Norbert Siegmund

wird unterstützt durch das Bundesministerium für Bildung und Forschung (BMBF),

Projektnummer 01IM08003C. Die Arbeit ist Teil des ViERforES Projekts. Christian

Kästners Arbeit wird durch den Europäischen Forschungsrat (ScalPL #203099) unter-

stützt. Abschließend danken wir dem METOP ViT-Entwicklerteam.

Literatur

1. ANSI/ISO/IEC 9075:1999: International Standard - Database Language SQL (1999)

2. Apel, S., Kästner, C., Lengauer, C.: Vergleich und Integration von Komposition und Annotati-

on zur Implementierung von Produktlinien. In: Software Engineering 2009. Lecture Notes in

Informatics, vol. P-143, pp. 101–112. Gesellschaft für Informatik (GI) (2009)

3. Apel, S., Lengauer, C.: Superimposition: A Language-Independent Approach to Software

Composition. In: Proc. Int’l Softw. Compos. Symp. pp. 20–35. Springer (2008)

4. Apel, S., Lengauer, C., Möller, B., Kästner, C.: An Algebra for Features and Feature Compo-

sition. In: Proc. Int’l Conf. on Algebraic Methodology and Software Technology. LNCS, vol.

5140, pp. 36–50. Springer (2008)

5. Batini, C., Lenzerini, M., Navathe, S.: A Comparative Analysis of Methodologies for Database

Schema Integration. ACM Computing Surveys 18, pp. 323–364 (1986)

6. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE Transactions

on Software Engineering 30(6), pp. 355–371 (2004)

532



7. Bolchini, C., Quintarelli, E., Rossato, R.: Relational data tailoring through view composition.

In: Proc. Int’l Conf. on Conceptual Modeling. LNCS, vol. 4801, pp. 149–164. Springer (2007)

8. Chen, P.: The entity-relationship model - toward a unified view of data. ACM Transactions on

Database Systems 1(1), pp. 9–36 (1976)

9. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley

(2001)

10. Codd, E.: A relational model of data for large shared data banks. Communications of the

ACM 13(6), pp. 377–387 (1970)

11. Czarnecki, K., Eisenecker, U.: Generative programming: methods, tools, and applications.

Addison-Wesley (2000)

12. Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: An algebraic view on

the semantics of model composition. In: Proc. Europ. Conf. on Model driven architecture-

foundations and applications. pp. 99–113. Springer (2007)

13. Johnson, R., Foote, B.: Designing Reusable Classes. Journal of Object-Oriented Programming

1(5), pp. 22–35 (1988)

14. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain Analysis

(FODA) Feasibility Study. Tech. Rep. CMU/SEI-90-TR-21, Software Engineering Institute,

Carnegie Mellon University (1990)

15. Kästner, C., Apel, S., ur Rahman, S., Rosenmüller, M., Batory, D., Saake, G.: On the impact

of the optional feature problem: analysis and case studies. In: Proc. Int’l Conf. on Software

Product Line. pp. 181–190. Carnegie Mellon University (2009)

16. Kästner, C., Apel, S.: Virtual Separation of Concerns – A Second Chance for Preprocessors.

Journal of Object Technology 8(6), pp. 59–78 (2009)

17. Liu, J., Batory, D., Lengauer, C.: Feature-Oriented Refactoring of Legacy Applications. In:

Proc. Int’l Conf. on Software Engineering. pp. 112–121. ACM (2006)

18. Mahnke, W.: Komponentenbasierter Schemaentwurf. Ph.D. thesis, Technische Universität

Kaiserslautern, Kaiserslautern, Deutschland (2004)

19. Pohl, K., Böckle, G., Linden, F.: Software Product Line Engineering: Foundations, Principles

and Techniques. Springer (2005)

20. Prehofer, C.: Feature-Oriented Programming: A Fresh Look at Objects. In: Proc. Europ. Conf.

on Object-Oriented Programming. LNCS, vol. 1241, pp. 419–443. Springer (1997)

21. Saake, G., Heuer, A., Sattler, K.: Datenbanken Konzepte und Sprachen. mitp Verlag (2008)

22. Sabetzadeh, M., Easterbrook, S.: View merging in the presence of incompleteness and incon-

sistency. Requir. Eng. 11(3), pp. 174–193 (2006)

23. Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S., Chechik, M.: Consistency Checking

of Conceptual Models via Model Merging. In: Proc. Int’l Conf. on Requirements Engineering.

pp. 221–230. Springer (2007)

24. Schäler, M.: Produktlinientechnologien für den Entwurf variabler DB-Schemata unter Berück-

sichtigung evolutionärer Änderungen. Master thesis (diplomarbeit), University of Magdeburg,

Germany (2010)

25. Schirmeier, H., Spinczyk, O.: Tailoring Infrastructure Software Product Lines by Static

Application Analysis. In: SPLC ’07: Proceedings of the 11th International Software Product

Line Conference. pp. 255–260. IEEE Computer Society (2007)

26. Siegmund, N., Kästner, C., Rosenmüller, M., Heidenreich, F., Apel, S., Saake, G.: Bridging the

Gap between Variability in Client Application and Database Schema. In: Proc. GI-Fachtagung

Datenbanksysteme für Business, Technologie und Web. pp. 297–306. Gesellschaft für Infor-

matik (2009)

27. Spaccapietra, S., Parent, C.: View Integration: A Step Forward in Solving Structural Conflicts.

IEEE Trans. on Knowl. and Data Eng. 6(2), pp. 258–274 (1994)

533



SIMPL – A Framework for Accessing External Data 
in Simulation Workflows 

Peter Reimann2, Michael Reiter1, Holger Schwarz2, Dimka Karastoyanova1, and 
Frank Leymann1 

1 Institute of Architecture of Application Systems, University of Stuttgart 
Firstname.Lastname@iaas.uni-stuttgart.de 

2 Institute of Parallel and Distributed Systems, University of Stuttgart 
Firstname.Lastname@ipvs.uni-stuttgart.de 

Abstract:  Adequate data management and data provisioning are among the most 
important topics to cope with the information explosion intrinsically associated 
with simulation applications. Today, data exchange with and between simulation 
applications is mainly accomplished in a file-style manner. These files show 
proprietary formats and have to be transformed according to the specific needs of 
simulation applications. Lots of effort has to be spent to find appropriate data 
sources and to specify and implement data transformations. In this paper, we 
present SIMPL – an extensible framework that provides a generic and consolidated 
abstraction for data management and data provisioning in simulation workflows. 
We introduce extensions to workflow languages and show how they are used to 
model the data provisioning for simulation workflows based on data management 
patterns. Furthermore, we show how the framework supports a uniform access to 
arbitrary external data in such workflows. This removes the burden from engineers 
and scientists to specify low-level details of data management for their simulation 
applications and thus boosts their productivity. 

1 Introduction 

Workflows have long been used to meet the needs of IT support for business processes. 
Workflows are compositions of tasks by means of causal or data dependencies that are 
carried out on a computer using a workflow management system (WfMS) [LR99]. 
Recently, workflow technology has found application in the area of scientific computing 
and simulations for implementing complex scientific applications and the term scientific 
workflow has been coined [TDG07]. Simulations, as a subset of scientific applications, 
are typically compositions of complex calculations and data management tasks, which 
makes them good candidates for the realization as workflows. For instance, partial 
differential equations have to be solved to determine temporal or spatial changes of 
simulated objects, e.g., of the structure of a car in a crash test. 

Accessing and provisioning huge amounts of heterogeneous and distributed input data as 
well as generating huge intermediate and final data sets are some of the major challenges 
of simulation workflows [TDG07][Gi07][DC08]. Typical data management activities in 
simulation workflows are extraction, transformation, and load operations (ETL) [Mü10]. 

534



In [Vr07], the authors discuss workflow technology as the key technology to cope with 
heterogeneous applications and data stores. In line with this argumentation and as 
proposed by [Ma05], our work is based on an ETL workflow approach, i.e., ETL 
operations of simulation workflows are modeled and executed via workflow technology. 

Today, the data management and data provisioning of simulation applications is mainly 
accomplished in a file-style manner. These files show proprietary formats and inevitably 
have to be transformed into the appropriate format the simulations require. Most of 
current scientific workflow management systems (sWfMSs) lack a generic, consolidated, 
and integrated data management abstraction that can cope with huge and heterogeneous 
data sets. They use several specialized technologies, e.g., custom workflow activities or 
services, to access data. Lots of effort must be spent to find appropriate data sources and 
to specify and implement necessary data transformations, which brings in additional 
complexity for scientists. This is in particular true for simulations involving multiple 
domains since each domain has its own requirements and solutions for data handling and 
thus render the data source and application environment even more heterogeneous. A 
consolidated abstraction support would remove the burden from engineers and scientists 
to specify low-level details of data management for their simulation applications. 

In this paper, we present SIMPL (SimTech – Information Management, Processes, and 
Languages) – an extensible framework that addresses the lack of abstraction and 
generality for data provisioning in current simulation workflow technology. SIMPL 
provides unified access methods to access arbitrary external data in simulation 
workflows while metadata describe the mappings between their interfaces and the 
concrete access mechanisms. At the modeling level, the framework extends the 
workflow language by a small set of activities that tightly embed data management 
operations for any kind of data source. When such an activity is executed, it uses the 
unified access methods of SIMPL to seamlessly access the specified data source. To 
further assist the workflow modeler in defining typical data management tasks in 
simulation workflows, we introduce data management patterns, e.g., patterns for ETL 
operations. In this paper, we show that these patterns in combination with the activities 
for data management and the unified access methods allow to define the data 
provisioning for simulations in multiple domains as well as for other scientific 
applications, such as biology, astronomy, or earthquake science. We discuss the 
extensibility of the SIMPL framework with respect to additional kinds of data sources 
and data management patterns. Furthermore, we illustrate the huge potential for a 
consolidated optimization that SIMPL makes possible as it combines the definition of 
activities for data management and simulation at the same level of abstraction. 

The rest of this paper is organized as follows: Section 2 illustrates the motivation to 
enhance an existing architecture of sWfMSs by the SIMPL framework and shows its 
integration into this architecture. Afterwards, Section 3 provides details on major aspects 
of modeling data management tasks in simulation workflows, while Section 4 deals with 
the underlying approach to unify heterogeneous access mechanisms for different data 
sources. We then discuss the benefits and drawbacks of our framework and evaluate it 
via an example simulation workflow in Section 5. Related work is afterwards discussed 
in Section 6. Finally, Section 7 concludes and lists future work. 
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2 The SIMPL Framework 

The SIMPL framework is designed as an extension to scientific workflow management 
systems. Hence, we first sketch the main components of such a system according to the 
architecture of sWfMSs introduced in [Gö11]. Afterwards, we discuss the motivation to 
enhance this architecture, illustrate the main aspects by means of a sample workflow, 
and show the architectural integration of the SIMPL framework. 

2.1 Scientific Workflow Management Systems 

 

Fig. 1. Architecture of a scientific workflow management system, cf. [Gö11] 

The architecture of scientific workflow management systems presented in Figure 1 is 
based on the workflow technology for business and production workflows as defined in 
[LR99]. The scientific workflow modeler (sWF Modeler) of the GUI supports the 
modeling of workflow specifications and corresponding deployment information. The 
function catalog provides a list of available services as well as a customizable set of 
easy-to-model functions that can be used in workflow models. With the help of the 
monitor component, users may constantly observe workflow executions and identify 
unexpected events or faults. The result display component presents the final outcome of 
simulations as well as intermediate results in a way appropriate for the user. 

The deployment component transforms workflow models into engine-internal 
representations and installs them on the execution engine that executes instances of these 
workflows. The auditing component records runtime events related to workflows and 
activities, e.g., the start time of a workflow run. The monitoring component uses these 
events and indicates the states of workflow runs. The provenance component records 
data that goes beyond simple auditing information and that enables the reproducibility of 
workflow executions. The service bus primarily discovers and selects services that 
implement workflow activities, routes messages, and transforms data. Besides that, it 
connects workflows to other external, usually stateful resources, e.g., to data sources. 
The resource management component maintains metadata for such external resources as 
well as for services. The service/resource discovery component queries this metadata or 
external registries to find a list of candidate services or resources by means of descriptive 
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information, e.g., semantic annotations. This list may be used by the function catalog of 
the GUI, for late binding of services and resources, or for rebinding of failed activities. 
This naturally implies the ability to use the modeling tool during the execution of 
workflow instances to enable ad-hoc changes of workflows [SK10]. 

In this architecture, scientific workflows may access and handle huge, heterogeneous, 
and distributed data objects, e.g., via services. However, the challenge still remains to 
provide a consolidated and integrated data management abstraction that is able to deal 
with such data objects. This abstraction support is one of the key requirements for 
scientific workflow management [TDG07][Gi07][DC08]. In the following, we illustrate 
this challenge using a bone remodeling simulation workflow. 

2.2 Simulation Workflow for Bone Remodeling 

Figure 2 shows the activities and relevant input and output data of a workflow for a bone 
remodeling simulation (BRS) that is used to research skeletal disorders, e.g., of human 
femur. The PANDAS framework calculates the structure of a bone under a specific load 
using the finite element method (FEM) [KME10]. The workflow is divided into three 
phases: preprocessing, solving, and post-processing.  

 
Fig. 2. Workflow for bone remodeling simulation 

In the preprocessing phase, it starts by loading basic information about the bone to be 
simulated from different databases or file systems. Examples of this information are a 
bone structure and material parameters. The second activity extracts FEM parameters 
from a file, e.g., interpolation functions. Afterwards, the workflow adjusts initial 
conditions that configure the bone structure for the start time of the simulation. 
Furthermore, it defines boundary conditions, e.g., the time-dependent pressures from 
outside on the upper joint of the bone that correspond to the human way of moving. The 
last preprocessing activity writes a set of simulation commands to a file. For example, it 
chooses a matrix solver and defines the discretization of the continuous simulation time 
into n time steps t1 to tn. In practice, a simulation involves thousands of such time steps. 

In the solving phase, the workflow uses the input to create and solve matrix equations for 
generating the intermediate and final results of the simulation. For each time step ti, it 
creates an FEM grid that is the basis to set up matrix equations Ax = b that are then 
solved. The FEM grid contains thousands or millions of mesh points and their relations. 
This mesh information is typically stored in main memory, but may also be persisted 
into files or databases for further usage in the post-processing phase. The latter also 
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holds for the matrix A and the vectors x and b. The solving phase ends after time step tn. 
The workflow then stores intermediate and final results based on the vectors x in comma 
separated value (CSV) files. The post-processing phase transforms these CSV files into 
another file format suitable for visualization tools. 

Altogether, the workflow carries out a multiplicity of data management and data 
provisioning activities. These activities involve several huge data sets as well as 
heterogeneous data sources and data formats, e.g., databases, CSV files, unstructured 
text documents, and image files. Most of the data management operations are performed 
as manual tasks, implying a high error rate. A generic and consolidated data 
management abstraction would decrease this error rate. Furthermore, it would remove 
the burden from scientists to specify low-level details of data management. 

2.3 Architecture and main Components of SIMPL 

Figure 3 shows how the SIMPL framework extends a sWfMS to provide an abstraction 
for data management and data provisioning. For better readability, we leave out 
components of the sWfMS architecture that are not relevant for SIMPL. The SIMPL core 
component, embedded in the service bus, provides unified logical interfaces to any kind 
of data source. We enhance the resource management component with metadata that 
describe the mappings between these unified interfaces and the concrete and possibly 
heterogeneous access mechanisms. The data management (DM) activity modeling plug-
in of the sWF modeler and the DM activity execution plug-in of the execution engine 
provide data management activities for simulation workflows. These activities may 
either be directly used in simulation workflows or they may be part of separate ETL 
workflows that encapsulate data provisioning processes for simulation workflows. The 
DM pattern plug-in of the function catalog assists the workflow modeler in defining the 
necessary data management operations. It contains abstract data management patterns 
that allow to model typical data provisioning tasks for simulation workflows. The 
following sections discuss the SIMPL components and plug-ins in detail. 

 

Fig. 3. The SIMPL framework integrated into a sWfMS architecture 
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3. Modeling Data Management for Simulation Workflows 

In this section, we deal with major aspects of modeling data management tasks in 
simulation workflows. We introduce various extensions to workflow languages that 
allow for the definition of these tasks. The DM activity modeling plug-in makes these 
extensions available to the workflow modeler, whereas the DM activity execution plug-
in covers their runtime behavior. Furthermore, we show how data management patterns 
facilitate the definition of data management tasks for simulation workflows. 

3.1 Workflow Language Extensions for Data Management 

The Business Process Execution Language (BPEL) [Oa07] is the de-facto standard to 
define and execute business processes based on the control-flow oriented orchestration 
of service interactions. In [AMA06], BPEL is recommended for modeling and executing 
scientific workflows and simulation workflows. The main benefits stated are its modular 
design, its flexibility regarding generic XML data types and late binding of services as 
well as the fault, compensation, and event handling capabilities. In addition, many BPEL 
engines offer further capabilities, such as user interaction, workflow monitoring, or 
recovery of workflows. Due to these benefits of BPEL and in line with previous work, 
we define the Business Process Execution Language extension for Data Management 
(BPEL-DM) that extends BPEL by further activity types. We call activities of these new 
types data management (DM) activities. They reflect workflow tasks with embedded 
data management operations that are seamlessly issued against data sources. The major 
activity types of BPEL-DM are: IssueCommand, RetrieveData, and WriteDataBack. 
Each of these activities calls the SIMPL core and sends the data management operation 
to it in order to deal with heterogeneous data source access mechanisms. 

In the following, we use the term data source for a system that stores and manages data, 
e.g., a database or a file system. A data source receives and executes DM commands. 
Examples are SQL statements, shell commands of operating systems, or paths to files. 
The latter are used to load the content of a file into the process context of the workflow. 
Each of the DM activities has a BPEL variable as input parameter referring to the data 
source that executes the embedded DM command. We name such BPEL variables data 
source reference variables. A reference is a logical data source descriptor that is either a 
logical name or a document describing some functional or non-functional requirements 
for a data source. A logical name describes exactly one data source that is associated 
with the name in the resource management component. A requirements description can 
be used for choosing and binding a data source at runtime. 

A data source manages several data containers. Each container is an identifiable 
collection of data, e.g., a table in a database system or a file in a file system. Data 
container reference variables refer to a data container via a logical name. The resource 
management component maps this name to a concrete locator that uniquely identifies the 
container within the data source. A data set variable acts as target container for loading 
data into the process context of a workflow. Appropriate XML schema definitions 
specify the contents of these variables and must cope with the differences between 
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several kinds of data sources. For example, we use an XML RowSet structure for any 
table-oriented data, such as data from an SQL database or from a CSV-based file. XML 
database systems, as another example, may already provide certain XML schema 
definitions or they may need to store arbitrary XML data within BPEL variables. 

We now detail on the three DM activity types. The IssueCommand activity can be used 
for data manipulation or data definition, for example. Besides the data source reference, 
it has a DM command as additional input parameter and issues this command against the 
specified data source. The engine that executes the activity expects a notification 
whether the DM command has been executed successfully by the data source or not. 
After a notification of success, the engine continues workflow execution according to the 
specified control flow. In case of a failure, it enables fault handling mechanisms. 

The RetrieveData activity also has a DM command as input parameter that is passed to 
the data source. The DM command must produce data. For instance, it may be a 
SELECT statement or a path to a file. When the data source has executed the command 
successfully, the result data is transmitted back to the execution engine. An additional 
input parameter of the activity defines a data set variable that stores this result data. In 
case of a failure, the execution engine is notified and enables fault handling mechanisms. 

The WriteDataBack activity is the counterpart of the RetrieveData activity. It writes data 
from the process context of a workflow back to a data source. The activity accepts one 
identifier for a data set variable and one for a data container reference variable as input 
parameters. It stores the data set of the first variable in the data container referred by the 
second one. As a result, the execution engine gets a notification of success or failure and 
proceeds like in the case of the IssueCommand activity. 

Data container reference variables may furthermore be used as parameters in DM 
commands of the IssueCommand or RetrieveData activities, e.g., in the FROM clause of 
an SQL SELECT statement. The same holds for other BPEL variables, e.g., string or 
integer variables used for comparisons in predicates. The workflow execution engine 
resolves all these variables, i.e., it reads the variable value and inserts this value at the 
position within the command where the variable has been referenced beforehand. In 
order to identify a variable in a DM command and distinguish it from other command 
items, the variable is marked by surrounding hash marks (e.g., ‘#’). Regarding a data 
container reference variable, only the logical name of the data container is inserted in the 
command. The SIMPL core is later responsible for mapping this name to the data 
source-specific container identifier by querying the resource management component. 

3.2 Abstraction Support through Data Management Patterns 

The SIMPL framework provides a set of data management patterns that cover major data 
provisioning tasks for simulation workflows. The workflow designer picks appropriate 
patterns from a list provided by the DM pattern plug-in of the function catalog. He/she is 
then assisted in defining the concrete data management operation for each chosen pattern 
in a semi-automatic approach instead of defining all details of the operation on his/her 
own. In the following, we illustrate the pattern-based approach via an example. 
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(c) Transformation for same case as in (b) except 
that output variable directly stores join result 

Fig. 4. Data join pattern and its transformation into executable workflow specifications

Figure 4(a) shows a pattern that represents a join of two data sets. Instead of defining 
concrete data management operations that execute the join, the modeler only needs to set 
some parameter values, i.e., two input variables, one output variable, and a join 
condition. Each of the input or output variables may hold data within the process context 
of the workflow, e.g., via a data set variable of BPEL-DM. Another option is that they 
refer to external data, e.g., via a data container reference variable. The respective data 
sets of the two input variables are joined according to the specified join condition. The 
result of this join is stored in the output variable or in the data container it refers to. 

A set of rewrite rules specifies the transformations of abstract and parameterized patterns 
into workflow parts that carry out the necessary data management operations, e.g., via 
DM activities of BPEL-DM. The given parameters of the patterns and metadata that 
describe the characteristics of the data sources to be accessed, e.g., their query 
capabilities, determine which rewrite rule is to be applied for a certain pattern. Figure 4 
shows three rewrite rules for our join example. If the two input variables and the output 
variable of the join pattern refer to database tables in one and the same SQL database, an 
IssueCommand activity of BPEL-DM with an embedded set-oriented INSERT statement 
may execute the join (Figure 4(b)). In case the output variable directly stores the join 
result, we use a RetrieveData activity with a SELECT statement (Figure 4(c)). If all 
three variables refer to data containers in different data sources, the transformation 
becomes more complex. Assume that we need to perform a join between the content of a 
CSV-based file and a relational database table and that another database table is the 
target container for the join result. Then, we may use two RetrievaData activities that 
load the contents of the two input data containers into the process context of the 
workflow. A subsequent BPEL assign activity joins them, and a WriteDataBack activity 
stores the join result into the target database table (Figure 4(d)). 

As described above, metadata about the data sources to be accessed are one basis for 
deciding on the rewrite rule to be applied for a certain pattern. Hence, we must not apply 
rewrite rules until it is clear which data sources the data management tasks need to 
access. In case of a static data source binding during deployment time, we apply rewrite 
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rules shortly before this deployment phase. If data sources are bound at runtime, we will 
convert each pattern into a single process fragment and use process fragment technology 
to dynamically integrate this fragment into an already executing workflow [EUL09]. 

Besides our join example, the DM pattern plug-in contains further patterns and 
according rewrite rules for typical data provisioning tasks of simulation workflows. This 
covers patterns for the transmission of data from one resource to another or for ETL 
operations [Mü10][TDG07]. ETL operations may be loading or retrieving a bulk of data, 
filtering a data set as well as joining, merging, or normalizing two data sets.  

4 Unified Access Mechanism 

Now, we illustrate the approach to unify different kinds of data source access 
mechanisms. This includes the SIMPL core and its unified logical interfaces to data 
sources, the metadata to map these interfaces to the underlying access mechanisms, and 
the interaction between the components of the service bus during data source access. 

IssueCommand
Op

RetrieveData
Op

WriteDataBack
Op

IssueCommand
DM-A

RetrieveData
DM-A

WriteDataBack
DM-A

 

Fig. 5. Data sent between DM activities and SIMPL core operations 

4.1 SIMPL Core 

The SIMPL core defines a set of generic operations to access arbitrary data sources, i.e., 
the specifications of the operations are independent of the underlying kinds of data 
sources. They are geared to the DM activities of BPEL-DM and named accordingly: 
IssueCommand, RetrieveData, and WriteDataBack. Each DM activity calls the SIMPL 
core operation that shares the name of the activity. Figure 5 shows which contents of the 
input parameters of each activity are sent from the workflow execution engine to the 
corresponding SIMPL core operation and which message or data the activity expects as a 
reply. Regarding the interaction between workflows and data sources, the SIMPL core 
operations only forward DM commands, result data, or notifications. They do not 
implement any complex data transformations or analyses as this would contradict our 
assumption of workflow activities seamlessly accessing data sources. 
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Each SIMPL core operation expects a logical data source descriptor as input in order to 
identify the data source where the data management operation is to be executed. The 
IssueCommand operation gets a DM command as further input, and the RetrieveData 
operation a DM command that produces data. The WriteDataBack operation expects a 
data set and an identifier of the data container to insert the data set, e.g., a logical 
container name. The IssueCommand and WriteDataBack operation both deliver a 
message to the workflow execution engine that indicates whether the data management 
operation has been successfully executed or not. The RetrieveData operation delivers the 
result data produced by the input DM command in case of success. The workflow 
execution engine may then store this result data in the data set variable specified for the 
calling RetrieveData activity. In case of failure, the operation delivers a failure message. 

Different kinds of data sources rely on different access routines and further properties for 
data access, e.g., different authentication mechanisms or query capabilities. Hence, the 
generic access operations of the SIMPL core have to be implemented for concrete data 
sources or sets of data sources. Data source connectors provide this implementation and 
account for the specific properties of data sources. For example, we use a data source 
connector for data sources that are based on JDBC access mechanisms. Another 
connector supports the application programming interface of a certain file system. Some 
data sources do not support all SIMPL core operations. For instance, sensor nets do not 
allow for writing data back as they are only able to deliver data. In such a case, the 
corresponding data source connectors do not provide these operations as well.  

The SIMPL core additionally provides data converters that transform data from the 
output format of a data source connector to an XML-based format for the process 
context of the workflow and vice versa. For instance, a data converter transforms data 
between the JDBC result set format and the XML RowSet format of BPEL-DM. Such 
data converters may be used for data retrievals or for writing data back to a data source, 
i.e., for the RetrieveData and WriteDataBack operations and activities. 

4.2 Metadata for Mappings to Heterogeneous Access Mechanisms 

We enhance the resource management component of the service bus with metadata about 
data sources. These metadata describe the mappings between the unified interfaces of the 
SIMPL core and the underlying and possibly heterogeneous data source access 
mechanisms. Four kinds of objects may be registered in the resource management 
component: data sources, data containers, data source connectors, and data converters. 
Figure 6 shows the classification of the corresponding metadata as well as the 
cardinalities of associations between individual metadata classes. 

A logical source name is unique for each data source and acts as its identifier within the 
SIMPL framework. It can be used as logical data source descriptor within workflows, 
e.g., in a data source reference variable of BPEL-DM. This constitutes an abstraction 
offered to the modeler since he/she does not need to deal with real interfaces or security 
entities. The interface description contains information about the interface of the data 
source, in particular an endpoint to access it. The security entities, such as usernames 
and passwords, enable authorized data source access. The description of further 
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functional or nun-functional properties typically includes properties of the data source 
like the maximally expected response time. Such properties may refer to requirements 
specified in a logical data source descriptor in order to perform a late binding of data 
sources. The data container objects describe the containers that are managed by the 
associated data source. They have a logical container name assigned that acts as a 
container reference in workflows, e.g., in a data container reference variable of BPEL-
DM. This name is mapped to the concrete local container identifier that uniquely 
identifies the container within the data source. 

 

Fig. 6. Classification of metadata to unify heterogeneous data source access mechanisms 

As described in Section 4.1, data source connectors implement the SIMPL core 
operations for the data sources they are associated with. Connectors may also be used for 
multiple data sources, e.g., one connector for all JDBC-based database systems. There 
might be multiple implementations for a single data source connector registration or data 
converter registration. In that case, one of these implementations has to be chosen during 
data source access via additional selection mechanisms, e.g., via the approach of [Ka07]. 
However, we do not further deal with this aspect for the sake of simplicity. 

When a data source is registered or when its registration is updated, the user may directly 
associate a connector to it. If the user is not sure which connector may handle the data 
source, he/she may use its connector properties description. It describes the properties a 
connector must have in order to connect to the data source. A similar description, i.e., the 
source properties description, is associated with each data source connector. It describes 
the properties a connector expects from associated data sources. For instance, both 
properties descriptions name the SIMPL core operations the associated data source and 
data source connector support. They are matched to each other to decide on the correct 
connector for the data source. The same matching can be used when a connector 
registration is added or updated to find all data sources the connector may handle. 

A data source connector is furthermore associated with a description of a data format for 
a converter. It denotes the data format in which the connector delivers output data to a 
requestor or expects input data from it. A data converter has a similar data format 
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description associated. These data format descriptions are used to map connectors and 
converters to each other during the registration of either objects or the update of a 
registration. So, only those connectors and converters are associated with each other that 
rely on the same data format. The second data format description associated to a data 
converter denotes the format in which the converter expects input sent from a workflow 
and in which it sends its output back to the workflow, e.g., XML RowSet of BPEL-DM. 
The pair of data formats associated with a converter defines between which formats it is 
able to transform data. As a constraint, this format pair uniquely identifies a data 
converter object, i.e., there is at most one converter object for each possible pair. 

We enhance the resource management component with the functionalities metadata 
management, metadata provisioning, and metadata integration (see Figure 3). Metadata 
management ensures a persistent and transactional storage of the metadata as well as the 
management of the metadata schema. The metadata provisioning provides metadata 
information to other components of the sWfMS. It offers a query interface for one or 
more query languages, e.g., SQL. Besides, it may also offer further repository services 
that go beyond simple query answering. For example, a service may execute a series of 
queries that each resolves a selection rule that is used for late binding of data sources. 
The metadata integration is responsible for integrating metadata from internal and 
external metadata sources and for dealing with according heterogeneities, in particular 
regarding the metadata schemas and their contents. Such metadata sources can be, e.g., 
users that access the resource management component via the GUI, external registries 
that also describe data sources, and the external data sources themselves. Each of these 
sources may register metadata objects with associated metadata. They may also be asked 
to complement the metadata after another party has registered an object. For example, a 
user may register a data source, which then provides all data containers it manages. 

4.3 Data Source Access using the SIMPL Framework 

 

Fig. 7. Interaction of service bus components to prepare data source access 

When a workflow accesses a data source via a logical data source descriptor, the SIMPL 
framework needs to map this descriptor to all information that is necessary for data 
source access. This information consists of the interface description, a security entity, the 
suitable data source connector, and the suitable data converter. Furthermore, it needs to 
map logical names of referenced data containers to local container identifiers. In the 
following, we describe how the components of the service bus interact with each other to 
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achieve this mapping. Figure 7 shows this interaction in case the logical data source 
descriptor sent to the SIMPL core (step 1) contains a requirements specification for a 
data source. In case it contains a logical name, we skip steps 2 to 5. 

The SIMPL core sends the requirements specification to the discovery component (2). 
The latter queries the resource management component to map the requirements to a set 
of data source names that identify data sources meeting the claimed requirements (3 and 
4). The discovery component then chooses one of these names based on selection criteria 
in the requirements specification and sends the chosen name back to the SIMPL core (5). 
The latter queries the resource management component with the source name to retrieve 
the above-mentioned information that is necessary for data source access (6 and 7). This 
information is used to access the data source and to execute the SIMPL core operation 
that is identified by the calling workflow activity (8), e.g., an IssueCommand activity 
calls the IssueCommand operation. Strictly speaking, we execute the implementation of 
this operation as provided by the data source connector identified before. 

If the workflow performs a data retrieval or write back, we will need to identify exactly 
one of the converters that are associated with the identified connector. For that purpose, 
the workflow engine sends the data type of the BPEL variable that holds the data to be 
retrieved or written back to the SIMPL core. This data type determines the correct 
workflow-specific format of the converter. This data format and the connector-specific 
format assigned to the resolved connector uniquely identify the correct converter. 

5 Discussion and Evaluation 

In this section, we discuss the benefits and drawbacks of the SIMPL framework. In 
particular, our discussion covers generality issues of SIMPL, its extensibility, and 
optimization opportunities for data management in simulation workflows. Afterwards, 
we evaluate SIMPL via the example workflow for bone remodeling of Section 2.2. 

5.1 Generic Data Management for Simulation Workflows 

The generic access operations of the SIMPL core, the metadata to describe data sources, 
and the logical data source descriptors provide a uniform access to arbitrary 
heterogeneous data sources. This eases the integration of further data management 
techniques in addition to BPEL-DM. Besides that, we can port the SIMPL core and the 
metadata management to other sWfMS implementations, which may use different 
workflow engines, different workflow languages, or even different solutions for 
modeling data management and data provisioning. The high degree of portability of the 
framework is basically achieved by its architecture based on clearly separated 
components and plug-ins extending a sWfMS. 

The DM activities of BPEL-DM offer common functionality for data access, data 
manipulation, data definition, and for writing data back to a data source. Furthermore, 
SIMPL includes a multitude of data management patterns as further abstraction support. 
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Together with the uniform data source access and the portability provided by SIMPL, 
these data management and data access patterns constitute a generic data management 
solution for simulation workflows. This generality enables SIMPL to be used in multiple 
domains of simulations or other scientific applications, such as biology and astronomy, 
and even in the business domain, e.g., for business ETL workflows. 

In contrast to our approach, one could provide data services to accomplish the data 
management for simulation workflows. These services usually offer efficient means for 
data management functionality specific to a small set of domains or problems. Hence, 
they do not provide a consolidated, generic, and flexible way to define data management 
for multi-domain simulation workflows. Nevertheless, since we use BPEL as workflow 
language, we allow services to be the implementation of data management tasks as well. 
Furthermore, BPEL processes also offer their functions via service interfaces. So, our 
approach may even be used to define data services that support special needs of certain 
domains or problems. 

To the best of our knowledge, no other approach includes an abstraction support to 
define data management operations that is based on generic data management patterns. 
Typically, workflow modelers have to define low-level details of data management, such 
as concrete DM commands. By distinguishing the data management operations that are 
necessary for simulations between different abstract patterns, we can reduce the degrees 
of freedom in defining the respective operations. This eases the definition and 
implementation of abstraction mechanisms for individual patterns. Furthermore, the 
patterns can be seen as building blocks for composing data provisioning workflows, e.g., 
ETL workflows, via process fragment technology [EUL09]. This increases flexibility at 
runtime and reduces modeling costs at build time. 

5.2 Extensibility of SIMPL 

The specifications of the SIMPL core operations and of the DM activities of BPEL-DM 
are independent of the underlying data sources. The same holds for the logical data 
source descriptors and the logical data container names. Hence, they do not need to be 
extended or adapted when SIMPL should support additional kinds of data sources. We 
only need to add according data sources connectors as well as data converters and XML 
schema definitions for data set variables. Furthermore, the implementations of 
connectors and converters as well as the XML schema definitions can typically be 
derived from already existing implementations or definitions. 

In the same sense, we may extend or customize BPEL-DM by additional activities. Like 
data services, these activities could account for specific needs of a certain scientific 
domain or problem. To do that, we need to add new SIMPL core operations and their 
implementations by data source connectors, but only if the already existing operations 
are not suitable. In order to add a new data management pattern to the DM pattern plug-
in of the function catalog, suitable rewrite rules have to be defined. These rules describe 
how the pattern is to be converted into executable workflow parts. Altogether and in 
contrast to previous approaches, e.g., see the approaches compared in [Vr08], we can 
typically reuse much of the already existing code for extending SIMPL. 
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5.3 Optimization of Data Management for Simulation Workflows 

Our BPEL-DM approach combines the definition of activities for data management and 
simulation at the same level of abstraction. This offers a huge potential for a 
consolidated optimization at both the workflow and the data processing level. In [Vr07], 
the authors present a flexible approach to optimize workflows with embedded data 
management operations, in particular SQL statements. Independent of the underlying 
data sources, this approach shows a huge optimization potential that induces significant 
performance improvements for workflows. Furthermore, it can be easily applied to other 
approaches for embedded data management operations, e.g., to our BPEL-DM approach. 
Due to these optimization options, the SIMPL framework is well suited for a data 
management and data provisioning abstraction efficiently dealing with huge, 
heterogeneous, and distributed data objects. 

5.4 The Bone Remodeling Workflow in the SIMPL Framework 

As a proof of concept, we developed a prototype that implements SIMPL and relevant 
parts of the associated sWfMS architecture. This prototype uses the Eclipse BPEL 
Designer1 as scientific workflow modeler and the Apache Orchestration Director 
Engine2 (ODE) as workflow execution engine and deployment component. Based on the 
prototype, we implemented the workflow for a bone remodeling simulation (BRS) 
presented in Section 2.2. Its activities involve several heterogeneous data sources, e.g., 
databases, CSV files, unstructured documents, or image files. The SIMPL core and the 
metadata of the resource management provide a uniform access to these data sources. 

 

Fig. 8. Workflow for bone remodeling simulation enhanced with SIMPL 

Figure 8 shows the BRS workflow using the SIMPL framework. In particular, we show 
the BPEL-DM activities implementing the main steps of the workflow and its data 
provisioning at the bottom of the figure. In the preprocessing phase, the workflow 
creates more than ten input data files each with a size up to one gigabyte. Without the 
framework, scientists have to select all needed input data, transform the data, and store 

                                                           
1 http://www.eclipse.org/bpel/ 
2 http://ode.apache.org/ 
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results into files in the PANDAS environment. SIMPL helps to automate these tasks, 
thereby reducing the error rate. Input data for the BRS activity Define Simulation Body, 
e.g., bone information or material parameters, are typically stored in public databases or 
in private file systems. The simulation workflow invokes a separate ETL workflow that 
converts the data and transfers it into the PANDAS environment. It consists of 
RetrieveData activities that load the input data into BPEL variables. Afterwards, the 
workflow transforms the data via an assign activity, and WriteDataBack activities write 
the results into the target files. The activities Adjust Initial/Boundary Conditions and 
Create Simulation Commands operate according to the same procedure except that they 
read their input data from structured CSV files. Hence, they also use RetreiveData and 
WriteDataBack activities for data selection and transmission. 

To perform the FEM, the BRS activity Create FEM Parameters has to select certain 
interpolation functions from an unstructured text document that summarizes all available 
functions. SIMPL is based on forwarding DM commands to data sources, but the 
underlying file system does not support executing extractions of unstructured data via 
DM commands. Hence, SIMPL is not able to directly select these functions. We need 
data services that select all necessary information and store it into workflow variables. A 
WriteDataBack activity subsequently copies this data into the PANDAS environment.  

During the solving phase, the activity Solve Matrix Equations calculates matrix 
equations for several time steps. For each step, it stores all relevant data, i.e., the 
intermediate results, the FEM grid, and the matrix and vectors into a database inside the 
PANDAS environment. For selected time steps, a repeatedly executed IssueCommand 
activity in the simulation workflow persists snapshots of these data for further 
processing, e.g., for analyzing or for recovery purposes. A typical BRS produces 100 or 
even more of such data snapshots each with a size of about two megabytes. After the last 
time step, the IssueCommand activity stores the final result. 

The last BRS activity Visualize Results transforms these results and other data, such as 
the FEM grid, into a format suitable for visualization tools. For example, it joins the 
FEM grid data and the simulation results for selected time steps of the solving phase in 
order to create images that combine this information. To automate this, IssueCommand 
activities of an ETL workflow select the necessary data and transform and match it. 

The BRS workflow benefits from SIMPL in various ways. SIMPL provides a uniform 
access to all involved heterogeneous data sources, i.e., databases, CSV files, 
unstructured text documents, and image files. Furthermore, it allows to automate the data 
management activities that have previously been performed manually. This reduces the 
error rate and the time the scientists have to spend for these activities. We chose ETL 
workflows for the preprocessing and the post-processing phase since they may transfer 
data directly between the involved data sources. So, we can reduce costs for transmitting 
high amounts of data and decrease workload for data processing within the simulation 
workflow. During the solving phase, an IssueCommand activity could even transform all 
FEM data into formats suitable for different solvers, e.g., parallel solvers, i.e., SIMPL 
helps to switch between these different solvers. Altogether, SIMPL offers a data 
management abstraction that is well suited for simulation workflows such as the BRS. 
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6 Related Work 

Federated information systems integrate different kinds of data sources and provide a 
homogeneous schema for heterogeneous source systems [Bu99]. However, they 
typically involve multiple and sophisticated integration processes that have to be 
executed for each data source access. In simulation applications the sources are highly 
heterogeneous and we need to cope with huge amounts of data. Thus, complex 
integration processes may show poor performance. In that case, a peer-to-peer-based 
approach seems more suitable as it employs less complex integration processes between 
pairs of data sources. The generality of our approach recommends it to be used for both a 
federated and a peer-to-peer-based solution. This also holds for conventional ETL tools. 
But in contrast to our approach, they rather work with various access mechanisms and 
data management operators that are specific for a certain kind of data source. 

Scientific applications recently adopted the facilities of grid infrastructures as well as the 
Service Oriented Architecture (SOA) [TDG07]. The most prominent solution for grid- 
and service-based data management is the Open Grid Services Architecture – Data 
Access and Integration3 framework (OGSA-DAI). It encapsulates heterogeneous and 
distributed data sources via services that provide access abstractions for the data sources. 
A user may define data integration workflows that orchestrate interactions with these 
services. However, the workflows and workflow tasks of OGSA-DAI are implemented 
directly in programming languages. If simulation workflows that rely on conventional 
workflow technology use OGSA-DAI as data management solution, they will not exploit 
the optimization potential of a consolidated definition of the processing activities for 
data management and simulation [Vr07]. Furthermore, the abstraction support offered by 
OGSA-DAI only relies on the customized abstractions offered by the individual services, 
while we provide a generic and unified abstraction mechanism. 

The Scientific Data Management Center (SDM Center) offers an end-to-end data 
management approach that mainly deals with efficiently analyzing data produced by 
scientific simulations or experiments [Sh07]. It offers efficient and parallel access 
routines to storage systems and technologies to support the better understanding of data. 
The latter comprises, for example, routines for specialized feature discovery, algorithms 
for parallel statistical data analysis, and efficient indexes over large and distributed data 
sets. On top of this, the Kepler sWfMS provides the robust automation of processes for 
generating, collecting, and storing the results of simulations or experiments as well as for 
data post-processing and analyzing the results [Lu06]. In contrast to the SDM Center, 
our approach does not deal with data analysis, but with data provisioning for simulation 
workflows and an appropriate abstraction support. Kepler also offers workflow activities 
to seamlessly access data sources, in particular for local file systems, relational database 
systems, and data streams coming from sensor networks. However, each of these 
activities directly deals with the heterogeneities regarding access mechanisms of the 
considered data sources instead of using generic and unified interfaces. 

                                                           
3 http://www.ogsadai.org.uk/index.php 
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The scientific workflow management system VisTrails, focuses on the exploration and 
visualization of results of simulations or experiments as well as on modeling, executing, 
and optimizing visualization workflows [Fr06]. It supports tracking revisions of 
workflows, i.e., scientists or engineers may interactively adjust their workflows. In order 
to maintain the history of workflow execution, data processing, and workflow revisions, 
VisTrails captures data and workflow provenance and links them to each other and to the 
produced data [Ko10]. This enables reproducibility of processes and simplifies the 
exploration of different versions of a workflow as well as its results. In contrast to the 
framework presented in this paper, VisTrails does not focus on data provisioning aspects 
and abstractions that are necessary for executing all phases of simulations. 

Microsoft Trident is a general-purpose scientific workflow workbench [Ba08]. It is built 
on top of the Microsoft Windows Workflow Foundation4 (Windows WF), a workflow 
environment based on the control-flow oriented Extensible Orchestration Markup 
Language (XOML). Trident enhances Windows WF with functionality needed for 
scientific workflow management, e.g., automatic provenance capture and the possibility 
to model data dependencies between workflow tasks. The activity library of Windows 
WF enables customized activity types that could provide a seamless access to data 
sources or further abstractions for defining data management operations. However, they 
have to be implemented by the modeler himself or shared between several activity 
developers. SIMPL offers abstractions via data management patterns that are 
automatically converted into executable workflow parts. As an alternative to such 
custom activity types, Trident uses services for data access. Similar to OGSA-DAI, this 
complicates optimizations over the whole spectrum from the workflow to the data 
processing level. Furthermore, Trident workflows may use Dryad for data provisioning 
[Is07]. Following the approach of MapReduce [DG04], Dryad supports programmers in 
efficiently using multiple resources for executing data-intensive and data-parallel 
applications without knowing anything about concurrent programming. However, Dryad 
does not deal with data management abstractions in our sense of a generic solution. 

Besides the activity library of Windows WF, IBM and Oracle also provide workflow 
activities that directly embed data management operations as part of their workflow 
products [Vr08]. In contrast to SIMPL, these products do not offer abstractions via data 
management patterns and are restricted to SQL statements, while we support any kind of 
data source. The external variables of Apache ODE are another approach to seamlessly 
access data sources from within workflows. These variables can be mapped to one row 
of a table in a database that offers an interface following Java Database Connectivity5 
(JDBC). This way, workflows may perform tuple-oriented retrievals and manipulations 
on the mapped row. However, set-oriented operations have to be defined via additional 
workflow constructs, e.g., loop activities. In [Vr07], the authors proof that such a loop-
based execution of several tuple-oriented operations shows weak performance related to 
a set-oriented SQL statement that is wholly executed by the database system. Our 
approach supports set-oriented operations by directly integrating SQL statements into the 
workflow definition. 

                                                           
4 http://www.windowsworkflowfoundation.eu/ 
5 http://java.sun.com/products/jdbc/overview.html 
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7 Conclusion and Future Work 

In this paper, we introduced SIMPL – an extensible framework that provides a generic 
and consolidated abstraction for data management and data provisioning in simulation 
workflows. It unifies heterogeneous interfaces to different data sources via logical data 
source descriptors, generic access operations, and metadata for mappings to concrete 
data source access mechanisms. We demonstrated that this provides the core 
functionality to uniformly access arbitrary data sources and enables an easy development 
and integration of concrete data management techniques. Based on this, the BPEL-DM 
activities allow for the definition and execution of common data management and data 
provisioning tasks for simulation workflows. Further abstraction support is provided by 
means of generic data management patterns, e.g., patterns for ETL operations. In 
addition to a data source access via services, BPEL-DM offers the combined definition 
of the processing activities for data management and simulation at the same level of 
abstraction. This enables optimizations over the whole spectrum from the workflow level 
to the data level, inducing significant performance improvements of workflows. 
Altogether, the SIMPL framework removes the burden from engineers and scientists to 
specify low-level details of data management for their simulations. It helps them to cope 
with the information explosion intrinsically associated with simulation applications and 
boosts their productivity. 

In future, we will extend the optimization approach for workflows with embedded data 
management operations of [Vr07] to be applicable to the data management in simulation 
workflows. For that purpose, we will work on a set of optimization rules that are suitable 
for simulation workflows and for DM activities of BPEL-DM. Scientists may use several 
parameterized data management patterns within their workflows. Our approach converts 
each pattern into an executable workflow part in isolation from all other patterns. This 
may result in a variety of process fragments for data management and data provisioning 
that show further optimization potential when considered together. To exploit this 
optimization potential, we will combine the conversion of data management patterns 
with the optimization approach for data management. 
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Abstract: In der modellgetriebenen Softwareentwicklung von Datenbankanwendun-
gen werden domänenspezifische Sprachen zusammen mit Codegeneratoren eingesetzt,
welche aus formalen Modellen automatisiert lauffähige Software erzeugen. Selbstde-
finierte domänenspezifische Sprachen werden zusammen mit dazu selbstentwickelten
Codegeneratoren eingesetzt, sie können aber auch direkt in Wirtsprachen integriert
werden, ohne eine spezielle Werkzeugumgebung zu benötigen. Sogenannte externe
domänenspezifische Sprachen werden durch einen selbst erstellten Parser verarbeitet,
während interne domänenspezifische Sprachen in eine Wirtsprache eingebettet werden
und somit deren Parser mit nutzen.

Für das Szenario der Migration von Datenbankanwendungen (von OracleForms zu
Java Swing) präsentieren wir den Einsatz externer und interner domänenspezifischer
Sprachen für unterschiedliche Aufgaben eines größeren Migrationsprojektes. Wir be-
trachten die Überlegungen zur Migrationsarchitektur für den konkreten Kontext des
Projekts Forms2Java anhand des Dublo-Migrationsmusters. Neben der eigentlichen
Vorstellung der Sprachen diskutieren wir auch die generelle Fragestellung, wann sich
der mit dem Einsatz domänenspezifischer Sprachen verbundene Aufwand lohnt.

1 Einleitung

Die Stärken eines großen Teils der deutschen Softwareindustrie sind geprägt durch ein tie-

fes Verständnis der jeweiligen Anwendungsdomänen. Das wohl bekannteste Beispiel da-

zu ist die SAP mit ihren betriebswirtschaftlichen Anwendungssoftwaresystemen. Es gibt

aber auch sehr viele weitere Unternehmen, die erfolgreich Standard- und Individualsoft-

ware für bestimmte Domänen entwickeln. Eine zentrale Frage ist dann, wie diese Stärken

in den jeweiligen Anwendungsdomänen effektiv und effizient in der eigentlichen Soft-

wareentwicklung unterstützt werden können. Dazu bieten sich u.a. die modellgetriebene

Softwareentwicklung und der damit verbundene Einsatz sogenannter domänenspezifischer

Sprachen (englisch: Domain-Specific Languages, DSL) als viel versprechende Ansätze an.

Modellgetriebene Softwareentwicklung ist ein Oberbegriff für Techniken, die aus forma-

len Modellen automatisiert lauffähige Software erzeugen [SVE07]. Dabei werden DSLs

zusammen mit entsprechenden Codegeneratoren eingesetzt. Im Bereich der modellgetrie-

benen Entwicklung richten sich DSLs verstärkt auf die Lösung von Problemen in einer
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bestimmten Anwendungsdomäne aus. Oft wird ein generativer Ansatz verfolgt, um die

Modelle der DSLs durch eine automatische Transformation in ausführbaren Code zu über-

führen. Im Gegensatz zu sogenannten „General Purpose Languages“ sind DSLs auf ein

Anwendungsgebiet optimal zugeschnitten und abstrahieren von der zugrunde liegenden

Programmierplattform. Somit können domänenspezifische Sachverhalte viel präziser und

knapper formuliert werden.

DSLs können anhand des Einbettungsgrades unterschieden werden: Sprachen, deren ei-

gene Syntax durch einen selbst erstellten Parser verarbeitet wird, nennt man extern. Spra-

chen, die in ihre Wirtsprache eingebettet sind und damit lediglich eine Spezialisierung

dieser Wirtsprache darstellen, nennt man intern. In diesem Papier stellen wir einen Ansatz

zur Migration von Datenbankanwendungen vor, in dem die folgenden Arten von DSLs

eingesetzt werden:

• Eine externe DSL dient zur Datenmodellspezifikation, aus der der Datenbankzu-

griffscode generiert wird (hier implementiert mit der Java Persistence API).

• Eine interne DSL dient zur Spezifikation der Integritätsbedingungen, die bei der

Dateneingabe überprüft werden (hier mit Java als Wirtsprache).

• Eine externe DSL dient zur Spezifikation des Layouts der Benutzungsschnittstellen,

aus der Eingabemasken für die Datenbank generiert werden (hier implementiert mit

Java Swing und unterstützt durch einen speziellen GUI-Editor).

Dieser Ansatz wurde in einem größeren Projekt erfolgreich eingesetzt. Eine wichtige Frage

in diesem Zusammenhang ist es immer, ab wann sich der mit dem Einsatz einer DSL

verbundene Aufwand rechnet; dieser Fragestellung werden wir ebenfalls diskutieren.

Im Folgenden werden wir zunächst in Abschnitt 2 auf den Projektkontext mit einigen

quantitativen Angaben zum Projektumfang und einer Beschreibung der Migration von

Datenbankanwendungen mit dem Dublo-Migrationsmuster eingehen. Die oben erwähnten

internen/externen DSLs werden in den Abschnitten 3 bis 5 vorgestellt. In Abschnitt 6 dis-

kutieren wird die Kosten und das Einsparpotenzial des vorgestellten Ansatzes, Abschnitt 7

stellt verwandte Arbeiten vor, bevor Abschnitt 8 das Papier zusammenfasst und einen Aus-

blick auf geplante Arbeiten liefert.

2 Projektkontext und Migrationsarchitektur

Im Projekt Forms2Java wurde eine Datenbankanwendung der APG Affichage1 zur Ver-

waltung von Geschäfts- und Kundendaten migriert. Das Altsystem Gepard ist eine Daten-

bankanwendung, die mittels der Oracle-Datenbank und OracleForms für die Entwicklung

der Benutzungsschnittstellen programmiert wurde.

Weil die über Jahre gewachsenen OracleForms sich zunehmend schlechter warten ließen

und gleichzeitig die Zukunft der OracleForms-Technologie selbst infrage stand, entschloss

1http://www.apgsga.ch/
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man sich zu einer Migration auf eine besser skalierende, zukunftssichere Plattform un-

ter Beibehaltung des unternehmenskritischen Datenbestands. Die Altanwendung umfasst

1722 Tabellen mit 19572 Spalten und über 300 Forms.

Es gibt verschiedene Möglichkeiten, ein Altsystem in eine neue Architektur zu migrie-

ren. Altsysteme stellen wichtige Investitionen dar, die nicht einfach außer Betrieb genom-

men werden können. Der Betrieb muss während des Übergangs weitergehen. Folglich sind

sanfte Migrationspfade und die Integration von Alt- und Neusystemen essenziell für die

Praxis der Integration von Informationssystemen [BS95, HKRS08].

In [HBG+08] wurden auf Basis der Erfahrungen aus mehreren Migrationsprojekten, in de-

nen insbesondere im Bereich der Datenbankintegration immer wiederkehrende Probleme

auftraten, drei Varianten des ursprünglichen Dublo-Musters [HRJ+04] abgeleitet:

Dublo Service Die Dublo-Service-Lösungsstruktur ist in Abbildung 1(a) dargestellt. Die

Grundidee besteht in der Entwicklung der Geschäftslogik in der neuen Geschäfts-

logikschicht, der Erstellung eines Legacy-Adapters für den Zugriff der neuen Ge-

schäftslogik auf die existierende Legacy-Geschäftslogik und der Benutzung dieses

Adapters für den Datenzugriff. Folglich wird auf die Datenbank nur indirekt durch

den vorhandenen Legacy-Code zugegriffen.

Dublo Old Database Die Dublo-Old-Database-Lösungstruktur ist in Abbildung 1(b) dar-

gestellt. Die Grundidee besteht darin, dass im Gegensatz zum Dublo-Service-Mus-

ter direkt auf die Legacy-Datenbank zugegriffen wird. Diese Strategie erhält die alte

Datenbank und ersetzt die alte Kombination aus Präsentations-, Geschäfts- und Da-

tenzugriffsebene.

Dublo New Database Die Dublo-New-Database-Lösungstruktur ist in Abbildung 1(c) dar-

gestellt. Die Grundidee besteht darin, parallel zum Altsystem eine ganz neue Infra-

struktur aufzubauen.

Die Anwendung des Dublo-Service- und des Dublo-Old-Database-Musters ist sinnvoll,

wenn ein inkrementeller Austausch alter Geschäftslogik- und Client-Software durch neue

Geschäftslogik in der Mittelschicht angestrebt wird. Da keine zusätzliche Datenbank ein-

geführt wird, entstehen keine Konsistenz- oder Abgleichsprobleme zwischen neuer und

alter Datenbank. Mit dem Dublo-Service-Muster ist es für die neuen Clients transparent,

ob Geschäftslogik bereits in der neuen Mittelschicht oder noch im alten Legacy-Code im-

plemetiert ist.

In [HBG+08] werden Kriterien und Erfolgsfaktoren zum Einsatz der jeweiligen Dublo-

Variante angegeben. Für das Projekt Forms2Java ist Dublo Old Database die richtige Vari-

ante, weil ein Parallelbetrieb von Alt- und Neusystem in einer Übergangszeit erforderlich

ist und das existierende Datenbankschema ausreichend gut strukturiert ist. Das Datenbank-

schema von Gepard wurde stets diszipliniert weiterentwickelt, so dass es auch zukünftig

eingesetzt werden kann. Die darauf aufsetzenden Anwendungen wurden nun migriert, von

OracleForms zu Java Swing. Ein weiterer Erfolgsfaktor für das Dublo-Old-Database-Mus-

ter besteht darin, dass davon ausgegangen werden kann, dass das DBMS vom Hersteller

weitergepflegt werden wird.
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Abbildung 1: Die Varianten des Dublo-Musters [HBG+08].

Die Zielarchitektur für das neue Gepard-System nutzt, wie das Altsystem, die Oracle-

Datenbank, für die Anwendungsprogrammierung werden jedoch die Java Persistence API2

und das Spring Framework3 verwendet. Die neuen Benutzungsschnittstellen werden als

„Rich Clients“ mit der Programmierschnittstelle und Grafikbibliothek Swing4, sowie dem

JGoodies Framework5 realisiert.

Abbildung 2 zeigt eine Übersicht über die aktualisierte Architektur der Anwendung Ge-
pard und die Rollen der eingesetzten DSLs im Konstruktionsprozess. Auf der rechten Sei-

te sind die vier Schichten des Anwendungssystems dargestellt, welches entwickelt werden

soll. Die interne DSL für die Eingabeprüfung wird in Abschnitt 4 vorgestellt, bevor die

GUI-DSL für das Layout der Eingabemasken in Abschnitt 5 erläutert wird. Im folgen-

den Abschnitt 3 zeigen wir, wie eine mittels TMF Xtext6 implementierte externe DSL

für die Beschreibung des Datenmodells verwendet werden kann. Diese externe DSL re-

ferenziert aus dem Datenbanksystem exportierte Schema-Informationen und wird mittels

XPand aus dem openArchitectureWare-Projekt7 transformiert, welches inzwischen in das

Eclipse Modeling Projekt überführt wurde.8 Die interne Java-DSL wird über eine Java-5-

Annotation in die Eingabeprüfung integriert, siehe Abschnitt 4. Für die GUI-DSL wurde

ein spezifischer graphischer Editor auf Basis des Graphical Modeling Frameworks9 entwi-

ckelt, siehe Abschnitt 5.

2http://www.oracle.com/technetwork/java/javaee/tech/
3http://www.springsource.org/
4http://download.oracle.com/javase/tutorial/uiswing/
5http://www.jgoodies.com/
6http://www.xtext.org/
7http://www.openarchitectureware.org/
8http://www.eclipse.org/modeling/
9http://www.eclipse.org/gmf/
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Abbildung 2: Übersicht über die aktualisierte Architektur der Anwendung Gepard (rechts) und die
Rollen der eingesetzten DSLs im Konstruktionsprozess.

3 Einsatz einer externen DSL für das Datenmodell

Einen kleinen Ausschnitt des Programmcodes für den Zugriff aus Java mit der Java Per-

sistence API (JPA) auf das relationale DBMS zeigt Abbildung 3(a). Die JPA wurde mit

Version 5 der Java EE Plattform eingeführt. Sie stellt eine standardisierte Schnittstelle für

Java-Anwendungen dar, die die Zuordnung und die Übertragung von Laufzeit-Objekten

einer Java-Anwendung in relationale Datenbanken ermöglicht, also eine objektrelationale

Abbildung implementiert. Die JPA zeichnet sich durch einen umfangreichen Einsatz von

Java 5 Annotationen aus, wie es in Abbildung 3(a) zu sehen ist. Da die Datenbank ohne

Änderungen migriert werden soll, können die Voreinstellungen der JPA in vielen Fällen

nicht benutzt werden, was die Anzahl der benötigten Annotationen drastisch erhöht. Die-

ser Code wiederholt sich vom Grundmuster her immer wieder, so dass es bei der Größe

der zu migrierenden Anwendung lohnenswert erscheint, diese Zugriffsschicht aus einer

Datenmodell-DSL zu generieren.

Eine externe DSL zur Beschreibung des Datenmodells der Gepard-Datenbank wurde mit-

tels Xtext realisiert. Ein Beispiel für die Programmierung mit dieser DSL ist in Abbil-

dung 3(b) dargestellt. Generiert wird aus dieser Datenmodell-DSL die objektrelationale

Abbildung, wie sie in Abbildung 3(a) zu sehen ist.

Defaults für das Datenmodell werden aus dem Schema der Datenbank extrahiert, siehe Ab-

bildung 2. Um eine gute Referenzierbarkeit des Datenbankschemas aus der Datenmodell-

DSL zu ermöglichen, wird die Schemainformation aus der Datenbank in eine XMI-Datei

transformiert. XML Metadata Interchange (XMI)10 ist ein Standard-Austauschformat für

Modelle zwischen Software-Entwicklungswerkzeugen, welcher insbesondere für den Aus-

tausch von UML-Modellen entwickelt wurde.

Falls die Datenstrukturinformationen aus dem Datenbankschema ausreichen, um die ob-

jektrelationale Abbildung zu generieren, genügt die folgende Datenbank-DSL-Spezifika-

tion:

10http://www.omg.org/spec/XMI/
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(a)

@SuppressWarnings("serial")
@Entity
@Table(name = "BUCHUNGSKREISE_F")
public class BuchungskreiseF
extends AbstractEntity implements Serializable {

@SuppressWarnings("unused")
@Id
@GeneratedValue(strategy = GenerationType.SEQUENCE,
generator = "bkrIdSeq")
@SequenceGenerator(name = "bkrIdSeq", sequenceName = "SEQ",
allocationSize = 1)
@Column(name = "BKR_ID", nullable = false)
private Long bkrId;
public Long getBkrId() {

return bkrId;
}
public void setBkrId(final Long bkrId) {

this.bkrId = bkrId;
}
@Column(name = "KONTO_NR", nullable = false, length = 45)
private String kontoNr;
public String getKontoNr() {

return kontoNr;
}
public void setKontoNr(final String kontoNr) {

String oldValue = this.kontoNr;
this.kontoNr = kontoNr;
firePropertyChangeEvent("kontoNr", oldValue, this.kontoNr);

}

(b)

import dbschema.xmi // Das aus der Datenbank extrahierte
// Schema im XMI-Format

entity BuchungskreiseF
(id=bkrId sequenceName=BKR_SEQ) {
String kontoNr (notNull, length=45)
Long rgNrBkrIdentifikator (notNull, length=1)
String referenzcodeKontoNr (notNull, length=45)

}

Abbildung 3: Generierter Programmcode für den Zugriff auf das DBMS aus Java mit der JPA (a)
und das Datenmodell spezifiziert mittels der externen Datenmodell-DSL (b).
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entity BuchungskreiseF
(id=bkrId sequenceName=BKR_SEQ) {

}

Nur dann, wenn es Abweichungen gibt, beispielsweise zwischen der Namensgebung im

Java-Programm und dem Datenbankschema, müssen diese explizit spezifiziert werden, um

den Code aus Abbildung 3(a) zu generieren, wie es in Abbildung 3(b) zu sehen ist. Durch

dieses Prinzip werden die DSL-Programme klein gehalten und die Ausnahmen sind ex-

plizit sichtbar. Abbildung 4 zeigt, wie die aus der Datenbank importierten Schemainfor-

mationen im Xtext-Editor genutzt werden können, um diese Schemainformationen in der

Datenmodell-DSL bei Bedarf anpassen zu können.

Abbildung 4: Anpassung der Schemainformationen im Xtext-Editor.

4 Einsatz einer internen DSL für die Eingabeprüfung

Bei der Implementierung von Validierungsregeln für die Eingabeprüfung geht es im We-

sentlichen darum Bedingungen zu definieren, deren Überprüfung geeignete Fehlermel-

dungen generiert, falls diese Bedingungen nicht erfüllt sind. Abbildung 5(a) zeigt die

Eingabeprüfung mit Java, wie sie zunächst im vorgestellten Migrationsprojekt ohne eine

speziell zugeschnittene interne DSL durchgeführt wurde. Auch hier gibt es für alle Ein-

gabeprüfungen immer wiederkehrende Konstrukte. Nach eingehender Analyse der Über-

prüfungsfunktionen wurde eine interne DSL für Java entworfen, für die ein Beispiel in

Abbildung 5(b) dargestellt ist.

Ein Kernkonzept zur Lösung dieses Problems besteht in der Möglichkeit, Boolesche Aus-

drücke zu formulieren. Solche Ausdrücke können in Java selbst gut formuliert werden. Bei

einer externen DSL müsste man dies neu implementieren, was sehr aufwändig ist. Daher

macht es hier Sinn die Beschreibung von Validierungsregeln innerhalb von Java so präg-

nant wie möglich zu machen – sprich die API optimal in Form einer internen DSL auf das
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(a)

addValidator(new Validator<Institutionen>() {
@Override
public ValidationResult validate(final Institutionen

institution) {
final ValidationResult result = new ValidationResult();
if (institution != null && institution.getEsrNr() != null

&& !CheckUtils.checkPcKontoNrPruefziffer(
Long.parseLong(institution.getEsrNr())) {

result.add(new SimpleValidationMessage(
getResourceMap().getString("validation.esr.msg"),
Severity.ERROR, getModel(Institutionen.DESC.
esrNr())));

}
return result;

}
});

(b)

@Check
void checkEsrMsg() {

if (!checkKontoNrPruefziffer(parseLong(this.getEsrNr())))
error("validation.esr.msg",desc.esrNr());

}

Abbildung 5: Eingabeprüfung mit Java ohne interne DSL (a) und mit interner DSL (b).

Problem zu zu schneiden.

Dazu wurde zunächst eine Java-5-Annotation @Check eingeführt, mit der Validierungs-

methoden ausgezeichnet werden können, siehe Abbildung 5(b). Die so annotierten Me-

thoden werden dann durch ein speziell dazu implementiertes Framework reflektiv identifi-

ziert und automatisch für Instanzen des angegebenen Typs (hier: Konto) aufgerufen. Bei

genauerer Betrachtung der in Abbildung 5(a) gezeigten Validierungsregel fällt auf, dass

viel Code durch geeignete Bibliotheksfunktionen vermieden werden kann. Beispielsweise

kann das explizite Erzeugen von ValidationResult und SimpleValidation-
Message implizit durch das Framework geschehen. Da die Methode vom Framework

aufgerufen wird, reicht ein Aufruf einer error(String,Object)-Methode. Auch die

Prüfungen auf Nullreferenzen, wie wir sie in Abbildung 5(a) finden, waren in allen beste-

henden Validierungsregeln vorhanden. Die Semantik war dabei immer gleich: Wenn es

eine Nullreferenz gibt, dann gilt die Bedingung nicht. Um auch diese Redundanz zu ent-

fernen, wurde die Semantik der @Check-Methoden so geändert, dass NullPointer-
Exceptions gefangen werden und dazu führen, dass der Check nicht ausgeführt wird.

Über eine weitere optionale Annotation (@NullPointerAware) kann diese Semantik

wieder abgeschaltet werden. Die in Abbildung 5(a) dargestellte Validierungsregel sieht in

der internen DSL dann wie in Abbildung 5(b) dargestellt aus.
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public class PersonenForm extends
Form<Personen> { ... }

public class PersonenHauptSubForm extends
SubForm<Personen> {

private JComponent vornameTextField;

@Override
protected void initComponents() {

...
vornameTextField = builder.createTextField(desc.vorname(),

Editable.PROPERTY_DEFAULT, MANDATORY);
gepardBuilder.setNoLeadingBlanks (vornameTextField);

@Override
protected JComponent buildPanel() {

TwoColumnsPanelBuilder builder =
TwoColumnsPanelBuilder.instance(getBuilderFactory(),
getResourceMap());

...
builder.add("vorname", vornameTextField);

}

Abbildung 6: Programmcode für die Eingabemasken mit Java Swing (kleiner Ausschnitt).

5 Einsatz einer externen DSL für die Eingabemasken

Abbildung 6 zeigt einen kleinen Ausschnitt des Programmcodes für die Eingabemasken

mit Java Swing. Dieser musste bisher manuell programmiert werden. Abbildung 7 zeigt

unsere GUI-DSL, aus der nun der Java Swing Code aus Abbildung 6 generiert wird. Eine

Beispielmaske der neuen Gepard-Anwendung, die mit Java Swing realisiert wurde, wird

in Abbildung 8(a) dargestellt. Auch der Java-Swing-Code wiederholt sich vom Grundmus-

ter her immer wieder, so dass es genau wie für die Datenzugriffsschicht aus Abschnitt 3

lohnenswert erscheint, diesen Code aus einer GUI-DSL zu generieren.

Für die Festlegung des konkreten Layouts einer grafischen Benutzungsoberfläche bietet es

sich an, GUI-Editoren zu nutzen, die mit dem ergonomischen Konzept der direkten Ma-

nipulation arbeiten [SPC09]. Für Java Swing stehen bereits leistungsfähige GUI-Editoren

zur Verfügung. Diese haben im hier beschriebenen Szenario allerdings einige Nachteile.

Sie bieten immer alle Einstellungsmöglichkeiten der Java-Swing-Elemente an, und ver-

stellen dadurch den Blick auf die wesentlichen Punkte, welche im betrachteten Projekt

relevant sind. Die automatische Generierung von Formularen wird zwar druch Java Swing

unterstützt, basiert aber dann auf Java Beans. Die Abstraktionen der Datenmodell-DSL

wären damit nicht mehr nutzbar.

Im vorgestellten Forms2Java-Projekt wird aus der Datemmodell-DSL automatisch eine

Standarddarstellung von Datenmodellen in Java-Swing-Formularen generiert. Die Dar-
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model : gepard;
import "platform:/src/main/model/types.dao"
com.affichage.it21.gp.dao {

flaechen {
readOnly entity WaehrungF (id =(rvLowValue)) {
}

readOnly entity GepardVerwendungPvF (id =(pvOid)) {
temporal manyToOne GeschpartnerAllBsF geschpartner ()
}

}
verkauf {
readOnly entity GepardVerwendungKdvtF (id =(kdvtId)) {
temporal notNull manyToOne

GeschpartnerAllBsF geschpartner ()
notNull Number istLangfrist (castTo=Boolean)
notNull Number istLokaldispo (castTo=Boolean)

}
}

Abbildung 7: Beispiel für die GUI-DSL.

stellung von Datenmodellen in Formularen sollte im Forms2Java-Projekt aber auch selbst

kontrolliert werden können. Daher wurde eine eigene GUI-DSL entwickelt, in der die

Elemente der Datenmodell-DSL referenziert und zusätzliche Layout-Informationen spe-

zifiziert werden können, sofern sie von der selbst bestimmten Standarddarstellung abwei-

chen. Um die Vorteile der direkten Manipulation zu nutzen, wurde für die GUI-DSL statt

eines textuellen Xtext-Editors ein spezifischer graphischer Editor auf Basis des Graphical

Modeling Frameworks11 entwickelt, siehe Abbildung 8(b). Angemerkt sei, dass es hier-

bei um eine ergonomische Oberfläche für die Entwickler geht, die Ergonomie der damit

erstellten Oberflächen für die Fachanwender (Abbildung 8(a)) ist ein weiteres wichtiges

Thema, das wir an dieser Stelle nicht behandeln. In der Mitte von Abbildung 9 ist ein klei-

ner Beispielextrakt aus der GUI-DSL zu sehen, welcher die Datenmodell-DSL importiert.

Die GUI-DSL stellt somit die Verbindung zwischen dem Datenmodell und der GUI her.

11http://www.eclipse.org/gmf/

563



(a)

(b)

Abbildung 8: Beispielmaske (a) und GUI-Editor (b).
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ID NAME PROP1 DATE ATTR1
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ID NAME PROP1 DATE ATTR1

ID NAME PROP1 DATE ATTR1

   

   model : gepard;

   import "platform:/resource/com.affichage.it21.gp.dao/src/main/model/types.dao" 

   com.affichage.it21.gp.dao { 

� flaechen {

� � readOnly entity WaehrungF (id =(rvLowValue)) {

� � }

� � readOnly entity GepardVerwendungPvF (id =(pvOid)) {

� � � temporal manyToOne GeschpartnerAllBsF geschpartner (joinColum

� � }

� }

�

� verkauf {

� � readOnly entity GepardVerwendungKdvtF (id =(kdvtId)) {

� � � temporal notNull manyToOne GeschpartnerAllBsF geschpartner (j

� � � notNull Number istLangfrist (castTo=Boolean) 

� � � notNull Number istLokaldispo (castTo=Boolean) 

� � }

� }

� gepard {

� � readOnly entity AbcKundenF (id = (rvLowValue)) { 

� �

rtnerAllBsF geschpartner (jjj

o=Boo lo lo looolooloololoolooololololoooloololloolooooloollooolooollooooooollllolloooololooolllloooooollloolooolloooololooooolollloooolooooollloooooooloooloool ))))eanean)eaean)an)eeaeeean)an)eananannanan)eeeeeeeaananannaneeeeeeeaaaaannnan) eeeeeeeeeaaaaannnneeeeeeeeanaaaaannnnneeeeeeeeeaaaaaanannanannneeeaanaannneeeeeeaaanannnneeeeean)aanneeeeeeaanannneeeeaaanannann)))

Tooooo=BBBBBooloolBooloolooloolooloolooloooooooooooooooooooooooooooooooooooooooollooollooolllooolloooo ean) ean) ean)ean)ean))n)ean)n)nnean)neaneannannnean)nnnnn))

e)) { 

Referenzen

Abbildung 9: Die GUI-DSL als Verbindung zwischen dem Datenmodell und der GUI.
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6 Wann lohnt sich der Einsatz welcher Art von DSL

Bei der Bewertung der modellgetriebenen Entwicklung im Vergleich zu traditionellem

Vorgehen müssen grundsätzlich zahlreiche Faktoren beachtet werden. Da sich der Vorteil

der modellgetriebenen Softwareentwicklung nur bedingt durch finanzwirtschaftliche Grö-

ßen ausdrücken lässt, müssen sowohl monetäre als auch nicht monetäre Aspekte Berück-

sichtigung finden. Folgende, nicht monetär quantifizierbare Faktoren stellen einen Vorteil

der modellgetriebenen Entwicklung dar [SVE07]:

1. Modellgetriebene Softwareentwicklung verschafft einen strategischen Geschäfts-

vorteil. Sobald eine DSL und die zugehörigen Transformationen und Generatoren

für eine Plattform existieren, ist es möglich, sehr schnell neue Anwendungen aus

demselben oder einem ähnlichen Problembereich zu implementieren.

2. Es wird primär fachliches Know-how zur Umsetzung neuer Anforderungen benö-

tigt. Die Technologie tritt in den Hintergrund. Das Wissen über technische Projekt-

rahmenbedingungen ist implizit im Generator abgelegt und kann sehr einfach wie-

derverwendet werden, ohne dass alle Mitarbeiter von vornherein ein tiefes Verständ-

nis für die eingesetzte Technologie haben müssen.

3. Es findet eine klare und formale Trennung zwischen manuell erstelltem fachlichen

und generiertem technischen Code statt (separation of concerns).

4. Automatisierung reduziert die Anzahl potenzieller Fehlerquellen.

5. Bestehende Modelle der Anwendung sind robust gegenüber Technologieänderun-

gen. Dies entkoppelt den Anwendungslebenszyklus vom Technologielebenszyklus.

Darüber hinaus können verschiedene finanziell messbare Vorzüge erkannt werden, die teil-

weise eine Konsequenz der bereits aufgeführten Vorteile sind. Dazu zählen eine kürzere

Implementierungsphase, geringere Kosten für den Einsatz neuer Technologien, reduzierte

Kosten über den gesamten Produktlebenszyklus, geringerer Zeit- und Personalbedarf für

die Umsetzung geänderter Anforderungen, eine kürzere Time-To-Market und geringere

Wartungskosten. Die Menge des manuell erstellten Codes kann reduziert werden, woraus

sich unmittelbar niedrigere Aufwände ergeben. Da der noch immer manuell in der DSL zu

erstellende Code eine höhere Informationsdichte und Komplexität hat, als in traditionellen

Projekten, kann nicht direkt von der Menge des manuell erstellten Quelltextes auf die Kos-

ten geschlossen werden [SVE07]. Jedoch vergrößert sich das Einsparungspotenzial durch

Wiederverwendung des Generators in mehreren Projekten (vgl. [RSB+04]). Eine Betrach-

tung der Aufwandsverteilung in klassisch durchgeführten Projekten in Gegenüberstellung

mit dem modellgetriebenen Vorgehen zeigt, dass auf Grund der eingesetzten Werkzeuge

ein Großteil der notwendigen, manuellen Tätigkeiten durch automatisierte Transforma-

tionen und Codegenerierung entfällt. Es ergeben sich zwar zunächst größere Aufwände

zu Beginn der Projekte, doch wird dies durch die Ersparnisse im weiteren Projektverlauf

aufgewogen.

Es stellt sich nun die Frage, für welchen Zweck sich der Einsatz welcher Art von DSL

lohnt. Wir betrachten diese Frage für die drei Arten von DSLs, die im vorgestellten Projekt

zum Einsatz kamen:
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Abbildung 10: Vergleich der für das Datenmodell benötigten Programmzeilen mit DSL (1) und ohne
DSL (2) in Abhängigkeit zu den implementierten Entitäten.

Externe DSL zur Beschreibung des Datenmodells Für die Entwicklung einer externen

DSL ergeben sich zunächst initiale Kosten für die Implementierung dieser DSL, ins-

besondere auch für die Transformation in Programmcode. Dieser initiale Aufwand

amortisiert sich erst bei einer bestimmten Größe des zu migrierenden (oder auch neu

zu entwickelnden) Softwaresystems.

Für die Datenmodell-DSL aus Abschnitt 3 kann ein Vergleich des zu programmie-

renden Codes ohne bzw. mit DSL durchgeführt werden. Ohne DSL werden im Pro-

jekt Forms2Java durchschnittlich 7.000 Programmzeilen Java / JPA zur Program-

mierung des Zugriffs auf eine fachliche Entität benötigt. Für die Implementierung

der DSL mit Xtext wurden 30.000 Zeilen Code programmiert, für die Implemen-

tierung der Transformation mit Xpand weitere 50.000 Zeilen Code. Für die Spezi-

fikation des Datenmodells für eine Entität werden dann durchschnittlich jedoch nur

noch 170 Zeilen je Entität benötigt. Rein rechnerisch, bei ausschließlicher Betrach-

tung der Programmzeilen, lohnt sich hier der Einsatz unserer Datenmodell-DSL ab

11 Entitäten, wie es auch in Abbildung 10 veranschaulicht wird. Die geringe Stei-

gung der Linie 1 für die externe DSL ist in dieser Abbildung kaum zu erkennen.

Durch das Gepard-System werden knapp 120 fachliche Entitäten verwaltet, die in

gut 1700 Datenbanktabellen gespeichert werden.

Das Maß der Programmzeilen ist zum Vergleich des Aufwands natürlich nur sehr

bedingt aussagekräftig, aber dieser Vergleich ist doch ein klares Indiz für die Wirt-

schaftlichkeit. Für die Betrachtung der initialen Kosten muss bei Bedarf auch der

Aufwand für die Einarbeitung in neue Technologien (in unserem Projektkontext

Xtext und XPand) beachtet werden, was in obigem Vergleich nicht berücksichtigt

wird.

Interne DSL für die Eingabeprüfung Für eine interne DSL muss keine Entwicklungs-

umgebung und keine Transformation implementiert werden, diese stehen z.B. für

Java schon mit Standard-IDEs, JUnit und dem Java Compiler zur Verfügung. Da-

mit ergeben sich initial geringere Kosten. Auch die Größe des Programmcodes kann

deutlich sinken, wie der Vergleich von Abbildung 5(a) mit Abbildung 5(b) zeigt.

Ein weiterer Vorteil besteht darin, dass die Entwickler keine vollständig neue Spra-
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che erlernen müssen, wie es bei einer externen DSL nötig ist (auch wenn sich externe

DSLs sinnvollerweise an existierenden Sprachen orientieren werden). Dies kann die

Akzeptanz bei den Entwicklern erhöhen.

Ein Nachteil interner DSLs besteht darin, dass es je nach Möglichkeiten der Wirt-

sprache Einschränkungen für die Mächtigkeit der DSL gibt. Java bietet hierzu nur

recht beschränkte Möglichkeiten. Boo [Boo09] ist beispielweise eine objektorien-

tierte Programmiersprache, die besonderen Wert auf die Erweiterbarkeit der Sprache

und ihres Compilers legt und somit bessere Möglichkeiten zur Entwicklung interner

DSLs bietet als dies mit Java der Fall ist. Erwähnenswert sind bei Boo vor allem die

sogenannten syntaktischen Makros, die die Sprache mit neuen Konstrukten erwei-

tern können. Algorithmen können somit gekapselt und unter Benutzung eines neu

eingeführten Schlüsselwortes wiederverwendet werden. Ein Problem ist bei Boo je-

doch darin zu sehen, dass ein Softwareentwickler auf identischer Abstraktionsebene

sowohl wiederverwendbare Code-Module spezifiziert, als auch als Sprachbestand-

teil zur Verfügung stellt.

Insgesamt empfehlen wir den Einsatz interner DSLs, wann immer dies ausreichend

ist. Häufig wird jedoch wegen der beschränkten Möglichkeiten der eingesetzten

Wirtsprachen der Einsatz externer DSLs erforderlich sein, um gute Produktivitäts-

steigerungen zu erreichen. Auch für eine interne DSL ist der Aufwand diese zu

entwerfen nicht zu unterschätzen.

Externe DSL für die Programmierung der Eingabemasken Die obigen Aussagen zur

Datenmodell-DSL treffen im Prinzip auch auf die GUI-DSL zu. Für die GUI-DSL

wurde statt eines Xtext-Editors ein GUI-Editor entwickelt, siehe auch die Über-

sichtsdarstellung in Abbildung 2. Dieser GUI-Editor liefert keine neuen Möglich-

keiten in der Programmierung. Vielmehr geht es hierbei darum, die Akzeptanz bei

den Anwendungsprogrammierern durch eine angemessen zu bedienende Sicht auf

die GUI-DSL zu erhöhen. Der Aufwand für die Konstruktion des GUI-Editors ist,

auch mit dem Eclipse GMF, nicht zu unterschätzen; kann aber für die Akzeptanz

bei den Mitarbeitern, und damit den Erfolg eines Migrationsprojektes, wie in die-

sem Papier beschrieben, von großer Bedeutung sein.

7 Verwandte Arbeiten

Die modellgetriebene Softwareentwicklung bildet die Grundlage für eine effiziente Ver-

wendung von DSLs. Mit ihrer Hilfe können beispielsweise aus abstrakten Systemmodellen

konkrete Systemartefakte generiert werden. Auf dieser Basis existieren verschiedene Vor-

gehensweisen, wie DSLs gestaltet und deren Tauglichkeit für einen konkreten Projektkon-

text evaluiert werden können. Die praktische Anwendbarkeit modellgetriebener Techniken

und DSLs wurde hierbei in einer Reihe von Fallstudien empirisch untersucht. Für den spe-

ziellen Einsatzzweck der Migration von Softwaresystemen ist darüber hinaus der Aspekt

der Transformation von Modellen von besonderer Bedeutung. Des weiteren existieren ei-

nige Vorgehensmodelle und Muster für die Migration, sowie auch für Anwendungsfälle,

bei denen der Fokus auf der Evolution, Transformation und Migration von Datenbankan-
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wendungen liegt. Dieser Abschnitt gibt einen Überblick über die vorgenannten Themen-

bereiche.

Das von uns präsentierte Migrationsprojekt basiert auf Methoden der modellgetriebenen

Softwareentwicklung. Mehrere Arbeiten bieten hierzu eine Einführung, beispielsweise

[BG05, Sch06, SVE07]. Hierbei wird die Anwendbarkeit an überschaubaren Systemen

mit Artefakten, die durch sich häufig wiederholende Strukturen geprägt sind, verdeutlicht.

Potenzielle Herausforderungen und Probleme im Hinblick auf die Entwicklung von kom-

plexeren Softwaresystemen, wie etwa das im Rahmen des Projektes Forms2Java migrierte

Altsystem Gepard der APG Affichage, untersucht [FR07]. Die Analyse wird hierbei von

den Autoren entlang einer Kategorisierung der Herausforderungen in die drei Bereiche

der (1) Modellierungssprachen, (2) Trennung der Belange in verschiedene modellrelevan-

te Sichten und (3) Manipulation und Management von Modellbestandteilen, geführt.

Diverse Fallstudien evaluieren den Einsatz von modellgetriebenen Methoden und Tech-

niken. Eine Laborstudie führten etwa die Autoren in [WSG05] durch, um das Potenzial

von modellgetriebenen Methoden bei der Vereinfachung der Entwicklung von autonomen

Systemen, die Enterprise Java Beans einsetzen, zu untersuchen. Darüber hinaus evaluieren

mehrere Studien das Potential auch im industriellen Kontext [BLW05, Sta06].

Modellgetriebene Methoden kommen, wie auch im Rahmen des von uns beschriebenen

Migrationsprojektes, häufig in Verbindung mit DSLs zum Einsatz. Eine grundsätzliche

Unterscheidung erfolgt durch die Einordnung in interne und externe DSLs [Fow09], bei

Forms2Java kamen beide Varianten zum Einsatz. Eine weitergehende Klassifizierung fin-

det sich in [LJJ07]. Die Autoren bilden verschiedene DSL-Varianten anhand von gemein-

samen Merkmalen bezüglich des Einflusses auf die Sprache selbst, die potenziellen Trans-

formationen, die Werkzeuge und die Entwicklungsprozesse. Muster zur Erstellung von

DSLs werden in [Spi01] behandelt. Hierbei orientiert sich die Klassifizierung vornehm-

lich an dem Verhältnis einer DSL zu einer etwaigen Basis- bzw. Wirtsprache. Kriterien, die

für die Erstellung von DSLs sprechen, untersucht [MHS05]. Die Autoren liefern darüber

hinaus einen Literaturüberblick zu Kriterien, die für die Erstellung von Mustern relevant

sind. Hierbei erfolgt eine Unterscheidung von Mustern nach Phasen im Entwicklungs-

prozess von DSLs. Die Entscheidungsphase liefert die Entscheidung für oder gegen die

Erstellung einer eigenen DSL. In der Analysephase wird weitergehendes Wissen über die

Problemdomäne erworben. Die Entwurfsphase beschäftigt sich mit dem Entwurf der DSL,

die danach in der Implementierungsphase realisiert und in der Deploymentphase auf einer

Zielplattform eingesetzt wird. Eine weitere Klassifikation von Ansätzen zur Entwicklung

von DSLs findet sich in [Wil01].

Als weitere Grundlage für die modellgetriebene Migration von Softwaresystemen ist die

Transformation von Modellen anzusehen, da ein Modell des Altsystems auf ein Modell

des Zielsystems abgebildet werden muss. [SK03] klassifiziert Ansätze zur Modelltrans-

formation hinsichtlich ihrer Eigenschaft, Modelle direkt manipulieren, exportieren und die

Transformationsregeln explizieren zu können. Des Weiteren werden als wünschenswerte

Merkmale von Sprachen zur Transformation von Modellen verschiedene Eigenschaften

herausgearbeitet. Darunter beispielsweise die Fähigkeit, eventuell existierende Vorbedin-

gungen, unter denen eine Transformation sinnvoll angewendet werden kann, zu beschrei-

ben. Eine Taxonomie von Sprachen zur Modelltransformation beschreibt [MG06]. Sie soll

unter anderem als Entscheidungsgrundlage zur Auswahl geeigneter Verfahren dienen.
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Herausforderungen und Probleme bei der Evolution von Software fasst [vDVW07] zu-

sammen. Für das Teilgebiet der Migration liefert [BLW+97] einen Überblick über gän-

gige Vorgehensmodelle und Muster, wie das im Rahmen dieser Arbeit für den speziellen

Projektkontext diskutierte Dublo-Migrationsmuster. Der fehleranfälligen Umstellung von

einem Altsystem auf das komplett migrierte System in einem Schritt („Big-Bang“, oder

auch „Cold Turkey“ Ansatz genannt) stellen die Autoren in [BS95] ihren Ansatz „Chicken

Little“ entgegen, wobei eine inkrementelle Migration hervorgehoben wird. Ein Nachteil

zeigt sich hierbei jedoch bei der Wartung und dem koordinierten Zugriff auf parallel ge-

pflegte alte und neue Datenbestände. Diesen Aspekt adressiert die Methode „Butterfly“,

die die zu der Koordinierung benötigten Gateways entfernt [WLB+97]. Ein weiterer An-

satz wird in [WSV05] beschrieben, der für die Migration unter anderem Techniken der

dynamischen Programmanalyse einsetzt. Erfahrungsberichte zu dem Einsatz von modell-

getriebenen Techniken im Kontext der Migration finden sich etwa in [FBB+07, ZG04].

Auch für die Evolution und Migration von Datenbanken existieren zahlreiche Veröffent-

lichungen. [BGD97] untersucht die Migration von relationalen Datenbankschemata auf

objekt-orientierte Datenbanksysteme. Eine weitere Analyse der Evolution und Integration

von Schemata findet sich bei [Cla94]. [MP03] legt einen Fokus auf umkehrbare Schema-

Transformationsregeln. Den Einfluss von heterogenen Architekturen bei Datenbanken auf

die Transformation von Schemata wird bei [MP06] analysiert. Das Mapping zwischen

unterschiedlichen Schemata wird mittels Schema Matching durchgeführt. [DSDR07] prä-

sentiert beispielsweise für diesen Zweck den Ansatz „QuickMig“. Eine Übersicht über

bestehende Ansätze für das Schema Matching findet sich in [RB01].

8 Zusammenfassung und Ausblick

Anhand eines nicht-trivialen Migrationprojektes diskutierten wir den Einsatz von DSLs

zur Migration von Datenbankanwendungen. Der primäre Vorteil einer externen DSL be-

steht in der Möglichkeit, eine optimale Abstraktion für eine Anwendungsdomäne bieten zu

können. Der primäre Vorteil einer internen DSL besteht darin, dass keine vollständig neue

Sprache entworfen und implementiert werden muss. Der primäre Vorteil des GUI-Editors

ist in der Akzeptanz einer angemessenen Werkzeugunterstützung durch die Anwendungs-

programmierer zu sehen.

Der grundsätzliche Ansatz, mit domänenspezifischen Sprachen Modelle aus Altsystemen

zu extrahieren, um diese zu modernisieren, wird beispielsweise auch in [IM09] vorgeschla-

gen. Eine Frage, die immer für derartige Projekte gestellt werden muss, besteht darin, ab

wann sich der Einsatz von DSLs lohnt. Es stellt sich insbesondere die Frage, ob sich die

Entwicklung von spezifischen DSLs schon für ein einzelnes Projekt lohnt, oder ob dies erst

sinnvoll ist, wenn beispielsweise eine Produktlinie aufgebaut werden soll. Unsere Antwort

dazu ist, dass es gar nicht immer sinnvoll ist zu versuchen, eine DSL zu entwickeln, die

über viele Produkte hinweg genutzt werden kann. Der Grund dafür besteht darin, dass eine

derartige DSL (üblicherweise) deutlich komplexer werden würde, als dies für ein einzelnes

Projekt erforderlich wäre.
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Um den Einsatz von DSLs schon für einzelne Projekte wirtschaftlich sinnvoll gestalten zu

können, kommt dann der effektiven und effizienten Werkzeugunterstützung zur Implemen-

tierung der DSLs eine entscheidende Rolle zu. Mit den diversen Werkzeugen im Umfeld

des Eclipse-Projektes stehen inzwischen leistungsfähige Werkzeuge zur Verfügung, um

externe DSLs effizient implementieren zu können. Es ist prinzipiell mit diesen oder ähn-

lichen Werkzeugen möglich, eine DSL für mehrere Projekte zu nutzen, indem diese DSL

für jedes Projekt individuell an dessen spezifische Bedürfnisse angepasst werden kann.

Das Ziel sollte aus unserer Sicht dabei nicht sein, eine DSL für viele Projekte zu entwi-

ckeln, die schnell zu komplex werden könnte, sondern eine Familie von (kleinen) DSLs

zu entwickeln.

Ein noch offenes Problem besteht dann darin, wie eine gute Wiederverwendung für die

Implementierung der DSLs einer Familie ermöglicht werden kann. Dieser Frage widmen

wir uns gegenwärtig im BMBF-geförderten Projekt Xbase.12 Ziel des Projektes Xbase ist

es, den anfänglichen Aufwand zur Implementierung der Infrastruktur für eine DSL erheb-

lich zu reduzieren. Durch diese Maßnahme soll die modellbasierte Softwareentwicklung

auch schon bei kleineren Projekten kosteneffizient eingesetzt werden können. Dabei wer-

den immer wiederkehrende Aspekte der DSLs in Xbase allgemeingültig, anpassbar und

einfach wiederverwendbar implementiert. Der Einsatz von Xbase verspricht hier weiteres

Kosteneinsparungspotenzial, gegenüber der jetzigen Situation mit dem Einsatz modellge-

triebener Entwicklungsmethoden.
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Abstract: In the past, the development of a declarative, set-based interface to ac-
cess data in a DBMS was a key factor for the success of database systems. For
XML, the lingua franca for declarative data access is XQuery. This paper summarizes
the XQuery processing concepts that have been developed in the XTC system (the
XML Transaction Coordinator)—a native XML database management system. We
step through all query processing stages: from parsing over query normalization, type
checking, query simplification, query rewriting, and plan generation to the execution.

1 Introduction

The eXtensible Markup Language (XML) was designed as a technique for document rep-
resentation and data exchange. With the success of this meta language, the volume of
data represented in XML grew steadily, resulting in large document collections. Keeping
such collections serialized as text in files or as BLOBs in relational database management
systems is clearly a bad idea. The process of parsing the relatively verbose XML repre-
sentation upon access is too expensive. Furthermore, loading large XML instances into
main memory is often not viable and multi-user access with updates cannot be efficiently
supported without dedicated access mechanisms to document substructures. Therefore, in
the last decade, tailored XML database management systems have been developed that can
compactly encode XML documents, that enable the transfer of substructures of a document
into main memory, and provide for ACID transactions. The XML Transaction Coordina-
tor (XTC) [HH07] developed at the University of Kaiserslautern is a prototype of such an
XML database management system (XDBMS). XTC is a so-called native XDBMS, be-
cause all its internal structures are tailored to XML storage and processing, in contrast to
systems that map XML to relational tables for storage and processing. In the past, the de-
velopment of a declarative, set-based interface to access data stored in a DBMS (e. g., SQL
for relational systems) was a key factor for the success of database systems in general. For
XML, the lingua franca for declarative data access is XQuery.

This paper summarizes the XML query processing concepts in native XDBMSs that have
been developed in the author’s doctoral thesis [Mat09]. It highlights all stages of the query

∗This work was conducted while the author was an employee at the Database and Information Systems Group
(DBIS) at the University of Kaiserslautern.
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Figure 1: Query evaluation in XTC

evaluation process: from parsing over query normalization, type checking, query simplifi-
cation, query rewriting, and plan generation to the final execution. This approach to query
processing resembles the “standard” query processing pipeline of relational query proces-
sors and, in fact, this work borrows quite some concepts. However, the semantic richness
of the XML data model and the XQuery language requires new solutions at most stages
and poses many interesting research problems. By building on the “standard” pipeline and
standard techniques, the work from [Mat09] can be integrated in existing relational query
processors, for example, to enable XML management in relational engines.

2 XML Query Processing on XTC—An Overview

Given a declarative query, the query processor has to generate a semantically equivalent,
cost-optimal, procedural program, which consists of algorithms and database-specific ac-
cess methods. In the following, we will sketch the process of XML query processing in
XTC, from the external representation of a query in the XQuery language to the execution
on the data store.

In the late 1980s and in the 1990s, the DB research community spent substantial efforts
on the development of extensible query processors for database systems. The idea was to
provide for a framework into which new concepts, such as new language constructs, new
data models, or new processing algorithms could easily be integrated without the need
to re-implement large portions of a query processor [Mit95, KD99]. Systems like EXO-
DUS [GD87], VOLCANO [GM93, Gra94], and Starburst [MKL88, HFLP89, PHH92] are
some well-known examples from that time. The query processor developed in [Mat09]
stands in the tradition of these systems. Therefore, many concepts and terms could be
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borrowed, and, although the XTC query processor was built from scratch, it can be seen
as an extension in the sense of the idea of extensible query processing. To cope with com-
plexity, query processing is generally split up into a number of stages. Each stage receives
a query representation generated by some preceding stage (or given as input) and produces
a further representation with a lower level of abstraction but enriched with more specific
information on how the query has to be evaluated. Figure 1 depicts all query evaluation
stages of the XTC query processor.

The process has a logical abstraction layer and a physical abstraction layer. The logical
layer is completely system independent. The query representations and actions at this level
can be reused to implement a query processor for another XML data source. The aim at this
layer is 1) to find a procedural internal representation such that semantically equivalent (but
syntactically different) queries are mapped onto the same representation, and 2) to rewrite
the query in a way such that intermediate results are minimized. Such a representation
is a good starting point for the actions at the system-dependent physical abstraction layer
below, because, in contrast to the declarative external query representation, a procedural
internal representation contains more information about how the query can be evaluated.
Furthermore, mapping semantically equivalent queries to the same internal representation
makes the query processor robust.

At the physical layer, the query processor has to cope with low-level issues such as doc-
ument storage layout, index structures, or processing algorithms to generate a program
that operates on the database and efficiently computes the query result. In total, the query
processor consists of the six components (see Figure 1): the parser, the translator, the
optimizer, the evaluator, and the metadata component of the XTC system. Some of these
components can share a sixth infrastructure component, which is not depicted in Figure 1.
In the following, we give an overview over the various stages.

3 Parsing, Normalization, Static Typing, and Simplification

In the first stage, XQuery expressions need to be analyzed by a parser and to be converted
into an abstract syntax tree (AST). In XTC, the XQuery grammar specified by the W3C
Recommendation [BCF+04] is given to a parser generator to create the XQuery parser.
In the next stage, the query translator transforms a given AST into an internal representa-
tion for the query optimizer. The translator has four stages: normalization, static typing,
simplification, and XQGM transformation. Normalization and static typing are defined in
the XQuery Formal Semantics Recommendation [CFS07]. Normalization transforms an
XQuery expression to an equivalent expression in the XQuery Core Language, which is a
subset of the original XQuery language. Static type checking derives the type of all subex-
pressions in the query and checks for static typing errors. The derived type annotations of
all subexpressions can be used for optimization and restructuring.

Simplification aims at the removal of subexpressions with no effect on the query result.
Such redundant constructs are sometimes introduced by programs that automatically gen-
erate queries, by view expansion, by users who do so accidentally, or by normalization.
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Figure 2: Abstract syntax tree for XMark query Q5

Simplification is implemented using the infrastructure component of the query proces-
sor. This component interprets a query representation (in this case the AST) as a tree and
employs a rule-inference engine to apply tree transformations that are specified by restruc-
turing rules. A rule has a pattern and a transformation instruction. When a rule matches
the tree representation, the transformation instruction is applied to rewrite the tree at that
position. Because the infrastructure component is just an implementation aspect, it will
not be introduced in detail.

To illustrate these steps, let us consider the following query that emanates from the XMark
benchmark [SWK+02] (Query 5) and returns the number of price elements that have a
content larger than or equal to “40”:
let $auction := doc("auction.xml") return
count(

for $i in $auction/site/closed_auctions/closed_auction
where $i/price/text() >= 40
return $i/price

)

The abstract syntax tree produced by the parser for this query consists of roughly 40 nodes.
For the sake of brevity, Figure 2 does not contain all these nodes, but only a fragment of the
complete AST. As you can see, the representation is quite straightforward. Every particle
from the XQuery grammar corresponds to a node in the AST.

Normalization translates the AST produced by the parser into a rewritten AST with the
same semantics, but with a reduced set of language constructs. As a result, normalization
removes syntactic sugar. The normalized version of the above query has the following
form1:
let $auction := doc(auction.xml)
return count(

for $i in ddo(
for $fs:dot in $auction
return ddo(

for $fs:dot in child::site
return
ddo(

for $fs:dot in child::closed_auctions

1Note, this representation is simplified to facilitate comprehension. Function ddo stands for fn:distinct-doc-
order, and—against the W3C recommendation—the constructs to produce positional information are omitted.
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return child::closed_auction)))
where fn:data(ddo(

for $fs:dot in $i
return
ddo(for $fs:dot in child::price

return child::text()))) >= fn:data(40)
return
ddo(for $fs:dot in $i

return child::price))

You can observe that the normalized variant of the query does not contain any path ex-
pressions, only axis steps (e. g., child::site). Path expressions are rewritten to for
clauses. The normalization process injects ddo and fn:data functions to ensure duplicate-
free intermediate results (ddo) and atomic values for comparisons (fn:data).

Static typing infers the type of all subexpressions in a normalized query. For example, in
the query above, the static type of the integer literal “40” is trivially integer. The surround-
ing fn:data function also delivers type integer, which is then used in the comparison. The
comparison, in turn, is of type Boolean, and so on.

Even in our small example, you can observe that the normalization process is defined in
a rather defensive manner, i. e., it injects certain functions blindly, even when they are
not necessarily required. For example, the injected fn:data function around the integer
literal “40” does not have an effect and can be safely omitted. A further example is the
ddo function that is always injected, even when the intermediate result will always be in
distinct document order. Besides normalization, users might write XQuery expressions
with redundant or unnecessary subexpressions. Simplification aims at removing this kind
of redundancy. An equivalent query for the above one might look like the following:
let $auction := doc(auction.xml)
return count(

for $i in
for $fs:dot in $auction
return

for $fs:dot in child::site
return

for $fs:dot in child::closed_auctions
return child::closed_auction

where fn:data(
for $fs:dot in $i
return
for $fs:dot in child::price
return child::text()) >= 40

return
for $fs:dot in $i
return child::price)

The ddo functions are not necessary and the fn:data function around the integer literal can
be removed2. Currently, the XQuery processor can detect simplification opportunities in
various situations (see [Mat09]). Note, however, that the simplification logic aiming at re-
moving ddo functions is not yet integrated (although this topic has already been discussed
in the literature [FHM+05]). Since XQuery is a quite flexible and freely composable lan-
guage, many more situations than those handled in this work allowing for simplifications
might exist. This work does however not dwell further.

2This is actually possible, because static typing revealed that the argument of the fn:data function is already
an atomic value and therefore does not need atomization.
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Figure 3: An example query represented in XQGM

4 The XML Query Graph Model

The last translation stage is the XQGM transformation. In this stage, the query translator
transforms the AST into an instance of the XML query graph model. This is necessary,
because the AST is not an appropriate format for query optimization as it lacks procedural-
ity, i. e., it does not reveal data flow and control flow to evaluate the query. A better-suited
internal query representation is the query graph model (QGM) introduced in the relational
Starburst system [HFLP89, PHH92]. Although the QGM was designed for a relational
engine, it provides enough flexibility to embed new language constructs like, for example,
SQL recursion. In this work, we reused the QGM to support XML query processing. The
resulting internal representation is called XQGM for XML query graph model. The initial
XQGM instance for our sample query is depicted in Figure 4. All logical and physical
plans presented in this and the following chapters are generated by a plan visualization
tool developed in [MWHH08].

The syntax and semantics of XQGM can be found in [Mat09]. Here, we only give a brief
introduction by example. Consider the query and its corresponding XQGM instance in
Figure 3: An XQGM instance is an operator graph or a box-and-arrow diagram. Every
box is a logical operator which produces data (most operators also consume data). The
data produced flows along the arrows. All operators have a name describing the func-
tionality of the operator and a unique identifier that follows the name in braces, e. g.,
“SELECT(2)”. In the following, we use a lower-case font to refer to operator names.
The graphical elements inside an operator specify how the operator processes input data
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and how it computes results. For example, select(2) consists of four so-called tuple
variables (depicted as circles) controlling the input data flow and creating a tuple stream,
a predicate describing the selection expression on the tuple stream, a sort specification to
modify the order of the tuple stream, and a projection specification defining how the output
shall be computed. Tuple variables carry a quantifier (e. g., “F”, for for quantification, and
“L” for let quantification; see below) and a unique identifier to facilitate their distinction
separated by a colon. The data model, based on which the semantics of XQGM is defined
is similar to the XML data model (XDM) [FMM+04]. The major difference is that the
XQGM data model allows tuples with nested tuple sequences.

To illustrate the semantics of XQGM, we step through the query execution of our sample
query shown in Figure 4:

• Let us start with the control flow: The query processor calls the topmost select(1)
operator, which, in turn, calls the next select(2) operator below to produce
some output. Select(2) has three tuple variables, one of which carries an “F”
specifying for-quantification semantics. The other tuple variables carry an “L”
for let-quantification semantics. Tuple variables receive the output generated by
their subgraphs. They define how this output is assembled into a stream of tuples.
How this actually works will be sketched below. For now, we just proceed with
the subexpression under tuple variable F:6. Select(3) is called and, in turn,
access(5).

• Every operator calls its dependent sub-operators and awaits data for further process-
ing. Access(5) is the first operator that actually produces data. It is a document
access operator delivering the virtual root node [FMM+04] of the “auction.xml”
document. This node is passed to the select(3) operator which binds it to tuple
variable F:0 and calls select(6) to produce a result for tuple variable L:5.

• Select(6) in turn calls access(7), which is a navigational access operator.
This type of access operator needs a context node as input from which the navigation
starts. The context node is delivered by a correlated input edge, depicted as a dotted
arrow. Tuple variable F:0 provides this input by passing the currently bound virtual
root node to access(7). The result of the navigation on the child axis and the
subsequent name test is a single site node. This node is passed to select(6)
which binds it on tuple variable F:1 and calls select(8) to produce results for
tuple variable L:4.

• Select(8) calls access(9) which delivers the closed auctions element (ex-
actly one in every XMark document) using the current node at tuple variable F:1
as correlated input. The closed auctions element serves as correlated input for
access(10) which returns all closed auction elements below. These elements
are passed to tuple variable L:3 which collects them all, puts them into a sequence,
and binds this sequence as the current value (which is actually the semantics of the
let quantification).

• The sequence is then passed to the projection specification, which applies the ddo
function. A tuple variable may either be referenced via a correlated edge (dotted
arrow) or by a so-called tuple variable reference depicted as a rhomb. The ddo
function is also applied in select(6) and select(3) passing the sequence of
closed auction elements to tuple variable F:6.
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Figure 4: XMark query Q5 represented in XQGM

• So far, every for-quantified tuple variable received only a single node as input. For
single nodes, the semantics of for and let are the same. This time, however, tu-
ple variable F:6 receives a sequence of possibly more than one node. While let
passes these nodes as a whole as described above, for iterates over the sequence
items, just like the corresponding constructs in the XQuery language. You can fur-
ther notice that the subtrees below tuple variables L:11 and L:14 depend on the
current node at tuple variable F:6, because these subgraphs have a correlated in-
put edge starting at F:6. This means that for every node at F:6, the dependent
subtrees are evaluated and their result sequences are bound to the corresponding
tuple variables. In the following, we will call L:11 and L:14 dependent tuple vari-
ables, whereas F:6 is called independent. The subtrees below independent tuple
variables have to be evaluated first, because they provide the input for the sub-
trees below dependent tuple variables. Essentially, the subtree below F:6 evaluates
doc("auction.xml")/site/open auctions/open auction. For ev-
ery open auction, the expression below L:11 evaluates the relative path price/
text() and L:14 the relative path price.
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• Inside select(3), the predicate is evaluated for every open auction element. If
the predicate evaluates to true, the current value at tuple variable L:14 is read by
the projection specification and passed as an intermediate result to select(1).
In turn, select(1) collects all these intermediate sequences in another sequence
on which the count function is evaluated to obtain the final result.

The reader familiar with the dynamic evaluation phase specified in the Formal Seman-
tics has noticed that the evaluation model defined there and in XQGM is essentially the
same, i. e., an initial XQGM instance acts as specified in the Formal Semantics. This is
meaningful, because it ensures correctness. In a way, XQGM is a graphical representation
for normalized XQuery expressions. A large fraction of XQuery can be captured solely
by XQGM’s select and access operators. We will not formally introduce the syntax and
semantics of XQGM in this paper. The details can be found in [Mat09].

5 Algebraic Rewriting

Because the semantics of an initial XQGM instance generated by the query translator ad-
heres to Formal Semantics Recommendation, the above sketched evaluation model heavily
relies on nested subexpressions and node-at-a-time navigational methods. This model it is
often far from being optimal.

Therefore, besides classical algebraic optimizations such as selection push-down and se-
lect fusion to minimize intermediate results and the number of operators required, the
algebraic rewriting stage tries to unnest queries as far as possible to enable bulk or set-
at-a-time processing. Unnesting substitutes correlated subexpressions by joins, i. e., by
bulk operators. Like simplification, algebraic rewriting is also implemented using the in-
frastructure component. The XQGM instance is interpreted as a tree structure on which
the generic rule engine executes rule-based transformations. The result of the algebraic
rewriting stage is an unnested and pre-optimized XQGM instance. At this point, the phys-
ical optimization of the query begins and system-specific issues come into play. Before
we discuss plan generation, we like to summarize the algebraic rewriting rules developed
for the XTC query processor. [Mat09] contains all rules with the description of the rule
pattern, its preconditions, and the transformation instructions:

• Removal of external tuple variables: Every variable reference in XQuery results in
a tuple variable reference in XQGM. Some of these references are unnecessary and
are removed by this rule.

• Removal of descendant-or-self steps: Due to normalization, a double-slash opera-
tion as in doc("auction.xml")//item in XQuery results in a descendant-or-
self::node() navigation in XQGM. Sometimes, this navigation step can be replaced
by a descendant step, which is achieved by this rule.

• Range-query detection: Many XDBMSs provide index structures to evaluate content-
based predicates. Those predicates can be point queries or range queries. Range-
based predicates are specified in XQuery with the help of comparison operators and
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Figure 5: Twig matching examples

the Boolean and. The range-query detection rule finds such range predicates and
converts them into an XQGM range predicate, which is easier to evaluate and to
map to the above mentioned index structures.
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• Select fusion: Some rewriting rules leave select operations in a state, where only a
simple operation, like applying the distinct-doc-order function, is executed. In these
cases, the select fusion rule merges the select operation with its input operation.

• Predicate push-down: Predicate push-down is a standard rewriting strategy from
relational query engines. It can also be implemented in XQGM for XQuery. Due to
the existential semantics of general XQuery comparisons (see [CFS07]), predicate
push-down is a little bit more complicated to implement.

• Query unnesting: The normalization phase introduces a nested sub-expression, when-
ever a variable is referenced. This is also reflected in the XQGM instance of the
query. Especially for navigation axes, this approach leads to node-at-a-time evalua-
tion, i. e., for every input node, the navigation axis is evaluated as a sub-expression.
A similar situation arises in SQL queries with nested sub-queries. In almost all situ-
ations, these queries are unnested by the SQL processor and are replaced by a join-
based equivalent. This approach is also viable in XQGM. Here, however, we do not
introduce value-based joins, but structural joins. For structural joins, many efficient
implementations have been proposed in the literature (e. g., [AkPJ+02, CVZ+02,
MHH06, MH06]). After the query has been unnested, all these algorithms can be
applied. Besides from the discussion of query unnesting in [Mat09], an algebraic
approach to query unnesting can also be found in [Mat07].

• Twig detection: Algorithms for twig pattern matching have been heavily researched
in the past [BKS02, CLL05, FJSY05, CLT+06]. Twig matching algorithms can be
used to evaluate branching path expressions that often occur in XQuery. To support
twigs, XQGM specifies a dedicated twig operator. This operator has a so-called twig
specification that can express twigs with various interesting properties that support
idioms frequently occurring in XQuery expressions. Figure 5 exemplifies the se-
mantics of the twig specification. The result is represented as graphical subtrees and
as nested tuples (a data type of the XML algebra [Mat09] based on which XQGM
is defined). Essentially a twig can return all nodes that match (Figure 5a). We can
enforce that the result adheres to the document order [CFS07] (Figure 5b). The twig
specification can define Boolean predicates (Figure 5c) and optional sub-patterns
(Figure 5d). Some queries implicitly group results. Therefore, the double circle
in Figure 5e signals that the matches below shall be grouped (in the tuple result,
groups are represented by sequences in angle brackets). Furthermore, the XQGM
twig specification allows to embed output expressions and filter predicates, for ex-
ample, to generate new XML elements based on the matched results (Figure 5f) or
to check content-based predicates (Figure 5g). Finally, even positional predicates
can be specified (Figure 5h). The twig detection rule is responsible to find sub-
structures in an XQGM instance that can be evaluated by a twig operation with the
expressiveness of the sketched twig specification.

To illustrate the rewriting stage, Figure 6 shows the results on our running example. First
you can observe that the query does not contain any nested subexpressions, it has been
completely unnested (note, the dotted lines inside twig(28) have a different semantics).
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Figure 6: Rewritten XMark query Q5

The access operators are not navigation-based anymore, but access all nodes that match a
certain node test (e. g., all price nodes). The nodes in the twig specification are connected
to the corresponding input tuple variables by dotted lines. In the specification, C stands for
a child relationship, D for descendant, and @ for attribute. The select(1) operator has
the same function as before. It collects the price sequences generated by the twig operator,
adds them to a sequence, and applies the count function. Note, the completeness of the
unnesting and twig detection rule has not been formally shown in [Mat09], i. e., we do
not know, whether all twig queries can be unnested and whether all twigs can be found.
Therefore, we classify the approach as best effort. Nevertheless, we note that all XMark
queries [SWK+02] could be unnested and all twigs were discovered.

6 Plan Generation

Given the result of the rewriting stage, the query processor now has to assemble a query
execution plan (QEP), i. e., it has to map the logical operators onto algorithms and doc-
ument access methods. These algorithms can roughly be grouped into 1. navigational,
join-based, and index-based methods for path matching, and 2. into all remaining algo-
rithms that are necessary to evaluate selections, projections, grouping, value-based joins,
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etc. The algorithms of the first group, which are also called path processing operators
(PPOs), play a major role in this work, because PPOs access the document (in contrast
to the operators in the second group, which merely operate on the intermediate results
delivered by path operators). Document access can be expensive, therefore, these oper-
ators need special attention. The set of all physical operators is called physical algebra
(PAL). This term was introduced in [GM93] and shall help to distinguish operators from
the physical level (algorithms) from operators on the logical level (XQGM). We give a
brief introduction to the physical algebra in the next section.

Given an XQGM instance, plan generation is implemented in two stages, the first one of
which also relies on the rule engine of the infrastructure component. Here, the rules de-
scribe logical-to-physical mappings or XQGM-to-Plan transformations (similar to [KD99]).
Whenever a rule matches, a description of the physical operators implementing the matched
XQGM operator is created and attached to the matched logical operator. Considering the
relationship between a logical XQGM operator and operators from the physical algebra,
the 1:1, 1:n, n:1, and n:m cardinalities apply: Sometimes there is only one physical alter-
native for a logical operator (1:1), sometimes there are more than one alternatives (1:n),
and sometimes a group of logical operators is implemented by a (group of) physical op-
erator(s) (n:1 or n:m). In the second stage, the plan generator iterates over the XQGM
instance and builds different QEPs from the physical alternatives it finds. Often, the opti-
mizer can create a large variety of structurally different but logically equivalent QEPs for
a single XQGM instance.

From all the different QEPs, the query processor now has to decide, which of them is the
cheapest in terms of processing costs. The answer to this question depends on a large
variety of parameters, such as the optimization goal (e. g., response time, throughput,
main-memory usage, etc.), the structural layout of the document, value distributions in
the document, the current system state (I/O-bound or CPU-bound), and so on. The appli-
cability of certain physical operators depends on the physical layout of the database, i. e.,
on document storage and indexing. At the time [Mat09] was written, cost-based query
optimization was under development. Therefore, in [Mat09], the author restricted the plan
generator to the following: 1. The plan generator should be able to generate every possible
plan in the search space, and 2. the plan generator be able to find a good plan based on
simple heuristics. We will come back to this point at the end of the next section.

7 The Physical Algebra

The physical algebra contains all query evaluation algorithms. Of particular importance
are those algorithms that access the document or some index to match path patterns. Be-
cause XQuery heavily depends on efficient path pattern matching, we focus our discussion
on path procession operators (PPOs). We distinguish navigational, join-based, and index-
based PPOs. The first group of operators is also the most expressive one; every path ex-
pression in a query can be evaluated by navigating the document. Compared to join-based
and index-based methods, they are, however, often enough the group of operators with the
slowest performance. Hence, navigational primitives are a “fall-back solution”, when no
operators of the other two groups can be applied to evaluate a certain path expression.
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Figure 7: Sample document with path-based node labels

Join-based operators stream through the document or over an index that contains refer-
ences to all elements and evaluate path expressions by matching structural relationships
among the streamed nodes. Compared to navigational methods, they often provide for
better performance. However, their use is restricted to certain XPath axes. The two most
prominent representatives for this group are structural joins (STJ) and holistic twig joins
(HTJ). Especially holistic twig joins have gained much attention in the literature and many
variations of the original algorithm [BKS02] have been presented. Most of these variations
aimed at optimizing the algorithm’s structure matching phase and at increasing its perfor-
mance. Below, we will sketch an HTJ algorithm that has been designed to work hand in
hand with indexes and the other algebra operators.

The last group of operators provides index access. We will illustrate how path queries
extracting inner elements (such as //cd[id="cd 101"]) can be answered with path
indexes and how index-based operators can be “married” with join-based operators. Note,
index-based operators have yet again a reduced expressiveness compared to join-based
operators, because join-based operators can match arbitrary branching path patterns and
index-based operators can only match linear paths. In the following, we will give an
overview over the PPOs in the physical algebra, starting with navigational PPOs.

7.1 Navigational PPOs

Let us assume, a document like the one depicted in Figure 7 is stored in XTC’s document
store [Mat09]. Upon storage, the nodes are numbered using path-based node labels (also
known as DeweyIDs or OrdPaths). These labels have certain salient features: they allow
to compute all ancestor labels, their lexicographical order represents the document order,
and they leave gaps to insert new nodes without altering existing labels. Given a node
label, the document allows to retrieve other nodes, for example, all children, the complete
subtree, the next/previous child, the parent node, and so on. These access primitives are
used by navigational PPOs.
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The axis-step navigation operator receives an axis, an XQuery node test, and a reference to
the operation that provides its input node stream. For each node in the input, the algorithm
queries the document store to evaluate the axis expression and applies the node test. Nodes
that fulfill the test are passed on to the next operator. With this algorithm, all XPath axes
and node tests can be evaluated. Note, this algorithm can be applied to evaluate all (but
the left-most) access operations in Figure 4.

A problem with the axis-step navigation operator is that it might do work twice and that it
might return duplicates in the wrong order (depending on the query and the document). As
an example, consider XQuery expression $d/descendant::w, where $d is bound to
sequence S. S is a series of context nodes that serve as starting points for the navigation.
Let S contain two nodes u and v, where v is a descendant of u. Suppose that in the
document, a node w exists, which is a descendant of both u and v. On the evaluation of axis
step $d/descendant::w, the above algorithms would return w twice (because they
are evaluated both on u and v). However, XQuery semantics demands that the result of an
axis step is duplicate free. Therefore, distinct-doc-order functions are embedded during
normalization to sort the result and remove duplicates. The multi-node navigation operator
avoids sorting and duplicates by analyzing the input sequence and only navigating from
nodes that produce a duplicate-free result in document order. The details of this and the
following algorithms are omitted in this paper. We refer to [Mat09].

7.2 Join-Based PPOs

Navigational PPOs require some input node(s), which serve(s) as a starting point for the
navigation operation over the document. In contrast, join-based PPOs do not directly
access the document. They operate on two or more node streams and are capable of finding
path matches in these streams. How the node streams are created does not matter. They
could be the result of a document scan, an index scan (see below), or they could be the
result of other operators. XTC implements variations of two well-known algorithms: the
structural join (STJ) and the holistic twig join (HTJ) algorithm.

The structural join in XTC is a merge-join algorithm, which is an extension of the original
StackTree operator [AkPJ+02]. As an example, consider the two tuple streams containing
track elements and title elements (see Figure 7). The track stream has the following node
labels: 1.3.11.3, 1.3.11.5, 1.3.11.7, and so on. The title stream has labels 1.3.3, 1.3.11.3.3,
1.3.11.5.3, and so on. Suppose we want to find all title children below all track elements.
Because our node labels encode this information and the node streams are ordered, we can
apply the merge-based StackTree algorithm. In our example, the first title element does
not find a join partner.
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We extended the original StackTree operator by some features for the integration into our
physical algebra. Our StackTree variant supports semi-joins, full joins, and outer joins.
The join implementation returns the result in distinct document order (in case of a semi-
join), or in inner/outer and outer/inner output ordering (in case of a full join or an outer
join). The evaluation axis can be one of the following: child, attribute, descendant, parent,
ancestor (and the -or-self variations of descendant and ancestor). The reverse variants of
the algorithms are implemented by exploiting join commutativity.

The twig join operator is a complex merge-join operation that can be seen as an extension
of the structural join. In contrast to structural joins, the algorithm can consume more than
two node streams, in which it matches complex branching path patterns known as twigs.
Our notion of a twig has been introduced as the twig specification in Section 5 and Figure
5. To the best of our knowledge, [Mat09] published the first algorithm that provides all
features that can be expressed in our twig specification. Such an algorithm is desirable,
because the higher its expressiveness, the more operations can be embedded into the twig
algorithm, thus, resulting in a smaller number of operators in the final plan and fewer
intermediate results. Furthermore, evaluating as many operations as possible can avoid
intermediate-result materialization.

We picked a promising approach as the basis for our implementation, namely, the TwigOpt
algorithm proposed by [FJSY05]. The algorithm operates on a set of node streams, one
for each node in the twig. For example, in the physical representation of the XQGM
instance shown in Figure 6, each twig input produces such a stream. The streams can be
generated by a document scan, an index scan, or by other operators. They have to return
the nodes in document order. The twig algorithm accesses a stream through a cursor.
The cursor state can be modified using methods setToFirst(), getCurrent(),
and forwardTo(). The first method initializes the cursor to the first node. The second
method returns the node at the current location of the cursor, and the forwardTo()
method advances the cursor. Based on the state of the cursors, the TwigOpt algorithm
identifies the cursor that can skip the largest fraction of its input stream. This cursor is
advanced as far as possible. After each move, the cursor positions are checked for a twig
match. In case of a match, some output according to the twig specification is produced.

7.3 Index-Based PPOs

XTC supports a variety of indexes. The document store itself is an index that allows
to retrieve nodes by their labels. All elements with a certain name can be indexed by
the so-called element index. Element-index scans can produce node streams for the STJ
and HTJ algorithms. For value-based point and range predicates, XTC can index text
nodes in the content index. Because path expression occur frequently in XQuery, path
indexes can be created. A path index is specified by a linear (i. e., non-branching) path
pattern, for example I(//cd/title). All nodes that fulfill this pattern are stored in the
index. Combining path indexes with content indexes results in the so-called content-and-
structure (CAS) index, which is also defined by a linear path pattern. For all these indexes,
appropriate access operators exist in the physical algebra.
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Figure 8: The path synopsis

In the following, we want to highlight a specialty of XTC, namely, the integration of path-
index and CAS-index scans with the holistic twig join operator. Both index types are built
with the help of the path synopsis (PS). A PS is the structural summary of all paths in the
document. In XTC, the PS is kept in main memory for fast access. Figure 8 shows the
PS of our sample document from Figure 7. Every node or attribute in the PS is labeled
with a unique integer called path-class reference (PCR). Given the PS, a PCR, and a node
label, we can reconstruct the entire path to the root without accessing the document (the
labels can be computed from the given node label and the element names can be retrieved
from the path synopsis). For example, PCR 11 (see Figure 8) and node label 1.3.11.3.3
(see Figure 7) let us reconstruct the following ancestor nodes: title (1.3.11.3.3), track
(1.3.11.3), tracks (1.3.11), cd (1.3), and recordStore (1).

Because our path-based indexes store PCRs together with node labels, scan operations on
these index types return PCR-label pairs. By applying ancestor reconstruction to such an
index scan, we can compute the node streams that are required as input to the holistic twig
join operator without document access. This is accomplished with the help of an algorithm
called ancestor tuple builder (ATB). Figure 9 gives a schematic overview over the inter-
action between the holistic twig join and the ancestor tuple builder: Let us assume that
a linear path pattern of a twig specification is covered by a path index (the darker shaded
nodes in Figure 9). Their cursors (C1 to C3) forward the HTJ’s cursor requests to the ATB-
input algorithm, which returns the necessary nodes based on an index-scan cursor (CI ).
Nodes for the ancestor cursors are computed as illustrated above. To trigger their com-
putation, an ATB cursor can call open() to open the node stream and processTo(),
which advances the computation to a given node label (similar to the other twig cursors).

7.4 Heuristics for Plan Generation

As stated in Section 6, the plan generator shall enable the generation of all plans in the
search space (see [Mat09] for the details), and shall be able to assemble a good plan.
To reach the second goal, we conducted a number of experiments based on the XMark
benchmark [SWK+02]. Figure 10 highlights some results. All 20 XMark queries were
evaluated either fully implemented by navigational operators (see Section 7.1), by join-
based operators (see Section 7.2), or based on a set of existing indexes (see Section 7.3). As
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you can observe, in this benchmark, join-based query evaluation is almost always a better
strategy than navigation. Especially on queries with long paths, index-based evaluation
is advantageous. From these and from other experimental results reported in numerous
papers about indexing, structural joins, and holistic twig joins, we drew a set of rules
to parameterize the plan generator. We chose the following simple heuristics: The plan
generator 1. always unnests the query to enable join-based query processing, 2. favors
join-based processing over navigational processing, if an element index exists, 3. favors
twig joins over structural joins, and 4. gives indexes the following precedence (from high
to low priority): CAS index, content index, path index, element index, and document
index.

8 Conclusion

XML data processing has been an actively researched topic in the last decade, which lead
to XML support in all major commercial database systems. This paper summarized the
author’s research on XML query processing, which was conducted during the authors en-
gagement in the XTC project at the University of Kaiserslautern. The hierarchical data
model and the semantically rich XQuery language required new approaches to data stor-
age, indexing, query processing algorithms, and query rewriting. To bring these new ap-
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Figure 10: A comparison between physical operators on the XMark query set
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proaches together, XTC leans on the classical relational query-processing pipeline and
extends the well-known relational Query Graph Model for query representation. For a
prototypical system, XTC has a quite extensive physical algebra including a rich set of
different index types and navigational, join-based, and index-based query processing al-
gorithms. This makes XTC ideal as a test bed for future research.
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Abstract: Surgical Intensive Care Unit data management systems suffer from 
three problems: data and meta-data are spread out in different systems, there is a 
high rate of false positives, and data mining predictions are not presented in a 
timely manner to health care staff. These problems lead to missed opportunities for 
data analysis, alert fatigue and reactive, instead of proactive analysis. In this demo, 
and in contrast to current CEP efforts, we present a proof-of-concept, integrated 
engine that runs entirely within a single database system. The resulting novel and 
low cost event processing architecture uses features and components commercially 
available from Oracle Corporation. We demonstrate how multiple data from a real-
world surgical intensive care unit (bed-side sensors and all other information 
available about the patients) are assimilated and queries, alarms, and rules are 
applied. The system is highly customizable: staff can point and click to create, edit 
and delete rules, compose personal rules (per patient, per doctor, per patient-
doctor), and, while maintaining a hierarchy of rules, create rules that inherit and 
override previous rules. The system is also integrated with the data mining module, 
being able to offer predictions of high risk situations in real-time (e.g., predictions 
of cardiac arrests). Using simulated inputs, we show the complete system working, 
including writing and editing rules, triggering simple alerts, prediction of cardiac 
arrests, and visual explanation of predictions. 

1 Introduction 

Modern medical institutions have electronic devices that continuously monitor the vital 
signs of patients such as heart rate, cardiac rhythm, blood pressure, oxygen saturation 
and many others. Those devices are usually set to trigger alerts for critical values that are 
above or below predefined thresholds. Due to the static configuration of those 
thresholds, the devices alert the doctors and nurses for the same critical values regardless 
of patient condition, demographics, and alarm history. That is, the monitoring 
middleware typically does not distinguish between: 

 A patient with a cardiac condition and a patient without a cardiac condition; 

                                                           
* A shorter version of this paper has been published at DEBS2009. The presentation at BTW 2011 discusses 
the work described in this paper as well as the follow on work presented at HealthInf 2011 [6] 
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 A male baby with high heart rate and a female senior with high heart rate; 
 A patient that started to have high fever and a patient that has had high fever 

more than 30 minutes. 
Ignoring those differences leads to missed alarms, a very high rate of false alarms, alert 
fatigue and causes medical staff to ignore most of the alerts. 

Another problem is that patient information is normally spread out in multiple 
independent systems. Those systems contain details of exams such as x-rays, MRI’s, 
blood tests or unstructured free text entered by nurses and doctors. The dispersion of 
information through independent systems does not allow the systems to make decisions 
considering the complete patient information. 

Data mining systems can detect patterns to predict or identify serious conditions but are 
normally used offline and in different systems. ICUs are time critical environments 
where data mining operations (scoring) to identify possible risk situations must be 
performed continuously. 

1.1 Contributions 

The goal of this prototype, based on the Surgical Intensive Care Unit environment of the 
University of Utah Health Sciences Center, was to build a system with the following 
characteristics: 

 A single integrated persistent system to manage historical data, events, rules, 
and data mining models. See Section 2. 

 A highly customizable system that: lets users edit and create rules, maintains a 
hierarchy of rules, and allows personal rules and complex composable rules, 
thus contributing to reduce alert fatigue. See Section 3. 

 A system able to identify possible future risks by per-forming data mining in 
soft-real-time. See Section 4. 

2 Components and Architecture 

This prototype was developed with Oracle technologies. Some of the technologies used 
in this prototype (Total Recall, DCN, Rules Manager, Data Mining) have been 
developed as independent features and not as components of an integrated system for 
event processing. Part of the challenge and motivation to build this demo was using 
these technologies to build an integrated system with the characteristics identified above. 
These technologies and their contribution for the presented prototype are described 
below. 
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2.1 Oracle Total Recall (TR) 

In a normal database, if you want to store the current and historical values of a sensor, 
you normally use application logic and write the values time stamped, and possibly in 
different tables for the actual and historical values. Thus, a sensor with 100 readings 
takes 100 records in the table(s). 

However, using Oracle TR [3] (a technology developed to handle the versioning of 
records), the reading will take just one record in the table and the other 99 historical 
values will be transparently kept elsewhere. Those historical versions can be accessed 
with the AS OF and VERSIONS BETWEEN clauses. The AS OF clause is used to select 
values in some point in time: 

-- Select temperature 5 mins ago 
SELECT temp FROM patients 
   AS OF TIMESTAMP 
   systimestamp – INTERVAL ‘5’ MINUTE); 

 
The VERSIONS BETWEEN clause queries past ranges: 

-- Select temp of patient in the last hour 
SELECT temp FROM patients 
   VERSIONS BETWEEN TIMESTAMP 
  (systimestamp – INTERVAL ‘1’ HOUR) AND 
   systimestamp 
WHERE pid = 10; 

 
With TR a slightly extended SQL can be used to access the history; the maintenance of 
history records is transparent. 

2.2 Continuous Query Notification (CQN) 

Oracle CQN [2] is a technology that allows the database engine to notify clients about 
new, changed or deleted data. CQN is different from database triggers. While triggers 
fire when SQL statements are executed, CQN only notifies about committed data; in one 
case you see dirty data in the other case you see committed data. This technology has 
two major modes of operation: Object Change Notification and Query Result Change 
Notification. Query Result Change Notification (the option used in this prototype) allows 
the user to define with a query what changes should be notified. For example, the user 
can use CQN to watch for changes in the temperature of patient number 10: 
SELECT temp FROM patients WHERE pid = 10; 
 

CQN will notify only if the temperature of patient number 10 is different at the end of 
the transaction. 
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2.3 Oracle Rules Manager (RM) 

Oracle RM [1] is a rules engine inside the database. It works based on events that are 
represented by objects and matches those events to rules defined by the user. The user 
can define rules that identify, e.g., sequence of events, patterns based on aggregations 
over time- or count-based windows, non-occurrence of events, disjunction of conditions, 
or using user-defined functions. RM can watch for changes in tables itself or, as done 
here, can accept events through its API (accessible from PL/SQL or externally using 
JDBC and similar interfaces). 

RM can define highly complex scenarios without defining very complex rules by using 
user defined callbacks, production of events to be caught by other rules (see Section 3.1), 
user-defined conflict resolution policies and user-defined custom event consumption 
policies. All these features make the system very customizable. 

The rules are stored in a table (simplifying rule maintenance) and defined either as a 
WHERE clause or in a XML specific language as show in Figure 4. 

2.4 Oracle Data Mining (ODM) 

Oracle DM [4] is data mining engine embedded in the Oracle Database. The users can 
run data mining algorithms and also build and run models over the data all within the 
database.  

In this project, the data mining algorithms take as input the patient laboratory 
information and output the predicted risk of patients having a cardiac arrest or 
respiratory failure in the next 24 hours. The two models, built by Pablo Tamayo from 
Oracle/MIT, use a 725 patient training set from the SICU of the University of Utah 
Health Sciences Center. 

2.5 Architecture 

The goal of the prototype was to develop a single, integrated system able to perform 
different kinds of processing in a centralized and integrated system. 

All the information persists in database tables. These tables are TR enabled and 
automatically keep history of changes for each record (See 1 in Figure 1). CQN monitors 
changes on sensor states (2 in Figure 1), generates corresponding events objects and 
sends them to be consumed by RM by calling its add_event function (3 in Figure 1). 
Then, the RM evaluates the rules and triggers actions to alert doctors and nurses through 
dashboards and mobile device communication channels (4 in Figure 1). Some rules also 
trigger calls to data mining models (5 in Figure 1) to apply predictions in real time. The 
results are sent back to the Rules Manager (6 in Figure 1), which then evaluates new 
rules to determine if those results need to be pushed to medical staff as well. Thus the 
data mining operations will only be applied in situations that will likely give some 
interesting results and not every time the data changes. As described next in Section 3, 
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Abstract: Complex Event Processing (CEP) gained more and more attention in 
research and practical usage during the last years. Several engines and languages 
have been created and adapted in order to handle complex events. To describe the 
aggregation of simple events to more complex ones, these engines use technical 
and formal languages which are difficult to handle for business experts. Hence, 
business experts are often not properly involved in the definition of complex 
events. This lack in the area of requirement engineering worsens the result of many 
CEP projects. Therefore this paper proposes a conceptual modeling language that 
allows business experts to specify complex events according to actual business 
needs. The proposed modeling language is demonstrated in a quality management 
scenario in the automotive manufacturing industry and is defined with OMG’s 
MOF standard. 

                                                           
1 This paper is based on our work in the research project ADiWa, which is funded by the German Ministry for 
Education and Research (BMBF) under funding reference number 01IA08006. 
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1 Introduction 

Within the last years, complex event processing technology continuously maturated and 
is going to leave its technical niche. The founding of the Event Processing Technical 
Society (EPTS), their aim to provide a foundation for analysis and communication [1] 
and the fact that nearly all big business software vendors extend their portfolios with a 
complex event processing (CEP) engine indicate that CEP is becoming more important 
for daily business. Apart from that, the possibility to fit more and more prefabricated 
parts or products with RFID tags in an affordable manner will also steadily increase the 
amount of real-time information that must be processed in an enterprise. Since these 
isolated pieces of information about one component are usually not relevant for business 
decisions, they must be aggregated and put into a larger context to allow for supporting 
business-level decisions. Hence the aggregation of single events to complex and business 
relevant ones with the help of CEP engines [2], [3] is coming to the fore. CEP engines 
allow aggregating several basic events to complex ones and provide a history of both 
types of events. Therefore complex events can be generated that trigger specific business 
processes or even invoke changes in a running process instance. For example the 
complex event “15 percent of parts from the same charge assembled within one hour 
have a different weight than expected” can trigger both a business process for removing 
the entire charge from production and a supply chain process to order new charges as 
reimbursement. Despite their relevance for business processes, complex events are 
commonly represented by query languages or XPath expressions [4]. 

These languages are well comprehensible for technical staff, so implementing a precisely 
specified CEP query is normally not much of a problem. However, the necessity for CEP 
usually originates from a business scenario that mostly non-technical domain experts 
with an economic background are familiar with, such as the stock manager in a 
manufacturing company. I.e., successful CEP applications require the involvement of 
business domain experts who usually lack of profound technical knowledge in complex 
event processing languages required for the specification of complex events. So from a 
technical point of view, the challenge is to allow business people to specify their CEP 
requirements in a standardized and technically sound way. 

To bridge this gap between business and IT view and to involve business users and 
process owners in CEP implementations, we propose a conceptual semi-formal and 
graphical modeling language that enables users to specify complex events in a business-
oriented manner. The language allows for using various data sources in order to describe 
complex events and the aggregation of basic and complex events to (higher) complex 
events in any number of aggregation levels. A technician can transform such conceptual 
CEP models more precisely and easily into technical CEP specifications than, 
requirements written down in textual form. Furthermore, complex events are required for 
business process modeling in order to describe reactions to complex event occurrences 
as business processes. After setting the basic principles, we demonstrate our approach 
using a production process from an automotive scenario as an example. The paper closes 
with a summary and provides an outlook on further research requirements. 
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2 Theoretical Foundations 

2.1 Methodology Used 

In an endeavour to contribute to the field of information system (IS) research, this paper 
follows the seven guidelines for design science in IS research by Hevner et al. [5]. 
Especially the guidelines of relevance and of the creation of an artifact as result of the 
design science process have been followed. The relevance of the research topic was 
derived from requirements the authors were confronted with during the research project 
ADiWa, funded by the German Ministry of Research and Education (BMBF), and in 
several industry consulting projects. The resulting artefact of the research process is a 
modeling tool and its underlying concept. Moreover, Weick’s sense making paradigm 
[6] is taken into account which ensures the consistency of the developed modeling 
language and its integration into business process modeling approaches. 

2.2 Terminology and Related Work 

Before our complex event modeling concept is presented, the underlying terminology is 
briefly clarified in this section. However, tracing former and current terminological 
discussions would exceed the scope of this article, so we confine ourselves to the 
characterization of the terms “event”, “complex event” and “complex event processing”. 

An event is considered an abstracted data representation of a real-world happening. Thus 
it is associated with that point in time when the underlying real-world incident happened. 
The event’s data structure highly depends on the scenario and real-world happening that 
is to be represented. Usually, event modeling aims for lightweight events that can be 
quickly transferred and processed in large amounts. Events are immutable, i.e. they 
should never be altered once they are created. Events are temporary, i.e. they are rather 
intended for real-time or short-term processing instead of long-term storage and ex-post 
evaluation. They are neither intended to replace the operational control flow (which 
remains subject of established technologies like EAI), nor as a means of point-to-point 
communication. Normally they are generated, broadcast and processed by a large 
number of application systems simultaneously, thus forming a so-called event cloud 
comprising thousands of events.  

Although generating events is a simple and fast procedure for every single system 
participating in the event cloud, they allow to reconstruct a situational “big picture” 
across an arbitrary number of systems by identifying sets of interdependent events. If a 
situation arises that is identified by a characteristic sequence of events, a new event is 
generated which announces this situation. Since the event is a summary of many 
“simple” events, it is called a complex event. The process of aggregating a set of events 
according to a predefined rule describing such a situation is called complex event 
processing (CEP). 
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A popular example for the application of CEP is credit card fraud detection [7]. It is 
presupposed that for every credit card transaction, the banking IT generates an event 
including the amount, the beneficiary, the card number and the location of card usage. A 
specialized monitoring system then scans this “event noise” for patterns that indicate 
credit card fraud: e. g. when a card is used in New York at 3 pm and in Paris at 4 pm, 
this strongly indicates fraud since no one can travel that fast from New York to Paris. 

From a general implementation point of view, there is a multitude of standards and 
technologies available for developing CEP solutions which can be distinguished in two 
major paradigms. Stream-based approaches usually implement an SQL-like language to 
inspect and modify event streams [8], e. g. Esper [9], SASE [10] and StreamSQL [11]. 
Rule-based approaches allow specifying ECA rules for event processing, e. g. JBoss 
Drools [12]. 

Open source and commercial frameworks, emerging and mature solutions, simple and 
complex packages – even a concise review of the available software would go beyond 
the scope of this article. Therefore we do not presume a specific CEP technology to build 
our conceptual modeling approach upon. Instead, the proposed modeling method aims at 
abstracting from the underlying CEP technology. Of course this implies that the 
expressiveness of the conceptual layer must be adaptable to the technical realization – 
however, this is beyond the scope of this article and will be treated in a later publication. 

3 Modeling of Complex Events 

3.1 Application Scenario 

To outline the benefits and to exemplify the usage of conceptual modeling of complex 
events, we chose an assembly line production process in the automotive sector. Within 
the assembly line, each future car is passing through different stations where delivered 
preassembled components are installed. According to lean and just-in-time production, 
these components are delivered exactly at the right time and in the right amount to the 
station where they are assembled. For each incoming vehicle, the assembly worker at a 
station is instructed which parts to assemble. The parts are identified by RFID tags to 
ensure that the correct variant for a certain vehicle is assembled. 

Today, following Kaizen [13] and total quality management principles, each employee 
working on the assembly line can stop the line by signalling a problem – we will 
furthermore call this an “incident report”. A responsible head to the station actuates the 
stop, checks and analyzes the problem and resumes production after the problem is 
solved. Beyond that, there is an additional final inspection of each vehicle produced 
which may also reveal quality defects unnoticed during the assembly. 
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This procedure is considered an effective and efficient reaction to emergent problems as 
they are handled “right at the source” whenever possible. However, subtle increases of 
incidents and/or quality defect frequency often remain unnoticed for some time, although 
they may indicate a larger underlying problem, e. g. a defective lot of supplied parts. 
Hence it would be very valuable to detect such problems at an early stage. 
Unfortunately, recognizing such problems requires complex considerations of a lot of 
factors and thus could not be modeled in an intuitive manner. Within the next sections, 
we describe a modeling concept to deal with such problems using the example given 
above. First we exemplify the conceptual modeling layer and then we shortly outline the 
technical realization. 

3.2 Conceptual Modeling 

In current business process management approaches, processes are documented using 
semi-formal modeling methods. The Event-driven Process Chain (EPC) [14] is a widely 
accepted standard in process modeling. Here, business relevant events and corresponding 
business functions are put into sequence in order to define the behaviour of a business 
process. A process model thus defines a sequence of actions which are triggered by 
certain events and which produce certain events. However, this linear control flow with 
its strong emphasis on business functions makes it difficult to express complex situations 
such as a slow increase in incidents exemplified above. It is not necessarily impossible to 
express such conditions in an EPC, but the model complexity would be immense and 
reduce the expressiveness and readability of the model. Therefore we propose to 
introduce a new modeling language called Event Structure Model (ESM) which 
supplements the EPC. It allows defining situations by specifying certain event 
constellations and how to react to such situations by generating new events. Thus an 
ESM model can connect several EPCs by collecting relevant events from different EPCs 
and by producing new events triggering other EPCs. 
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Figure 1: Meta model of the Event Structure Model (ESM) 
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In order to describe ESM we use OMG’s Meta Object Facility (MOF) [15]. MOF uses 
UML class diagrams that can be enhanced with Object Constraint Language (OCL) 
statements. Figure 1 shows the meta model of the ESM language. 

The entry point of the meta model is the abstract class “Event”. Events can be 
distinguished in simple events and complex events. Complex events can be constructed 
from an arbitrary number of simple or other complex events. The aggregation connector 
creates the relationship between complex events and events that it is deduced from. The 
way how events are aggregated to a complex event is described as an aggregation rule, 
which is attached to each aggregation connector. The aggregation rule is based on data 
items that are provided by an event. These data items are used in the aggregation rule in 
two ways. First, they are used in order to specify whether the complex event occurs. 
Second, data items of the complex event can be created based on data items of its 
ingoing events. The graphical notation is presented in the scenario below. 

To visualize the functionality of ESM, the application scenario introduced above is 
further detailed by an exemplary ESM. On the left-hand side of figure 2, a simplified 
process model of the application scenario is depicted as an EPC. For each vehicle to be 
assembled, parts are installed at different assembly stations. Once the installation of a 
specific part succeeded, the vehicle is transported to the next station until the end of 
production line is reached. A final quality check is conducted, ensuring the overall 
quality of the product. 

Vehicle must be
assembled

Install part Incident reported

Part installation
successful

Transport vehicle
to next station

Assembly finished

Final check

Final check
passed

Quality defect
detected

Assembly not
finished yet

Resolve incident
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Quality defect
detected

Material master data

Incident peak
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Other kind of
incident peak

Incident peak at
certain as-

sembly station

Incident peak
for certain

material batch...

Other kind of
incident peak
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certain as-

sembly station
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material batch...

Check material
batch

Check assembly
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Identify and
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Incident peak
resolved

Event Structure Model

Complex Event Handling Model

Original Process Model

A

A

Figure 2: An Event Structure Model (ESM, top right) mediates between the standard 
production process (left) and the separate process for handling exceptional incident 
peaks (bottom right) 
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Incidents in the assembly process cause the assembly worker to stop the production line 
in order to resolve the issue. At the point of detection, the main priority is to resolve the 
error as fast as possible to minimize the delay in production, providing very little room 
for thorough root cause analysis and correlation of incident reports. Similarly, if a 
defective part is identified in the final quality check, it is communicated by the event 
“quality defect detected” and repaired with high priority in order to deliver the final 
product. 

Since there may be multiple lines of production within a factory, peaks within the overall 
number of similar incidents may not be obvious, especially if the incidents happen 
during different working shifts or at different stations. However, the identification of 
peaks in related incidents (e. g. caused by defective parts of the same lot) is vital in order 
to optimize the production process and to prevent incidents from reoccurring due to the 
same cause. By correlating all incident events occurring in the production process, the 
complex event “incident peak occurred” can be refined. 

In our approach, the structural aggregation of the complex event is specified as an ESM. 
As depicted in the top right corner of figure 2, complex events are aggregated by 
connecting member events from process models as well as external information carriers 
using a complex event aggregation connector (“A”). Each of the ingoing objects is typed 
by an assigned data type model, representing the “payload” that is communicated by 
those events or information carriers. The aggregated complex event itself can be used to 
define further business relevant complex events. In the application scenario, the two 
events “incident reported” and “quality defect detected” as well as the part’s material 
master data are used to form the complex event “incident peak occurred”. The latter is 
used to deduce three business relevant events which serve as trigger for optimization 
processes as shown in the lower right corner of figure 2. 

Once the structural aggregation is defined, a mapping of ingoing event data to the 
complex event’s data structure is to be specified. Within that mapping, arithmetic and 
logical operators are available in order to define the desired payload of the resulting 
complex event.  

By defining complex events in the ESM using simple events from process models, the 
conceptual aggregation aspects are covered. For the deployment of complex event 
definitions, technical aspects such as data mapping and filtering of data streams need to 
be covered. These technical modeling aspects are assigned to the complex event 
aggregation connectors and are described in detail in the next section. 

3.3 Technical Modeling 

When creating ESMs, it must be taken into account that the majority of business relevant 
events defined in EPC models are of complex nature (such as “goods received”) and are 
not directly measurable in a company’s runtime environment. From a business user’s 
view, the information provided is sufficient in terms of business process management; 
however, such “narrative” declarations lack execution-relevant information on the actual 
process implementation within the company. 
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To allow for an implementation of the ESM described above, it is necessary to amend it 
with technical details that specify the event aggregation operationally. For that purpose, 
platform independent technical models are added to the conceptual model. Actually 
every A-connector in the conceptual ESM is assigned with such a technical aggregation 
rule. As an example, figure 3 shows the technical model for the upper left A-connector 
in the ESM in figure 2. 

 

Figure 3: Technical CEP model describing the generation of the complex event “incident 
peak detected” 

The technical model is laid out from top to bottom. At the top there are the information 
sources, i.e. the material database and three types of events. They are used to construct a 
single event stream consisting of incident and quality defect reports exclusively. 
Construction starts with an “incident report” event only carrying the number of the 
station reporting the incident. However, this information is too scarce to analyze the 
cause of a peak later, so it is combined with the previous event “part assembly started”. 
Each part is equipped with an RFID tag and whenever an employee starts assembling a 
part, he first scans its tag. Every such RFID scan generates a single event “part assembly 
started” which carries the scanned part number. If an incident is reported afterwards, this 
part is assumed to cause the incident and its number is added to the incident report event 
by joining it with the previous assembly start event. In the conceptual model, this 
connection to the assembly start event is not expressed since it is more a technical than a 
conceptual necessity. 
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In a similar manner, quality defects detected during the final quality assurance (QA) 
check are broadcasted as events. The quality defect report names the objected parts, so 
their numbers are included in the QA events. The station ID of the QA events is set to 
the QA station number, so the QA event structure is exactly the same as the incident 
report event structure: both have a station and a part number. Thus the origin of such an 
event is no longer of concern; both types are furthermore treated as „incident report 
events“. 

Similarly to joining event streams it is possible to include static data in events. The join 
on the left adds additional material data (manufacturer and shipment ID) from the 
material database to the events. Finally there is an incident report event identifying 
station, part, manufacturer and shipment related to the incident. 

In the next step the stream of these events is analyzed: the average incident frequency 
within the last full seven days is determined and is compared to the number of today’s 
incidents. If the number of today’s incidents exceeds 125% of last week’s average, the 
complex event “incident peak detected” is generated. It is amended with information 
about the statistical distribution of stations, manufacturers and shipments involved in 
these incidents. 

The technical model of the second A-connector isn’t shown here since it is quite simple: 
if the station or the shipment distribution shows a significant accumulation of a single 
ID, the incident peak is likely to be caused there and must be investigated accordingly. 

4 Conclusion and Outlook 

In this paper, we propose an extension to the Event-driven Process Chain (EPC) which is 
called Event Structure Model (ESM). On a conceptual level, ESM allows to associate 
different EPC models by specifying conditional transitions from one set of events to 
another one, thus defining processes which react to certain situations. On a technical 
level, ESM models can be amended with precise aggregation rules which allow their 
realization using Complex Event Processing (CEP) engines. However, the distinction 
between conceptual and technical layer allows separating the “business logic” from its 
realization so that CEP technology becomes accessible to non-technical business experts. 
Besides specifying ESM formally, we exemplified its usage in an application scenario in 
the automotive sector. 

There are mainly two points of contact for subsequent research. First, on a conceptual 
level, other application scenarios that allowed for refining ESM, from industrial as well 
as non-industrial branches, would be a valuable addition to this work. Second, from a 
technical point of view, ensuring compatibility of different CEP engine concepts with 
ESM still poses a challenge. Although both points will be addressed in the context of our 
further research efforts, a lively scientific discussion with diverse contributions could 
show up new and important aspects of conceptual event modeling. 
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Abstract: During the last decade data mining and predictive tools have evolved to
a mature level. Many companies and organizations use those techniques to derive
advanced insight from their company data. Today, mining experts analyze the data
and manually deliver the results to a rather small number of decision makers. To make
data mining insights available to a broader audience, manual delivery is not sufficient
anymore. Suitable delivery vehicles are reporting systems, which are well known to
business users. However, in most cases there is no straight forward delivery path.
Much manual work and knowledge is necessary to make the insights consumable by
reporting systems.

In this work we propose a system that allows fast and easy delivery of data mining
insights to report servers. The system automatically analyzes and transforms mining
results, generates reports and deploys them to the report server.

1 Introduction

Data mining is nowadays widely spread across enterprises, as a technique to derive valu-
able insight from large amounts of business data. This insight is then used to support the
decision making process. In the last decades, research has mostly focused on generat-
ing data mining results rather than delivering them to a broad audience in an easy con-
summable way. For instance, in the retail sector, a mining based customer segmentation,
combined with a customized product affinity analysis allows fine grained decision support
even for front line employees. The employee can not only focus on the suitable customer
group but also on the products and product goups she is responsible for. Most important
however, is that employees are provided with this information in an easy consumable way.
In most companies the enterprise reporting system represents the most appropriate way
delivering those insights. Employees can easily access reports through their web browser
and are familiar with the system interaction.

However, bringing this insight from the data-mining-expert-tool to the reporting front end,
is not straight forward. Reporting systems usually access data stored in relational tables.
Data mining results, however, are very different from flat table structures. They are mostly
stored in hierarchical ways in large documents (e.g. standardized PMML [PMM] format.
Since most of today’s BI systems cannot directly consume data mining models, the mining
insight must first be transformed to a form that is consummable by these systems.

In the following section we show related approaches. In section 3, we illustrate, how the
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proposed deployment system is used to deliver insightful data mining reports. In section
4 we describe the uderlying architecture of the system and in section 5 we shortly outline
products which are suitable in the context of the proposed deployment system.

2 Related approaches

Few vendors provide dedicated report design tools in which a report designer can manu-
ally create mining insight reports. Vendors, not providing dedicated tools force the user
to transform mining insight into a form consumable by the BI system. Further, deep min-
ing knowledge is required to create mining reports with rather general report tools. The
creation of such reports is a tedious task and changes in the underlying data result in long
lasting manual changes. Further, the task of transforming the mining insight, creating the
reports and meta information requires deep knowledge of the involved tools. All those
requirements lead to several people accros the enterprise beeing involved.

Known solutions are based on exporting images generated within the mining tool. How-
ever, this is a very static and non-interactive way. Further, this solution does not provide
automatic deployment of the mining insight. Few tools allow visualizing standardized
mining models natively. This approach is however not very flexible since it restricts the
visualization of data mining insight to predefined graphics [IBM]. Microstrategy also pro-
vides basic native PMML support. However, the reports are assumed to be designed by a
report designer [Mic], and not automatically generated by the system.

3 User interaction

The system we propose allows fast and easy delivery of data mining insights into reporting
systems. The steps required to make those insights available in the reporting front end are
described in this section.

A data mining expert first selects the most appropriate data mining method to solve the
business problem he is facing. He then locates the business data available and explores its
structure. After preparing the data to be used as input for a data mining method, the data
mining expert can choose among an unlimited combination of available agorithms and
settings. This is normally an iterative process, in which the data mining expert performs
several data transformations and creates multiple data mining models and tests them. The
data mining expert then visualizes the data mining models using visualization capabilities
of the data mining tool, as shown in figure 1. Once the data mining expert is satisfied with
one of the created data mining models, this model is ready to be put into production. It is
ready to be integrated as part of an automated business process, or it can be deployed to a
reporting system where employees can access it using the BI front end tool.

With the system presented in this article no additional people with reporting skills are
needed to create the report metamodel and report specifications. Rather, the data mining
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Figure 1: Visualization of a clustering model using the data mining tool

expert can directly deploy the data mining insight by following the steps, illustrated in
figure 2.

(a) Enter the url where the reporting server can be accessed.

(b) Enter the credentials needed to authenticate against the reporting server.

(c) Specify the location (i.e. database, schema and table names) on the relational database
in which the data mining model is to be extracted.

(d) Specify the location on the reporting system, on which the report meta model and the
report specifications will be generated.

The system then automatically analyzes and transforms the mining results, generates the
report metamodel and report specifications and deploys both to the reporting system.

Figure 3 shows one of the reports that are made available through the BI reporting system.
In this example the user of the reporting system can visually analyze the content of the data
mining insight, describing the different clusters in which the customers of the company
have been segmented. Each row of the report represents a certain cluster, and each column
represents a certain field or attribute (e.g: age, gender, average balance...). In each bar chart
the distribution for a field of the customers belonging to a certain cluster is overlapped to
the expected average distribution of all customers in the company. E.g. cluster 3 represents
the elderly people who are rather female and have rather bank cards.

The system presented in this work does not only allow visualizing static data mining in-
sight, which resides on the database prior to report execution. It is also capable of gener-
ating and deploying reports which allow the end user to invoke data mining directly from
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(a) (b)

(c) (d)

Figure 2: Steps to deploy data mining insight into reporting tool: (a) Enter the url for the
reporting server; (b) Enter the credentials to authenticate against the reporting server; (c)
Specify the location on the relational database in which the data mining model is to be
extracted; and, (d) Specify the location on the reporting system, on which the reporting
meta model and the report specifications will be generated.
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Figure 3: BI report presenting data mining insights for a clustering model

the reporting front end. E.g. the user can select the subset of data to be used for mining or
he can configure simple parameters of the data mining algorithm, prior to execution.

Figure 4 shows how the user interacts with a report that allows dynamic invocation of as-
sociation rule mining on a dedicated cluster selected by the user. The user simply performs
the following steps:

(a) Select a certain cluster of customers, for which he wants to compute association rules.

(b) Enter a value for the minimum support of the rules to be computed.

(c) After submitting the report, the association rules are calculated by invoking the In-
Database-Mining functionality.

(d) The calculated rules fulfilling the support threshold set by the user are then presented
in the report front end.

The generation and deployment of such a report is made in a similar way as described in
figure 2.

4 Architecture

The proposed deployment system links two fundamental BI structures. The Warehouse,
based on a relational database that provides In-Database-Mining functionality and the BI
system. The general functionality of the deployment system comprises:
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Figure 4: BI report invoking association rules data mining on demand on a subset of the
data selected by the user

1. Translating the predictive insight into a common format uderstandable by the BI
system

2. Generating meta information and report specifications for the BI system that are
suitable to visualize mining / predictive insight in an appropriate and understand-
able format

3. Deploying the meta information and reports to the BI system.

There exist two fundamental approaches. A static approach in which a mining expert
creates mining models that need to be delivered to the business user. And a dynamic
approach, in which the mining expert just defines the process to create the mining model,
which can then be invoked dynamically by the user through the BI system. The next
chapters describe both approaches in detail.

4.1 Static mining content

The static approach is based on a Mining Model (see Figure 5)1 created by a mining expert
(including Data Preparation and Modeling steps). The deployment system automatically
creates a table representation from the Mining Model and extracts it to the database as a

1For the whole paragraph, the bold terms refer to Figure 5
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Figure 5: System architecture for deployment of static mining insights

Model Table. This representation is done in a fashion such that the mining insight can be
accessed by the BI Server.

In a second step, the deployment system generates the necessary meta information (BI
Meta Model) and BI Report Specifications required by the BI system. This meta infor-
mation and reports are dynamically created based on the content of the Mining Model and
the layout and data of the Model Table containing the mining insight.

Finally, the reports are automatically deployed to the BI Server. The deployment system
uses the BI Server’s API interfaces to deploy the generated BI Meta Model and BI Re-
port Specifications without manual user interaction. It also triggers creation of the actual
report from its specification within the BI Server. Then, the User can access the mining
/ predictive insight like any other report using the BI Client. The BI Server retrieves the
mining insight directly from the Model Table.

Even though the report specification is static, the actual content can be updated. In more
detail, the information contained in the Model Table can be updated by re-executing the
steps marked with an R in Figure 5. E.g. the re-execution may result in a different cluster-
ing reflected by different information in the Model Table. The report specification remains
the same but the content is retrieved from the updated Model Table. This update process
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can also be incorporated into automatic business processes to keep the mining content up
to date.

Generation of the BI-Meta Model:

The BI Meta Model generation is based on templates. The templates contain basic struc-
tures for the meta model according to the underlying mining method (Clustering, Clas-
sification, Association Mining,...). The deployment system first analyzes the layout of
the Model Table. From this analysis, the meta model objects are derived. Second, the
deployment system analyzes the actual data to derive meta model object types.

Generation of the Report specifications:

The generation of the BI Report Specifications is also based on templates. The templates
contain basic structures for the report specification depending on the mining model type.
During generation, the deployment system analyzes the Model Table content. The data
of the model table is e.g. analyzed for the number of features and their relevance for
each cluster. The report can then be restricted to those relevant features. Furthermore, the
formating of the reports and charts is optimized based on the data of the model table. For
each model type may exist several report specifications that are linked with each other.
E.g. detail reports for dedicated charts or drill through reports as explained in the next
paragraph.

Drill through aspect: Often users need to know details from the underlying data from
which the data mining model was generated. The deployment system automatically in-
corporates so called Drill through data into the reports, allowing for better understanding
of the mining model. Most useful is drill through data representing typical records. E.g.
For clustering, typical records are those which best represent the characteristics of a cer-
tain cluster. The deployment system automatically detects such records and incorporates
them into the reports.

4.2 Dynamic mining content

The deployment system also generates and deploys dynamic reports which invoke mining
at the time the report consumer interacts with the BI system. This allows the user to
customize the mining-reports by passing parameters and other settings.

The deployment system automatically creates a Stored Procedure (see Figure 6)2 from
the Data Preparation and Modeling steps which are defined by a mining expert. The
Extraction step is also performed within the Stored Procedure. The BI Meta Model
is now based on the stored procedure instead of the Model Table allowing for dynamic
interaction. The stored procedure can be invoked by the BI Server passing parameters
entered by the User using the BI Client. The dynamically created mining insight is then
retrieved by the BI Server from the Stored Procedure result set.

Generation of the Stored Procedure:

2For the whole paragraph, the bold terms refer to Figure 6
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Figure 6: System architecture for deployment of dynamic mining insights

The stored procedure generation is based on the data preparation and mining steps defined
by a mining expert (see Figure 6). Often, those steps are defined as data preparation and/or
mining flows. The deployment system converts the flow into SQL statements which are
placed into the stored procedure. Further, the deployment system incorporates parameters
defined by the user. Those parameters are defined as input for the stored procedure and
are placed at the proper positions within the SQL statements. E.g. a user could define
the maximum number of clusters. As described above, the user simply invokes the report,
then the BI Server invokes the Stored Procedure passing the parameters. The complex
flow is completely transparent for the user. The Stored Procedure returns data in the same
format as the Model Table.

5 Implementation

The realized deployment system is based on IBM InfoSphere Warehouse including DB2
with In-Database-Mining. The BI system used is IBM Cognos BI 8. Data preparation
and modeling is performed using the Eclipse based InfoSphere Warehouse tool ”Design
Studio”. Design Studio allows dfining data and mining flows which can be translated
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into SQL and directly executed within DB2. The deployment system is implemented
as an Eclipse Plugin for Design Studio. To deploy mining reports to the BI Server the
deployment system uses the Web Services API of Cognos BI 8.

The general architecture is based on standardized technologies like relational databases,
stored procedures and SQL. Therefore, the deployment system could also be realized for
other relational databases with In-Database-Mining like Oracle, Microsoft SQL Server or
Teradata. Further, many BI systems provide public APIs to interact with the BI Server like
Microstrategy or Business Objects.

6 Summary

Besides the analytical task to generate high quality predictive models the delivery to the
right people in time is an important step when turning predictive insight into action. To
reach a broad audience the company’s BI system is the right vehicle to present this ad-
vanced insight in a way the users are used to.

Due to the set up of todays BI environments the process of creating predictive insight and
delivering it to the consumers is a complex process requiring several experts in different
roles.

The presented system demonstrates how this complex task can be performed in an intelli-
gent, automated fashion to accelerate the delivery process (from hours or days to seconds)
and drastically reduce the expert knowledge required.

In this context, not only static mining insight is delivered but the system also allows users
to dynamically invoke predictive analytics directly from the BI front-end without the need
of deep statistics or mining skills.

As the proposed architecture is based on common standards like relational databases,
stored procedures and SQL which are implemented by most vendors, an adoption of the
proposed system can be easily realized for most BI environments and product combina-
tions.
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The IBM Smart Analytics Optimizer for DB2 for z/OS is a new technology to extend 
existing data warehouse environments on IBM mainframe systems. It is a workload op-
timized appliance that enables customers to analyze huge amounts of data in a matter of 
seconds instead of minutes or hours by delivering unmatched performance. This doesn't 
only allow “train-of-thought”analysis as interactive scenario but also enables business 
requests which were simply impossible before. Analytical workloads can now be execut-
ed as a online process instead of asynchronous batch processing. A call center employee 
can for example analyze the customer's behavior pattern while he still is on the phone. 
To achieve this new performance, the Smart Analytics Optimizer is implemented as a 
distributed, In –Memory system where a cluster of computing nodes holds the data in a 
specialized format in main memory structures. New technology enables the product to 
perform scans over compressed data without the need of decompression prior to apply-
ing predicates. A special partitioning scheme allows the parallel processing of the data 
with as few locking mechanisms as possible. As the industry trend is showing that an 
increase of single thread performance is no longer achievable but even standard comput-
ers are now delivered with multiple CPU cores, the Smart Analytics Optimizer is de-
signed to exploit this new hardware as good as possible by assigning specific subsets of 
data to specific cores. The product by itself is running on a cluster where standard in-
stances own hundreds of cores and terabytes of main memory. But even within a single 
computing core, the product makes use of SIMD instructions to perform parallel evalua-
tion of predicates on multiple tuples. 
Besides the raw performance of this new product, the deep integration might even be 
considered more important. The Smart Analytics Optimizer is not a stand –alone product 
as it is offered by several other vendors. Instead it extends the existing relational data-
base manager (DB2) by its functionality without requiring any changes to the existing 
application environments.  
Programs, which were connecting to DB2 before just continue to execute their workload 
against the mainframe database. The internal DB2 functionality then decides when to 
make use of the new Smart Analytics Optimizer or not. The granularity for these deci-
sion is a query block. This implies that a single query with multiple query blocks can be 
partially executed on the Smart Analytics Optimizer and partially on the mainframe di-
rectly. The joined results are returned back to the requesting application by DB2, hiding 
the complexity of the different execution environments and the required transformations.  
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Multiple DB2 subsytems can share a single Smart Analytics Optimizer to make optimal 
use of the attached hardware. Maintenance and configuration is done from DB2 side too. 
The new product is handled just like any other DB2 resource. Stored procedures and new 
DB2 commands are used to query the status, perform configuration tasks or control the 
resources of the accelerator. One of the main goals is to simplify the work of the data-
base administrator. Instead of adding a new resource that needs to be managed, the 
Smart Analytics Optimizer is an appliance that controls and maintains most of its func-
tionality by itself. The general database administration is now easier because the admin-
istrator now longer has to try anticipating all the different query requests against existing 
tables to create the optimal index structures. By attaching the accelerator, the queries that 
would fail to match an index, resulting in an expensive table scan, are now routed to the 
Smart Analytics Optimizer and still answered in a matter of seconds. 
 
Our presentation will give a technical overview about the Smart Analytics Optimizer, 
typical workloads and the new approaches how these are handled. It explains the new 
techniques from a hardware and software perspective. 
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Main memory processing and data compression are valuable techniques to address the new
challenges of data warehousing regarding scalability, large data volumes, near realtime
response times, and the tight connection to OLTP. The IBM Smart Analytics Optimizer
(ISAOPT) is a data warehouse appliance that implements a main memory database system
for OLAP workloads using a cluster-based architecture. It is tightly integrated with IBM
DB2 for z/OS (DB2) to speed up complex queries issued against DB2. In this paper,
we focus on autonomic cluster management, high availability, and incremental update
mechanisms for data maintenance in ISAOPT.

1 Introduction

For supporting management decisions, more and more companies gather business data
in data warehouses (DWH) and evaluate it with the help of modern business intelligence
(BI) tools. Reports are used for identifying market trends, conducting risk assessments,
performing customer segmentations, and many other analytic tasks. These analyses are
considered as business critical by an increasing number of companies and the trend evolves
from static analyses towards ad-hoc reporting by a large user group with varying skill
levels [Gar07]. The data warehouse systems are therefore faced with new challenges for
handling enormous amounts of data with acceptable response times for analytical queries.

Thus, several techniques have been developed for achieving near realtime response times
for reporting queries. They reduce the number of required operations for computing re-
sults and try keeping processing units fully utilized with reducing the I/O bottleneck when
transferring data between different layers in the memory hierarchy. In combination with
massive parallel computations, data throughputs can be increased by orders of magnitude.

Special data structures and algorithms have been developed that exploit access character-
istics of critical system workloads for reducing the amount of data that has to be processed
and efficiently applying typical operators on it. Prominent examples are compressed, read
optimized data structures, cache conscious indexes and query operators, as well as opera-
tions which are executed directly on compressed data.
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Since prices for RAM chips drastically decreased within the last years [Joh02], it nowa-
days becomes feasible to store the entire warehouse data – or at least the critical part of
it – in fast main memory. More and more vendors of modern data warehouse solutions
therefore pit on the application of main memory databases (MMDB) or hybrid solutions
using a large main memory buffer for the data.

For scalability reasons, typically computer clusters consisting of several nodes are used.
Further nodes can be added when the amount of data which has to be handled increases.
Moreover, increasing the cluster size may reduce query response times when parallel com-
putations can be efficiently utilized [DG92].

These approaches lead to new challenges in the system architecture which have to be
addressed. Because companies rely on the availability and fast response times of their
decision support systems, downtimes of latter can become very expensive and have to be
avoided. But sometimes errors occur which must be handled internally and transparently,
especially in the context of an appliance. Nodes in the cluster might fail and others may
take over their parts for keeping the overall system alive. On the other hand, in case
the cluster size is increased to scale up the system, the workload should be redistributed
for an equal utilization for each of the nodes to minimize overall query response times.
Along the same line, mechanisms must be available, which allow a simple upgrade and –
equally important – downgrade of the installed software, including automatic forward and
backward migration of all internal data structures, ranging from the actual data managed
by the system, over the catalog to the actual management of the operating system.

Further problems occur when updates have to be processed on the read optimized DWH
systems. They can lead to degenerations of the typically compressed and densely packed
data structures. These degenerations have to be removed from time to time for main-
taining the system operational and keeping the high performance commitments to user
applications. Because the system must be available all the time, offline maintenance oper-
ations are not an option. Both – updates to the data and reorganizations of data structures –
therefore have to be executed online while concurrent queries are running, without major
negative impacts on latter.

All these challenges should be addressed without increasing complexity of system ad-
ministration. Therefore, an appliance-like approach where most of the maintenance tasks
are performed transparently and autonomously without needing interventions by the ad-
ministrator is the most promising. In this paper we focus on the autonomic cluster man-
agement implemented by IBM Smart Analytics Optimizer (ISAOPT) data warehouse ap-
pliance [IBM10], which is a cluster-based main memory database management system
(MMDBMS).

The remainder of the paper is structured as follows. In section 2 we summarize related
work for high availability and administration questions of main memory DWH systems.
In section 3 we give an overview on ISAOPT and its integration with IBM DB2 for z/OS.
Section 4 discusses the autonomic cluster management features of ISAOPT and how soft-
ware management (including forward/backward migration) is realized. Data management
using incremental updates to synchronize ISAOPT with DB2 is described in section 5.
Finally, section 6 concludes the paper and gives an outlook to further research directions.
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2 Related Work

ParAccel Analytic Database (PAADB) [Par09] is an analytical high performance DBMS
comparable to ISAOPT, implementing a hybrid architecture for both, disk-based query
execution with a large main memory buffer and for databases that reside completely in
RAM. The data is stored in a cluster with either a shared nothing or shared disk archi-
tecture. PAADB uses three types of cluster nodes, all running on commodity hardware.
Leader nodes provide the interface for communicating with external applications. They
are responsible for parsing and scheduling queries, as well as cluster workload manage-
ment. Compute nodes actually store the data highly compressed in a columnar layout and
execute tasks scheduled by leader nodes. The main query performance is achieved without
tuning mechanisms like MQTs or indexes, but with massive parallel computations. Last,
hot standby nodes are used for cases other nodes fail to take over their work. Lost data in
a failover scenario is recovered automatically depending on the cluster architecture. It is
either reloaded from shared disk or from backup replications stored on other nodes.

Vertica [Ver08] also implements a parallel DBMS on a cluster with either a shared nothing
or shared disk architecture. High availability is achieved like in PAADB with replicating
data. If nodes fail, other ones can take over their workload. The Vertica cluster implements
k-safety, i. e. k nodes may fail without causing a system downtime. The overhead for stor-
ing replicated data is compensated using aggressive compression schemes on columnar
data structures. Since updating these read optimized structures causes some problems,
Vertica introduces a write optimized staging area where updates are written to. These
changes are applied to the read optimized part by a tuple mover during runtime. Several
algorithms have been investigated for performing these modifications online in the back-
ground to concurrent query execution. [SI09]. Vertica uses a snapshot isolation approach
for hiding modifications from concurrent queries without locking overhead.

3 Overview of the IBM Smart Analytics Optimizer

ISAOPT is an appliance consisting of a computer cluster and a parallel MMDBMS. It
was developed based on the Blink query processor [RSQ+08] for reacting to the trends
in modern analytical data warehousing environments. It is aimed to improve warehousing
on System z. Because customers using DB2 for z/OS typically pay for computations on
mainframes, executing computationally intensive ad hoc reporting or data mining work-
loads have a noticeable price tag. Thus, ISAOPT is a cost-efficient solution for them,
which also delivers a significant performance improvement for such SQL queries.

The main idea is offering an hybrid approach for supporting both OLTP and OLAP work-
loads with quality of service guarantees close to those for System z. As illustrated in fig 1,
OLTP transactions are executed directly by DB2 for z/OS and expensive OLAP queries are
offloaded by DB2 transparently to ISAOPT. The appliance is attached to the mainframe
via TCP/IP network. DB2 recognizes it as an available resource and offloads query blocks
only if it is deemed to be beneficial, based on the decision by DB2’s cost-based optimizer.
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Figure 1: Overview: IBM Smart Analytics Optimizer

Complex analytical queries are split into query blocks which are executed in parallel by
ISAOPT on several physical nodes in a cluster. Their partial results are merged and trans-
ferred back to DB2 completely transparent to user applications which still use DB2’s SQL
interface without further configuration or source code modifications. ISAOPT’s available
main memory and processing power can be scaled by extending the cluster size. Each node
uses specialized and dedicated commodity hardware (blades) and therefore executing data
warehouse tasks on them is more cost efficient than on general purpose systems like main-
frames – with the penalty of lower hardware quality and, thus, a higher chance for outages.
But latter is compensated by ISAOPT’s cluster monitoring and recovery mechanisms.

Those parts of the warehouse data (called data marts in the following) which are crit-
ical for the analytical workload are replicated to ISAOPT. While the data is primarily
stored on disks in DB2 (and supported by DB2’s buffer pools), it is completely held highly
compressed in the main memory of the appliance (and only backed with disk storage for
recovery purposes). The used compression technique allows a fast evaluation of equal-
ity and range predicates using bitmasks directly on the compressed values and hence
avoids an expensive decompression in many cases. [RSQ+08] Furthermore, a cache ef-
ficient data structure is used which enables the predicate evaluation of queries with vector
operations. [JRSS08] Through these techniques, queries can be accelerated by orders of
magnitude despite the fact that no workload specific tuning techniques like indexes or ma-
terialized views are used. [Dra09] Due to that, no special workload knowledge is necessary
by database administrators for guaranteeing high performance of their systems.
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4 Cluster Management

ISAOPT uses two different types of nodes. Each query being processed by ISAOPT runs
on a single coordinator, which orchestrates the overall query execution, and on all workers.
Due to the integration with DB2 for z/OS, the DB2 for z/OS acts as the client sending
each query to another coordinator. The decision is based on the current workload of each
coordinator, in order to achieve good workload balancing behavior.

Coordinators. A coordinator node does not hold any data in its main memory. It uses
its memory to merge partial query results received from worker nodes and to apply post-
processing, e. g. sort rows of a result set or compute aggregates like AVG. Since it is
not known in advance, how big the intermediate result sets may be, all the coordinators’
main memory has to be available – and still it may be necessary to resort to external sort
algorithms using external storage, for example.

Another task for coordinator nodes comes with system failures. Since multiple coordi-
nators are available, one of them can take over the data and workload of a failed worker,
reducing the impact on other workers – which may already run with high memory pres-
sure. In contrast to PAADB, no hot standby nodes are employed because the hardware
resources of such nodes can be put to the task of workload processing without loosing any
time in case of a system failure.

Workers. A worker node reserves most of its physical main memory to hold the mart
data. Only about 30% of the total memory is available for temporary intermediate query
results as well as all other operations like monitoring and autonomic system maintenance.

4.1 System Failures

The IBM Smart Analytics Optimizer appliance realizes a shared-disk architecture so that it
can easily recover system failures without losing data. All mart data kept in main memory
is also stored on disk for backup purposes. The used commodity hardware cannot match
the stability of System z, resulting in an increased risk of hardware failures. Reloading the
data from DB2 and re-compressing it would be too expensive in terms of time needed for
the recovery and CPU overhead for IBM DB2 for z/OS.

Storing the compressed data on a dedicated storage system as-is expedites the recovery
process with the least amount of overhead. Mirroring the data in the cluster appears to offer
another solution with even faster recovery, but it comes with the penalty that it impacts the
most scarce resource in a main-memory database system in terms of scalability: main
memory.
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4.1.1 Process Failures

A dedicated process is running on each node in the MMDBS cluster. That process may
fail, e. g. due to programming errors. Very fast recovery is often achievable with a simple
restart of the process and the node is operational again almost instantly. To accomplish that
in ISAOPT, all data is loaded into shared memory and will always survive a failing process
because it is not owned by its address space. The recovery time is mostly dominated by
the time to detect the process failure and to restart it (a few seconds) and not by the time
needed for reloading the backup from shared disk (potentially several minutes). Thus,
the outage of the overall cluster will be much shorter, delivering on the promise of high
availability that is expected by customers today even for unplanned outages.

4.1.2 Node Failures

If a complete node fails, e. g. due to hardware problems encountered at run-time or a prob-
lem in the operating system kernel and its drivers, it may happen that the node cannot be
restarted (automatically or even manually) and needs to be replaced. In order to keep the
cluster operational, redundancy mechanisms are required to detect node failures and initi-
ate recovery steps if necessary. Waiting for the hardware problem to be repaired is not an
option in customer environments. The recovery steps include attempts to restart the pro-
cess on the failing node first, then rebooting the blade, and if that also fails, autonomically
removing the node from the cluster and distributing its data and workload to other nodes.
All these steps are implemented in the IBM Smart Analytics Optimizer.

The redistribution of the data is based on the shared file system holding the backup in-
formation, just created for these purposes. ISAOPT employs GPFS [SH02], a high-
performance and fail-safe cluster file system, which has been further enhanced to be fully
auto-configurable and auto-recoverable in the context of the ISAOPT appliance. Since
GPFS does not yet support IPv6, the requirement came up to automatically configure an
IPv4 network for it. The IPv6 automatic configuration features are used to detect which
nodes exist in the cluster and to set up an IPv4 class C subnet. That is done during the
boot process of each node. A small stand-alone tool is employed for the node detection.
DHCP is not being used because its full power was not needed and a DHCP server must
not become a single point of failure either. Furthermore, configuring a fail-safe DHCP
server automatically would have been a more involved task as well.

4.1.3 System Inconsistencies

In rare cases, it may happen that one of the nodes in the cluster is not running with the
correct software version, e. g. because that node was not active in the cluster when a
newer (or older) version was installed and activated. Corruptions on the operating system
are another problem that the ISAOPT appliance has to be able to deal with automatically.
Manual intervention from a support specialist can only be the very last resort. The ex-
pectation of users is that such problems are usually detected and recovered by the system
itself, i. e. a self-healing approach is required. For that purpose, ISAOPT maintains a so-
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called reference system image, in which all administrative tasks are applied first. During
each node’s boot process, the local installation is verified with this reference image and
re-synchronized when necessary.

Avoiding such system inconsistencies by using a network boot mechanism may sound at-
tractive, but the network boot server would introduce a single-point of failure. The storage
system holding the reference system image does not suffer from this problem due to its
own redundancy and failure recovery mechanisms.

4.2 Cluster Administration

Cluster administration sums up tasks that are typically performed by a support specialist
as a follow-up for hardware failures or newly detected and fixed vulnerabilities. It ranges
from replacing broken hardware (e. g. defective DIMMs) over installing new firmware
versions and drivers for components like network cards to adding new nodes to an existing
cluster for increasing its memory capacity and processing power. Therefore, it may be
necessary to remove an existing node from the cluster – while not interrupting the cluster’s
availability for query processing – or to add a new node to it.

The preparations for such tasks are built on the above described recovery mechanisms,
except that the redistribution of the data and workload is explicitly initiated. Due to the
shared-disk architecture, other nodes load the data of a node to be removed from the cluster
from shared disk and take over the node’s workload. The loading of the node’s data and
workload draining is achieved within a few minutes and can be done in advance so that
there is no externally visible outage of the appliance.

Newly added nodes exploit the consistency checks of the operating system level (described
above) to make sure the correct version is running. That means, only a very small base
system (just 50MB) is needed on new nodes. This base system has to be able to boot the
operating system kernel and to perform synchronizations with the reference system image.

4.3 Software Updates & Automatic Migration

A cluster-based MMDBMS must have the capability to switch between different versions
of the appliance. That does not only mean to move from the current version of the software
to a newer one – it should also be possible to easily rollback to a previous software version.
The latter requirement is not often found in todays software products, but it is simply
expected by customers of System z, who have the capabilities to upgrade a system like
IBM DB2 for z/OS without taking it offline at all if it runs in a cluster. Since ISAOPT is
integrated with DB2 like any other service (cf. fig 2), those requirements are transferred
from System z directly to it as well.
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A stored procedure executing in DB2 for z/OS is used to deploy new software versions
and to switch between already installed versions in ISAOPT. Forward migration, i. e. mi-
grating structures from an older to a newer version is straight-forward. It can be applied
transparently in most cases when the new version is activated for the first time. However,
backward migration may be necessary if the newer version may not work as expected (e. g.
performance degradations, stability issues, . . . ).

Transparent migration can not be done when an older version is activated if there were dif-
ferences in the data structures or the meta data compared to the currently running software
version. Therefore, migration functionality is decoupled from the specific version of the
ISAOPT server code into its own, light-weight executable. This tool is always used in its
most-current state. That way, it is ensured that the tool can perform a migration step, even
if the current ISAOPT version may not be capable.

5 Incremental Updates and Data Maintenance

Naturally, the data in a data warehouse has to be maintained incrementally. It does not
matter if it is a standalone data warehouse system or an accelerator like ISAOPT, which is
integrated with DB2 for z/OS and stores its own replica of the original warehouse data. In
both cases, reloading a complete mart would just take too long because multiple TBs of
data would have to be extracted, transformed, transferred, and loaded again.
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Two techniques are being implemented by ISAOPT to update the data and autonomic reor-
ganization is realized as well. Those tasks are running in the background to normal query
processing without any downtime to the latter. ISAOPT implements snapshot semantic
for all tuples like Vertica (cf. Sect. 2). Unique timestamp IDs (called epochs) and an
additional range predicate on them are used to guarantee consistent views on the data for
running queries while updates are active. [SRSD09] This approach allows a lock-free par-
allel execution of these concurrent tasks. Furthermore, failing updates can easily be rolled
back by undoing the modifications marked with the respective epoch ID.

5.1 Log-based Update

The first update strategy is illustrated in fig. 1. When data stored in source tables in IBM
DB2 for z/OS is modified, change records are written into the database log. This delta for
committed transactions is read by a log reader, potentially compressed to merge multiple
update operations on the same tuples, sent to ISAOPT, and applied there. [SBLC00].

To mark tuples as deleted in ISAOPT, the data of the updated table is scanned in its entirety
and the delete epoch for affected tuples is set. Those tuples are not physically deleted and
remain in place so that concurrent queries are not interrupted, i. e. setting the delete epoch
is transparent for them. New tuples are distributed in the cluster, dictionary encoded, and
written directly into the read optimized blocks. A special handling is only required for
new values which have no corresponding dictionary code. [SRSD09]

Unfortunately, the prerequisite that updates are logged is not common for customer ware-
housing environments where many operations usually may bypass the transaction log in
order to improve performance, for example when loading a new set of data for sales of the
previous day. Nevertheless, if applicable, log-based update is the most efficient method
with minimal overhead and can be used for realtime updates.

5.2 Partition-based Update

The second update approach implemented in ISAOPT can be used in all environments
where no log records are available or where real time updates are not important and can be
processed batch wise in larger time intervals. This solution exploits the fact that big tables
are usually horizontally partitioned by ranges where each partition contains a disjoint sub-
set of the table’s data. This range partitioning is exploited by ISAOPT to track partitions,
which were newly added or have been removed. For removed partitions, the corresponding
data is deleted in each replica and all tuples from new partitions are automatically loaded.
Additionally, the administrator can specify which table partitions have data modifications
e. g. resulting from a LOAD or similar operation. These updates are locally limited to the
affected partitions and can be applied with simply re-loading the outdated data.
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This solution has a higher overhead than log-based updates because it may happen that
some data will be transferred to ISAOPT’s replica even if that data actually didn’t change.
The amount of the overhead depends on the table partitioning granularity, the update fre-
quency on the data warehouse data, and the time intervals when synchronizations between
source tables and replicas are initiated.

5.3 Mart Reorganization

When updates are executed, several degenerations can occur which have a negative impact
on system performance and scalability. For example, the following degenerations can be
observed in ISAOPT:

• New attribute values that could not be considered for dictionary computation in the
frequency partitioning algorithm will not have order preserving dictionary codes
assigned. They are covered with special cell types as described in [SRSD09] which
can not be used for fast range predicate evaluations directly on compressed data. If
a tuple has to be stored in the catch-all cell no compression can be applied for it.

• Because the frequency partitioning algorithm determines code lengths depending
on attribute value histograms when the mart is loaded [RSQ+08], shifts in data
distributions through updates can have negative impacts on the overall efficiency of
the dictionary encoding.

• During updates, tuples must not be physically removed as long as previously started
queries are running. With the snapshot semantics, the affected tuples are marked
as deleted and leave gaps in the data structures as soon as the last query needing
them in it’s data view finishes. These gaps waste memory and negatively influence
query runtimes because the deleted tuples have to be tested for validity in each query
snapshot. Since tracking these gaps for overwriting them during following updates
is too expensive, they remain in the data structures and require a clean-up.

To address such problems, a reorganization process is needed in cluster-based main mem-
ory database systems. Following autonomic principles, a self-scheduled process is used,
which is triggered as soon as a reorganization is needed. The decision whether – and
which – reorganization should be performed is based on statistics that need to collected
in the system. For example, ISAOPT gathers the number of tuples marked as deleted or
stored in the catch-all cell and extension cells and it also collects automatically informa-
tion about the executed query workload. Thus, the reorganization task can be a simple
removal of cell blocks that only contain deleted tuples, compacting the data by physically
removing deleted tuples no longer needed by any query in cell blocks, a rearrangement
of the storage layout based on the statistics derived from the query workload, or even the
computing and application of a a new compression scheme.
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Like updates, the internal reorganizations in a main-memory database system like ISAOPT
have to be executed online without major impact on query execution. But required system
resources like main memory and CPU cycles are critical resources. The reorg process of
ISAOPT therefore implements an autonomic adaptation and throttling of resources avail-
able for the task at any time, based on the current workload that is active in the system.

6 Conclusion

A highly scalable cluster-based MMDBMS like the IBM Smart Analytics Optimizer has
many similarities to traditional disk-based database systems in terms of its architecture.
In this paper we presented two important aspects of ISAOPT: cluster management and
data maintenance with incremental updates and online data reorganization. Cluster man-
agement comprises the automatic detection of system failures and initiating of recovery
procedures.

Since ISAOPT is a cluster-based MMDBMS, system consistency across nodes in the clus-
ter has to be ensured, for example in the context of software updates. Mismatches in
the software versions are detected and recovery is triggered. The appliance form factor
relieves the administrator of all such tasks because they are run autonomically. Thus,
administrators only have to take care of deploying software versions and activating the
desired version. Migration of data structures and meta data itself is handled transparently
by ISAOPT.

Furthermore, no administration efforts are required for maintaining the internal data struc-
tures after updates. The appliance autonomically detects degenerations and repairs latter
in the background to query processing without major noticeable performance impacts.
This guarantees the efficient data structure layout for query processing as well as optimal
compression rates to save system resources.

Future directions in the product development will focus on further improving system re-
covery times and also develop strategies for disaster recovery. Given that the ISAOPT
appliance is tightly integrated with DB2, thus it also has to fit into the recovery mecha-
nisms of DB2 itself. Regarding the autonomic management of user data, using ISAOPT’s
maintenance process for reorganizations as self tuning mechanism is a topic for current
research activities. These operations can be exploited to restructure and recompress the
internal data structures depending on the monitored system workload with intent to reduce
query response times and a more efficient utilization of available system resources.
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Abstract: Predictive Analytics is usually seen as highly interactive task. Paradoxi-
cally, it is still performed mostly as a batch task. This does not only limit its appli-
cability, it also sets it apart from a task that is conceptually very close to it, namely
OLAP analysis. The main reason for considering mining a batch task is the usually
very high execution time on large data warehouses. While novel hardware offers the
ability of highly distributed execution of predictive analytics algorithms, this level of
parallelism cannot be exploited within the traditional row-based database paradigm.
Columnar databases offer a solution to this problem, as the underlying datastructures
lend themselves very well to parallel execution. This reduces the repsonse time for
mining queries several magnitudes for some algorithms.

While making mining faster and more responsive is already nice in itself, the real
value of low response times is allowing completely new ways of interacting with huge
data warehouses. In this arcticle we give a survey on the opportunities and challanges
of interative, OLAP-like mining and on how columnar databases can support it. We ex-
emplify these ideas on a task that is especially attractive for interactive mining, namely
outlier detection in large data warehouses.

1 Introduction

On-line analytical processing (OLAP) enables simplified data analysis exploiting data
summarization and aggregation techniques for drilling, pivoting and slicing of the data.
OLAP is typically done in a Data Warehouse (DW) environment. Data mining com-
plements the data analysis done through OLAP by automating the discovery of implicit
patterns and interesting knowledge hidden in large amounts of data - which is not neces-
sarily stored in a DW and has a broader set of functions such as association rule discovery,
classification, prediction or clustering.

While the integration of mining and OLAP as well as interactive mining are highly rele-
vant in many areas, they have received surprisingly little attention so far. Some research
on the integration of OLAP and data mining has been done in the 1990’s already, coin-
ing the term online analytical mining (OLAM). The value of an OLAM environment is
typically justified by several reasons. First, a DW environment has information process-
ing tools including tools to profile, cleanse and transform data from various operational
sources into the DW. Second, data mining, data needs to have good quality to deliver good
results. The effort for cleansing the data for data mining is not needed if data mining is
performed in a DW. Third, before a user can effectivly mine data, the user might want to do
explorative data analysis first. Within an OLAM environment, a user can leverage OLAP
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for explorative data analysis and then switch to data mining. In a tightly integrated OLAM
environment, switching between the two is seamless for the end user. For the OLAM envi-
ronment, various authors (e.g. [GRW08] and [HK06]) proposed architectures which work
as follows:

Initially, through an Extract-Transform-Load (ETL) process data is extracted from vari-
ous operational data sources which are typically relationalal databases. Then the data is
profiled, cleansed, transformed to the common model of the DW and loaded. The data
model in the DW is usually a snowflake or a star schema in a relational database. Based
on the DW model aggregates such as cubes are computed or multi-dimensional databases
are built - both to accelerate OLAP query execution but still in relational structures. For
the user, there is one integrated UI tool for OLAP and data mining and the user can switch
seamlessly between both, e.g. selecting a cube and then apply mining to only this sub-
set. Through this UI the user submits OLAP queries or data mining requests which are
received by the OLAM engine which then leverages the Data Mining or the OLAP en-
gine for fulfilling the user request by processing it on data cubes or the multi-dimensional
database.

Even though there has been some research and prototypes for a tighter coupling of OLAP
and mining, so far the practical use is limited. A major reason for this is the large difference
in performance and response times for OLAP queries and for mining procedures. While
there are techniques to deliver very short response times for OLAP queries, mining queries
often take hours to run. Data mining is still considered a batch job for the following
reasons:

• The data volume is typically so large it can not be held in bufferpools which are
the main memory area for relational database. Thus, the runtime of data mining
processes is typically a batch-style procedure and not an interactive online process.

• The cost for large main memory areas for relational databases was too high.

• Existing relational database approaches do not exploit in an optimal manner the new
hardware architectures with multi-core CPUs and multi-CPU servers.

• Data compression offered by columnar database techniques is not used in the rela-
tional database space yet.

In the following we will show how columnar databases used for accelerating OLAP queries
can be used to accelerate data mining as well, enabling both to operate on the same level
of interactivity.

2 Concepts of Columnar Databases

Columnar databases are a well-known concept - they date back to the 1970’s. Figure 1
shows through an example the conceptual structure of a relational database and in contrast
Figure 2 shows the same data in a columnar database. In essence, a columnar databases
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Cust ID First Name Last Name Age City State Country
1 John Smith 31 Santa Cruz CA US
2 Alex Morgan 45 San Jose CA US
3 Sarah Adams 23 Los Angeles CA US
4 John Miller 21 San Diego CA US

Figure 1: Structure of a relational database

RID CUST 
ID

RID First 
Name

RID Last 
Name

RID Age RID City RID State RID Country

1 1 1, 4 John 1 Smith 1 31 1 Santa 
Cruz

1-4 CA 1-4 US

2 2 2 Alex 2 Morgan 2 45 2 San 
Jose

3 3 3 Sarah 3 Adams 3 23 3, 4 San 
Diego

4 4 4 Miller 4 21

Figure 2: Structure of a columnar database

organizes the physical structure in columns rather then in rows. Values stored multiple
times in the relational model are stored only once in the columnar model saving space.
Using the columnar approach often shrinks the data volume by a factor of 10 to 100.
That means a signifcantly larger amount of data can be loaded into bufferpools in main
memory significantly improving query processing performance. Another advantage of the
columnar approach is that it is much better suited for OLAP processing where typically
only a subset of columns in a table is needed for processing. The columnar database allows
access per column whereas the relational model only allows row access even if in each row
read only a small number of columns is needed by the query. Thus, the columnar databases
approach allows significant reductions on the amount of IO access needed to read the data
from the hard disks improving performance. The downside of the columnar approach are
insert or update operations which are significantly slower than in a relational model. Thus,
columnar databases are very good for OLAP workloads whereas the relational database
approach outperforms the columnar database in OLTP scenarios.

Columnar databases store data in a column-centric way. For each combination of column
and value there is a list of data points that have this combination (e.g. GENDER=f →
r1, r5, r7). These lists are represented in a way that makes intersecting them extremely
efficient. This also makes selection operations over conjunctions very efficient, as this
operation is reduced to intersecting several lists. Columnar databases are becoming very
popular and there are many available products (e.g. Vertica, ParAccel, Infobright) that
use different kinds of representation and indexing. In the following we simply assume that
there is an efficient mechanism for selecting records based on attribute/value combinations
and of intersecting two lists of records.
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3 System Evolution Enabling Interactive Outlier Detection

3.1 Columnar Databases and new Hardware Architectures

Columnar databases for OLAP mostly benefit from lower I/O costs through in-memory
processing, while they are often far less compute intensive. The opposite is true for data
mining. Here I/O can be a minor factor compared to the computation time. Therefore, data
mining would usually not directly profit from a columnar in-memory storage. The picture
changes, however, if we look at the evolution of hardware:

• The CPU architecture changed from one core to multi-core CPUs. Per core, multiple
threads are possible.

• Servers with 8, 16, 32 or 64 multi-core CPUs are normal today providing a previ-
ously unparalleled degree of parallelism.

• The prices for main memory significantly dropped and are very affordable now.
Thus servers with 2 TB main memory are common computing infrastructure today.
A 20 TB large DW in a relational model fits now easily into the 2 TB main memory
with the columnar approach.

These capabilities can only be exploited by mining algorithms if the underlying data struc-
tures allow for massively parallel execution. This is where the real boost of mining through
columnar storage comes from: the ability to solve problems with dozens of threads in par-
allel, with very fast communication among threads. While there is some existing research
work, e.g. [AMS96] and [LOPZ97], research on mining data in columnar databses has
again gained increasing attention with the capabilities offered by hardware enabling high
degrees of parallel processing. We now show how columnar structures can be exploited
for interactive outlier detection.

3.2 A Unified, Columnar Architecture for OLAP and Data Mining

As shown in Figure 3, the new solution architecture has as the two major changes:

• Replacement of the relational database serving as DW with a columnar database

• Replacement of the relational structures for the multi-dimensional database or cubes
with a columnar appoach

With this proposed solution architecture, in essence we are making the following paradigm
shift: The traditional approach in the DW environment was characterized by the fact that
only a very limited fraction of the data was in main memory and only a few scans were
done in the DB for data mining since they took very long to complete making data mining
a batch process. With the new approach, a lot of data is in main memory due to two
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Figure 3: Conceptual overview of new OLAM architecture

reasons: cheap main memory and columnar database approach significantly reducing data
volumne. With the underlying multi-core, multi-processer server architecture as well as
by the fact that columns can be scanned in parallel independently from each other entire
new levels of parallel processing for OLAP queries and data mining is possible. In some
cases, the scans of data can be completely avoided due to the fact that the data is stored
with the columnar approach - examples include min, max or count(distinct) operations.

4 Interactive Outlier Detection in Large Data Warehouses

4.1 The Challenge of Interactive Outlier Detection

Statistical data analysis is one of the key tasks to gain useful insight from large amounts
of data. While there are many sophisticated methods for this task (ranging from simple
cube analysis to sophisticated predictive analytics models), they have one challenge in
common: outliers in the data. Outliers are data points that leaked into the dataset through
errors in data acquisition, representation or processing. Typical examples are typos while
manually acquiring the data, inconsistencies through false handling of special cases in pre-
processing and many others. Unfortunately, such data quality issues appear very often.

Outliers are assumed to behave differently than the majority of data points. However,
the opposite does not necessarily hold: just because something appears seldom does not
necessarily make it an outlier. It could just be a case that does not occur very often.
Depending on the application scenario, this could actually be an especially interesting
and valuable case. Therefore, outlier detection is an inherently interactive task of finding
unusual patterns in the data, validating and flagging them as outliers or as usual data.

Most algorithms to automatically identify unusual data rely on thresholds. A common
approach in statistics, for instance, is to check how far a given value is from the mean
value of corresponding data base column. If the age column in a record contains a values
that is 100 times the average, then this could be seen as an outlier. However, the difficult
problem now is to identify and set the right thresholds. As there is no a priori definition
of where unusual but valid data points ends and where outliers starts, the analyst will
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subsequently try different thresholds, analyze the list of identified outliers and then re-
adjust the threshold accordingly. Also, the analyst will already know that for some cases
the predictions of the algorithm can be ignored altogether, as they are known to be usual
data points or they are anyway filtered in a subsequent step.

To be able to do an analysis as just described, a system to interactively identify outliers
must allow for the following:

1. Combine outlier analysis with slicing and dicing known from OLAP

2. Adjust outlier thresholds interactively

3. Update a list of outliers in near-real time

4. Offer fine grained functionality to filter/ignore some outliers

Existing solutions to outlier detection are mostly based on the idea of finding patterns of
usual behavior in the data and then flagging everything that does not match these patterns
as an outlier (see [BCV09] for a survey).

4.2 Interactive Outlier Detection on Column-store Warehouses

In the following we assume that our dataset consists of a set of attributes A in A, each of
which can take a given set of values Vi (e.g. attribute gender with Vgender = {m, f}).
We also assume a set of records or data points R. Each record contains a value for all
attributes in A.

The aim of outlier detection is to identify a subset of records R′of R that contain unusual
combinations in at least one attribute A or in a combination of attributes.

We achieve this by first automatically analysing what the combinations between columns
are that are very common. Everything that does not fit into this scheme is considered to
be an outlier. This approach has been applied in the past successfully in many different
domains (see [BCV09]). We extend this approach in a way that makes it possible to change
the settings in a very fine grained way and get the corresponding results in real-time.

Two types of outliers are assumed:

1. Outliers are records that contain values that are statistically very uncommon

2. Outliers are records that contain values that are common - however they represent
an statistically uncommon combination

For the first task we simply put a threshold on the frequency of an attribute value pair
(or range for numerical fields). Pairs appearing at least in a given fraction of records are
considered as normal. All other possible pairs are flagged as outliers. GENDER=f may
appear in 40 % of the records, GENDER=fem only in 1%. If the threshold is 5% then the
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first record is flagged as normal data point, the second as outlier. Obviously, an optimal
threshold could differ for each of the attributes and must usually be set interactively.

For the combination of attributes we refer to the concepts of rules (for an overview see
[AS94]): We assume, without loss of generality, that a rule is always written as follows:

(
∧

Ai OP vij)⇒ Ak OP vkm (1)

where OP can be any of equality for categorical attributes or greater/lesser than for numer-
ical ones. A simple example would be:

(AGE < 10) ∧ (BALANCE < 100)⇒ (INCOME < 30) (2)

A rule determined from data usually has a confidence score. The confidence score denotes
the fraction of records for which the conclusion holds if the premises hold. It can be
seen as the strength of a rule. We may assume that the strength of the above rule is
95%. If our threshold for usual behaviour is a rule strength of at least 90%, then we
must assume the rule above as usual behaviour and a record with AGE=5, BALANCE=50
but INCOME=100000 would be flagged as outlier. If the threshold would 97%, this would
not be the case.

The threshold once the strength of the rule is seen as a reliable describing normal be-
haviour strongly depends on the application. A suitable threshold must be determined in
an interactive process of setting a threshold, determining the outlier this would yield, then
resetting it and re-running the outlier detection until a suitable level is found.

It is also possible and quite likely that some columns or rules should be ignored. An
example would be a rule that states if a flag is set, another check values is mostly true.
We may however know that for a new source system this is no longer required and that
violating this rule has no significance. We may also know that the column AGE will
anyway not be used in the subsequent analysis, so any violations concerning AGE can be
ignored.

It is essential that users can set the confidence threshold and ignore flags on columns and
rules in a way that they get immediate feedback on which records would be considered at
outliers given the settings, which is not supported by existing approaches. We therefore
additionally need a procedure that allows determining in near real-time which records
are not covered and must be flagged as outliers. Also, the user should be able to ignore
individual outliers, so that the system must be able to keep an ignore list of records that
should not appear in the result. The overall process is as follows:

1. Build initial rule set and attribute-value counts

2. User (de-)selects columns / rules / records and adjusts thresholds

3. Determine the outliers in real-time

4. Filter deselected outliers

5. Present the outliers to the user (which can then continue with step 2 to further refine
results until satisfied)
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4.2.1 Identifying Rules and common Attribute-value Pairs

Both common pairs of attribute/value and rules with high confidence can be identified us-
ing association rule mining algorithms. As this process only needs to be performed once,
efficiency is not critical at this point. Association rule algorithms require a support thresh-
old and a confidence threshold. For the initial run, both are set to a user-defined minimum.
This minimum is the lowest possible value for interactive threshold adjustment. All rules
and attribute/value combinations are attached with their actual support and confidence for
later processing.

4.2.2 Setting Thresholds and Ignore Tags

The user can now adjust the support threshold for attribute/value pairs and the confidence
threshold for rules, possibly differently for each column. The user can also tag one or
more rules or columns with an ignore tag. A rule that is tagged as ignore is not evaluated
in the subsequent process. A column that is tagged as ignore is removed from all rules,
which may subsequently lead to the removal of rules with an empty premise (as there is
only a single consequence, this case is already covered by the simple attribute/value pairs).
Finally, the user can flag records as ignore and thus remove them from the results. These
setting uniquely identify which records are flagged as outliers, namely exactly the ones,
for which either a selected rule does not hold or for which at least one attribute/value pair
occurs that is not frequent enough.

4.2.3 Real-time Evaluation of Outlier Records

Having defined the conceptual notion of an outlier, a core question is how to identify the
set of outliers in near real-time for interactive work. After a user updated one or several
of the settings, a new list of outliers needs to be identified. This is achieved efficiently
by exploiting the fact that we are working on a columnar database. Columnar databases
store all possible values for a given column and point them to a set of records ids with
the corresponding value in that column. They also store all counts, which can be retrieved
without accessing the actual records.

For attribute/value pairs, this is very simple, as the frequencies for each attribute/value
combination can be read directly from the columnar database. All records that are consid-
ered outliers based on this criterion are added to a global outlier list. To capture outliers
based on rules, we need a more complex procedure. In a first step, all attribute/value pairs
are sorted using an arbitrary criterion. Now, they are stored in a prefix tree. Each node
contains exactly one predicate Ai OP vij . A path from the root of the tree to a leaf is a
conjunction of such predicates. Each node contains a list of all rules, with a premise that
is identical to the path from the root to this node. These rules also contain their confidence
and the ignore flag.

Upon a request, we need to traverse all paths from the root to a leaf node. Please note that
this can happen very efficiently in parallel. During traversal, each node is attached with
a list of records that fulfill all the predicates that lead to this node from the root. As we
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move on from a node to one of his child nodes, we simply intersect the currently attached
list of records with the ones entailed by the predicate of the child node (intersection is very
cheap). We continue this process until we reached all the leaf nodes. Depending on the
implementation of underlying columnar database, the overall process is at most linear in
the number of records.

Each of the nodes in the prefix tree is attached with a set of rules. As we traverse a
node, we first check which of the rules are activated in the current configuration (based
on threshold or ignore tag). All active rules are then evaluated by intersecting their con-
sequence with the list of records at the node. All records not in the intersection are added
to a global outlier list. Again, performing this intersection/difference can be achieved ex-
tremely efficiently on as the records that contain the consequence can be retrieved directly
and intersecting two sets of records is directly supported by the columnar database.

After traversal has finished, the list of records flagged as outliers is further filtered by the
list of outliers to ignore using a set difference operation. The result is presented to the
user. This list can be sorted by the number of rules violated or any other criterion. Also, a
partial list can be shown to the user while the tree is traversed, such that she can see first
results while the outlier detection process is still running.

4.3 Evaluation

To evaluate the ability of the above procedure, we used a row-based and a columnar in-
memory database, such that I/O would not affect the performance in either case. We used
a set of rules, or more importantly literals that would be evaluated. The machine was
a UNIX Server running AIX 6 with 8 CPU and 16 GB main memory. We varied the
number of records and the number of rule literarals and measured the response time on
both databases. Figure 4 shows the result.

In both approaches, the response time increases with the number of records and with the
rule literals. However, the response time for the columnar storage is much lower than
for the row based storage. While even for moderate database sizes, using row-oriented
storage leads to response time that are inadequate for interactive work, the column store
is still applicable. As all the steps in the rule evaluation can be executed in parallel, a
scale-out is rather easy, in cases that the number of records (and thus the response time)
exceeds a tolerable level.

5 Summary

OLAP and predictive analytics are two closely related task that can be nicely intergrated
with each other. Such an integration is, however, not yet pratically achieved, as the re-
sponse time for OLAP queries often allows for interactive queries, while the response
time of data mining queries is much higher. We showed that highly parallel hardware, in
conjuction with the columnar storage paradigm, allows for a massive accerlation of mining
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Figure 4: Performance comparison of a relational versus columnar database

queries. This allows for new kinds of applications. We demonstrated this on the task of
outlier detection in large data warehouses. We expect to see many further applications of
this kind in the near future.
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Abstract: Software as a service (SaaS) has become a viable alternative for small and
mid-size companies to outsource IT for a reduction of their total cost of IT ownership.
SaaS providers need to be competitive w. r. t. total cost of ownership. Therefore, they
typically consolidate multiple customer systems to share resources at all possible lev-
els: hardware, software, data, and personnel. This kind of resource sharing is known
as multitenancy. In this paper, we will focus on the aspect of multitenancy regard-
ing our new in-memory database system – the SAP in-memory computing engine. In
particular, we will motivate the requirements of multitenant applications towards the
database engine and we will highlight major design decisions made to support multi-
tenancy natively in the in-memory computing engine.

1 Introduction

Dropping DRAM prices and exponentially growing DRAM volumes changed the way we
think about data management. Nowadays, a single blade can hold up to 2 TB of main
memory [HPP10]. Database systems running on a cluster with 25 of these blades can
store the worlds largest companies’ business data, e. g., from enterprise resource planning
(ERP) systems, purely in main memory. Why is this observation so important? Because
of performance.

The architecture of all of the relevant database systems for enterprise applications is de-
signed to cope with the well-known gap between main memory and external memory (see
Table 1). The exchange unit for data transport between external memory and main memory
is a page containing a number of bytes. To optimize for performance, database-internal
data structures (e.g., the B-tree) and query processing algorithms are tailored to paged
data access. Furthermore, advanced page-based buffer management and pre-fetching tech-
niques have been developed to shadow the access gap.
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Table 1: Access time from main memory and disk []
Action Time [ns]
Main memory reference 100
Read 1 MB sequentially from main memory 250,000
Disk seek 10,000,000
Read 1 MB sequentially from disk 30,000,000

In-memory database management systems (DBMSs) keep the operational copy of the data
entirely in main memory. They only need to access external memory in three particular
cases: 1. During system startup to load the main-memory copy, 2. for logging, writing
a checkpoint, and recovery, and 3. to persist meta-data and configuration changes. An
in-memory DBMS can choose to rely on paged data handling (e. g., paged buffering) for
these tasks. All other operations run purely in main memory. For them, the in-memory
DBMSs can avoid paged data handling and encode data in contiguous memory DRAM
areas (i. e., arrays). Storage structures and query processing algorithms can be tailored
to work well with arrays instead of pages. This distinguishes them from a classical disk-
based system equipped with a large buffer space. Such a system is entirely page-oriented
and, compared to in-memory DBMSs, suffers from the organizational overhead imposed
by the page-centric data handling [GMS92].

Besides RAM developments, the multi-core trend also has a substantial impact on data
processing systems. Because the “frequency rally” stopped in 2006, software vendors like
SAP now cannot rely on frequency-based performance speed-up anymore. Instead, we
have to find ways to parallelize our software to – ideally – scale linearly with the number
of available cores. Current hardware architectures have up to 64 cores (on eight sockets)
per blade. All 64 cores have shared access to the main memory. We again mention that
these blades can be switched together in a cluster, resulting in a highly parallel system
with local shared-memory access [HPP10].

The SAP in-memory computing engine (IMCE) is an in-memory DBMS designed for a
multi-blade, multi-core hardware architecture. It is a relational database system with SQL
and full ACID support. Apart from providing standard database functionalities, the IMCE
is also aimed at a sound integration with SAP business applications. Certain requirements
of enterprise applications have influenced the design and functionality of our in-memory
database system. A particular requirement, which we like to showcase in this paper, is
multitenancy – the ability to handle multiple clients or tenants within the IMCE.

The remainder of this paper is organized as follows. In the next section, we discuss the con-
cept of multitenancy. Then, in Section 3, we give an overview over the key features of the
SAP in-memory computing engine. Section 4 lists the requirements posed by multitenant
applications towards the data-management layer. Section 5 highlights the implications of
multitenancy support in our new database system, before Section 6 concludes the paper.
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2 Multitenancy

The classic on-premise software distribution model for enterprise software (e. g., ERP sys-
tems) involves software licensing by a customer, software installation on his hardware, and
software maintenance by his personnel. Especially smaller and mid-size companies can
easily get overburdened or even distracted from their core competencies by the task to run
their own IT. Although running enterprise software is mission critical to these companies,
the need for cost and complexity reduction makes outsourcing IT by obtaining Software
as a Service (SaaS) viable.

SaaS solutions are completely hosted by a service provider, i. e., the software and the data
resides on the provider’s data centers. Thus, service providers operate the companies’ IT
system off-premise. Compared to on-premise solutions, they can thereby alleviate compa-
nies from the risk of over-provisioning/under-provisioning and under-utilization/saturation
by “elastically” adding and removing resources. Companies, on the other side, only pay
for the service, either by subscription or on a pay-per-use basis.

The reason why all this works for the SaaS provider is resource sharing among customers
at all levels to reduce total cost of ownership (TCO): hardware, software, data, and per-
sonnel. In a SaaS system, a customer is called tenant. Several tenants share the hardware
of a machine, where the mapping between a tenant and its hardware is kept flexible. If a
tenant grows, e. g., because of growing data volumes or because of a growing user base,
the service provider can decide to migrate it on a larger machine (scale up) or to dedicate
more machines to the tenant (scale out). Also, if hardware capabilities grow, the service
provider can decide to put more tenants on a single machine.

Tenants can also share the same software. This is especially true for standard enterprise
software as developed by SAP, but also for generic components, like database systems,
application servers, and repositories. Furthermore, because the provider controls both,
hardware and software, he is not obliged to port the software to all commercially relevant
hardware platforms. Rather, he is able to specially optimize for the hardware of his choice.

Applications running on behalf of multiple tenants can also share (general or public) data,
for example country-specific information like population, currency, exchange rate, and
gross national product (GNP), e. g., for analytics. Furthermore, multitenant applications
can share meta data. Finally, the personnel operating the data centers can share a single
administration framework to unify software and hardware administration for all tenants.

As already stated, SaaS is not only about software. Along with the software, the data goes
to the SaaS provider as well. The question is, how do SaaS providers manage data from
multi-tenant applications. Of course, the solution lies in the realm of database systems. We
see three alternatives how to manage data from multiple tenants with the help of database
systems [JA07]:

∙ Shared machine: The DBMSs running on behalf several tenants share the resources
of a single machine. The advantage of this approach is a good degree of isolation be-
tween tenants and simple tenant migration. Especially when the DBMS is installed
in a virtualized environment (e. g., XEN, VMware, Amazon EC2), DBMS migration
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is as simple as virtual machine migration. Furthermore, standard database systems
can be used to realize the shared machine approach; no tenant-specific functional-
ity is required. Due to the maximum degree of isolation, every tenant can extend
or modify its database schema without restrictions (which is important for tenant-
specific customizations). When a DBMS instance crashes, no other tenants are af-
fected. On the flip side, the various DBMSs installed on a single machine compete
for resources, like memory pools, communication sockets, or execution threads.
Managing these resources generates overhead in each running system. Additionally,
there is no centralized control to govern shared resources (except for the operating
system, which is, however, not aware of the specific resource consumption patterns
of multitenant database systems). Finally, administering one DBMSs instance per
tenant without additional (external) tools can become a cumbersome task when a
large number of tenants has to be supported.

∙ Shared table: All tenants share the same DBMS instance, the same schema, and
store their data in the same tables. To distinguish tenants from each other, a spe-
cial column containing a tenant identifier is inserted in each table. Again, standard
database systems can be used to implement this approach. Compared to shared
machine, system resources are shared/controlled, and maintenance applies to only
one instance. However, tenant migration becomes more complex, because tables
and disk volumes are not isolated. In the case of a crash, all tenants are affected.
Furthermore, database queries have to be rewritten to restrict results to the queried
tenant. Finally, tenant-specific extensions always influence other tenants.

∙ Shared DBMS instance: All tenants share the same DBMS instance. To isolate
the tenants, each tenant runs in a separate process, has its own tables, and its own
external-memory volumes. However, resources between tenants, e. g., memory pools,
communication sockets, and execution threads can be shared (by a pooling infras-
tructure that is common for all tenants). Sharing of meta data, i. e., the database
schema, is also possible. Clearly, this approach requires that the DBMS is made
aware of multiple tenants. However, it combines the best of both previous ap-
proaches: Tenants are isolated, maintenance applies to one instance only, resources
are shared/controlled, migration can be implemented based on tenant-specific disk
volumes, (meta-)data can be shared, a crashing tenant process does not tear down
other tenants, and tenant-specific extensions do not influence other tenants.

Because the third approach seems most reasonable, the SAP in-memory computing engine
supports multitenancy by sharing the DBMS instance. We will return to the details in
Section 5. First, we would like to give an overview over the features of our in-memory
database system.

3 The SAP In-Memory Computing Engine

The SAP in-memory computing engine is a relational database system that keeps the pri-
mary data copy in main memory. The target hardware consists of a cluster of blades, where
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each blade is typically equipped with up to 64 cores per blade and up to 2 TB main mem-
ory (at the time of writing). Of course, to avoid data loss during power failures, the system
needs a persistence on external storage as well as logging and recovery mechanisms (see
Section 3.8). However, the principal idea is to optimize the database system towards main-
memory access and keep the access frequency to external memory as low as possible. To
an end user, the system provides the usual functionality one might expect from a database
system: it supports the relational model, has a SQL interface, backup and recovery, and
full ACID support. In the following, we will discuss some key concepts of the in-memory
computing engine.

3.1 Row Storage and Column Storage

Tables in the in-memory computing engine can be stored column-wise or row-wise. The
storage mode can be defined by the user. Both storage types have their advantages regard-
ing access behavior. The column store supports set-based read-intensive data processing
along columns, for example, aggregation queries in online analytical processing (OLAP).
The row store naturally supports row-based and update-intensive operations, like single
key lookup or single row insertions. It serves best performance in applications with on-
line transaction processing (OTLP) characteristics. The storage mode is transparent to the
query engine, i. e., queries can freely combine data stored in both table formats. Tables can
also be converted on the fly. We describe the internal storage layouts for row and column
store below.

3.2 Compressed Column-Store Layout

To improve memory bandwidth utilization and to keep the memory footprint of enter-
prise data storage small, the column-store data in the IMCE is compressed. Especially,
lightweight compression schemes [BHF09, LSF09] are applies, where the CPU overhead
for compression and decompression does not overshadow the gain of reduced memory
bandwidth utilization. Furthermore, data stored in columns is particularly well-suited to
compression, because all values of a column stem from the same value domain.

All columns in the column store are compressed using dictionary coding: The values of
the column are replaced by integers (value IDs) that point to the original value, which
is stored in a separate sorted array. For example, assume we have a column where each
entry is one of four colors: [red, green, red, blue, white, red, ...]. The dictionary-encoded
variant consists of a sorted dictionary [blue, green, red, white] and an array named column
vector [2, 1, 2, 0, 3, 2, ...] containing the dictionary positions. We assume that the size
of the dictionary (i. e., the distinct-value cardinality of the column) is known in advance.
Therefore, we can encode each integer with the minimum number of bits (two in our
example) and pack them in a contiguous memory location. In our example, this contiguous
location would contain the following binary string: 100110001110... If string values are
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stored in the dictionary, the dictionary can be compressed using prefix compression. On
the compressed column vector, we apply more lightweight compression schemes, such as
run-length encoding or cluster coding [LSF09].

3.3 The Delta Store

The above described dictionary encoding does not allow cheap modifications or insertions.
For example, if a new column value appears due to an insert operation, it has to be placed
at the correct position in the sorted dictionary. The positions of the following entries have
to be shifted, requiring an update to all the affected integers in the column vector.

To solve this problem, the column store provides a write-optimized storage location called
delta store (the read-optimized store is called main store). The delta store is also column-
oriented and utilizes dictionary coding. In contrast to the main store, the dictionary is not
sorted. For fast access, a CSB+ tree index [RR00] is generated on the dictionary, which
maps the value ID (as index key) to the position in the unsorted dictionary (as index value).

The delta store requires more space than the main store. Due to the unsorted dictionary
and the additional CSB+-tree lookups, the performance is also slightly worse than the main
store. Therefore, from time to time, the delta store is merged together with the main store
[KGT+10]. To keep the system accepting updates during a merge, a second delta store is
created for each column. The secondary delta is declared to be the primary delta after the
merge has finished. Furthermore, while merging a table, the merged table is written to a
new main store. The old main store can then still be used to process read queries during
the merge phase.

3.4 Row-Store Layout

The row store keeps rows intact and organizes them 16 Kb pages which are kept in a
linked list, one per table. Variable-length fields are stored in “referenced mode”, i. e., the
data pages contain a pointer to the memory location, where the variable length value is
stored. Because of fixed-length rows, each row can be identified by a its physical address.
This row ID consists of a page identifier and an offset. In contrast to the column store, the
row store is not compressed. This allows simple and fast insertion: When a new row has
to be inserted, the page manager searches for a free slot in an existing page. If no such
page exists, a new batch of pages (64 MB) is allocated and the record is placed in a slot
of a new page. To speed up key-based lookup operations, columns in the row store can be
indexed using a cache-aware index structure. Such an index maps a value to the row IDs
of its occurrence. Indexes exist only in main memory and are built on the fly when the
table is loaded from external memory.
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3.5 Insert-Only and Multi-Version Concurrency Control

Many business applications have the need to keep historical data, e. g., for legal purposes.
Therefore, they do not want to update and overwrite data in place. To support these ap-
plications, the column store of the in-memory computing engine follows the insert-only
approach, i. e., physically, data is never updated in place. Rather, when a row is updated,
the new values are inserted into the delta store and the old values from the main store
are marked as overwritten. Likewise, deletions mark a row to be deleted but do not physi-
cally remove the entry. In the IMCE, the so-called consistent-view manager (CV manager)
keeps track of these changes. As an analysis of several customer systems has revealed that
many enterprise applications are not update intensive [Pla09]. However, from time to time,
the in-memory store should be freed from “old” entries. These old entries can be removed
during the delta merge. To fulfill the requirement that the data can still be queried, the
merge process places old rows into yet another store, namely the history store, which can
be placed on external memory to reduce main-memory consumption.

Insert-only is not a prerequisite for optimistic transaction synchronization [HR01]. How-
ever, the two concepts go well together, because concurrently running transactions have to
keep their write sets in optimistic concurrency control (OCC) anyway. The IMCE com-
bines the insert-only approach with multi-version concurrency control (MVCC). Because
insert-only does not physically remove or overwrite rows, the CV manager can keep track
of multiple versions. The CV manager can also make sure that every read transaction can
operate on a stable snapshot of the database at the time of transaction start (snapshot iso-
lation). Read/write and write/read conflicts between concurrent transactions can therefore
be avoided, thus facilitating transaction parallelism. To resolve write/write conflicts, we
do however not rely on an optimistic concurrency control scheme. Instead, we use classic
row-level locking. This avoids unnecessary transaction rollbacks due to overlapping write
sets. The IMCE provides transaction levels read committed and repeatable read. We omit
the discussion of insert-only and MVCC concepts in the row store for brevity.

3.6 Data Distribution

The SAP in-memory computing engine runs on a cluster of blades, where the blades are
interconnected by ethernet. The persistent store resides in a network-attached storage
(NAS) or a storage area network (SAN), connected to all blades [MSLR09]. Because each
blade has access to the same database, we would classically call this architecture shared
disk [Sto86]. However, because the primary copy of the data does not reside on disk, but in
the main memory private to each blade, we characterize it as a shared-nothing architecture.
With each blade having access to the same disk, the system has the chance to survive blade
failures: The data stored in the main memory of a corrupted blade can be recovered from
disk and re-loaded to the other blades automatically. Alternatively, a backup blade can
take over. We will come back to implementation details of distribution in Section 5.1.

656



3.7 Parallel Data Processing

The in-memory computing engine allows to horizontally partition tables and distribute
the partitions across the blades. Several partitioning criteria are possible: round robin,
range-based, hash-based, etc. Running queries against partitioned data naturally can be
executed in parallel (data parallelism). Distributed queries are implemented on the basis
of a distributed query plan, distributed query processing algorithms, and a distributed plan
execution engine. To make full use of all compute resources, within one blade, the system
supports most kinds of query parallelism: inter-query, inter-operator, and intra-operator
parallelism [Rah94]. For fast scan and aggregation, special single instruction multiple data
(SIMD) instructions are applied, that can, for example, sum up four integers in parallel
[WPB+09]. The IMCE does not support the concept of pipeline parallelism. Rather,
every operation in the query plan runs to completion, before the result is sent to the next
operation. This allows us to optimize the data structures keeping intermediate results and
to save communication costs, when network access is required to ship intermediate results.

3.8 Persistence, Logging, and Recovery

Just like a disk-based DBMS, an in-memory DBMS has to ensure that after a power failure
the database can be recovered. The SAP in-memory computing engine is built on a page-
based persistence, i. e., a log entry can be written for a physical page (physical logging)
[GR93]. The log protocol adheres to write-ahead logging (WAL), i. e., before a transaction
commits, the log buffer is written to disk. To avoid undo logging, the buffer manager
implements the shadow-page concept [Lor77]. Due to the WAL protocol, pages can be
written to external memory in deferred mode (after transactions have committed).

The column store implements logical logging to keep track of the modifications on the
delta store. The logical log is written to a virtual file, which consists of pages provided by
the page-based persistence layer. Thereby, the logical log is recoverable. Note, the delta
store itself is not written to external memory. Rather, it is built from the logical log during
system startup. For the row store, as special differential logging technique is applied,
which enables parallel log streams to multiple external disk drives [LKC01]. All data and
log information is written into disk volumes – files provided by the operating system.

4 Data Management Requirements of Multi-Tenant Applications

The in-memory computing engine allows multiple tenants to share one instance, i. e., it
follows the shared DBMS instance approach described in Section 5.2. Instance sharing
is implemented by adding tenant-management logic in the database system. We will see
how this works in the next section. First, let us look at the data management requirements
posed by multi-tenant applications, such as Business ByDesign [ByD] – SAP’s enterprise
solution for small and mid-size companies.
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In the following, we assume a classical three-tier software architecture, where the presen-
tation layer is separated from the application logic running on various application servers,
and the application layer is separated from the database layer. Orthogonal to this soft-
ware stack, a multi-tenant application needs software to maintain the stack. We omit the
discussion on the aspects of multitenancy to the presentation layer (e. g., tenant-specific
customizations) and the application layer (e. g., tenant-specific application logic) and fo-
cus directly on the requirements posed on the database layer and the database-specifics of
the maintenance software.

For an application, the overall requirement to the database system is transparency of re-
source sharing. The application should operate on a tenant database, as if each tenant
would possess its own database instance. For example, the application should be able to
open a database connection for a specific tenant. All queries via this connection are then
local to the connection’s tenant. This way, the application does not have to deal with “spe-
cial logic” to query tenant-specific data (such as having to inject a tenant ID to all SQL
queries). The application should also be disallowed to directly access data from other ten-
ants (if an application requires interaction with other tenants, it has to use the standard
communication channels, e. g., via middleware software, such as SAP Process Integration
[PI]). Transparency of resource sharing also means that a tenant should not be influenced
by other tenants whom resources are shared with. For example, when a tenant crashes, it
should not tear down other tenants. Furthermore, when a tenant requires peak database
performance, other tenants sharing the same resources should still meet their service level
agreements (SLAs).

In the requirements discussion so far, we have neglected the fact that the application run-
ning on a multi-tenant database system also has to support multiple tenants and needs
to share resources. The database-specific fraction of these shared resources are schema
artifacts and shared table data. To distinguish them, we classify tables as: 1. tenant-
independent tables, 2. tenant-dependent tables, and 3. tenant-private tables. Tenant-
independent tables contain information useful for any tenant, for example, currency ex-
change rates. Tenants are not allowed to modify these tables. Because to the application,
every tenant has the same initial schema, the database should support to specify an initial
schema (called tenant template in the following) from which new tenants can be created
by cloning. The tenant template contains tenant-independent tables and tenant-dependent
tables. Initially, both can contain data, for example, default values (but do not have to).
A running tenant stores its data in the tenant-dependent tables. Applications should be
allowed to extend the initial schema with tenant-private tables. It should also be possible,
to add new columns to existing tenant-dependent tables. This is important for application
customizing.

Of course, the maintenance software of a multi-tenant application cannot be transpar-
ent w. r. t. resource sharing in the database layer. It has to organize resource sharing.
The database system should provide services for tenant life-cycle management, such as
creation (see above) and dynamic tenant startup and shutdown. It should make tenant
relocation, backup, and cloning possible without downtime or significant performance
degradations. Relocation is required when tenants have to be moved to faster/larger ma-
chines or if they want to go on-premise. Closing is often required to create test tenants.
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The database system should also allow to define tenant-specific quotas, e. g., to model
SLAs. Furthermore, to support flexible software roll-out scenarios, the database system
should provide for tenant-specific release management. Of course, this only applies to the
database schema and tables, not to the code base of the database system itself (which pro-
vide tenant-specific release management without tenant relocation). To react on customer-
specific failures and performance glitches, tenant debugging, tracing, and monitoring fa-
cilities are required. Finally, the database system should allow to replicate tenants for high
availability and load balancing. Please consult [AJPK09] for further readings.

5 Tenant Integration in the In-Memory Computing Engine

The in-memory computing engine implements multitenancy through the shared DBMS
instance approach. The basic concept to achieve transparency of resource sharing is tenant
separation. The IMCE carefully distinguishes between artifacts that have to be separated
between tenants and those that have to be shared among them. We will come back to this
point in Section 5.2. Because support for multitenancy is intermingled with the distributed
system aspects of the IMCE, we turn our focus first to distribution.

5.1 Distributed Instances

The topic map in Figure 1 shows the elements of a distributed IMCE instance and how
they are related. A distributed instance consists of multiple database servers, each of
which runs in a separate operating system process and has its own disk volumes. The
database servers of a distributed system may be distributed across multiple hosts – never-
theless it is also possible to run multiple database servers on one host. The key principle
of executing database operations is to run the operations at the location, where the data
resides. Therefore, database servers may need to forward the execution of some opera-
tions to other servers that own some data involved in the operation. In a data distribution
scenario, the database clients do not need to know about the distribution. They may send
their requests to any database server. If the server does not own all data involved, it will
delegate the execution of some operations to other servers, collect the result, and return it
to the database client (performance considerations nevertheless make it desirable to send
the request immediately to the processing node).

In a distributed IMCE system, a central component is required that knows the topology
of the system and how data is distributed. In our system, this component is called name
server. The name server holds for example the information, which tables of table partitions
are located on which IMCE database server. In a multi-tenant system, the name server is
hierarchical in a way, that the global nameserver knows the assignment of tenants to IMCE
database servers, whereas the tenant-specific nameservers hold the information about table
locations.
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Figure 1: Structure of Distributed IMCE systems

When processing a query, the database servers ask the name server about the locations
of the involved tables. To prevent this from having a negative impact on performance,
the topology and distribution information is replicated and cached on every host. In each
IMCE system, there is one master name server that owns the topology and distribution
information. This data is replicated to slave name servers that run on each host. The slave
name servers store the replicated data to a cache in shared memory from where the IMCE
database servers on the same host can read it (if belonging to the same system).

In a data distribution scenario, the partitioning can be done table-wise or by splitting tables
horizontally. With table-wise partitioning, the name server assigns new tables to a IMCE
database server based on the current distribution of tables and load (number of tables as-
signed and resource consumption of the database servers). Data for this table will reside
only on that database server, if no additional replicas are specified. It is also possible to
specify that a table is split over multiple IMCE database servers. Initial table partition-
ing is done by the name server based on a size estimation specified by the application.
When records are inserted into a partitioned table, they may be distributed to other IMCE
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database servers based on the table’s partitioning specification. In a multi-tenant IMCE
system, partitioning is done tenant-wise.

The master name server of an IMCE system is a critical central component in a distributed
setup. To ensure high availability, it is possible to have additional name servers as backup
master name servers (standard configuration is two). During normal operation, the backup
master name servers receive all replicated data like the slave names servers. If the master
name server fails, the backup server negotiate and one of them takes over the role of the
master server.

Analogous to the topology information and nameserver, each IMCE database server con-
tains a meta-data manager that provides meta-data-related interfaces to all other IMCE
components. Meta data are for example table definitions or types of the columns. In a
distributed IMCE system, meta data is defined and stored centrally and replicated to all
database servers. One of the database servers takes the role of central meta-data master,
of which there is one per IMCE system. Only on the host running the central meta-data
master, global meta data can be created.

On each host, there is a local meta data master that receives replicated meta data from the
central master. The local meta-data master makes the replicated meta data available to the
IMCE database servers on the same host using shared memory. These database servers are
called meta-data slaves. Meta-data slaves have only read access to the replicated central
meta data. Central meta-data master and local meta-data master are not separate server
processes, but are hosted by specific IMCE database servers. Meta-data replication is
handled transparently by the meta-data managers. All other IMCE components use the
meta-data manager interface. Therefore, the replication of meta data is completely hidden
from them. For read access, meta-data replication is also transparent for database clients.
No matter to which server a database client is connected, it can read all central meta data.

Because central meta data is created in the meta-data master only, database clients that
need to create or change central meta data need to connect to the meta-data master. A
second type of meta data, local meta data, can be created on the local database server.
This type of meta data is local to the database server where it is created and is not shared
with others, even on the same host. This feature is used in multi-tenant systems for defining
meta data that is private to the tenant (see Section 5.2).

To ensure transactional consistency in distributed setups, the IMCE supports distributed
transactions. Each IMCE system can have multiple transaction domains to which the
IMCE database servers are uniquely assigned (as shown in Figure 1). Distributed trans-
actions may span only IMCE database servers within the same transaction domain. In a
transaction domain, there is one IMCE database server that has the role of the transaction
master, while the others act as transaction slaves. The transaction master also coordinates
the two-phase commit protocol.
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Figure 2: Multitenancy in the In-Memory Computing Engine

5.2 Multitenancy

Since SAP R/2, multitenancy is to some degree achieved with the client concept: All
client-dependent tables contain a client column that is used by the application server to
distinguish multiple clients (shared table approach). The client column can be used for
partitioning and clustering at the database level, but for conventional DBMSs, the client
identifier is just another column, i. e., conventional DBMSs are not aware of the client
concept. In IMCE, this is different, because it offers support for multiple tenants already
at the DBMS level (shared DBMS-instance approach).

As we will see, the tenants of one IMCE system share common meta data, but for the
actual tables that hold application data, there are separate instances per tenant. This means
that each tenant has its own set of application-specific tables storing all the tenant-specific
data. As a result, a tenant-identifier column is not needed in the tenant-specific instances
of the table. The tenant identifier would always contain a constant value.

The topic map in Figure 2 explains, how important concepts relevant for multitenancy are
related in the in-memory computing engine. An IMCE system with multiple tenants is
a distributed IMCE system, where each database server uniquely belongs to one tenant.
Tenants run in different operating system processes with their own virtual memory. Addi-
tionally, they also have their own disk volumes. This separation allows us to isolate tenant
crashes or failures and to recover from them tenant-wise. In the following, the term tenant
server is used to refer to the database server that belongs to a specific tenant.
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Table 2: Tenant Separation and Types of Tables
Type Table Content (Data) Meta Data

Tenant-
Independent

Stored in system tenant; Read
access from other tenants

Stored in system tenant; Read
access from other tenants

Tenant-
Dependent

Independent instances of the ta-
ble exist in each tenant with
content that is private to the ten-
ant

Table definition is stored cen-
trally in system tenant with
read access from other tenants;
tenant-specific extensions (ad-
ditional columns, etc.) are
stored as private meta data

Tenant-Private Stored as private data of the
tenant with no access from
other tenants

Stored as private meta data of
the tenant

To support data and meta-data sharing in multitenant applications (such as Business By-
Design), the in-memory computing engine provides the three table categories introduced
in Section 4: tenant-independent tables, tenant-dependent tables and tenant-private ta-
bles. To implement these table types, each IMCE system has one special tenant called
the system tenant (other tenants are called normal tenants). The system tenant contains
tenant-independent meta data and application data, as well as the tenant-dependent meta
data. Both can be accessed in read mode by normal tenants. Tenant-independent data are,
for example, country names or time zones for currency rates. Tenant-independent data can
be relevant to all tenants and is delivered by SAP as built-in content. As the owner of the
global meta data in a distributed IMCE system (see Section 5.1), the system tenant also
manages the central meta data of tenant-independent and tenant-dependent tables which
is, like the built-in content, available to all other tenants for read access.

Normal tenants can define their own private meta data (i. e., new tables, columns, views,
functions), which is only visible to them. Furthermore, The data from normal tenants
itself is also isolated: In the context of one tenant, data from other normal tenants cannot
be accessed directly. If a client needs access to more than one normal tenant (for example
a tenant management tool), it needs to open separate database connections to each tenant.
Table 2 summarizes how meta data and content is stored and accessed for the three types
of tables.

As a further measure to guarantee tenant isolation, each tenant is assigned to its own
transaction domain. This ensures that a transaction is restricted to one tenant and that that
a single transaction cannot span multiple tenants. Therefore, we only allow distributed
transactions within one tenant but not across tenants.

Having different disk volumes for different tenants makes it easier to support tenant life-
cycle management, such as tenant copy, tenant relocation, or tenant deletion. When relo-
cating a tenant to a different IMCE database server in the same IMCE system, the tenant-
specific volume can be detached from the original server and attached to the new server.
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For moving or copying tenants between different IMCE systems, the problem arises how
shared meta data should be handled. For such a cross-system tenant move, it is ensured
that the tenant data to be moved is consistent with central meta data in the new system.
Tenant creation is implemented by cloning a template tenant.

Database clients need multiple database connections if they need to access more than one
tenant. However, sometimes applications need to combine tenant-dependent tables with
tenant-independent tables (stored in the system tenant) in one query – for example in a
join operation, a sub-query, or a union. To process this type of queries, the tenant servers
for normal tenants have indirect read access to tenant independent tables. A database
client that is connected to the database server of a normal tenant may combine tenant-
independent tables and tenant tables in the same query. If a tenant server receives such a
query, it delegates the corresponding operations to the database server of the system tenant,
combines the results with local results, and returns them to the database client. Therefore,
it provides federation capabilities between the local and the system tenant. This way, the
database clients need not be aware of the fact that the system tenant is involved.

Because the system tenant belongs to a different transaction domain, a query that involves
access to tenant-independent tables is executed by running two different transactions.
Therefore, transparent access to tenant-independent tables by a normal tenant is limited
to read-only operations. If a database server assigned to a normal tenant receives a request
to modify the content of tenant independent-tables, it reports an error. A database client
that needs to write tenant-independent tables needs to open a connection to the system
tenant server.

As introduced above, if meta data is created in a normal tenant, it is stored in the tenant as
private meta data which is not accessible by other tenants. When reading meta data in the
context of one tenant, the result is calculated as the union of central meta data and tenant-
private meta data. This is done by the meta-data managers and is hidden from all other
IMCE components. It is possible to use private meta data for tenant-specific extensions
of centrally defined meta data. Tenant-specific column extensions are implemented by
creating new columns (using ALTER TABLE) in the tenant-private meta data. These
additional fields only exist in this specific tenant.

6 Conclusion

In this paper, we highlighted the multitenancy features of the in-memory computing en-
gine. The in-memory computing engine is SAP’s main-memory database management
system. Its target hardware is a cluster of blades, where each blade can hold up to 2 Tb of
main memory and up to 64 physical cores. The IMCE has a row store and a compressed
column store, supports insert-only data management, data partitioning and distribution
across blades, as well as parallel query processing.

Regarding multitenancy, the IMCE provides support at two conceptual levels: at the
database level, by tenant separation and life-cycle management, and at the application
level by providing capabilities for meta-data and data sharing. In IMCE, distribution and
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multitenancy are closely related. The multitenancy implementation builds on meta-data
replication features of distributed IMCE instances.
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Abstract: Available-To-Promise (ATP) is an application in the context of Supply
Chain Management (SCM) systems and provides a checking mechanism that calcu-
lates if the desired products of a customer order can be delivered on the requested date.
Modern SCM systems store relevant data records as aggregated numbers which im-
plies the disadvantages of maintaining redundant data as well as inflexibility in query-
ing the data. Our approach omits aggregates by storing all individual data records
in an in-memory, column-store and scans through all relevant records on-the-fly for
each check. We contribute by describing the novel data organization and a locking-
free, highly-concurrent ATP checking algorithm. Additionally, we explain how new
business functionality such as instant rescheduling of orders can be realized with our
approach. All concepts are implemented within a prototype and benchmarked by us-
ing an anonymized SCM dataset of a Fortune 500 consumer products company. The
paper closes with a discussion of the results and gives an outlook how this approach
can help companies to find the right balance between low inventory costs and high
order fulfillment rates.

1 Introduction

There is an ongoing discussion in the database community to what extent applications
can benefit from a database management system (DBMS) that exactly suits their needs.
One central paper in this discussion is written by Stonebraker and Cetintemel [Sc05] who
argument that applications such as text search, scientific applications, data warehousing,
and stream processing can benefit from a performance, maintenance, and functionality
perspective by using application specific database engines. As stated by Krueger et al.
[KTG+10], we think that this statement is also true for the domain of traditional enterprise
applications which we want to exemplify in this paper with the ATP application.

ATP provides a checking mechanism to obtain feasible due dates for a customer order.
This is done by comparing the quantities of products which are in stock or scheduled
for production against the quantities of products which are assigned to already promised
orders [Dic05, SZ03]. A common technique in current SCM systems is using aggregated
values for keeping track of the different quantities, which results in having a separate
aggregate for each different product. This means that e.g. a new product in stock would
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increase the value of such an aggregate while the assignment of products to a confirmed
customer order would decrease it. Although the use of aggregates reduces the necessary
amounts of I/O operations and CPU cycles for the single ATP check itself, it introduces
the following disadvantages:

Redundant Data. One problem that arises in association with materialized aggregates is
the need for data replication and therefore for complex synchronization strategies
[Pla09]. In order to preserve a consistent view on the data across the whole system,
every write operation has to be propagated to all replications. Even if the updates
are triggered immediately, they still imply delays causing temporary inconsisten-
cies. Additionally, even if the amount of I/O operations and CPU cycles is reduced
to a minimum for the check itself by using aggregates, the overall sum of needed
operations might be higher due to synchronization as well as maintenance and costly
back calculation of the aggregates.

Exclusive Locking. A related issue consists of locking for update operations. All mod-
ifications to an aggregate require exclusive access to the respective database entity
and block concurrent read and write processes. The downside of locking is obvious,
as it queues the incoming requests and affects the performance significantly in case
of a highly parallel workload.

Inflexible Data Querying. Evidently, the gain in performance concerning isolated queries
comes at the cost of less flexibility. For ATP systems in particular, this fixedness
poses major restrictions. The rolled up data structures are tailored for a predefined
set of queries. Unforeseeable operations referring to attributes that were not consid-
ered at design time cannot be answered with these pre-aggregated quantities. Those
attributes include for instance shelf life, product quality, customer performance and
other random characteristics of products, orders, or customers. Additionally, due
to the use of aggregates the temporal granularity of the check is fixed. Once the
aggregates are defined and created based on e.g. the available quantities per day, it
is not possible to perform ATP checks on an hourly granularity.

Inflexible Data Schema Extensions. The previously mentioned inflexibility of not being
able to change the temporal granularity of a single check indicates another related
disadvantage: the inability to change the data schema once an initial definition has
been done. The change of the temporal check granularity or the inclusion of a previ-
ously unconsidered attribute is only possible with a cumbersome reorganization of
the existing data.

No Data History. Maintaining aggregates instead of recording all transactions enriched
with information of interest means to lose track of how the aggregates have been
modified. In other words, no history information is available for analytics or for
rescheduling processes.

As stated above, the evolution of business needs indicates an increasing relevance of so-
phisticated analytical applications. In order to realize immediate answer to arbitrary an-
alytical queries without long lasting ETL processes, raw data in a format that enables
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on-the-fly processing is needed. Facing these demands, recent trends are heading towards
column-oriented in-memory databases. In-memory databases keep all data in main mem-
ory and therefore facilitate fast and random access. To be able to hold billions of data
records in memory, high compression rates are mandatory. By storing the data column-
wise, generally suitable compression techniques can be applied. The main reason for
good compression results achievable in column-stores is the similarity of the entries in a
column, since the compression ratio is often dominated by the number of distinct values
[KGT+09].

Another advantage coming along with column-stores is that many operations, notably
aggregations, equi-joins, and selections, can be performed directly on compressed data
[AMH08, GS91]. Consequently, fewer entries have to be decompressed for reconstruction
of tuples. This strategy called lazy decompression [CGK01] helps to save CPU cycles for
decompression. Reducing computing time is particularly in in-memory databases highly
relevant, because I/O costs are extremely low, so that CPU time influences the overall
execution time significantly [HLAM06]. This technique is especially beneficial in the
context of insert-only as updates do not directly require a decompression of already stored
values, but result in appending new values for already existing tuples. Furthermore, the
read-optimized columns can go along with a smaller, write-optimized so called delta store
which is used for updates.

Consequently, in column-oriented in-memory databases aggregates can be calculated by
processing the appropriate column without the need to read the entire table from disk
or decompress it in advance. Thus, column-oriented database systems can operate on
huge datasets efficiently and thereby comply with the requirements of an OLAP system
very well [BMK99]. They also bring along a new level of flexibility, since they are not
confined to predetermined materialized aggregates. Write operations are not limited by
the read-optimized data structure as they are performed in the delta store.

The remainder of this paper is organized in the following way: Section 2 presents the in-
volved concepts which are needed for executing an ATP check on a columnar database.
This includes aspects such as data organization, the check algorithm itself, and how to deal
with concurrency. Section 3 includes the description of a prototypical implementation of
the concepts and corresponding benchmarks which were done on an anonymized SCM
dataset of a Fortune 500 consumer products company. The prototypical implementation
has been done in the context of a joint research project between the Hasso Plattner Insti-
tute and SAP. Section 4 discusses the possible business implications of this approach by
listing new or improved functionalities in the context of ATP. Section 5 concludes with a
discussion of the results and an outlook how this approach could be used for taking ATP
to the next level by providing a profit-maximizing ATP checking mechanism.

2 Involved Concepts

With a general overview of the ATP check and its limitations with the use of aggregates,
this section provides the underlying concepts of the prototypical ATP application based
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id : int
cvc_id : int
order_id : int
demand_id : int
source_id : int

quantity : bigint
demand_quantity : bigint

date_granularity : string
object_type : int

date_id : int
date_year : int
date_quarter : int
date_month : int
date_day : int
date_hour : int
date_minute : int

Fact

id : int
material_no : string
name : string
price : decimal
...

CVC

id : int
name : string
...

Source

id : int
status : int
customer_id : int
created : int

Order

id : int
name : string
company : string
...

Customer

Figure 1: Simplified physical schema as used in prototype

on a columnar, in-memory database. Subsection 2.1 introduces the main classes in the
ATP data model and their physical representation in the database. The subject of Subsec-
tion 2.2 are two algorithms to calculate the due dates focusing on their applicability on a
column-oriented database system. In Subsection 2.3 finally the strengths and weaknesses
of different strategies to handle concurrent ATP requests are discussed.

2.1 Data Organization

In this subsection, a simplified data model sufficient for a basic understanding of the pro-
totype is presented. The information relevant to an ATP system are primarily line items
of sales orders also referred to as customer demands, delivery promises or conducted out-
puts, the stock level, and planned production inputs. These types of transaction data are
consolidated in one table with an object type column for identification, forming the fact
table in the star schema [Mar04].

Essentially, an entry in the fact table indicates how many items of a product leave or
enter the stock on a specified date. The products are listed by their characteristic value
combinations (CVC), to be uniquely identified. In the fact table, there are two quantity
columns. This is due to the fact that the customer demands indicate what was ordered and
do not represent planned stock movements, which are stored in the promises. To be able
to provide information about the inventory, only planned and conducted stock movements
but not the customer demands have to be added up. For this reason, the customer demands
have a separated quantity column, the demand quantity. This way, they do not have to be
filtered when aggregating the stock movements in the quantity column. Recurring data,
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Order PromiseDemand Input Plan

Date

CVC

Source

Customer

Transaction

Output

Figure 2: Simplified ERM of the ATP process

id date id cvc id demand id demand quantity quantity object type

5 1286668800 1 5 -45 0 3
6 1286668800 1 5 0 -45 1
7 1286409600 1 0 500 500 2
8 1286323200 2 3 -10 0 4

Table 1: Fact table extract

such as the customer who ordered the product or the source of an input, be it a production
plant or supplier is stored in dimension tables.

To avoid expensive joins with a potentially large Date table, this dimension is de-normalized,
accepting a certain degree of redundancy. The physical data model as implemented in the
prototype is shown in Figure 1. For the sake of clarity, the following examinations ab-
stract from this and other optimizations. The business objects used in the application are
illustrated in Figure 2.

As a typical feature of a star schema, most columns in the fact table are foreign keys to
dimension tables. It can be expected that the content of the majority of dimension tables is
static. The entries in the Date table will only be updated, when the fiscal year comes to an
end and the planning horizon changes. Just as reasonable is the assumption that the content
of the CVC and Source tables is constant. Changes to these tables are only necessary, if
the company introduces a new product, puts a production plant into operation, or goods
are purchased from a new supplier. As a consequence, the total volume of data can be
reduced by storing recurring information in dimension tables.

In Table 1 an extract from the fact table, with the redundant date specifications date year
to date minute as well the columns order id, source id, and date granularity left out, is
provided. The first row with id 5 represents a customer demand with the computed deliv-
ery promise in the second row. This relation can be seen by the foreign key demand id,
which is set to 5 in the promise entry and hence points to the demand row. Besides, the
object types 3 and 1 identify these rows as demand and promise. Since they correspond in
quantity and date, the request can be fulfilled in time.
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The third column is an input, characterized by the object type 2, of 500 items to the same
product that was requested by the afore mentioned demand. Inputs do not refer directly
to a customer demand in order to stay as flexible as possible when it comes to unexpected
loss of stock and a redistribution of resources is required. So, the foreign key demand id
is a null pointer. One might wonder, why the quantity is replicated in the column de-
mand quantity. This way, we retain the option to run the ATP check against the requested
instead of the promised quantities and thereby favor already booked orders over new ones.

Object type 4 identifies withdrawals from stock made to accomplish a customer order.
Basically, a promise is turned into such an output, as soon as the items are taken from the
warehouse and on their way to the customer. To save the connection between demand and
outputs, the outputs also store the id of the demand in the dedicated foreign key column.
The last row in Table 1 is an example for an output. The demand it refers to, the fact with
id 4, is not listed in the extract.

2.2 ATP check Algorithms

The core functionality of an ATP application is the determination of earliest possible de-
livery dates based on the inventory. The available capacities accrue directly from stock,
inputs, and previously confirmed orders. This subsection suggests and evaluates two solu-
tions to this problem, addressing the decisive ATP requirements and the characteristics of
our prototype. The two algorithms are equal in terms of correctness and complexity but
differ in performance depending on the underlying architecture and dataset.

2.2.1 Candidate Check

The candidate check constitutes the first alternative to compute due dates. The name
candidate check is derived from the supposed promises, the so called candidates, which
are created in course of the check. Basically, the algorithm operates on a chronological
list of dates associated with the aggregated inputs and outputs for the particular dates.
Thereby, dates with a total quantity of zero will be omitted to reduce the runtime. Such
(date, quantity) - tuples will be referred to as buckets and chronological lists of buckets as
time series. Apart from the time series, the algorithm maintains a list of candidate buckets
as temporary promises, also sorted by date in ascending order. As an interim promise,
a candidate indicates the quantity that is allocated on the specified date for the current
demand. The word temporary is meant to point out the potential deletion or reduction of
the candidate while iterating over the remainder of the time series. Those candidates that
can be retained until the algorithm terminates, will be written as promises to the database.
If there is only one candidate with the desired quantity on the desired date, the order will
be fulfilled in time.

In the following, details of the algorithm, particularly the determination of candidates,
will be explained. To identify candidates, the total stock level for each date is required.
Therefore, a new data structure is deduced from the original time series, henceforth termed
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date aggregated quantity accumulated time series

MO 2 2
TU 1 3
WE -2 1
TH 1 2
FR 2 4

Table 2: Accumulated time series

+2 -2+1 +1 +2 +2 +1 -2+2

-1
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-1
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-1 -1

Aggregated time series I. Computation up to TU
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IIIb. Revoke earlier identified candidates IIV. Finish processing
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-3

+1

On WE further demand
of 2 items would result
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Thus the original candidate is
reduced to 1 item

2 2stock level 03 2 -2 2 0 22 0 0 1

+2

-3

+1

II. Add demand of 3 on TU
MO TU WE TH FR

Demand of 3 items
completely consumes

available stock

2 0

Figure 3: Candidate check example

accumulated time series as can be seen in Table 2.

From the very beginning of the planning horizon, all quantities are added up to the desired
date. Reaching that point in the time series, the creation of candidates starts. If the accu-
mulated quantity is positive, the first candidate will be initialized. Generally, the quantity
of a candidate is limited to the stock level of the respective date, in this case the desired
date. The maximum quantity of a candidate is logically the desired quantity. For further
processing, the accumulated quantity is reduced by the quantity of the new candidate. As
long as the desired quantity has not been completely allocated, candidates will be created
while processing the time series.

When the stock level drops below zero due to other promises or a decline in production,
the list of candidates has to be corrected. Thereby, the candidate quantities are deallocated
until the stock level returns to zero or the list is exhausted. To ensure best possible de-
livery dates, the list is updated descendingly, removing the latest buckets first. The entire
candidate algorithm is formally described in Listing 1. To highlight the essential control
flow, the readjustment of the candidate list in case of a negative accumulated quantity is
not listed on instruction level but hidden in the method truncate qty, which is invoked on
the candidate list, cf. Listing 1 Line 26.

To improve the understanding of the algorithm, a walk-through with a concrete example
is undertaken. The available stock including one output, represented in the first diagram
in Figure 3, and a new order of three items for Tuesday are the starting point for this
excursion. The first diagram shows the time series with a negative bucket on Wednesday.
This might be confusing in the first place, as it appears to be an overbooking. In fact, it is
not an overbooking, which becomes obvious when calculating the accumulated time series
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as seen in Table 2. The three inputs on Monday and Tuesday compensate the outputs on
Wednesday.

1 def candidates(time_series, desired_date, desired_qty):
2 candidates = []
3 acquired = 0
4 accumulated = 0
5 for date, qty in time_series:
6 accumulated += qty
7 # do not start before desired_date
8 if date < desired_date:
9 continue

10 if accumulated > 0:
11 wanted = desired - acquired # pending quantity
12 if wanted > 0:
13 if accumulated >= wanted:
14 # total covering of wanted quantity
15 candidates.append((date, wanted))
16 acquired = desired
17 accumulated -= wanted
18 else:
19 # partial covering
20 candidates.append((date, accumulated))
21 acquired += accumulated
22 accumulated = 0
23 elif (accumulated < 0) and (len(candidates) > 0):
24 # acquired too much, give back until
25 # accumulated is not negative
26 truncate_qty(candidates, accumulated, acquired)
27 return candidates

Listing 1: Candidate Check Algorithm

Going one step back, the accumulated time series is built up to Tuesday. As already men-
tioned and reflected in Line 8 in Listing 1, the creation of candidates starts at the desired
date, which is Tuesday in this example. The accumulated quantity, which results from the
Monday and the Tuesday bucket, is three corresponding to the desired quantity. In compli-
ance with Lines 15 to 17 in Listing 1, a candidate for Tuesday with three items is appended
to the still empty candidate list, the already acquired quantity is set to three, and the ac-
cumulated quantity is cut to zero. This new candidate can be seen in diagram II in Figure
3. On the next day, two items leave the stock due to the output. Consequently, the accu-
mulated quantity drops below zero as can be seen in IIIa. To compensate the overbooking,
two items have to be given back. Therefore, the candidate list is processed backwards.
Since there is only one entry holding three items, this candidate will be truncated to one,
cf. diagram IIIb in Figure 3, and the acquired quantity will be reduced accordingly. Pro-
ceeding the same way, a candidate for Thursday with one item and one for Friday covering
the last pending item will be appended to the candidate list. At the end of the planning
horizon, on Friday, the accumulated quantity representing the stock level is still positive
so that the three candidates will be returned as promises.
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date input promises net

MO 2 -1 1
TU 2 0 0
WE 1 -3 0
TH 3 -2 1
FR 1 0 1

Table 3: Net time series aggregates

With regard to the fact that per date either a candidate is created or existing candidates
are removed, the candidate check features a linear complexity. Besides, one can easily see
that this algorithm performs best in case of sufficient stock, because only one candidate is
created and no updates are required.

2.2.2 Net Time Series Check

As stated above, there is a second approach, the net time series check, leading to the same
promises and showing the same complexity. Since this algorithm was not integrated into
the prototype for technological reasons, only the main idea will be outlined. The starting
point for the net time series check are two time series, aggregating disjoint sets of fact table
entries. One time series adds up the inputs and the other one all confirmed and conducted
promises.

In a next step, bucket by bucket the aggregated promises are matched to the quantities of
the input time series. A bucket from the promise time series consumes primarily items
from the input bucket of the same date. If this corresponding input bucket does not satisfy
the promise bucket, first earlier input buckets and after that later ones will be emptied. The
resulting net time series represents the resources that are available at the time of the ATP
request, cf. Table 3, and gives this algorithm its name. When the net time series is set
up, the new demand acts just like the promise buckets and takes out the requested quantity
from the net time series. Promises are created based on the obtained input buckets, .

Whereas the candidate check has to consider the whole planning horizon independent on
the stock level, the net time series check can under certain conditions reach minimal com-
puting times. If there are no promises or if they all fall into a small number of buckets and
sufficient inventory is available, the algorithm only has to match a few buckets. Under the
premise that they can even be fulfilled out of the preferred input buckets, only a fixed num-
ber of operations, which is determined by the number of promise buckets, is required and
a constant complexity is reached. In such scenarios, the net time series check outperforms
the candidate algorithm.This scenario is unlikely in production though, as it requires all
confirmed promises to fall onto a few condensed dates.
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2.2.3 Comparison

To sum up, the two presented algorithms deliver optimal promises to the customer and both
vary in performance depending on the characteristics of the dataset. So, from a merely
logical point of view both alternatives are equal. However, taking technological aspects
into account, major differences can be identified.

SELECT SUM(Fact.quantity), MAX(Fact.date_id)
FROM Fact
WHERE Fact.cvc_id = 1
GROUP BY Fact.date_year, Fact.date_month, Fact.date_day
ORDER BY MAX(Fact.date_id)

Listing 2: Candidate check aggregation

The descriptions above start with the initial time series already available. The creation of
these data structures has not been treated so far. In fact, it is the most time consuming
part in the overall ATP check, because the raw data has to be aggregated on-the-fly. To set
up the time series for the candidate check, all inputs and promises of the specific product
are added up grouped by the selected time granularity. The resulting database query for
the granularity level day is shown in Listing 2. The maximum of all dates per bucket is
selected, because depending on the granularity several timestamps belong into one aggre-
gation class. It is necessary to find the latest timestamp of all aggregated records, to make
sure that at this point in time all movements have already been issued.

For the net time series check, the situation is more complicated. Two separated time series
are necessary, which can basically be achieved in two different ways. The first option
would be to add an additional group-by attribute, the object-type respectively, to the query
for the candidate check. The downside of this method lies in the structure of the result
set, which includes the buckets for both time series. Thus, new empty time series are
created and while iterating over the result set the buckets are inserted either into the input
or the promise time series. Furthermore, with an increasing number of group-by attributes
the query execution time increases substantially. Alternatively, the two time series can be
extracted from the database in separate queries by adding another predicate for the object
type. This approach obviously requires two full table scans and thus does not present
a feasible solution, especially when the application has to deal with several millions of
records.

Another disadvantage, which applies to both query variants equally, is the quantity of data
to be transferred from the database to the application layer, as inputs and promises are not
consolidated into one time series. Being aware of the disadvantages of the net time series
check with respect to the database queries, the decision in favor of the candidate check
becomes more transparent.
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2.3 Concurrency Control

The algorithms listed in Subsection 2.2 focus on the execution of one ATP check in isola-
tion. They do not factor in the difficulties caused by multiple parallel checks referring to
the same product and consequently accessing the same data. The management of concur-
rent processes indeed belongs to the main challenges in parallel environments. Particularly
in an ATP system, data correctness and consistency at any time is an essential requirement
to avoid wrong promises.

To be precise, there is a temporal gap in between reading the current stock levels from
the database and writing a promise in the end based on those results. In the meantime
another process, proceeding from the same inventory, might have calculated a delivery
date and booked resources that are necessary to fulfill the first request. As a consequence,
the same products are promised twice causing an inconsistent state in the database. Such
anomalies are a serious problem in an ATP system. A company might take severe damage
from dealing with the resulting effects including angry customers, contractual penalties,
costs for acquiring substitute products, and so on. In current ATP systems, the common
practice is to serialize the execution of concurrent requests by locks. Our prototype allows
for choosing out of three strategies suitable for different situation. These three approaches
will be elaborated in this section, benchmarking results will be presented in Section 3.

2.3.1 Exclusive Lock

A naive but secure way to preserve consistency constraints is as mentioned above to lock
critical data. In this context, it means to grant to one process exclusive access rights to the
entire set of fact table entries for the desired product. Since always the whole planning
horizon has to be checked, simultaneous checks on different dates are unrealizable. The
first incoming process acquires the lock, queries the database, calculates the delivery dates,
writes the promises back to the database, and finally releases the lock for the next process
to start. Apparently, this locking policy, termed exclusive lock, involves superfluous la-
tencies in case of sufficient stock. If there were several hundreds of incoming requests for
one product per minute, a sequential schedule would lead to response times that exceed
the limit of tolerance.

2.3.2 Optimistic

Whereas the exclusive lock queues incoming requests for the same product, the second so-
lution, an optimistic strategy, enables parallel execution without blocking. Theoretically,
the optimistic mechanism allows for as many parallel requests as cores available and there-
fore scales linearly with hardware resources. For now, it seems as if the gain in scalability
implies a certain staleness of the data. Indeed, without modification of the ATP check,
violations to the consistency may occur.

This modification consists of a consistency check after the original candidate check. A
process has to verify the correctness of its result concerning the new stock level. The term
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optimistic expresses the nature of this strategy presuming a balanced stock situation. To
avoid a second full table scan, the maximum row id of the fact table identifying the most
recently written record is retrieved from the database in advance. Afterwards, the check is
performed based on the stock level up to this id. It must be mentioned that the row id is a
continuously incrementing counter, which facilitates absolute ordering of fact table entries
by insertion time.

If the candidate check results in a complete or at least in a partial delivery, the promises
are written to the database and a consistency check will be performed. For this purpose, all
fact table entries with an id higher than the initially determined maximum id are retrieved.
The result set contains exactly those inputs and promises that were recorded during the
check. The records are successively included into the time series that comprises the entries
up to the maximum id. In cases of outputs, for instance corrections to planned inputs
or promises, the stock will be checked for overbooking and the invalid quantity will be
saved. If the record is a promise related to the current demand, the system will use its
quantity to compensate the overbooked quantity. So the promise will be either deleted
or reduced. When all records are processed, a new ATP request will be triggered with
the total rebooked quantity. Evidently, this conflict resolution procedure can end up in an
infinite loop. In order to enforce a termination, one could define a maximum recursion
depth and switch to the exclusive lock, once this depth is reached.

To sum up, the optimistic approach dispenses with locks, unless the inventory is close
to exhausting and many parallel requests are competing for the last items. Though, as
long as sufficient capacities are available, the avoidance of locks can be fully leveraged by
providing appropriate hardware resources.

2.3.3 Instant Reservation

The third idea arises from the drawbacks of the two afore mentioned ones. In general
terms, it works similarly to the optimistic strategy without the need for conflict resolution.
The key to this enhancement lies in blocking the desired quantity before the check is
started. So, this approach is called instant reservation. To reserve the requested quantity, a
promise complying with the customer demand is written directly to the database. For the
candidate check, only the fact entries up to this promise are aggregated so that the check
will not be manipulated by its own reservation.

Once the result is computed, it is compared to the initially recorded promise. If they do not
correspond to each other, an adjustment will follow. At this point, it must be mentioned
that this process is totally transparent to the user of the system. The reservation promise
will not be passed on to the user, unless it corresponds to the calculated one. Otherwise,
the updated promises will be delivered.

Reviewing the sequence of steps, one might have noticed that the reservation can cause an
overbooking. But through the comparison in the end, each process clears up self-inflicted
inconsistencies. Concurrent processes include earlier reservations in their calculations.
Accordingly, it is guaranteed that they do not allocate resources needed to fulfill other
earlier processes. Even if the earlier processes have not finished their check yet, the desired
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quantities are blocked by the reservation.

However, in one specific case, this approach does not produce an optimal utilization of
available resources. Given an empty stock and two incoming requests with the same quan-
tity, the first one writes its reservation and initiates the aggregation excluding the reserva-
tion. Before the second request writes the reservation promise, an input is recorded with
exactly the same quantity like the demands. This input is not seen by the first process so
that the request will be rejected.

Therefore, it would be desirable that the input will be used to satisfy the second process.
This process, however, includes both, the input and the reservation of the first process.
Thus, it also faces an empty stock and refuses the customer request. Being aware of this
problem, one has to decide, whether he will accept it and receive the benefits arising from
the renouncement of locks as wells as conflict resolution. More detailed information about
the performance of all three mechanisms will be provided in Subsection 3.1.

3 Prototypical Implementation and Benchmarking

As mentioned in Section 1, the presented prototypical implementation has been done in
the context of a joint research project between the Hasso Plattner Institute and SAP. The
used database system is based on proprietary SAP DBMS technology and is referred to as
relational, column-oriented, in-memory DBMS in the remainder of this paper.

Our prototype ATP had to tackle the following architectural requirements: Multiple con-
current orders have to be possible and are to be handled without risking inconsistency.
The prototype renounces the limitation of static buckets in current ATP systems, enabling
distinctions in delivery date granularity on a per-demand basis.

The implementation we set out to build was to be optimized for columnar, in-memory stor-
age [Hen10]. In order to provide fast order confirmation, our implementation also exploits
parallel execution potential within the concurrency control strategies. It provides special
views for analytical queries which allowed us to specify key figures upfront, yielding im-
proved performance in analytical queries, particularly those important to create the time
series for a candidate check. The application logic is implemented in Python, accessing
the database with via its SQL interface. Computationally intensive parts have been ported
to C++ and are imported as compiled modules.

3.1 Benchmarks

The benchmarks were conducted on a 24 core Xeon (four physical cores each comprising
six logical cores) with 256 GB of main memory. This server was used for both, applica-
tion and database, eliminating network performance as a factor in accessing the database.
Furthermore, in our benchmarks we disabled logging of transactions to prevent hard disk
transfer speed from posing as a bottleneck in our scenarios.
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Our benchmarks were conducted on a dataset that was derived from a live ATP system of a
Fortune 500 company. Today’s ATP systems do not support analytics on top of ATP checks
and only keep a short horizon of data as an active dataset and discard data after a few days.
Thus, we generated a dataset spanning 3 years from a set of records covering 3 months of
planning horizon. We ran our benchmarks on datasets ranging from 1 to 64 million active
transaction items, where every order has 5 to 15 line items. Other dimensions were not
scaled with the number of transactions, simulating different company sizes.

The immediate goal of our benchmarks is to show the feasibility of our prototype and
proposed data structures. The exclusive strategy provides a comparison with existing sys-
tems from an algorithmic standpoint - it reflects how checks in modern ATP systems are
conducted with the only difference being the data storage.

3.1.1 Dataset Size

The first benchmark serves as a proof of concept of the database architecture applied in
our system. On a varying dataset size, the same operations are performed. In each run, 10
concurrent processes execute 400 checks. The critical part concerning the overall runtime
of an ATP check is the aggregation query. The time spent in the application or to be exact
the candidate check is supposed not to be affected by the dataset presuming a constant dis-
tribution of fact entries over the time. In this case, the size of the time series is determined
only by the chosen granularity, which will not be changed so that the application part is
constant.
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Figure 4: Varying dataset size

To conclude, the expected outcome of this benchmark is a linear relation between the
dataset size and the query execution performance. Figure 4 displaying the throughput of
checks explicitly reflects this trend. For the remaining experiments in this paper we work
on 64 million records item which represents three years of operations in a large company.
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3.1.2 Concurrency Control - Single Check

The following experiments directly compare the three concurrency control mechanisms
introduced in Subsection 2.3. For this purpose, at first a single check is executed in iso-
lation to evaluate the overhead added by the concurrency control. To recap, the exclusive
lock only wraps the candidate check with the acquiring and releasing of a lock on product
level. Both are atomic operations and do not involve database access. So, the overhead is
supposed to be negligible.

In contrast, the optimistic approach requires a consistency check, which might induce a
loop of conflict resolutions, with a maximum recursion depth though. The instant reserva-
tion mechanism neither uses locking nor consistency checks. Instead, it writes the promise
first and has to validate it in the end. In case of a mismatch with the calculated delivery
confirmation, an additional write operation to correct the promise is triggered. In Figure
5, the elapsed time split into read, write, and computation is illustrated. As expected, the
optimistic check performs worst in this experiment, because it has to retrieve the recent
fact entries to control the stock level after booking.
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Figure 5: Single check

Since the inventory has not changed during the check and enough items were available, a
conflict resolution has not happened. Neither a promise adjustment in the instant reserva-
tion run was necessary. Hence, the overhead is minimal for the two strategies that dispense
with locking. The process of the exclusive lock is independent on the scenario and does not
prolong the check anyway. Nevertheless, the scenario was not constructed to show the best
case performance of the any strategy but rather to emulate the most common conditions
with sufficient stock.

3.1.3 Concurrency Control - Throughput

After comparing single check times, the effectiveness of the presented techniques when
facing parallel requests is measured, as it is the primary reason for putting so much em-
phasize on this topic. The prevailing KPI to assess concurrency control strategies is the
throughput, in our case the number of accomplished checks per second. The setup for
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this experiment consists of 1000 checks to be executed on the machine specified above
by a varying number of processes representing the degree of parallelization. In the first
experiment, the checks refer to different products.
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On the basis of the single check times and the hardware capacities, conclusions about the
throughput can easily be drawn. The exclusive lock allows parallel requests on differ-
ent products, so do the optimistic and the instant reservation approaches. Logically, the
throughput scales linearly with an increasing number of processes. Since there is only a
limited number of physical and logical cores, the increase of the curves flattens when the
hardware is fully exploited, as can be seen in Figure 6.
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Figure 7: Single CVC access

For concurrent checks on one single product, another behavior is to assume. No matter
how many processes are used to carry out the 1000 checks, only one process at a time can
operate on the requested product in case of the exclusive lock. The logical consequence
would be a constant throughput, which could be verified experimentally in our measure-
ments, cf. Figure 7. This benchmark further gives evidence for the scalability of the two
other alternatives in case of concurrent checks on one product. Those scenarios heav-
ily benefit from locking-free concurrency control, whereas the exclusive lock enforces a
sequential execution.
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3.1.4 Write-Intensive Operations

Column-stores are particularly tailored for analytical queries. The workload of an ATP
application is not limited to availability checks only but includes regular write operations
as well. New orders and delivery promises have to be saved with every order. All new
inputs and changes in inventory and production result in update and insert operations. The
prevailing solution to handle a mixed workload consists of the division of the database
into two parts, a read-optimized and a write-optimized store, the delta store, as briefly
touched on in Section 1. The read-optimized store contains a snapshot of the database at
a pre-established point in time. All incoming modifications are written to the delta store
[KHK80]. The idea of organizing the data in two isolated stores dates back to the sixties.
Early studies propose to regularly consolidate all modifications in the write-optimized
store into the read-optimized store [SL76]. This so called merge process is the only proce-
dure that modifies the read-optimized store. Since there is no need for maintainability or
updatability, it can store the data most suitable for fast read access.
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Figure 8: Performance during merge

In the delta-store, fast inserts can be enabled by not using the compression and keeping
the data unsorted. The obvious effect is that ATP queries slow down, when the delta store
reaches a certain size, since both stores need to be considered. In the light of this perfor-
mance loss, a naive suggestion would be an eager merge policy minimizing the response
times of analytical queries. However, the merge process itself is a complex procedure
consuming a considerable amount of system resources. So, merge scheduling strategies
have to deal with the tradeoff between merging often to keep the write-optimized store
small and merging rarely to reduce the influence of the merge on the regular operation. To
get an impression on how the merge process affects the ATP query execution, a long-term
benchmark has been run on a dataset of 64M records. One process continuously executes
ATP checks and another one inserts in cycles 1000 fact entries that are merged instantly to
the read-optimized store. The curve in Figure 8 shows the total time spent on one check
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while the second process is in insert, merge, and idle phases and highlights the importance
of a smart merge policy.

4 Business Implications

After describing the involved concepts and their prototypical implementation, this section
lists possible business implications that could be realized by running the ATP application
in a productive environment.

Parallel ATP Checks on Hot Products. Performing ATP checks on aggregates necessi-
tates exclusive locking. As demonstrated in the previous section, we can omit exclu-
sive locks in our prototype. This increases the throughput of simultaneous checks
on the same product by using multi-core technology. The limit of performing simul-
taneous checks on single products is a problem, e.g. for high-tech companies when
introducing new, highly requested products.

Changing the Temporal Granularity for Every Check. Since for every check the cor-
responding time stamp is saved, it is possible to change the temporal granularity for
every single check. Thus, a check on hours or on weeks can be done in the same
system without any modifications. This is not possible with aggregates as they can
only operate on one initially defined temporal granularity.

Considering Product Attributes in the Check. The inclusion of additional attributes dur-
ing the check is supported by the columnar data structure and has a significant busi-
ness impact. Now, companies are able to include fine-granular product attributes in
their checks for otherwise identical products. Examples are the date of expiry in the
food industry or the quality of raw materials e.g. in the steel industry.

Analytics on Check History. The ability to do analytics on the history of ATP checks
introduces two major advantages: on the one hand, a company can perform classical
analytical tasks such as seeing which products were sold the most, which customer
groups ordered which kinds of products in which time periods and so on. On the
other hand, storing the complete history of ATP checks also including those checks
which did not result in actual orders, makes an important source of information
accessible: companies can see which products were highly requested, but were not
ordered e.g. because not enough quantities were available. Furthermore, a company
can see which are the most popular replacement products, e.g. which products were
ordered in the end, although different products were initially included in the ATP
check.

Instant Order Rescheduling. Promised orders and planned deliveries are based on a cer-
tain schedule of incoming products or planned production. However, often these
schedules and plans turn out to be incorrect as products may not arrive on time or
production goals cannot be met. As a consequence, already promised orders have
to be rescheduled. Using aggregates, this is a time-intensive process as the relevant

684



aggregates have to be calculated back to the point where the order in question was
promised, so that the new delivery date can be calculated considering the changed
stock projections. This operation can now be done significantly faster as all the
relevant fine granular data is on hand. Including additional attributes such as prior-
itization of customers implies further functionality: A major customer’s order that
precedes other orders in its relevance can be protected from rescheduling activities
incurred by unexpected changes to a product’s stock level.

5 Conclusion

The real-time ATP approach presented in this paper does not only tackle performance
bottlenecks, but also enables innovative features. On the technical side, we introduced
the candidate checking algorithm and identified the instant reservation strategy as suitable
concurrency control mechanism for executing an ATP check on an in-memory column-
store. Based on a dataset with 64 million transactional records, we achieved a check time
of 0.6 seconds. The dataset is based on the anonymized data from a Fortune 500 consumer
products company and spans three years of operation. Our approach scales linearly with
added CPU cores, even in hot-spot situations with checks against the same product. On the
business side, we described possible business implications of our approach. To our knowl-
edge, many ATP related systems do not track availability checks which did not result in
orders and thereby lose extremely valuable information for planning purposes. Further-
more, rescheduling of orders is a time-intensive, static process without the possibility to
include further requirements. Only these two aspects alone provide a significant benefit
for companies.

The outlook of this paper leaves the safe harbor of well-established database concepts,
prototypical implementations, and measurable results, but draws a vision of how com-
panies could leverage analytical capabilities in the context of an ATP check in order to
maximize their profits. On the one hand, let us assume that we can analyze the full history
of a customer’s ATP checks and resulting orders during every new incoming check. That
implicates that we can calculate the probability of a customer still placing his order even if
he cannot get the products delivered on his initially requested date. Therefore, we can de-
rive a certain flexibility on the companies’ side when to produce and ship an order without
actually loosing any orders. On the other hand, we heavily discussed the consideration of
additional attributes during the check throughout the paper. Another example for such an
attribute could be the varying production costs for the different products over time. Even
if companies sell products for the same price over a certain period of time, the real pro-
duction costs vary heavily due to changing raw material costs, different availability and
costs of labor, and changing component suppliers. Putting those pieces together, instead
of just considering the available quantities during the check, a company could also include
varying production costs and therefore present an availability date that aims at maximizing
the profits.
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Kurzfassung: Durch die hohe Dynamik im Bereich des Cloud Computings 
entstehen neues Potenzial, aber auch Risiken bezüglich existierender und neuer 
Anwendungen. Eine wichtige Ressource bei der Nutzung von Cloud Computing ist 
sicherlich Cloud Storage. Unter Cloud Storage werden Datenspeicher subsumiert, 
die in unterschiedlichen Varianten von Cloud Computing Betreibern angeboten 
werden. Die wichtige Frage für die Nutzung von Cloud Storage ist hierbei, 
inwiefern auf technischer Ebene die wesentlichen Eigenschaften des Cloud 
Computings wie Elastizität, Skalierbarkeit und Kostenreduktion umgesetzt werden. 
Anhand von Beispielen wird deutlich, dass viele dieser Eigenschaften nach 
derzeitigem Stand nicht vollständig erfüllt werden. 

1 Einleitung 

Im Bereich Cloud Computing können wir eine große Veränderung im Markt feststellen, 
da etablierte und neue Anbieter mit neuen Produkten auftreten. Gleichzeitig sind große 
Investitionen zu beobachten, die in den Aufbau von Datenzentren und 
Plattformtechnologien fließen. Diese Veränderung schafft Potenzial in Form von 
neuartigen Anwendungen oder Kosteneinsparungen bei existierenden Anwendungen. 
Gleichzeitig entsteht die Gefahr, dass bisherige Geschäftsmodelle nicht mehr aufrecht 
erhalten werden können. Daher ist Cloud Computing für Unternehmen von großer 
Bedeutung. 

Bausteine des Cloud Computings, wie zum Beispiel Virtualisierung oder Service-
Orientierung, sind bereits zuvor in verschiedenen Formen auf technologischer Ebene 
realisiert worden. Jedoch waren bisher diese Bausteine nicht in dieser Breite und 
Kombination am Markt verfügbar und haben nicht zu den konkreten Vorteilen geführt, 
die einem das Cloud Computing nun bietet. Als Hauptvorteile zählen Armbrust et al. auf 
[AFG+09]: 

1. Im Vergleich zu der Ressourcen-Kapazität, die durch eigene Mittel aufgebaut 
werden kann, scheinen die Ressourcen, die über Cloud Computing eingekauft 
werden können, praktisch unbegrenzt. 
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2. Die Investitionen sind sehr gering. Man geht praktisch keine relevanten 
Verpflichtungen ein, und Anschaffungskosten entfallen größtenteils. Zudem wird 
nach tatsächlichem oder reserviertem Verbrauch bezahlt. Dies ist gemeinhin als 
Pay-as-you-go-Prinzip bekannt. 

3. Es ist möglich, punktuell Ressourcen je nach Bedarf mal mehr oder weniger zu 
beziehen und auch nur den aktuellen Bedarf zu bezahlen. Man spricht hierbei von 
der Elastizität der Ressourcen.   

Betrachten wir die Entwicklungen in den vergangenen Jahren, sehen wir noch weitere 
Vorteile hinzukommen: 

4. Bei einigen Angeboten ist der administrative Aufwand verglichen mit dem Betrieb 
einer eigenen Infrastruktur geringer. 

5. Durch den Betrieb in Datenzentren wird ein gewisses Maß an Ausfallsicherheit und 
Hochverfügbarkeit erreicht, welches bei eigener Infrastruktur sonst nur durch 
erhöhte Investitionen erreicht würde. Z.B. ist das Aufsetzen und Administrieren von 
Datenbank-Clustern mit einem erheblichen Aufwand verbunden, der durch einen 
Cloud-Anbieter abgenommen werden kann. 

Cloud Computing umfasst im Wesentlichen die Ressourcen Rechenkapazität, 
Applikationen und Speicher. In diesem Beitrag soll Letzteres im Vordergrund stehen. 
Bei Speicher beziehen wir uns dabei nicht auf Arbeitsspeicher, sondern auf persistenten 
Speicher, dem sogenannten Cloud Storage, den Anwendungen nutzen können.  

Cloud Storage kann in zwei Formen genutzt werden: Zum einen ist es für Cloud 
Anwendungen sinnvoll, einen Speicher in der Cloud zu nutzen, anstatt einen eigenen 
Datenbankserver in die Cloud einzuspielen, aufzusetzen und zu administrieren. Zum 
anderen kann es auch für Anwendungen außerhalb der Cloud interessant sein, um z.B. 
Daten in einer Cloud auszulagern und dadurch Administrationskosten zu sparen. Da ein 
Cloud Storage direkt vom Internet aus erreichbar ist, wird zudem eine große Breite von 
Zugriffswegen ermöglicht. 

Wenn Cloud Storage für neue Projekte in Betracht kommt, stellen sich unmittelbar 
folgende Fragen: Wie sind die Vorteile des Cloud Computings für Cloud Storage genau 
ausgestaltet? Was sind die technischen Begebenheiten? Ausgehend von existierenden 
Angeboten haben wir den Eindruck gewonnen, dass die gemeinen Vorteile derzeit nicht 
in allen Aspekten erfüllt werden. Im Folgenden diskutieren wir daher die Punkte 
Elastizität, Kosten und Skalierbarkeit exemplarisch an diversen Cloud Storage 
Lösungen. Zudem werden datenbankrelevante Punkte wie Performanz, Ausfallsicherheit 
und Administration beleuchtet. Damit soll eine Grundlage geschaffen werden, die 
Entscheidern dient, die Eigenschaften des Cloud Storage richtig einzuschätzen. 

Der folgende Teil des Beitrags gliedert sich wie folgt: Im nächsten Abschnitt 
beschreiben wir die grundlegenden Konzepte der verschiedenen Cloud Storage 
Lösungen. Darauf folgend diskutieren und analysieren wir potenzielle Fallstricke und 
Probleme, illustriert durch Beispiele basierend auf dem momentanen Entwicklungsstand. 
Der Beitrag endet mit dem Fazit, das aus der Analyse gezogen wird. 
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2 Speicherkategorien in der Cloud  

Cloud Storage ist eine bedeutende Basis-Ressource, die auf Infrastrukturebene im 
Rahmen des Cloud Computings angeboten wird. Mehrere Gründe sprechen dafür, eine 
Cloud Storage Lösung einzusetzen. Zum einen gelten die im vorangegangenen Abschnitt 
angeführten Vorteile und Motivationen für Cloud Computing. Zum anderen bieten 
Anbieter gleichzeitig nicht nur den Speicher, sondern führen auch Datensicherungen 
durch und bauen auf eine Mehr-Knoten-Architektur, der den klassischen Cluster 
Deployments nahekommt [LMM09]. Dies bedeutet, dass Produkte angeboten werden, 
die über einen einfachen Speicher deutlich hinausgehen. Bezüglich der Speicherung von 
Daten in der Cloud gibt es grundsätzlich zwei architekturelle Anordnungen: 

• Speicher für Datenbankanwendungen in der Cloud: Eine Anwendung läuft in der 
Cloud und benötigt eine Datenbank zur Verwaltung persistenter Daten. Auch wenn 
prinzipiell die Cloud-Applikation ein On-Premise-Datenbankserver nutzen kann, so 
ist es aus Sicherheitsgründen (der Zugriff auf das DBS erfolgt von außerhalb der 
eigenen Organisation) und aus Latenzgründen wenig praktikabel. Sofern keine 
geschäftlichen Gründe gegen eine Speicherung der Daten in der Cloud sprechen, ist 
ein Aufsetzen der Anwendung und des Cloud Storages in der Cloud die technisch 
optimale Lösung.  

• Auch wenn die Anwendung nicht in der Cloud aufgestellt wird, kann man dennoch 
von Cloud Storage profitieren. Mit der Nutzung von Cloud Storage kann auf die 
Anschaffung wie auch die Administration eines eigenen Datenbankservers 
verzichtet werden. Insbesondere das Aufstellen einer hochverfügbaren Cluster-
Lösung benötigt einen erheblichen Aufwand. Zudem erhält man durch den Anbieter 
eine weltweite Erreichbarkeit, die gleichzeitig eine hohe Anzahl von Nutzern 
bedienen kann. Weiterhin kann man von neuartigen NoSQL-Angeboten [NoSQL] 
von einfacheren Datenspeichern profitieren, die nicht die Komplexität für die 
Planung und Betrieb eines relationalen Datenbankservers erfordern. 

Es gibt im Wesentlichen drei Kategorien von Cloud Storage, die im Folgenden diskutiert 
werden sollen: Blob Storage, Table Storage und echte Datenbankserver. Weitere 
Kategorien wie der Plattenspeicher (z.B. Amazon EBS oder Windows Azure Drives) 
oder vorgefertigte Images z.B. von Oracle für Amazon sollen hier außer Acht gelassen 
werden.  

2.1 Blob Storage 

Blob Storages sind gedacht für die Speicherung von großen Binär- oder Textdaten 
(„binary large objects“) wie z.B. Bilder, Software oder XML-Dokumente. Das Konzept 
Blob ist bereits aus der Welt der relationalen Datenbankserver bekannt. Blobs lassen sich 
beispielsweise gut für Plattformen zur Speicherung und Verteilung von Dokumenten und 
Software nutzen. Beispiele für Blob Storage Angebote sind Amazons Simple Storage 
Service (S3) aus dem Amazon Web Service (AWS) oder der Blob-Service des Microsoft 
Azure SDK.  
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Die Grundkonzepte eines Blob-Storage sind Container, die einen eindeutigen Namen 
besitzen müssen und die eigentlichen Blobs enthalten. Ein Benutzer kann mehrere 
Container anlegen. Ein Blob besitzt ebenfalls einen Namen und besteht aus den 
eigentlichen Objektdaten, im Prinzip einer Datei entsprechend, und zusätzlichen 
Metadaten. Zu den vordefinierten Metadaten zählen HTTP-Metadaten (ETag, Last-
Modified, Content-Length, Content-Type, Content-Encoding, Content-Language etc.), es 
lassen sich aber auch benutzerdefinierte Metadaten aufnehmen. Da der Objektname das 
Trennsymbol „/“ enthalten kann, lassen sich Hierarchien im Sinne einer 
Verzeichnisstruktur ausdrücken.  

Typische Operationen für einen Blob Storage sind: 

• Create / Delete Container 

• Write / Read / Delete BLOB-Objekt 

• List BLOB-Objekte 

• Get / Set Metadata / Properties 

Die Adressierung eines Containers oder Blobs erfolgt über einen speziellen Uniform 
Resource Identificator (URI): 

• http://photos.s3.amazonaws.com/2009/Barbados/beach.jpg: Bei 
diesem AWS-Beispiel ist photos der Container, der mit einem vordefinierten 
s3.amazonaws.com zu versehen ist; das Blob ist 2009/Barbados/beach.jpg. 
2009 und Barbados können hier als Unterverzeichnisse des Containers aufgefasst 
werden. 

• http://myaccount.blob.core.windows.net/?comp=list&maxresults= 

10&include=metadata:  Auch hier ist der Teil blob.core.windows.net für 
Microsoft Azure vorgegeben. myaccount ist die Benutzerkennung. Mit der URI 
werden alle Container inklusive (include=) ihrer Metadaten aufgelistet 
(comp=list), wobei das Ergebnis auf maximal 10 Sätze beschränkt wird 
(maxresults=). 

Der Zugriff erfolgt in der Regel über zwei Protokolle, SOAP und REST 
(Representational State Transfer  (RFC 2616) [Fi00]) über HTTP(S). REST ist ein 
HTTP-basiertes Protokoll, das HTTP-Operationen wie GET, DELETE oder PUT für 
Datenmanipulationen benutzt. Da der Zugriff aus einer Programmiersprache heraus recht 
aufwändig ist, werden entsprechende Programmierschnittstellen (wie JetS3t für Amazon 
S3) für die gängigen Programmiersprachen angeboten, mit denen sich die Benutzung der 
komplizierteren HTTP-Programmier-APIs vermeiden lassen.  

Neben diesen grundsätzlichen Funktionalitäten bieten Blob Services weitere Funktionen, 
um die Performanz beim Zugriff zu erhöhen. So unterscheidet der Microsoft Azure Blob 
Storage zwischen Block und Page Blobs, deren Zugriffs-API einmal für sequenziellen 
Zugriff und ein anderes Mal für quasi zufällig platzierte Zugriffe optimiert sind. Hier 
muss der Anwender bzw. die Anwendung beim Anlegen entscheiden, welcher Blob-Typ 
angelegt werden soll. 
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2.2 Table Storage 

Ein Table Storage gehört zur Gruppe der kürzlich aufgekommenen NoSQL-
Datenbanken [NoSQL] und dient der Speicherung von strukturierten Daten - in einer 
relativ unstrukturierten, großen Tabelle, im Folgenden BigTable genannt. Die 
Tabellenstruktur muss dabei nicht im Sinne einer CREATE TABLE Anweisung 
vorgegeben werden, sondern ergibt sich dynamisch aus den zu speichernden 
Datensätzen. Jeder Datensatz besteht aus einem lokal eindeutigen Identifikator und einer 
Menge von Attributname/-wert-Paaren. Die Tabellenstruktur passt sich dann dynamisch 
den aktuellen Daten an. Beispiele sind Google’s Implementierung einer BigTable 
[CDG+06], Amazon SimpleDB und der Azure Table Service. Abbildung 1 zeigt eine 
typische BigTable, die sowohl Kleidungsstücke als auch Auto- und Motoradteile enthält. 
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Abildung 1: Beispiel eines BigTable 

Für einen Table Storage ist charakteristisch, dass er keine vordefinierte Struktur besitzt. 
Zudem beziehen sich alle Operationen und Anfragen auf genau eine BigTable. Als 
unmittelbare Konsequenz sind keine Verbunde (Joins) zwischen Tabellen möglich.  Mit 
Ausnahme von Bulk-Operationen stehen auch keine Transaktionen zur Verfügung; jede 
Einzeloperation ist atomar. 

Der Zugriff erfolgt wie bei Blob Storages über SOAP und REST über HTTP(S) bzw. 
einfacher zu benutzende Programmierschnittstellen. Eine typische Anfrage als URI in 
Azure lautet  

http://myaccount.table.core.windows.net/MyTable()? 

$filter=(Model%20eq%”S4”)%20and%20(Color%20eq%”Blue”).  

Hiermit werden aus MyTable alle Datensätze herausgefiltert, die der Bedingung 
Model=”S4” AND Color=”Blue” genügen. Azure bietet auch eine ADO.NET und 
eine LINQ-Schnittstelle (language-integrated queries), die aber nicht den vollen 
Funktionsumfang des Table Services bietet.  
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2.3 Datenbankserver 

Die Rubrik der echten Datenbankserver stellt einen „virtuellen“ Datenbankserver für 
jeden Benutzer in der Cloud bereit. Der Begriff der Echtheit bezieht sich hierbei auf 
einen ähnlichen Funktionsumfang, wie man ihn von klassischen relationalen 
Datenbankservern erwarten würde. Der zugrunde liegende physische Datenbankserver 
kann prinzipiell mehrere Kunden bedienen, obwohl in der Regel jeder seinen eigenen 
Datenbankserver erhält, wobei aber auf einen physischen Rechner durchaus mehrere 
Datenbankserver laufen können. Beispiele sind Amazon RDS (Relational DB Service) 
mit einem MySQL-Server und Microsoft SQL Azure mit einem SQLServer.  

Oracle bietet derzeit nur eine Lösung, ein Oracle-Image in der Amazon Cloud zu 
installieren1. Letzte Variante erfordert dann aber weiterhin eine Speicherplatz-
Provisionierung und eine nunmehr Fern-Administration eines klassischen 
Datenbankservers. Insofern werden wir derartige Lösungen nicht in Betracht ziehen.  

Während Blob und Table Storages ein SOAP-Interface bieten und mit dem REST-
Protokoll neue Wege gehen, um den Zugriff der Daten zu ermöglichen, bieten die 
Datenbankserver die üblichen APIs wie JDBC, ADO.NET etc. an, die mit einer 
speziellen Datenbank-URL, die einen generierten Servernamen beinhaltet, zu versorgen 
sind. Beispiele für SQL Azure und Amazon RDS sind: 

• sqlcmd -S t17j2515ow.database.windows.net   
       -U MyMasterUser@t17j2515ow -d MyDB 

t17j2515ow ist ein vom Betreiber vergebener Name für den Datenbankserver, 
MyDB ist der Name Datenbank. 

• mysql -h myinstance.crwjauxgijdf.us-east-1.rds.amazonaws.com   
      -P 3306 -u MyMasterUser -p 

myinstance ist der Name der Datenbank, crwjauxgijdf der vom Betreiber 
vergebene Datenbankserver-Name.  

Im Wesentlichen stellen die Angebote eine fremdverwaltete Instanz eines 
Datenbankservers dar.  

Für Applikationen, die in der Cloud laufen und einen Datenbankserver benötigen,  sind 
diese Lösungen wesentlich leichter als klassische Datenbankserver zu nutzen. Der 
Zugriff aus einer Cloud-Applikation heraus auf einen lokal betriebenen Datenbankserver 
ist zum einen aus Sicherheitsgründen (aufgrund einer quasi obligatorischen Firewall in 
großen Unternehmen) in der Regel nicht möglich. Zum anderen wird wegen der schwer 
nachzubildenden Symmetrie der Skalierungseigenschaften eine derartige Architektur 
problematisch sein: Die Anwendung in der Cloud wird viel elastischer skalieren als der 
lokal betriebene Datenbankserver, so dass Letzterer sich zum Flaschenhals entwickeln 
wird. 

Ein weiterer Vorteil ist, dass der Zugriff auch aus Applikationen außerhalb der Cloud 
möglich ist, d.h., der Cloud-Datenbankserver ist prinzipiell von überall verfügbar. Hier 
                                                           

1 http://aws.amazon.com/solutions/global-solution-providers/oracle/ 
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kann wie beim Table- oder Blob-Store der Vorteil der ubiquitären Erreichbarkeit 
ausschlaggebend sein. Weitere Vorteile sind die mögliche Nutzung einer größeren 
Bandbreite der Internet Anbindung des Providers, die eventuell lokal nicht zur 
Verfügung steht, oder die teilweise besseren nicht-funktionalen Eigenschaften, die beim 
lokalen Setup unter Umständen mit Aufwand zu erzielen sind. 

3 Einschätzung der Kategorien bzgl. Der Cloud Computing Vorteile 

Im Folgenden beleuchten wir die Cloud Storage-Lösungen bezogen auf die eingangs 
diskutierten allgemeinen Vorteile von Cloud Computing. 

3.1 Elastizität hinsichtlich Datenvolumen  

Beim Blob Storage ist die Elastizität größtenteils gegeben. Obwohl diverse Limitationen 
wie die Anzahl der Container je Kunde oder eine maximale Blob-Größe bestehen, 
wirken sich diese nicht negativ auf die Erweiterbarkeit aus, da bei den gängigen 
Anbietern quasi beliebig viele Blobs je Container möglich sind.  

Auch beim Table Storage gibt es Limitationen, die aber eine Datenbankobergrenze 
durch die Anzahl möglicher Tabellen und einer maximalen Tabellengröße (z.B. 100 x 10 
GB = 1 TB bei Amazon) definieren. Insbesondere die maximale Tabellengröße ist für 
die Elastizität des Datenvolumens kritisch, da ihr Erreichen kontrolliert und  in 
Applikationen entsprechend durch Anlegen einer neuen BigTable oder eine 
Umverteilung reagiert werden muss. Hierfür empfiehlt Amazon beispielsweise, an eine 
Vorabpartitionierung zu denken, wodurch zusätzlich eine bessere Skalierung der 
Zugriffe erzielt wird. Eine entsprechende Unterstützung ist z.B. beim Azure Table 
Service bereits gegeben.  

Bei den Datenbankservern ist die Elastizität derzeit nicht im erwarteten Bereich, d.h. 
nicht so umgesetzt, wie man es bei den allgemein kommunizierten Vorteilen des Cloud 
Computings erwarten würde: So ist die Datenbankgröße beim Anlegen einer Datenbank 
festzulegen. Teilweise relativ kleine Obergrenzen, z.B. zurzeit von 50 GB bei SQL 
Azure als Business Edition, tun ihr Übriges, wobei sich diese Limitationen in naher 
Zukunft – wie in der Vergangenheit auch – noch ändern können. So ist die Grenze bei 
SQL Azure innerhalb von wenigen Monaten von 10 GB auf 50 GB in der Business 
Edition angewachsen, provisionierbar in 10 GB-Schritten.2 Zu beachten ist, dass eine 
festgelegte Datenbankgröße provisioniert wird. Reicht die Datenbankgröße nicht aus, so 
kann eine neue Obergrenze über Administrationskommandos bis zur Maximalgröße 
vereinbart werden. Zurzeit sind unbegrenzt anforderbar die Anzahl die Datenbankserver 
und die Anzahl der Blobs; die Anzahl der Tabellen ist in der Regel limitiert.  

                                                           

2 Angaben für Microsoft Azure abgerufen aus dem Internet unter http://www.microsoft.com/en-us/sqlazure 
/offers/default.aspx vom Sept. 2010 
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Eine generelle Einschränkung ist, dass besonders große Anzahl Instanzen 
(Datenbankserver, BigTables etc.) einer gesonderten Beantragung bedürfen und in der 
Regel nicht über eine Anbieter-Web-Anwendung automatisiert provisioniert werden. 
Letzten Endes tragen diese Mechanismen, ebenso wie einzelne voreinstellbare 
Provisionierungsfenster, zur Sicherheit des Kunden bei der Nutzung bei: Auf diese 
Weise soll verhindert werden, dass durch Irrtümer oder Programmierfehler ein zu großes 
Kontingent (automatisiert) angefordert wird, wodurch sonst  hohe Kosten entstehen 
können. 

3.2 Ausfallsicherheit und Hochverfügbarkeit  

Die Blob und Table Storages replizieren die Daten in der Regel dreifach auf 
verschiedene Standorte. Zudem passiert ein Failover bei Ausfall eines der Speicher 
automatisch auf einen Anderen. Auch die Datenbankserver werden früher oder später 
automatisch replizieren, auch wenn es momentan noch nicht immer Standard ist, z.B. 
zurzeit bei Amazon RDS. Bei RDS kommt auch noch ein 4-stündiges Wartungsfenster je 
Woche hinzu, das festzulegen ist und in dem es z.B. bei Datenbank-Patchinstallationen 
durchaus zu einem Betriebsausfall kommen kann. Bedeutend ist, dass die Cloud-
Datenbankserver „managed“ Services sind, d.h., das Einspielen von Patches erfolgt 
automatisch, wodurch die Administration vereinfacht wird. 

Ein kompletter Datenverlust ist nicht zu befürchten, da Backup/Restore-Möglichkeiten 
existieren. Zum Beispiel spezifiziert Amazon für den S3 Blob Storage eine Haltbarkeit 
(„Durability“) von „9-11“3, was einen Verlust von einem aus 10.000 Blobs alle 10 
Millionen Jahren gleichzusetzen ist. Gleichzeitig gibt es für die Kunden die Möglichkeit 
eine 9-4  Haltbarkeit für einen Datenbereich festzulegen (Reduced Redundancy Storage, 
RSS), welcher preiswerter angeboten wird.  

Bezüglich der allgemeinen Verfügbarkeit haben Microsoft als auch Amazon gleiche 
Angebote: Grundsätzlich wird eine 99.9% Verfügbarkeit garantiert, die bei Verletzung in 
Form eines 10% Rabatts kompensiert wird. Sinkt die Verfügbarkeit unter 99%, wird 
durch beide Anbieter zurzeit ein Rabatt von 25% gewährt.4 Hierbei ist zu beachten, dass 
nur auf gezahlte Beträge ein Rabatt eingeräumt wird. Es findet also kein Transfer von 
Beträgen vom Anbieter zum Kunden statt. Die Verfügbarkeit wird zudem durch 
Begrenzung der Dauer einer Abfrageausführung limitiert; wird ein Schwellwert 
überschritten, wird die Abfrageausführung abgebrochen. Zudem können erneute 
Anfragen verzögert werden, um Denial-of-Service-Angriffe entgegen zu wirken. Durch 
diesen Mechanismus kann schnell die durch einen (missglückten) Test erzeugte Last 
während der Entwicklung zu einer Sperrung der Datenbank führen, was während der 
Entwicklung zu beachten ist. 

                                                           

3 9-11 bedeutet eine Verfügbarkeit von 99.x % mit 2 Stellen vor und 9 Stellen hinter dem Komma. 
4 Angaben für Amazon abgerufen aus dem Internet unter http://aws.amazon.com/simpledb/  vom Sept. 2010  
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Eine Änderung der Instanzgröße ist jederzeit möglich, wobei eine 
Ressourcenerweiterung einen möglichen Betriebsausfall zur Folge hat. Ein Wechsel der 
Instanzgröße wird häufig den Umzug des Datenbankservers oder der Datenbank auf 
anderen Rechner bedeuten. In der Regel wird ein Wechsel der Instanzgrößen aber durch 
eine Hot-Switch/Staging Technik gelöst; es wird zunächst parallel eine neue Instanz 
gestartet, auf die umgeschaltet wird, um die Originale abzulösen. 

3.3 Kosteneinsparung durch Elastizität  

Die Kostenmodelle unterliegen derzeit noch starken Schwankungen und werden sich 
vermutlich auf einheitlichem Niveau einpegeln. Die Kosten, die einen erwarten, sind 
schwer überschaubar, da es neben den reinen Speicherkosten sehr viele Einflussfaktoren 
wie z.B. die CPU-Benutzung, Datentransferkosten von der (das Ergebnis) und in die 
Cloud (die Anfrage) gibt und mitunter XML-Daten transportiert werden, deren Größe 
nicht einfach abschätzbar ist. Zudem gibt es unterschiedliche Preise für die jeweils 
angebotenen Regionen (z.B. US East/West, EU) 

Bei den Blob Storages treten bereits recht hohe Speicherkosten von 150$ für 1 TB pro 
Monat bei Amazon S3 auf, während eine eigene TB-Festplatte durchaus bereits für 100$ 
zu haben ist. Ein fairer Vergleich muss allerdings auch die Replikation und die 
eingesparte Administration (Restarts, Updates, Patches, etc.) berücksichtigen. Hinzu 
kommen noch die Transferkosten. Die Kosten skalieren mit dem Datenvolumen und den 
anderen Faktoren, wobei die relativen Kosten mit wachsendem Verbrauch abnehmen, 
z.B. von anfangs 15Ct für 1 GB auf 5,5Ct bei einer Belegung von über 5000 TB.  

Bei den Table Storages sind der Speicherplatz und weiterer Ressourcenverbrauch häufig 
bis zu einer gewissen Größe frei, erst danach fallen Kosten an. Das Kostenmodell ist 
insofern für Privatpersonen und Start-ups interessant, als bei kleinen Datenmengen 
(häufig kleiner als 1GB) erst einmal keine Kosten anfallen, weder Fixkosten noch 
Verbrauchskosten. Die Nutzungskosten orientieren sich wieder an vielen Faktoren und 
wachsen mit dem Datenvolumen und den Zugriffen. 

Andere Kostenmodelle gibt es für die Datenbankserver: Hier fallen Kosten bereits beim 
Anlegen einer Datenbank an, wobei in der Regel die Datenbankkonfiguration (Small, 
Large, bis hin zu Quadruple Extra Large bei Amazon RDS), die  
Speicherprovisionierung (anzugeben beim Anlegen der Datenbank), also nicht der 
aktuell belegte Speicher, sowie der Datentransfer einfließen. Der festgelegte 
Benutzungsrahmen ist zu bezahlen. Auch ist das Volumen von Backup-Daten (z.B. 
durch eine angegebene Backup-Periode gesteuert) zu berücksichtigen.  

Bei SQL Azure ist das Preismodell recht einfach, da hier ein fester Preis für die aktuelle 
Datenbankgröße bis zum nächsten Provisionierungsschritt zu bezahlen ist. Dies bedeutet 
bei den zurzeit eingerichteten 10GB Schritten in der Business Edition, dass eine 13GB 
Datenbank zum Preis von 20GB abgerechnet wird, auch wenn die provisionierte 
Maximalgröße („cap“) 50GB beträgt. Bei der von [KKL10] durchgeführten 
Untersuchung führte dieser Punkt zu den günstigen Kosten. Auch bei den Cloud-
Datenbankservern muss ein fairer Preisvergleich mit selbstadministrierten 
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Datenbankservern die bereitgestellte Ausfallsicherheit wie auch eingesparten 
Administrationskosten berücksichtigen, da gerade das Aufsetzen und Administrieren 
eines Datenbank-Clustern eine aufwändige Angelegenheit ist. 

3.4 Administration 

Beim Blob Storage fallen keine eigenen Administrationskosten an, sieht man einmal von 
der Registrierung und dem Anlegen einer Benutzerkennung ab.  

Auch bei den Table Storages entstehen auf dem ersten Blick keine 
Administrationskosten. Typische DBA-Aufgaben werden vom Anbieter übernommen 
und können auch nicht selber wahrgenommen werden, z.B. übernimmt der Azure Table 
Service eine automatische Indexierung der BigTables, wobei sich sofort die Frage stellt, 
ob  der Automatismus wirklich gut genug für eine optimale Performanz ist. 
Problematisch ist die Größenbeschränkung auf Tabellenebene, die eine Überwachung 
der Tabellengröße erfordert wie auch dann eine adäquate Reaktion beim Erreichen des 
Maximums.  

Bei den Datenbankservern wird die Hardwareausstattung der Datenbankserver (Anzahl 
CPUs, Anzahl Core’s, Platten etc.) gemäß der gewählten Instanzgröße bereitgestellt. 
Eine Administration entfällt also weitgehend bzw. ist gar nicht möglich. Eine manuelle 
Überwachung wird auch hier nötig, um bei Erreichen der Maximalgrößen reagieren zu 
können. Beispielsweise kann bei einer auftretenden Exception aufgrund einer erreichten 
Quotagrenze ein Administrationkommando abgesetzt werden, durch das die 
Maximalgrenze verschoben wird. Ebenso ist die Performanz zu kontrollieren, um ggf. in 
eine andere Instanzkategorie zu wechseln. Performanzkritische DBA-Aktionen wie das 
Erzeugen von Indexen haben weiterhin Bestand. Als Fazit lässt sich feststellen, dass die 
DBA-Kosten nicht entfallen. Insbesondere mangelt es an einer automatischen Kontrolle 
der Speicherbelegung bzw. automatischen Erweiterung bei Erreichen der Maximalgröße. 

4. Allgemeine Punkte 

4.1 Skalierbarkeit 

Bei Blob und Table Storages gehen die Requests über das REST- oder SOAP-Protokoll 
an einen Web-Server, d.h., die Skalierung der Zugriffe liegt als Erstes in der 
Verantwortung des Web-Servers und wird von dort aus auf das Speichersystem verteilt. 
Eine implizite Replikation der Daten auf in der Regel drei physikalische Standorte trägt 
zudem zur Skalierbarkeit bei. Der Server selbst ist nicht zu beeinflussen. 

Ein selbstverwalteter Datenbankserver wird ohne Umweg über einen Web-Server 
angesprochen. Insofern ist die Skalierbarkeit des Datenbankservers ausschlaggebend. 
Der Datenbankserver lässt sich in der Regel bzgl. des internen Caches, der Anzahl 
erlaubter Transaktionen, der benutzten Platten etc. konfigurieren bzw. mit parallelen 
Platten oder RAID-Systemen zu versorgen, um einen optimalen Betrieb und eine hohe 
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Skalierbarkeit zu gewährleisten. Amazon RDS und Microsoft SQL Azure sehen keine 
derartige Konfiguration vor, sondern bieten nur vorgefertigte Instanzkategorien wie 
Small, Large, XL etc. an, die beim Anlegen der Datenbank auszuwählen sind. Hinter 
jeder Kategorie verbirgt sich eine entsprechende Rechnerausstattung, z.B. 2 CPU-Kerne, 
3.5 GB Hauptspeicher und 500 GB Plattenspeicher bei der SQL Azure Medium-
Konfiguration. Die Skalierbarkeit erfolgt somit nur über die Datenbankserver-
Konfiguration, insbesondere der maximale Anzahl erlaubter Verbindungen der 
jeweiligen Instanzgröße. Grundsätzlich ist keine weitergehende Einflussnahme auf die 
Hardware wie das Hinzuschalten weiterer Platten oder Disk Arrays möglich. 

Eine nachträgliche Änderung ist als Reaktion auf beobachtete Skalierungs- oder 
Performanzprobleme möglich, aber auch hier stellt sich die Frage sowohl nach der Zeit 
zwischen Anforderung und Umsetzung bei Ressourcenerweiterung als auch einem 
möglichen Betriebsausfall.  

4.2 Performanz 

Ein signifikanter Unterschied zum klassischen Datenbankserver dürfte durch den Zugriff 
zum Cloud Storage an sich entstehen. Ein Cloud Storage ist im Internet verfügbar und 
ein darauf gerichteter Zugriff geht den bekannten Weg über Router und Internet-
Anbieter. Hierbei sind deutliche Unterschiede in Latenz und Durchsatz im Vergleich 
zum lokal aufgestellten Datenbankserver zu erwarten. An dieser Stelle muss die Art der 
Anwendung entscheiden, ob Einschränkungen bzgl. der Latenz und der Bandbreite beim 
Zugriff in die Cloud einen Einsatz erlauben. Dieser Nachteil ist nicht gültig, wenn die 
Anwendung, die auf den Cloud Storage zugreift, selbst in der Cloud aufgestellt wird. 

Üblicherweise hat der Datenbankadministrator mit dem Anlegen von Indexen einen 
direkten Einfluss auf die Performanz beim Datenzugriff auf ein Datenbanksystem. Die 
Implementierungen der Table Storages der unterschiedlichen Anbieter sehen im 
Gegensatz dazu vor, dass der Anwender nicht „mit der Erstellung von Indexen belastet 
wird“, wie es Amazon in der entsprechenden Dokumentation formuliert. Auch beim 
Azure Table Service wird nur das Vorhandensein fest eingeplanter Indexe dokumentiert, 
aber keine Möglichkeit geboten, eigene Indexe anzulegen. Dies bedeutet nicht, dass die 
Table Storages im Zugriff per se langsamer sind; es wird lediglich dem Benutzer die 
Möglichkeit genommen, direkt Einfluss auf die Datenorganisation zu nehmen. Abhilfe 
kann hier eine frühzeitig festgelegte Partitionierung schaffen, die bei Azure recht einfach 
über einen Partition Key steuerbar ist. 

Weiterhin ist zu beachten, dass die Anbieter von Cloud Storages ein sogenanntes 
Throttling einsetzen um eine unausgewogene Nutzung der Ressourcen zu vermeiden. Im 
Extremfall dient Throttling dazu, eine Denial-of-Service-Attacke zu verhindern, im 
Normalfall wird durch Throttling eine Abgrenzung zwischen verschiedenen 
Produktklassen  bzw. Service Level Agreements (SLA) hergestellt. Beispielsweise ist bei 
einer kostenlosen Nutzung der Google App Engine der Datendurchsatz auf knapp ein 
1MB/sec beschränkt, wohingegen im Bezahlmodus der maximale Datendurchsatz über 
150MB/sec betragen kann. Dies bedeutet, dass bei einer intensiven Nutzung von Cloud 
Storage die Throttling Einstellungen des Anbieters relevant sind. 
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Bei den Datenbankservern wird die Performanz, wie bereits erwähnt, indirekt über die 
Instanzgröße gesteuert. Bei Problemen mit der Verarbeitungsgeschwindigkeit kann nur 
durch einen Wechsel der Instanzkategorie die Anzahl der CPUs etc. erhöht werden. Zu 
beachten ist auch, dass man nur einen virtuellen Datenbankserver erhält. Es ist also nicht 
gewährleistet, dass einem ein physischer Datenbankserver allein zur Verfügung stehen 
wird; prinzipiell kann der Datenbankserver gleichzeitig mehreren Kunden bzw. 
virtuellen Instanzen zur Verfügung stehen. Häufig  wird ein physikalischer Rechner 
mehrere Datenbankserver, bis zu vier bei SQL Azure, aufnehmen; eine gegenseitige 
Beeinflussung scheint vorprogrammiert und hat bei klassischen Datenbankservern 
massiv zu Performanzproblemen geführt. Aus diesem Grund gibt es vermutlich nur die 
Zusicherung der Verfügbarkeit per SLA, aber kein zugesagtes Antwortverhalten. 

4.3 Standardisierung 

Wie bereits erläutert, ist ein Table Storage nicht mit einem klassischen Datenbankserver 
zu vergleichen [Sh07], da sich alle Operationen, auch lesende Anfragen, auf genau eine 
BigTable beziehen, Beziehungen zwischen Tabellen sind folglich nicht als Join in der 
Abfragesprache herzustellen. Die Gründe hierfür sind zweierlei: Zum einen wird durch 
diese Vereinfachung eine optimale Skalierbarkeit und Partitionierung der Daten und 
damit eine optimale Performanz ermöglicht. Zum anderen orientieren sich die Table 
Storages an einem Speicher für Objekte, so dass Abfragesprachen unabhängig vom 
relationalen Modell gestaltet sind. Dies wird durch eine Übersicht der Abfragesprachen 
deutlich: 

Google App Engine: JDO Query Language (JDOQL) 
Microsoft Azure Cloud:  Operatoren und Ausrücke via REST oder LINQ 
Amazon SimpleDB:  SELECT Ausdruck mit Filter und Sortierung, keine 

JOIN Ausdrücke  
Die Beschaffenheit der Abfragesprachen zeigt, dass bei der Benutzung eines Table 
Storages Beziehungen zwischen Datenobjekten auf der Ebene der Anwendungslogik 
aufgelöst werden müssen. Weiterhin wird deutlich, dass ein Äquivalent zum weit 
verbreiteten SQL bei Table Storages noch nicht vorhanden ist. Gleiches gilt auch, wenn 
man beispielsweise die Syntax einer via REST formulierten Abfrage an SimpleDB mit 
einer Anfrage an den Azure Table Storage vergleicht. Bei SimpleDB wird ein SELECT-
Ausdruck als Parameter einer REST-Anfrage verpackt. Bei Microsoft Azure wird der 
Ausdruck auf die Schlüssel-Wert-Paare einer REST-Anfrage abgebildet. Hierbei muss 
allerdings angemerkt werden, dass in den meisten Fällen ein clientseitiger Proxy den 
Zusammenbau der REST-Anfrage erledigt. Dennoch wäre für die Vereinheitlichung von 
unterschiedlichen Client-Proxies eine Standardisierung für REST-Aufrufe für die 
unterschiedlichen Table Storage-Produkte von Vorteil. 

Weiterhin ist eine Vereinheitlichung der Schnittstelle in einer Hochsprache für Table 
Storages nicht so zu finden, wie es mit klassischen relationalen Datenbankservern mit 
JDBC oder ODBC der Fall ist. Innerhalb der Java-Welt ließe sich JDO als 
objektorientiertes Mapping zum Table Storage vorstellen. Ein Standard wie JPA, also 
eine API, die sich nur auf Table Storages beschränkt, ist allerdings noch nicht 
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vorhanden. Gleichwohl gibt es erste Ansätze wie SimpleJPA [SJPA] oder SimpleORM 
[SORM] für einzelne Produkte, die in diese Richtung gehen.  

Bei den Storage Produkten, die einen SQL Server zur Verfügung stellen, handelt es sich 
um Weiterentwicklungen auf Basis bereits bekannter Produkte (Microsoft SQL Server 
bzw. MySQL bei Amazon RDS). In diesem Fall sind die üblichen Standards vorhanden 
und ähnliche Feinheiten bezüglich Einrichten, Verhalten und Funktionalität zu erwarten, 
wie sie auch die bisherigen Produkte aufgezeigt haben. 

4.4 Weitere Besonderheiten 

Für die Migration bestehender Applikationen ist es bedeutend, dass es bei Amazon 
SimpleDB und bei Amazon S3 nur einen Datentyp gibt (nur Strings im UTF-8 encoding) 
und dass alle Attributwerte kleiner als 1KB sein müssen. Die Konsequenzen können 
dann bei einer Migration von einem klassischen Datenbankserver zu Amazon SimpleDB 
erheblich ausfallen, wenn Anwendungslogik, die auf Wertevergleich von Zahlen basiert 
oder Blobs verarbeitet, auf die Verarbeitung von diesen Strings geändert werden muss. 

Google’s BigTable erlaubt die Speicherung auf Basis von JSON-Definitionen 
(JavaScript Object Notation). Dies ist ebenso das Format, welches von den 
Softwareprodukten CouchOne oder MongoDB über deren APIs verarbeitet wird. Da 
JSON nicht nur Strings, sondern auch Zahlen oder boolesche Werte kennt, ist hier die 
Ähnlichkeit zu einem klassischen Datenbankserver viel größer als bei SimpleDB von 
Amazon. Der Table Service aus der Microsoft Welt verarbeitet die Datentypen der 
ADO.NET Data Services Spezifikation. 

Bei SQL Azure sind wenige nennenswerte Unterschiede zu dem bisherigen SQL Server 
Produkt zu nennen, die nach und nach behoben werden. Erst kürzlich hat Microsoft die 
Unterstützung von hierarchischen Daten in SQL Azure als Datentyp nachgezogen und 
eine Unterstützung für Datenverschlüsselung angekündigt. Einige Datentypen früherer 
SQL Server Versionen werden wie von der aktuellen Version auch nicht von SQL Azure 
unterstützt (text, image, ntext). Da der Amazon RDS im Prinzip eine Version von 
MySQL darstellt (zurzeit MySQL 5.1.50), ist ein Transfer der Daten von einem MySQL 
Server zu Amazon RDS problemlos möglich. 

Neben den genannten Punkten muss noch beachtet werden, dass die Testbarkeit durch 
den Einsatz von Cloud Storage leidet und im Normalfall Kosten verursacht. An dieser 
Stelle bieten die Anbieter teilweise Arbeitsumgebungen mit lokaler Datenbank, um 
diesen Nachteil zu kompensieren, zum Beispiel Microsoft mit der Developer AppFabric. 

Schließlich können beim praktischen Einsatz der Cloud Storage Lösungen noch 
unerwartete Überraschungen auftreten: So kann es beim Zugang aus dem Firmennetz auf 
einen Cloud-Datenbankserver Probleme mit dem eigenen Proxy geben, der keine 
Requests über spezielle Ports hinauslässt. Diese können zum Beispiel von einem 
Administrationswerkzeug für SQL Azure oder Amazon RDS stammen. Der Zugriff auf 
Blob und Table Storages mit SOAP oder REST ist hingegen kein Problem.  
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5 Zusammenfassung und Ausblick 

In dieser Übersicht wurde aufgezeigt, dass Eigenschaften, die man seitens klassischer 
Datenbankserver kennt, nicht per se im Bereich der Cloud Storages vorhanden sind. 
Beispiele hierzu lassen sich auch in [Sh07] nachlesen. Die Eigenschaften unterscheiden 
sich hinsichtlich der Produktabgrenzungen und hinsichtlich der Anbieter. 
Standardisierungen in der Benutzung und der Eigenschaften bleiben insbesondere für die 
neue Technologie der NoSQL-Datenbanken noch aus. Für den Anwender bedeutet dies, 
dass Kostenmodelle und Performanz der unterschiedlichen Produkte gegenübergestellt 
werden müssen, um eine Entscheidung zur Nutzung eines einzelnen Produktes treffen zu 
können.  

Auffällig ist auch, dass bei technischer Betrachtung der Möglichkeiten die 
grundlegenden Vorteile von Cloud Computing, Elastizität, Skalierbarkeit und die 
Möglichkeit der Kostensenkung im Einzelfall unter Umständen nicht erreicht werden: 

� Die Skalierbarkeit ist wie auch die Elastizität durch den Nutzungsrahmen (z.B. die 
maximale Datenbank- oder Tabellengröße, oder die Anzahl zur Verfügung 
stehender Datenbankverbindungen) der konkreten Produkte beschränkt. Bei einigen 
Nutzungsmodellen gibt es klare Obergrenzen, deren Überschreitung eines 
administrativen Aktes bedarf, sofern man sich nicht frühzeitig aus Vorsicht auf 
einen zu hohen und damit kostspieligeren Nutzungsrahmen festlegen möchte. 

� Die Kosten können bei häufigen Datentransfer zur und von der Cloud u.U. größer 
ausfallen als bei Applikationen, die in der Cloud laufen. Hierbei können Server mit 
großen lokalen Festplatten wiederum eine preiswerte Alternative darstellen. Zwar 
bietet Amazon mit dem Reduced Redundancy Storage eine günstige Alternative an, 
die wiederum hinsichtlich der Zuverlässigkeit stark eingeschränkt ist.  Letzten 
Endes entscheidet die Art Anwendung über den optimalen Einsatz von Storage 
Lösungen. 

� Die Ausfallsicherheit ist nur in dem Umfang der Produktausgestaltung gegeben. 
Unter Umständen sind Wartungsfenster zu beachten, die die Verfügbarkeit im 
Vergleich zu lokal betriebenen Lösungen einschränken. 

� Der administrative Aufwand kann in der Tat geringer ausfallen, allerdings auch 
unter dem Verlust der Kontroll- und Gestaltungsmöglichkeit. Hier müssen die 
Anforderungen der Anwendungen bzw. die erzielte Performanz entscheiden, ob die 
Einschränkungen nicht zu Nachteilen führen.  

Dies Punkte zeigen deutlich, dass in vielen Bereichen noch Nachbesserungen 
erforderlich sind: Die in der Breite suggerierten Eigenschaften des Cloud Computing 
sind technisch bei den momentanen Cloud Storage Angeboten nicht konsequent 
umgesetzt. 

 

5.1 Ausblick 

Die genannten Arten von Cloud Storage und die verfügbare Produktvielfalt von Blob 
über Table Storages hin zu Datenbankservern machen insgesamt deutlich, dass viele 
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Faktoren die Auswahl eines Produktes beeinflussen. Betrachtet man dazu die 
Freiheitsgrade bezüglich der Aufstellung der eigenen Anwendung, wird klar, dass die 
Nutzung von Cloud Storage zu unterschiedlichen Formen der Anwendungsarchitektur 
führen kann. Insbesondere eine Partitionierung der Daten sollte aufgrund existierender 
Obergrenzen und Skalierungsgründen frühzeitig berücksichtigt werden. Mangelnde 
Erfahrungen mit Frameworks wie Hibernate oder das Java Persistence API (JPA) 
machen sich momentan noch negativ bemerkbar. Zudem wird insbesondere der 
Kostenfaktor die technologische Auswahl wie auch die Architektur beeinflussen. Auch 
gesetzliche Aspekte sind sicherlich relevant, wie z.B. wo die Daten letztendlich liegen 
und welchen lokalen Gesetzgebungen (z.B. der PATRIOT Act der U.S.A.) sie 
unterliegen.  

Ein wichtiges Thema ist weiterhin die Migration bestehender Datenbanken und/oder 
Applikationen in die Cloud. Hier stellt sich heraus, dass Table Storages mit einer 
Portabilität von Anwendungen schlecht verträglich sind. Zum einen bedeutet die 
Migration einer bestehenden relationalen Datenbank in einen Table Storage einen 
erheblichen Aufwand, nicht nur bei der Datenkonvertierung sondern auch bei den 
Zugriffen. Zum anderen wird ein späterer Wechsel des Betreibers nicht einfach werden 
(Datentypen von Amazon SimpleDB gegenüber denen vom Azure Table Service), und 
insbesondere wird der Rückweg zu einem relationalen Datenbankserver erschwert. Die 
Migration zwischen klassischen Datenbankservern und Cloud-Datenbankservern 
gestaltet sich aufgrund ihrer relativen Verwandtschaft einfacher, auch wenn ihr Betrieb 
in der Cloud Einschränkungen unterliegt. Nichtsdestoweniger bleiben die APIs gleich.  

Und schließlich blieben die administrativen Probleme in Unternehmen bisher unerwähnt: 
Als Privatperson ist es recht einfach die Kreditkarte anzugeben, die dann mit den 
Verbrauchskosten belastet wird. In vielen Firmen muss allerdings vor der Nutzung ein 
Bestellvorgang initiiert werden, der einen Preis benennt. Wird dieser Preis dann 
aufgrund des Pay-as-you-go überschritten, so können die zusätzlichen Kosten nicht mehr 
abgerechnet werden. Hier sind sicherlich noch Nachbesserungen in den Tarifoptionen 
notwendig, um den breiten Einsatz in Unternehmen zu erleichtern. 
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Panel: “One Size Fits All”: An Idea Whose Time Has Come 
and Gone? 

Jens Dittrich, Franz Färber, Goetz Graefe, Henrik Loeser, Wilfried Reimann 

Moderation: Harald Schöning 

Mit seiner Publikation “One Size Fits All: An Idea Whose Time Has Come and Gone?“ 
[St05] hat Michael Stonebraker 2005 die Datenbankszene provoziert. Er vertritt dort die 
These, dass die eingeführten und in vielen Kontexten eingesetzten „traditionellen“ 
Datenbanksysteme zwar für viele datenzentrische Anwendungen eingesetzt werden, aber 
keineswegs die optimalen Systeme für viele dieser Anwendungen (OLAP, Stream 
Processing, XML Datenbanken, wissenschaftliche Datenbanken, Textsuche) sind. In 
einer späteren Publikation [St07] stellte er sogar die These auf, dass es keine 
Anwendungen gibt, für die die traditionellen Datenbanksysteme die beste Alternative 
sind. Er sagte voraus, dass sich in der kommerziellen Welt eine Anzahl unabhängiger 
spezialisierter „neuer“ Datenbanksysteme aufsplitten werde, die bestenfalls durch ein 
gemeinsames Frontend verbunden sind. 

Gut fünf Jahre später wollen wir nun diskutieren, inwieweit Stonebrakers Thesen sich 
bewahrheitet haben und wie sie aus heutiger Sicht zu bewerten sind. Fünf Experten 
werden dazu aus unterschiedlichen Perspektiven Stellung beziehen: 

Jens Dittrich ist seit 2008 Professor für Informationssysteme an der Universität des 
Saarlandes. Nach seiner Promotion an der Universität Marburg hat er von 2003 bis 2004 
für die SAP AG gearbeitet im Bereich OLAP/TRex/BI Accelerator. 2004 wechselte er 
als Postdoc zur Systems Group an die ETH Zürich. Schwerpunkte seiner Forschung sind 
effiziente Verfahren für sehr große Datenmengen. Seine derzeitigen Projekte sind 
Hadoop++ sowie OctopusDB. Seine Arbeit “Towards a One Size Fits All Database 
Architecture” wurde 2011 auf der Conference on Innovative Data Systems Research 
(CIDR) als “Best Outrageous Ideas and Vision Track Paper” ausgezeichnet. 

Franz Färber ist Chief Software Architect im TREX Team der SAP. Das TREX Team 
zeichnet für den Entwurf der Column-Store Engine im SAP NetWeaver Business 
Warehouse Accelerator verantwortlich und entwickelt dieses System. Vor seinem 
Wechsel zu SAP im Jahre 1994 arbeitete Franz Färber als Entwickler bei IBM: Seine 
Schwerpunkte sind Datenstrukturen, Kompression und Datenzugriffsmethoden. 

Goetz Graefe arbeitet seit vier Jahren in den Hewlett Packard Laboratories und ist seit 
2008 HP Fellow. Davor war er 12 Jahre für Microsoft tätig und arbeitete dort im Bereich 
SQL Server vor allem an Anfrageoptimierung und effizienter Anfrageverarbeitung. 
Zahlreiche Auszeichnungen, darunter der “ten-year test of time award” der ACM Special 
Interest Group on Management of Data (SIGMOD) International Conference und der 
“influential paper award” der IEEE International Conference on Data Engineering 
(ICDE) belegen, dass er ein anerkannter Experte auf seinem Gebiet ist. 
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Henrik Loeser arbeitet als Architekt und Evangelist im Information Management 
Technology Ecosystem (IMTE) Team der IBM. In den letzten Jahren hat er sich als 
Architekt mit pureXML im Datenbanksystem DB2 sowie mit dem IBM Smart Analytics 
Optimizer auseinandergesetzt. Zu seinen Zeiten an der Universität Kaiserslautern waren 
Non-Standard, objekt-orientierte und objekt-relationale Datenbanksysteme seinen 
Schwerpunkten. Als Hobby arbeitet er als Dozent für Datenmanagement an der Dualen 
Hochschule Baden-Württemberg Ravensburg. 

Wilfried Reimann ist IT Senior Manager bei der Daimler AG. Er ist verantwortlich für  
Enterprise Architecture Integration und Innovation-Management. In den 30 Jahren seiner 
Tätigkeit bei Daimler hat er Expertise in den Bereichen Software-Architektur großer 
Unternehmenssoftwaresysteme, objektorientierte Technologie und Enterprise 
Architecture Management erworben. 

Moderation: Harald Schöning, Senior Director in der Research-Abteilung der Software 
AG. Harald Schöning war vorher als ehemaliger Entwickler und Architekt von Adabas, 
Tamino (einer XML Datenbank) und verschiedener Produkte aus „neueren“ 
Technologiebereichen (semantische Informationsintegration, Complex Event 
Processing) tätig. Aus dieser Tätigkeit und seinen Lehrtätigkeiten an verschiedenen 
Universitäten resultiert das Interesse am Thema des Panels, das sich auch durch die von 
ihm geschriebenen Bücher zeigt. 
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Abstract:
The increasing popularity of the Software-as-a-Service and Cloud Computing trends

has been among the main factors behind the increasing number of public web services
in several domains, e.g., e-commerce, enterprise, education, government, etc. More-
over, the functionalities of such web services are becoming more complex due to the
complexities of modern business needs and marketplaces. Additionally, it has been
observed that service providers, who represent the single source of information about
web services, typically release poor service descriptions.

Due to the aforementioned factors, service discovery has become one of the main
challenges in Service-oriented Computing (SOC). In this demo, we show how to en-
rich service descriptions enabling enhanced service discovery. In our approach, web
services are enriched with annotations (textual descriptions and tags) that are auto-
matically extracted from the websites of their providers and from the analysis of their
invocations.

1 Web Service Discovery

The problem of web service discovery is similar to looking for a needle in a haystack.
Seeking the right service based on user’s search criteria is still one of the main challenges
in Service-oriented Computing (SOC). Typically, service descriptions released by service
providers are used to perform service discovery. However, several factors exacerbate this
challenge, such as the increasing number of public web services, their complex functional-
ities, and poor service descriptions. Further details on this problem and its related literature
are provided in [AN10a].

In spite of their crucial role in SOC, researchers have identified several limitations in ser-
vice descriptions. For instance, the “Internet of Services” (IoS) vision introduced the
concept of business services [SAP09]. Business services represent an abstraction of the
IT web services. Their requirements need much information about the considered services
rather than the technical information provided by service providers in the form of service
descriptions. In [SAP09], the authors state that “. . . there is definitely the need for more
than the technical description of a web service interface”.

To handle the challenge of poor service descriptions that are not suitable for service discov-
ery, we use additional sources of information to enrich them. These sources are automatic
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annotations based on the providers’ websites and invocation analysis.

This demo is part of our Depot project [ACM+09, AN10b].

2 Enriching Service Descriptions

Enriched service descriptions have many benefits in SOC, e.g., enhanced service discov-
ery. Several approaches have been proposed to enrich service descriptions. For instance,
the Adaptive Service Grid (ASG) project1 enables domain experts to enrich service de-
scriptions with ontology annotations manually. In our approach, we enrich service descrip-
tions automatically with two types of additional information, namely, service annotations
and invocation analysis.

2.1 Annotating Web Services

Along with the technical service descriptions (published in service registries) that ser-
vice providers release about their web services, they give additional textual descriptions
(usually on their own websites) to explain their functionalities. Typically, such textual de-
scriptions do not appear in their counterpart technical service descriptions. We developed a
focused crawler to collect public web services from the Internet automatically [ACM+09].
Using only the collected technical service descriptions to perform service discovery was
not efficient, because they are typically poor. To enhance service discovery, we introduced
an information parser to extract additional information about the collected web services
from the crawled websites [ANC10].

Two types of information are generated using our information parser, namely, textual an-
notations and tags. Text in an webpage that is close to a reference to a web service is
extracted as an annotation to that web service. The entire content of a webpage where a
web service is referenced is used to generate tags for that web service. These generated
tags are then used to help service consumers browse web services through tag clouds.

2.2 Dynamic Tags via Invocation Analysis

Invocation analysis is an additional source of information about web services. This source
is instance-based, where actual service invocations are used to generate tags for the in-
voked web services. In our approach, we consider dynamic data web services only, such
as news, events, promotions and offers, etc. For such web services, dynamic tags are gen-
erated based on the analysis of their invocations [AN10a]. These tags are integrated with
the tags generated by the information parser to provide a unified tag cloud.

1ASG Project: http://www.asg-platform.org
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3 Enhanced Service Discovery

Based on the enriched service descriptions, four types of service discovery are provided
on our platform:

1. Browse by category: The increasing complexity of web services and their driving
business needs makes finding “good” keywords for full-text search a difficult task.
For such cases, we provide web service browsing based on categories. Collected
web services are automatically classified in several application domains, e.g., ed-
ucation, finance, entertainment, etc. This classification is based on the enriched
descriptions of web services.

2. Browse by tag cloud: For a quick way of exploring common web services, regard-
less of their providers or categories, we provide a tag cloud that enables service
consumers to browse through common tags attached to web services. Part of these
tags are automatically generated from websites of service providers during service
crawling through the information parser. Additional dynamic tags are generated
from invocation analysis of dynamic data web services.

3. Full-text search: This type requires basic knowledge in the application domain to
choose “good” keywords, e.g., address normalization, credit card validation, etc.
Figure 1 shows a screenshot of our search interface.

4. Browse by provider: This type of service exploration enables service consumers
to find relevant web services from specific service providers. For instance, service
consumers prefer to use web services from service providers with high reputation or
well-known providers.

4 The Demonstration

Depot allows service providers to register their web services explicitly. Additionally, we
allow service consumers to suggest web services by providing the URL of their provider.
Depot crawls that URL, collects web services provided on that URL, extracts annotations
for the collected web services from the same URL, and classifies them based on the ex-
tracted annotations. For a small website with a few HTML pages and a few web services,
these steps take a couple of minutes.

In this demo, we show how Depot collects public web services released on a provided
URL and annotates them. Based on these annotations, Depot derives classifications for
these web services automatically. We show how service consumers can then browse web
services based on their provider, category, tags, or annotations (keyword-based).
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Figure 1: A screenshot of our full-text search interface. Available online at:
https://www.hpi.uni-potsdam.de/naumann/sites/servicedepot/
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Abstract: Wir präsentieren StreamCars, eine datenstrommanagementbasierte Archi-
tektur für die flexible Verarbeitung von Sensordaten im Fahrzeug. Das Datenstrom-
managementsystem Odysseus stellt Anfrageverarbeitungsmechanismen zur Objekt-
verfolgung und zum Aufbau eines Kontextmodells bereit. Auf dieses wird dann über
kontinuierliche Datenstromanfragen zugegriffen, sodass spezifische Informationen an
unterschiedliche Assistenzfunktionen in Fahrzeugen weitergeleitet werden können.

1 Motivation

Moderne Fahrerassistenzsyteme (FAS) wie bpsw. ein adaptiver Tempomant berücksichtigen
neben dem eigenen Fahrzeugzustand auch Objekte wie vorausfahrende Fahrzeuge. Sol-
che Fahrerassistenzsysteme werden in der Regel als proprietäre Systeme entwickelt, die
hochspeziell auf Eigenschaften der Assistenzfunktion oder auch der eingesetzten Sensorik
(Radar, Video, etc.) abgestimmt sind. So können zwar die Sensordaten effizient verarbeitet
werden, aber die Wartbarkeit und Erweiterbarkeit der Systeme ist eingeschränkt. Anpas-
sungen an neue Anforderungen lassen sich in diesen Systemen oft nur durch eine manuelle
Reimplementierung großer Teile der Software realisieren. Da Änderungen insbesondere
während der Entwicklung neuartiger Assistenzsysteme sehr oft vorkommen, ist hier eine
flexiblere Architektur für solche Systeme notwendig.

Die Idee dieser Arbeit ist es, ein Datenstrommanagementsystem (DSMS) mit seinen An-
frageverarbeitungsmechanismen als Basis einer anpassbaren und erweiterbaren Architek-
tur für FAS einzusetzen und so die Entwicklungs- und Integrationskosten von FAS zu sen-
ken. Dabei übernimmt das DSMS eine Art Middleware-Rolle zwischen der Sensorschicht
und der eigentlichen Assistenzfunktion. Zum einen werden Datenstromanfragen zur Auf-
bereitung der vorverarbeiteten Sensordaten zu einem Kontextmodell eingesetzt und zum
anderen bietet das DSMS den einzelnen Assistenzfunktionen einen anfragegesteuerten Zu-
griff auf diese Daten.

Diese Arbeit bringt die zwei Forschungsfelder FAS und Datenstrommanagement (DSM)
zusammen. Im Bereich der FAS existieren bereits zahlreiche Arbeiten, die aber vornehm-
lich die intelligente Nutzung spezieller Sensorik fokussieren [GF07, lCPRK08]. Die Be-
trachtung von flexiblen Architekturkonzepten, welche sowohl von der Sensorik als auch
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von der Assistenzfunktion abstrahieren, wird dagegen nur vereinzelt herangezogen [G+08,
DW05]. So wird in [GF07] bspw. ein System entwickelt, das speziell auf verschiedene Ra-
darsensoren am Fahrzeug ausgerichtet ist. Eine Architekturbetrachtung der entwickelten
Software erfolgt nur am Rande. [G+08] beschreibt dagegen DOMINION, eine serviceori-
entierte Plattform, die von der eingesetzten Sensorik und der Fahrzeughardware abstrahiert
jedoch nicht die eigentliche Sensordatenverarbeitung beinhaltet.

Im Bereich des DSM existieren zahlreiche Arbeiten (u. a. [KS09]), in denen prototypische
DSMS in speziellen Anwendungsfeldern wie Finanztransaktionen oder Click-Streams ent-
wickelt werden. In diesem Demonstrator füllt Odysseus [BGJ+09] die Lücke zwischen der
Sensordatenvorverarbeitung und der Assistenzfunktion im Fahrzeug.

2 Architektur

Das System ist als Schichten-Architektur implementiert. Die Aufteilung der Schichten ist
dabei an [DW05] angelehnt und definiert über der Sensorik eine Sensordatenschicht, eine
Objektdatenschicht und eine Anwendungsschicht, die dann zurück zur Fahrzeugelektronik
führt (s. Abbildung 1). Anders als in [DW05] ist hier die Objektdatenschicht jedoch nicht
als proprietäres System implementiert, sondern wird durch das DSMS Odysseus gefüllt.
So wird eine flexible Aufbereitung der Daten für verschiedene Assistenzfunktionen unter
Einsatz verschiedener Sensoren möglich.
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Objektverfolgung

Adaptiver 
Tempomat

DSMS

Anfrageverarbeitung auf dem 
Kontextmodell

Objektdetektionen
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Abbildung 1: StreamCars-Architektur
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Die Sensorik oder im simulierten Testfall der Simulator erfasst das Umfeld entsprechend
ihrer physikalischen Möglichkeiten.

Auf der Sensordatenebene werden innerhalb von DOMINION die Sensorrohdaten vor-
verarbeitet. Hier können bspw. Verfahren zur Bildverarbeitung oder Punktwolkensegmen-
tierung eingesetzt werden, um aus den Sensorrohdaten Featurevektoren mit Informationen
wie Geschwindigkeit, Position oder der Bounding Box der detektierten Objekte zu extra-
hieren. Diese Featurevektoren werden anschließend an das DSMS Odysseus weitergelei-
tet.

Odysseus übernimmt auf der Objektdatenebene in dieser Architektur zwei zentrale Auf-
gaben. Zum einen setzt es eine Objektverfolgung durch einen geeigneten Anfrageplan um.
Hierzu wurden für Odysseus entsprechende Operatoren zur Prädiktion, Assoziation und
Filterung von Objekten entwickelt und integriert. Diese Operatoren sind so gestaltet, dass
auch hochspezielle Verfahren, die auf bestimmte Sensoren abgestimmt sind, implemen-
tiert und in einen Anfrageplan eingebaut werden können. Auch garantiert die definierte
Semantik der Operatoren deterministische Ergebnisse der Anfrage. Die detektierten Ob-
jekte werden in einem Kontextmodell gespeichert, das laufend aktualisiert wird. Anfragen
auf dem Kontextmodell liefern im zweiten Schritt die Daten, die eine Assistenzfunktion
zur Ausführung ihrer Aufgabe benötigt. Hier können die Daten beliebig für Assistenz-
funktionen aufbereitet werden. Durch die Integration aller Sensorinformationen in ein
gemeinsames Kontextmodell können, anders als in den meisten proprietären Systemen,
auch integrierte Assistenzfunktionen entwickelt werden. Beispielsweise sollte ein adap-
tiver Tempomat das Fahrzeug nicht abbremsen, wenn der Spurwechselassistent erkennt,
dass ein Spurwechsel erfolgen soll.

Auf der Anwendungsebene werden in DOMINION die Assistenzfunktionen selbst im-
plementiert. Hier ist eine Ansteuerung der Fahrzeugelektronik möglich.

Die Fahrzeugelektronik bzw. im simulierten Testfall der Simulator setzt die Befehle der
Assistenzfunktion um und greift steuernd in das Fahrzeugverhalten ein.

3 Demonstration

Der Demonstrator ist an eine Fahrsimulatorsoftware angeschlossen, die die benötigten
Sensordaten liefert. Es ist möglich über die Benutzeroberfläche von Odysseus Anfragen
an die Simulationssoftware zu stellen. Diese Anfragen dienen zum einen der Aufbereitung
des Kontextmodells und können zum anderen dazu genutzt werden, das Verhalten des
Fahrzeugs bzw. der Assistenzfunktion zu beeinflussen. Aktuell ist ein adaptiver Tempo-
mat implementiert. Der Besucher des Demonstrationsstandes wird die Möglichkeit haben,
das Fahrzeug im Fahrsimulator zu steuern und zu sehen, wie sich das Verhalten des Fahr-
zeugs ändert, wenn die Anfragen an das System verändert werden. Die Abbildung 3 zeigt
die Benutzeroberfläche von Odysseus sowie unten rechts den Radarkegel des simulierten
Radarsensors in der Simulationssoftware.

712



Abbildung 2: Screenshots von Odysseus und der Simulationssoftware
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Abstract: In this paper we present NexusDSEditor — an integrated tool for the
stream processing middleware NexusDS. NexusDSEditor is an extension module for
the NexusEditor and supports developers with designing new streaming applications
by providing an integrated tool for orchestrating stream query graphs, define the de-
ployment of query graph fragments to execution nodes, and analyzing data streams. In
this paper we demonstrate these single steps and show how NexusDSEditor supports
developing streaming data applications for the NexusDS platform by hiding complex-
ity and providing an intuitive user interface.

1 Motivation

Context-based applications access data regarding the user’s current situation to adapt
accordingly [Dey01]. As an example consider the visualization pipeline as described in
[CLM10]. A continuous stream of data flows through the visualization pipeline and results
in a rendered image of a map showing nearby surroundings received by a client application.
The application helps the user by adapting its behavior to the user context. To process such
highly specific schemes, NexusDS [CEB+09] has been developed. NexusDS is a highly
flexible and extensible stream processing middleware targeting the processing of context
data streams in a highly distributed and heterogeneous environment. Nexus [NGS+01]
as well as NexusDS build up a context data management platform where Nexus offers
access to static context data and NexusDS provides access to streamed context data. The
context data management platform is an open, federated platform for mobile, context-
aware applications where arbitrary data providers can make their data available by the
platform. A central component is the Augmented World Model (or short AWM) [NM04].
The AWM is a shared, global context model which can be extended by extension schemas.

In the past decade many data stream processing systems have been proposed. However,
tool support for those systems is not considered by research comunity. An integrated
tool that supports developers of streaming applications, when designing new or modifying
existing ones, is beneficial. It helps reducing development time and prevent errors that
occur at design time. As presented in [CWGN10], an integrated tool which hides the real
task complexity and supports the developer during design time is highly beneficial. As a
consequence, we have integrated support for the development of streaming applications
within the NexusEditor [NN08]. Thereby, several requirements specific to the domain of
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Figure 1: Embedding of the NexusDSEditor

streaming applications must be met: Support development of new domain and application
specific operators, provide an intuitive graphical user interface that supports definition
of stream queries, offer the possibility to scan networks for available stream processing
nodes operators can be deployed to, and present a way for getting an introspection of data
processed by the stream query graph at runtime.

2 Architecture

Figure 1 shows the embedding of the NexusDSEditor within the Nexus system. The
NexusEditor is the central component in supporting the development process and bridging
the world of Nexus Experts and Domain Experts.

On the right, Nexus Experts develop and maintain the context data management plat-
form as well as the NexusEditor . The context management platform consists of the
Nexus [NGS+01] and the NexusDS [CEB+09] platforms. Nexus Experts also develop
extensions for the NexusEditor , such as the NexusDSEditor extension as displayed in
Figure 1. NexusDSEditor supports Domain Experts during the development process of
context-aware streaming applications (as we will show in our demonstration).

On the left, Domain Experts exploit the NexusEditor functionality, and here especially
the NexusDSEditor functionality, to develop context-aware applications and context data
management platform extensions respectively. By using the NexusDSEditor , productivity
is increased since most potential conflicts are recognized and can be eliminated at design
time. E.g., beside others the NexusDSEditor supports compatibility checking of intercon-
nections between operators to guarantee a working query graph at design time.

Finally Users use context-aware applications and access functionality and data which Do-
main Experts have developed beforehand. These context-aware applications run on clients,
such as desktop computers or mobile devices.
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Figure 2: NexusDSEditor screenshot

3 Demonstration

Figute 2 shows a screenshot of the NexusDSEditor . On area (a) resides the toolbox
offering different operators and (b) is the drawing area where the orchestration of the
actual stream query graph is performed. (c) represents a properties view dependent on
the currently selected item from (b). Finally, (d) offers some shortcuts to mostly used
functionality grouped within a toolbar.

We demonstrate four scenarios, each focusing on a different requirement from Section 1:

Development of new domain and application specific operators Developers have the pos-
sibility to integrate specific operators in NexusDS. To do so, the developer has to
provide the actual implementation of the physical operator and also a set of meta
data that describes the operator’s properties. To satisfy this requirement, NexusDS-
Editor provides a modeling component [CWGN10] that allows to easily model the
required operator meta data and package the operator for later deployment.

Definition of stream queries NexusDSEditor provides a graphical interface to orches-
trate the stream query graph out of single units called operators. An operator is
the basic concept of stream query graphs and represents a certain operation on the
streamed data. After the stream query graph is modeled, NexusDSEditor supports
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the fragmentation of the stream query graphs to so-called isles. An isle is a fragment
of a stream query graph that is deployed on a stream processing node.

Scan network for available stream processing nodes In NexusDS, stream query graphs
are processed in a distributed fashion. Each node, that runs the NexusDS system,
can join and consequently be used as stream processing node running a stream query
fragment. NexusDSEditor supports scanning the network for available stream pro-
cessing nodes and present them to the developer. In a second stage the developer can
pick the stream processing nodes he prefers and assign them to the corresponding
isles. After that process, the query graph is fully defined and ready for deployment.
NexusDSEditor therefore offers a deployment functionality that deploys the isles to
their associated stream processing nodes initiating the query execution.

Introspection of data processed by the stream query graph After the query graph has
been deployed, it is executed and data is processed. Nevertheless, errors may occur
during operator development. Therefore it is beneficial, if developers can analyse
processed data that is transferred between operators. For this purpose, NexusDS-
Editor supports a special kind of operator class namely Visualizers. Visualizers
consist of two components: One component for connecting to the query graph to
retrieve the corresponding data and a second component to display the data within
the NexusDSEditor.
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Abstract: The “Airspace Monitoring System” (AIMS) is a system for monitoring
and analyzing flight data streams with respect to the occurrence of arbitrary complex
events. It is a general system that allows for a comprehensive analysis of aircraft
movements, in contrast to already existing tools which focus on a single task like
flight delay detection. For instance, the system is able to detect critical deviations
from the current flight plan, abnormal approach parameters of landing flights as well
as areas with an increased risk of collisions. To this end, tracks are extracted from
cluttered radar data and SQL views are employed for a timely processing of these
tracks. Additionally, the data is stored for later analysis.

1 Tracking Flights

Airspace monitoring systems visualize the current state of aircrafts based on radar observa-
tion or on transponder signals, or both. However, there are still plenty of situations where
highly critical events are detected too late, like the Ueberlingen catastrophe has shown [4]
that occured due to the inattentiveness of the responsible flight controller. There are many
critical events in airspace, like close encounters or violations of no-fly zones. Disappear-
ance of flights from their scheduled route are another anomaly of interest; they can indicate
hijacking of airplanes. The development of automated tools able to detect critical events
based on streams of continuously arriving sensor data and to raise an alarm triggering hu-
man (or automatic) action is therefore a highly relevant, but still mostly unsolved task.
First of all, it is necessary to track the airplanes. A flight track is a sequence of probability
density functions representing an estimation of a flight path. It is derived from measure-
ments either by primary radar or by transponder signals of equipped aircrafts. But the raw
position measurements suffer from several drawbacks: Radar or transponder signals may
be missed due to physical effects, and false detections may arise from punctual disturbing
sources like clouds, birds etc. Misdetection and false alerts/clutter are connected anti-
proportionally as levering the amplification of the signal will also amplify the disturbing
signals [5]. Another problem consists in the fact that radar signals are not sharp in posi-
tion and will be smeared out. If multiple objects are in the field of view, the assignment
between plot and corresponding plane has to be solved.

All these effects make the process of tracking complex. Many tracking algorithms have
been proposed in the past decade, e.g. [6, 7, 8]. The development of new and enhanced
tracking algorithms is still an active research area, in particular at Fraunhofer FKIE. Track-
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ing algorithms can be distinguished by several characteristics. For example, there are
trackers that can cope with multiple targets and will compute several hypotheses about
which plot belongs to which target. Other trackers feature prediction, estimating how the
target will behave in future, or they may feature retrodiction, calculating what we can
say about the way in the past by knowing the current results. In our approach, a Bayesian
tracking algorithm is employed. It is important to know that trackers usually use stochastic
models and will output the kinematic state together with a quality indicator of the estima-
tion, i.e., the covariance in position and speed as well as a measure for the size of the
region in which the object can be estimated with a certain probability. Thus, a sample
output of our tracking algorithm may look as follows:

timestamp id lon lat height covX covY vel heading
19:20:43 34 51.124 7.054 4534 30.2 1.2 300.4 91
19:20:44 35 50.985 6.345 2324 40.4 1.4 240.3 27

. . . . . . . . . . . . . . . . . . . . . . . . . . .

2 The AIMS System

AIMS is a prototype of a system for monitoring and analyzing flight movements. It has
been developed at the University of Bonn in cooperation with Fraunhofer FKIE and EADS
Deutschland GmbH. The aim is to develop efficient DBMS-based methods for real-time
gathering and monitoring of streams of flight data. Currently, the system is used to monitor
the complete German airspace every 4 seconds with up to 2000 flights in peak times. An
overview of the AIMS architecture is given in Figure 1.

Our system basically consists of three components. The first one is a track extraction
tool used for detecting and identifying aircrafts using radar data and transponder signals.
Since radar data usually contain noise, we employ the probabilistic multiple hypothesis
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tracking (PMHT) algorithm for detecting moving objects in a cluttered environment [8].
The PMHT algorithm calculates a sequential likelihood ratio for solving the plot-to-track
association problem, testing the hypothesis that a plot belongs to a track. The resulting
tracks and the transponder signals are then merged into a stream of highly accurate aircraft
positions. The resulting stream of timestamped position and velocity data (track data for
short in the following) is periodically pushed into a relational database. For programming
this database application, we used Microsoft SQL Server because of its well-optimized
user-defined function (UDF) processing. UDFs are, e.g., used for spatial coordinate trans-
formations and vector computations. In our scenario, new track data is provided every
four seconds and stored in a ’delta table’ containing just the most recent track data. Its
former content is moved to the history table such that the complete course of each flight is
recorded. However, before data is stored in the database, a lot of data transformation and
cleansing has to be done for which we employ SQL triggers.

The main feature of our approach to stream monitoring is to use continuous SQL queries
(stored as views) for specifying anomalous situations to be detected, as well as important
application-specific concepts and parameters required for anomaly detection. A similar
approach has been already used in various other successful applications by our group ([1,
2]). In the flight tracking scenario, the following questions are to be answered by the AIMS
system:

1. Which aircrafts are currently airborne?
2. Which aircrafts are currently landing?
3. Are there aircrafts on collision course?
4. Are there critical deviations from flight plans?
5. How many aircrafts are currently over a certain region?
6. What is the average number of landings for an arbitrarily chosen airport?

The view definitions can be created in the so-called Flight Monitor, a graphical user inter-
face written in Visual Basic and C# that allows the user to interact freely with the system
(see Fig. 1). Its main tasks are the support for defining new anomaly detection views
(although the resulting views are then stored in and managed by the relational database
system) and the continuous textual and graphical monitoring of their results. The incor-
porated SQL editor allows to freely define new detection views which may directly access
the underlying tables and/or other anomaly detection views already defined. In this way,
various conditions of given detection views can be combined in order to define complex
events with respect to critical aircraft movements.

In addition, the Flight Monitor conducts performance measurements for each periodic
query execution. After considerable tuning, all of the above queries could be executed
in less than 2 seconds (except for the last one determining average values), being below
the refreshment rate of 4 seconds. Another feature of the Flight Monitor is its graphical
visualization of the detected anomalies by means of an exported KML (keyhole markup
language) file which can be processed by several programs. In our case, Google Earth is
employed as long as our system remains in a prototypical status. In order to achieve a
meaningful graphical visualization, the anomaly detection views usually retain attributes
for position and time values of the flight data under consideration.
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3 Incremental Materialization for Performance Enhancement

Even though a considerable degree of analysis can be achieved by purely recomputing
expressive SQL views in each refreshment cycle, the given stream scenario will sooner or
later drastically slow down our system without further optimizations.

To this end, we use an incremental approach to materialize the running queries. The track
data are separated into two relations; one for the data of the current sliding window, the
other for older track data. While most queries will only run on the newest data, some
queries will include the usage of historic track data, but only those who are related to the
newest data, allowing for the usage of joins between new and old data. Index structures
are used to support fast access to these historical data. The update propagation process, as
well as moving data into the relation for historical data is done by a system of cascading
triggers that fire on the input of arriving data. This way, the views are always up to date
after insertions. Some queries do not fall into these categories, using large portions of
historical track data, e. g. ”What is the average number of landings for an arbitrarily
chosen airport?”. However, the nature of these queries is not a running one, they are
merely use for statistics and are executed infrequently.

First evaluation results already indicate that conventional SQL queries can be used for ef-
ficiently processing this realistic stream scenario [3]. Since AIMS is still in a prototypical
state, however, a comprehensive performance evaluation cannot be presented yet. How-
ever, all presented anomaly detection views - which include the determination of landing
and departing flights, critical approaches, deviations from flight plans as well as the deter-
mination of delay times - could be executed in less than 2 seconds. AIMS provides a more
flexible approach to airspace monitoring allowing the free definition of arbitrary complex
events over a stream of flight data. The flexibility results from using SQL views which
freely add and combine user-defined anomaly detection view specifications.
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Abstract: Für Verbraucher, Händler und Hersteller ist die Beobachtung der 

Entwicklung von Angebotspreisen interessant, seien dies Preise von Produkten, 

Flügen oder Dienstleistungen. Wir präsentieren mit PROOF einen neuartigen 

Ansatz Produktmonitoring durchzuführen. PROOF ist ein erweiterbares System 

zum Integrieren und Analysieren von Webdaten. Die definierbaren Workflows 

erlauben unter anderem Anfrageoptimierungs- und Objekt-Matching-Operationen, 

um eine hohe Datenqualität bei guter Performance zu erreichen. 

1 Motivation 

Der Onlinehandel mit Produkten ist in den vergangenen Jahren stetig gewachsen. Neben 

Online-Shops sind über 1000 Preisvergleichsportale entstanden [KH07], welche die 

Angebote der Händler aggregieren. Um einen möglichst vollständigen Überblick über 

Produktangebote zu erhalten, ist man gezwungen, viele Shops zu besuchen oder sich 

mehrerer Preisvergleichsportale zu bedienen. Wenn Angebote eines Händlers in unter-

schiedlichen Portalen gefunden werden, sind die gewonnenen Ergebnisse um Duplikate 

zu bereinigen. Will man die Preisentwicklung über einen längeren Zeitraum beobachten, 

muss diese Aufgabe zudem häufig wiederholt werden. 

Wir demonstrieren mit unserer Applikation, dass das Auffinden und die Identifikation 

relevanter Datensätze zu Produktangeboten, das Zusammenführen dieser oft heterogenen 

Datensätze und ihre Analyse in vielen Teilen automatisiert und damit effizienter gestaltet 

werden kann. Produktmonitoring mit PROOF besitzt folgende Vorteile: 

 Skriptbasierte Steuerung der Workflows für Erweiterbarkeit, Adaption an 

konkrete Analyseaufgaben und Einsatz in mehreren Domänen (z.B. auch für 

Flüge und Immobilien), 

 Querygeneratoren [ETR09] zur Anpassung an unterschiedliche Anfrage-

schnittstellen und zur Optimierung hinsichtlich Qualität und Effizienz, 

 flexible Objekt-Matching-Verfahren zur Duplikatbereinigung, 

 Operatoren zur effizienten Verarbeitung heterogener Daten. 

                                                           
1 Product Offer Fusor 
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Die periodisch ausgeführte Aggregation der Angebote befreit den Nutzer von der 

wiederkehrenden und zeitraubenden Aufgabe, verschiedene Webshops und Preis-

vergleichsportale zu besuchen und deren Angebote und Produktpreise manuell zu 

extrahieren. Langfristig von Vorteil ist, dass der Workflow für andere Produkte 

wiederverwendet werden kann und lediglich parametrisiert werden muss. 

2 Unser Ansatz 

Architektur: Bei der vorgestellten Anwendung handelt es sich um eine AJAX
2
-basierte 

Webapplikation. Der im Webbrowser ausgeführte clientseitige Teil der Anwendung 

dient zum Erstellen und Verwalten von Monitoring-Jobs sowie zur Visualisierung und 

Auswertung der gesammelten Daten. Aufgabe des Servers ist die periodische Ausfüh-

rung von Extraktionsworkflows und das Bereitstellen von aus den gesammelten Daten 

erstellten Reports. Die dazu nötigen Operationen werden mit Hilfe von weFuice, einer 

Weiterentwicklung von iFuice
3
 [Ra05], realisiert. weFuice stellt eine Skriptsprache zum 

Definieren von Datenintegrationsworkflows bereit. In ihr werden Operatoren für die 

Generierung von Anfragen, zum Zugriff auf verschiedenste Datenquellen, zum Objekt-

Matching sowie für weitere Funktionen wie z.B. Mengenoperationen und statistische 

Funktionen genutzt. 

Ansatz: Ausgangspunkt für das Produktmonitoring ist das Erstellen von Monitoring-

Jobs, dem eine vom Benutzer zu erstellende Liste von Produkten zu Grunde liegt. Für 

jeden Monitoring-Job werden ein Extraktionsintervall und ein Extraktionsskript 

festgelegt. Das Sammeln von Daten zu Produktangeboten erfolgt durch die periodische 

Ausführung des Extraktionsskriptes (siehe Abb. 2 links), welches Anfragen aus der Liste 

der zu überwachenden Objekte an Monitoring-Datenquellen, wie Preisvergleichsseiten 

oder Metasuchmaschinen, generiert, ausführt und deren Ergebnisse verarbeitet und 

                                                           
2 Asynchronous JavaScript and XML 
3 Information Fusion utilizing Instance Correspondences and Peer Mapping 

 

Abbildung 1: Screenshot – Darstellung der Preisentwicklung zweier Produkte 
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archiviert. Zur Auswertung der gesammelten Daten werden Analyseskripte (siehe Abb. 2 

rechts) definiert, deren Ergebnisse als XML-Daten verfügbar sind oder im Browser 

dargestellt werden können.  

Erstellen von Monitoring-Jobs: Je nach Typ des Extraktionsskripts werden unter-

schiedliche Anfragen an die Monitoring-Datenquellen erzeugt. Zum Erzielen guter 

Treffer in den Monitoring-Datenquellen sollten für jedes überwachte Produkt eindeutige 

Merkmale vorhanden sein. Diese können zum Beispiel die EAN
4
 oder ein eindeutiger 

Titel sein, der das Produkt von ähnlichen Produkten und Zubehörartikeln ausreichend 

abgrenzt. Dabei wird vom Benutzer nicht erwartet, dass er diese Produkteigenschaften 

genau kennt. Vielmehr wählt er nach Eingabe von Schlüsselwörtern aus Produkttiteln 

einen oder mehrere daraufhin generierte Vorschläge aus, die, falls verfügbar, Attribute 

wie EAN, Hersteller und Produktnamen enthalten. 

Ausführung des Extraktionsskripts: In den Extraktionsskripten wird festgelegt, 

welche Monitoring-Datenquellen benutzt und wie Anfragen an diese Datenquellen 

erzeugt werden. Datenquellen können z.B. RSS-Feeds, Webservices oder per Screen-

Scraping-Verfahren aufbereitete Webseiten sein. Je nach Anfragemöglichkeiten einer 

Monitoring-Datenquelle und vorhandenen Attributen der Eingabeobjekte ist die 

Strategie maßgebend, mit der Anfragen erzeugt werden, um alle relevanten Einträge in 

einer Datenquelle zu finden. Beim Verarbeiten großer Mengen von Eingabedaten kann 

die Reduktion der Anzahl gesendeter Anfragen entscheidend sein. Konfigurierbare 

Querygeneratoren dienen zum Erzeugen von Anfragen  aus einer Liste von Eingabe-

objekten. Bei Produkten können dafür im Normalfall Produkttitel, Metainformationen 

wie Hersteller oder EAN-Code verwendet werden. Die Ergebnismenge bei Anfragen, die 

aus dem Titel erzeugt werden, ist meist größer, beinhaltet aber oft Angebote für ähnliche 

Produkte oder Produktzubehör. Werden Anfragen mit Hilfe des EAN-Codes generiert, 

dann sind die Ergebnismengen in der Regel exakter aber von geringerer Kardinalität. 

Querygeneratoren ermöglichen es, bestimmte Attribute zu bevorzugen und auf andere 

Attribute auszuweichen, falls Attribute fehlen oder nicht durch Anfrageschnittstellen 

unterstützt werden. Datenquellen, welche die Anzahl erlaubter Anfragen limitieren oder 

                                                           
4 European Article Number - eindeutige Produktkennzeichnung für Handelsartikel 

Abbildung 2: Generischer Workflow 
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lange Antwortzeiten haben, benötigen Querygeneratoren, die die Anzahl der Anfragen 

reduzieren. Dazu können häufig vorkommende Schlüsselwörter oder OR-

Verknüpfungen von Attributwerten unterschiedlicher Eingabeobjekte genutzt werden. 

Zur Identifikation der relevanten Treffer im Anfrageergebnis werden Objekt-Matching-

Abläufe definiert, die eine String-Ähnlichkeit bestimmen. Zudem dienen diese 

Verfahren zum  Entfernen von Duplikaten aus der Menge der gefundenen Angebote.  

Auswertung: Analyseskripte greifen auf die archivierten Daten zu und sollen 

aggregierte Informationen bereitstellen, beispielsweise den Zeitverlauf des durch-

schnittlichen Preises oder die Händler mit den günstigsten Angeboten der vergangenen 

Tage. Das System bietet die Möglichkeit weitere Analyseskripte hinzuzufügen. 

3 Einsatzszenarien 

Für Verbraucher kann es relevant sein, schnell einen Überblick über die aktuellen 

Angebote zu erhalten, um daraus das günstigste auszuwählen. Das Monitoring von 

Produktpreisen kann ihn bei der Auswahl eines günstigen Kaufzeitpunkts unterstützen. 

Für Online-Händler ist es interessant, den aktuellen Marktpreis zu bestimmen, um z.B. 

Angebotspreise initial festzulegen. Eine Beobachtung über einen Zeitraum gibt Händlern 

die Möglichkeit, schnell auf Preisänderungen zu reagieren, den Angebotspreis nach oben 

oder nach unten zu korrigieren. Für Hersteller bietet sich eine Möglichkeit den aktuellen 

Marktpreis ihrer eigenen Produkte zu beobachten und sie in Relation zu Konkurrenz-

produkten zu stellen. Zudem können Hersteller ermitteln, in welchen Shops und zu 

welchem Preis ihre Produkte angeboten werden.  

4 Demonstration 

Wir haben unsere Anwendung in den Domänen Produkt- und Flugpreisbeobachtung 

getestet. Teilnehmer der Vor-Ort-Demonstration können sich Ergebnisse bisher erfolgter 

Preisbeobachtungen ansehen. Dabei werden die verschiedenen Auswertungs- und 

Visualisierungsmöglichkeiten vorgeführt. Außerdem wird die Vorgehensweise bei der 

Erstellung von Monitoring-Jobs sowie die Abfrage und Aggregation aktueller 

Preisinformationen demonstriert. 
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Abstract: Zur Weiterentwicklung und Analyse von Unternehmen wird heutzutage
die Ablauforganisation in den Mittelpunkt der Betrachtung gestellt. Diese Fokussie-
rung wurde bereits im letzten Jahrhundert von Nordsieck, Kosiol, Gaitanides und an-
deren propagiert. Die IT-basierte Unterstützung der Unternehmensaktivitäten entwi-
ckelt sich analog, von sogenannten bereichsbezogenen „Silo-Systemen“ hin zu pro-
zesszentrischen - Bereichs- ggf. auch Unternehmens-übergreifenden- Anwendungen.
Die hier vorgestellte ProCEM R© Software Suite folgt dieser Ausrichtung und erwei-
tert den Funktionsumfang herkömmlicher Workflow Management Systeme u.a. um ei-
ne, über die Modellierung zu definierende, integrierte Überwachungskomponente. Das
Gesamtsystem richtet sich speziell an den Bedürfnissen von kleinen und mittelständi-
schen Unternehmen aus, die sowohl automatisierte, als auch manuelle (von Menschen
durchzuführende) Prozessabläufe IT-basiert unterstützen möchten.

1 Allgemeine Informationen

Im Rahmen der vorgestellten Software Suite wird die von Prof. Dr. Erich Ortner etablier-
te ProCEM R©-Methodik (Process-Centric Enterprise Modeling and Management) tech-
nologisch umgesetzt und erweitert (vgl. u.a. [Ort08]). Diese Methodik wurde auf Ba-
sis der in der Aufsatzreihe „Informatik als Grundbildung“ (vgl. [WOI04]) vorgestell-
ten Schema-Management Theorie entwickelt. Im Kern setzt ProCEM R© auf schemati-
sierte Abläufe, die zur weiteren Spezifizierung, im Hinblick auf die tatsächliche Ausfüh-
rung, auszustatten sind. Die geschieht zunächst ebenfalls auf Schemaebene, später jedoch
gemäß dem Schema auch auf Ausprägungsebene (konkrete Ressourcen und Menschen
werden referenziert). Betrachtet und rekonstruiert man Unternehmen aus ablauforganisa-
torischer Perspektive, so unterstützt die sogenannte „ProCEM R© Software Suite“ in in-
tegrierter Form die wesentlichen Elemente des Prozesslebenszykluses. Die Prozessauf-
nahme, Unternehmens- und Anforderungsanalyse stellen stark manuelle Tätigkeiten dar,
während das System die Strukturierung und Dokumentation unterstützt. Die anschließen-
de Modellierung, unter Berücksichtigung verschiedenster Perspektiven (z. B. Prozess-,
Organisations-, Datensicht, etc.), wird durch die entsprechenden Module der bereitgestell-
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ten Suite unterstützt. Die aus diesen Modellen ableitbaren Prozessabläufe (spezifiziert um
einige technische Elemente) dienen im Rahmen der späteren Ausführungsphase als Steue-
rungsparameter für die tatsächliche Ablaufsteuerung. Auf diese Weise lassen sich in gerin-
ger Entwicklungszeit prozesszentrische Anwendungen (Bestell- und Genehmigungspro-
zesse, standardisierte Abwicklungsverfahren, etc.) erstellen und im Unternehmen nutzbar
machen.

Bereits im Rahmen der Modellierung können die Modelle dahingehend erweitert werden,
dass Informationen für die Generierung aussagekräftiger Reports (Berichte) mit Business
Intelligence zu Auswertungs- und Kontrollzwecken zur Verfügung stehen. Die Erstellung
weiterer individueller Berichte ist darüber hinaus problemlos manuell möglich.

2 Gesamtarchitektur

Die ProCEM R© Software Suite baut auf verschiedenen Open Source Basissystemen auf,
wodurch eine stabile und erprobte Funktionsgrundlage gewährleistet werden kann. Durch
die einheitlich gestaltete Oberfläche befindet sich der Endanwender (Client) in einem ein-
zigen Programmkontext. Grundsätzlich wurde im Rahmen der Konzeption auf eine modu-
lare Gesamtarchitektur, die eine möglichst effiziente Erweiterbarkeit und Austauschbarkeit
ermöglichen soll, besonderen Wert gelegt. Die wesentlichen Modulbausteine können der
Abbildung 1 entnommen werden. Aufgrund der gewählten Architektur ist das System so-
wohl auf lokalen als auch auf entfernten Systemen einsetzbar.

Process – Engine
(Activiti)*

Databases
(MySQL, PostgreSQL)

Administration and

Monitoring
(ProCEM Admin)**

ETL – Engine
(Kettle)

Report – Engine
(BIRT)

Goal – Engine
(ProCEM PlanIT)**

Task list and Forms
(ProCEM Client)**

Report Viewer
(ProCEM Client)**

Goal – Tool
(ProCEM PlanIT)**

Persistence

Basic System
(configuration with

XML-Data)

Process Designer
(Oryx WebApp)*

ETL Configuration
(Kettle - Eclipse Plugin)

Report Designer
(BIRT Eclipse Plugin)

* Open-Source System mit Modifikationen;  ** Eigenentwicklung

Interaction

(Run-Time Frontend)

(Build-Time Frontend)

Abbildung 1: Architekturübersicht der ProCEM R© Software Suite
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Der Aufbau der Suite ist durch drei Ebenen charakterisiert, wobei die obere Interaktions-
ebene in Build- und in Run-Time zu differenzieren ist. Das System arbeitet „interaktiv“ in
der Hinsicht, dass sowohl die IT-bezogene als auch die Mensch-bezogene Informations-
verarbeitung in die Gestaltung, Ausstattung und Durchführung der Prozesse mit eingehen.
Insgesamt folgt das Gesamtkonzept einer Strukturierung auf Basis des Prozesslebenszy-
kluses (vgl. hierzu auch [LO10]). Danach findet während der Build-Time die Schemati-
sierung und Spezifizierung des Systemverhaltens statt. Zur Run-Time kommuniziert das
System hauptsächlich mit den ausführenden und überwachenden Prozessbeteiligten. Be-
reits angesprochen wurden die zugrunde liegenden Basissysteme. Diese werden durch die
erzeugten Schemata und die Oberflächen anwendungsbereit und stellen auch die Schnitt-
stelle zur Persistenzschicht dar.
Auf die einzelnen Funktionsbereiche wird kurz innerhalb der Strukturierung: Modellie-
rung, Ausführung und Überwachung eingegangen. Einige Module, wie z. B. die Benutzer-
verwaltung, etc. werden in Abbildung 1 und diesen Ausführungen nicht explizit erläutert.

Modellierung
Ausgangspunkt der Modellierung stellen die Prozessdiagramme im Standard BPMN 2.0
dar. Die vorgesehenen Prozessdetails können mit dem Oryx-Designer1 webbasiert model-
liert werden. Aufbauend aus Überlegungen aus [Zei10] wurden verschiedene Möglichkei-
ten implementiert, die bereits innerhalb der Modellierung die Voraussetzungen für eine au-
tomatische Berichtserstellung schaffen können. Weiterer Modellierungsaufwand entsteht
im Hinblick auf die individuellen Berichte und den damit verbundenen ETL-Prozessen.
Diese Modelle sind über die, auf unser System abgestimmten Eclipse Plugins BIRT2 und
Kettle3 vorzunehmen.

Ausführung
Wird die prozesszentrische Anwendung gestartet, so können die Benutzer, je nach Zu-
griffsrechten, im ProCEM Client Prozessinstanzen erzeugen, UserTasks abarbeiten oder
technische wie fachliche Berichte überwachen. Auf fachlicher Ebene können z. B. Soll/Ist-
Analysen durchgeführt werden, die basierend auf den operationalen und den ProCEM Pla-
nIT Daten möglich sind. Als zentrale Steuerungskomponente wird die Workflow Engine
Activiti4 verwendet.

Überwachung
Die Überwachung wird mit einer - speziell auf KMUs ausgerichteten - Meldekomponente
(Teil von ProCEM PlanIT) sehr mächtig und zugleich einfach handhabbar. Diese Kom-
ponente greift auf ein Repositorium mit Metainformationen zu diversen Kennzahlen zu
und kann diese verarbeiten. So können neben reinen Ist-Zuständen auch Planungsprozesse
unterstützt werden. Spezielle Ampelreports zeigen an, ob Kennzahlenwerte in bestimm-
ten Grenzbereichen liegen oder welche Zielerreichung (bzgl. der Planung) vorliegt. Diese
Komponente ermöglicht es dem Benutzer ebenfalls, dynamische Reports zu generieren, so
dass nur solche Werte angezeigt werden, die unternehmerisch kritisch sind.

1Vgl. http://oryx-project.org/
2Vgl. http://www.eclipse.org/birt/
3Vgl. http://kettle.pentaho.com/
4Vgl. http://www.activiti.org/
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3 Zusammenfassung

Die ProCEM R© Software Suite bietet eine einheitliche und integrierte Prozesssteuerung
(Menschen via Tasklisten und Formulare, Systeme über technische Schnittstellen) und
Prozessüberwachung. Hierbei sind neben generierten Prozess-bezogenen Berichten auch
individuelle Reports möglich. Abbildung 2 zeigt zwei Bildschirmfotos des ProCEM Cli-
ents.

Abbildung 2: Bildschirmvorschau der Admin- (links) und Clientanwendung der Webapplikation

Ausblickend möchten wir das Gesamtsystem gerne mit weiteren, aus der Wissenschaft
kommenden, Features ausstatten. Denkbar wäre z. B. die Überführung von Modellen in
ein Logiksystem zur Untersuchung und Ableitung verschiedenster Eigenschaften und Ab-
hängigkeiten [Fis10]. Weitere Ideen und Erweiterungen ergeben sich aber laufend aus den
Anforderungen der Praxisprojekte und -einsätze. Hier wollen wir den KMUs eine Mög-
lichkeit bieten, schnell und flexible Prozesse IT-technisch um- und einsetzen zu können.
Im Rahmen der Demonstration soll allumfassend gezeigt werden, wie die Suite die Pro-
zesse eines Modellunternehmens abbilden und die Mitarbeiter im täglichen Arbeitsalltag
unterstützen kann.
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Abstract: In vielen akademischen und wirtschaftlichen Anwendungen durchbrechen
die Datenmengen die Petabytegrenze. Dies stellt die Datenbankforschung vor neue
Aufgaben und Forschungsfelder. Petabytes an Daten werden gewöhnlich in großen
Clustern oder Clouds gespeichert. Auch wenn Clouds in den letzten Jahren sehr po-
pulär geworden sind, gibt es dennoch wenige Arbeiten zum Benchmarking von An-
wendungen in Clouds. In diesem Beitrag stellen wir einen Datengenerator vor, der für
die Generierung von Daten in Clouds entworfen wurde. Die Architektur des Genera-
tors ist auf einfache Erweiterbarkeit und Konfigurierbarkeit ausgelegt. Die wichtigste
Eigenschaft ist die vollständige Parallelverarbeitung, die einen optimalen Speedup auf
einer beliebigen Anzahl an Rechnerknoten erlaubt. Die Demonstration umfasst sowohl
die Erstellung eines Schemas, als auch die Generierung mit verschiedenen Parallelisie-
rungsgraden. Um Interessenten die Definition eigener Datenbanken zu ermöglichen,
ist das Framework auch online verfügbar.

1 Einleitung

Cloudcomputing ist seit einigen Jahren ein reges Forschungsfeld. Das kontinuierliche
Wachstum der Datenmengen, in vielen Anwendungen bis zu mehreren Petabytes, schafft
neue Aufgaben für die Forschung. Um große Datenmengen zu verarbeiten werden auto-
matisierte und adaptive Verfahren benötigt. In Rechnerverbunden mit tausenden von Kno-
ten sind Hardwareausfälle keine Seltenheit, weswegen ein hohes Maß an Fehlertoleranz
notwendig ist. In [RLH+09] haben wir einen Benchmark für adaptive Datenbanksyste-
me vorgestellt. In diesem Beitrag demonstrieren wir einen Datengenerator, der mit den
Hauptzielen des Clustercomputing, Skalierbarkeit und Entkopplung, entworfen wurde.

Als Beispiel ist eine n-zu-n Beziehung zwischen zwei Relationen zu nennen. Um die Refe-
renzen generieren zu können, müssen die existierenden Schlüssel der Relationen bekannt
sein. Auf einem einzelnen Rechnerknoten ist es für gewöhnlich am schnellsten die teilneh-
menden Relationen zu generieren und auszulesen um die Beziehung zu generieren. Wenn
die Relationen aber über viele Rechner verteilt sind, ist es effizienter sie erneut zu gene-
rieren. Auf diese Weise kann die Beziehung vollständig unabhängig von den Basisrelatio-
nen generiert werden. Wenn für die Generierung verteilte Pseudozufallszahlengeneratoren
verwendet werden, kann auch die Generation einzelner Relationen parallelisiert werden.
Nachdem die Generierung deterministisch abläuft, können auch Referenzen unabhängig
berechnet werden.

In [RFSK10] wurde das Parallel Data Generation Framework (PDGF) vorgestellt, das für
Datengenerierung im Cloudmaßstab geeignet ist. PDGF ist hoch parallel und vollständig
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konfigurierbar. Im Fokus der Implementierung standen Performanz und Erweiterbarkeit.
Deshalb kann der Datengenerator auch leicht für andere Domänen eingesetzt werden. Die
aktuelle Version verwendet keine Leseoperationen bei der Datengenerierung und reduziert
damit die I/O und Netzwerk Last auf das absolute Minimum. Im folgenden Beitrag wird
zunächst in Abschnitt 2 die Funktionsweise des Datengenerators kurz erläutert, dann in
Abschnitt 3 ein Ausschnitt der Evaluierung gezeigt. Zuletzt beschreibt Abschnitt 4 die
Demonstration, vor einer kurzen Zusammenfassung. PDGF ist online verfügbar1.

2 Funktionsweise

Um einzelne Felder einer Tabelle unabhängig zu generieren, ohne teure Leseoperationen,
werden jeder Spalte einer Datenbank ein Zufallszahlengenerator und ein Startwert (Seed)
zugewiesen. Die verwendeten Zufallszahlengeneratoren sind hierarchisch angeordnet, wie
in Abbildung 1 zu sehen. Auf diese Weise kann für jede Spalte ein deterministischer Seed
erzeugt werden. Um einen einzelnen Wert in einer Spalte zu erzeugen, wird zunächst der
Zufallszahlengenerator mit dem entsprechenden Seed gestartet. Dann wird die der Zei-
lennummer entsprechende Zufallszahl berechnet und aus dieser Zufallszahl mittels eines
sogenannten Generators deterministisch der Wert erzeugt. Sollte eine einzelne Zufallszahl
nicht ausreichend sein, kann die erzeugte Zufallszahl wiederum als Seed für einen Zufalls-
zahlengenerator verwendet werden.

sem_id sem_id degree
Seminar 

row 
id

1

2

3

Project RNG

Table RNG

Column RNG

Row/Generator RNGseed

user_id degree name
Users:

row 
id

1

2

3

user_id sem_id degree

Seminar User:
row 
id

1

2

3

root

seed

seed

field value

seed Project 

Abbildung 1: PDGFs Initialisierungsstrategie

Ein Zufallszahlengenerator wird als Startgenerator des Projekts verwendet, und dessen
Startwert als Projektseed. Jeder Zufallszahlengenerator wird verwendet, um die Seeds für
die in der Hierarchie nachstehenden Zufallszahlengeneratoren bzw. Generatoren zu erzeu-
gen. So werden beispielsweise mit dem Startgenerator die Generatoren für die Tabellen
geseedet. Nachdem es nur einen einzigen Projektseed gibt, können alle anderen Seeds da-
von abgeleitet werden und da die Anzahl der Tabellen und Spalten in einer Datenbank für
gewöhnlich statisch sind, können alle Seeds im Speicher gehalten werden und müssen
nur einmal bei der Initialisierung erzeugt werden. Daher muss der Datengenerator für
gewöhnlich nicht die gesamte Hierarchie durchlaufen um einen Seed für einen Genera-
tor zu ermitteln. Es reicht aus den Zufallszahlengenerator erneut mit dem gespeicherten
Seed zu initialisieren und zur entsprechende Zeilennummer zu springen. Danach kann die

1PDGF Webseite - http://www.fim.uni-passau.de/de/home/fakultaet/lehrstuehle/
verteilte-informationssysteme/forschung/dbbench.html
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Zufallszahl an den Generator weitergegeben werden.

3 Evaluierung

Um die Geschwindigkeit und Skalierbarkeit des Generators zu testen wurden TPC-H Da-
tenbanken generiert2. Die Tests wurden auf einem Cluster mit 16 Knoten ausgeführt. Jeder
Knoten hat zwei Intel Xeon QuadCore Prozessoren mit 2 GHz Taktfrequenz, 16 Giga-
byte RAM und zwei 74 GB SATA Festplatten mit RAID 0 Konfiguration. Es wurden 2
Testreihen ausgeführt, zunächst wurde die Skalierbarkeit in Bezug auf die Datengröße
getestet und danach die Skalierbarkeit in Bezug auf die Anzahl der teilnehmenden Kno-
ten. Alle Tests zeigen, dass der Datengenerator in beiden Dimensionen linear skaliert.
Die ausführlichen Testresultate können in [RFSK10] nachgelesen werden. An dieser Stel-
le wird nur nochmal der Vergleich mit dem in C implementierten dbgen gezeigt. Hierzu
wurde mit PDGF die TPC-H Spezifizierung umgesetzt. TPC-H spezifiziert 8 Tabellen un-
terschiedlicher Größe und mit einer unterschiedlichen Anzahl an Spalten. Das Schema
enthält Fremdschlüsselbeziehungen und verschieden Datentypen. Im Test wurde die Ska-
lierbarkeit bezüglich der Datenmenge mit der des Standardgenerators von TPC-H - dbgen
- verglichen. Dazu wurden mit beiden Generatoren Datenbanken der Größe 1, 10 und 100
GB generiert. Beide Generatoren wurden so gestartet, dass sie die 8 Kerne einer einzelnen
Maschine voll ausnutzen konnten. In Abbildung 2 zeigt die Dauer der Generierung für
beide Generatoren. Beide Skalen sind in logarithmischem Maßstab. Die Generierungsge-
schwindigkeit beider Tools war durch die Prozessorgeschwindigkeit limitiert. Wie in der
Abbildung zu erkennen ist, skaliert PDGF linear und hat eine vergleichbare Generierungs-
geschwindigkeit wie eine spezialisierte C-Implementierung.
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Abbildung 2: Vergleich der Generierungsgeschwindigkeit von dbgen und PDGF

4 Demonstration

Die Demonstration besteht aus zwei Teilen. Im ersten Teil wird der Datengenerator ver-
wendet um eine einfache Datenbank zu erstellen. Im zweiten Teil wird ein einfaches ”Feld-

2TPC-H Webseite - http://www.tpc.org/tpch/
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GeneratorPlugin erstellt. Die Demonstration soll sowohl die einfache Anpassbarkeit, als
auch Skalierbarkeit des Frameworks zeigen.

Generierung von Daten: Im ersten Teil der Demo wird ein einfaches Datenschema ge-
zeigt und die entsprechende Datenbank generiert. Als erster Schritt wird eine XML Datei
zur Schemabeschreibung erläutert und angepasst. Diese Datei enthält sowohl Parameter
des Generierungsprozesses, wie die Datengröße oder das Ausgabeformat, als auch die De-
finition aller Schemaelemente und die entsprechenden Generierungsanweisungen. Für je-
de Tabelle wird aufgelistet welche Spalten existieren und entsprechende Generatoren und
Verteilungen für die zu generierenden Daten spezifiziert. Nach der Spezifizierung werden
Datenbanken mit verschiedenen Größen auf einer unterschiedlichen Anzahl an Rechen-
kernen generiert um die Skalierbarkeit zu demonstrieren.

Entwurf eines Feld-Generator Plug-In: Im zweiten Teil der Demonstration wird die ein-
fache Erweiterbarkeit des Frameworks demonstriert, indem ein einfacher Generator erstellt
wird. Die Schemadefinition wird um ein Feld, das diesen Generator verwendet erweitert
und es wird erneut eine Datenbank generiert.

5 Zusammenfassung

In diesem Beitrag wurde das Parallel Data Generation Framework vorgestellt. Es ist ein-
fach über XML Dateien anzupassen. Wie andere höher entwickelte Datengeneratoren (z.B.
[SP04, HT07]) erlaubt es Abhängigkeiten zwischen Relationen und nicht-uniforme Vertei-
lungen. Als Alleinstellungsmerkmal hat es allerdings ein neues Berechnungsmodell, das
die deterministische Generierung von Zufallszahlen ausnutzt. Mit der Hilfe von Pseudozu-
fallszahlengeneratoren können Abhängigkeiten in Datenbanken effizient aufgelöst werden,
indem die referenzierten Werte erneut berechnet werden können. Die Evaluierung zeigt,
dass eine generische Java-Implementierung des Modells eine äquivalente Generierungsge-
schwindigkeit wie spezialisierte C-Implementierungen hat.
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Abstract: Energy consumption of database servers is a growing concern for compa-
nies as it is a critical part of a data center’s cost. To address the rising cost and the
waste of energy, a new paradigm called GreenIT arose. Hardware and software devel-
opers are aiming at more energy-efficient systems. To improve the energy footprint of
database servers, we developed a cluster of small-scale nodes, that can be dynamically
powered dependent on the workload. This demo shows the measurement framework
we set up to measure hardware components as well as an entire cluster of nodes. We’ll
exhibit the measurement devices for components and servers and show the system’s
behavior under varying workloads. Attendees will be able to adjust workloads and
experience their impact on energy consumption.

1 Motivation

The growing energy consumption of data centers has become an area of research interest

lately. Lots of effort is taken to improve the energy footprint of servers and to minimize

overall energy consumption. Still, the amount of installed servers is constantly growing as

more and more data is produced and has to be managed.

The focus on the servers’ energy consumption is a rather young research field. Studies

have shown that servers typically consume already more than 50 % of their peak energy

when idle [THS10]. As the typical server load is between 20 to 50 % [BH07, Ran10],

more energy-efficient approaches have to be developed to reduce the waste of energy of

todays servers. This task addresses hardware developers as well as system designers and

also the database community. Energy-proportional hardware (i.e., the energy consumed is

proportional to the current load) would be highly desirable, unfortunately yet out of reach

due to hardware limitations.

To avoid the limitations of a single large server in achieving energy proportionality, we are

going to propose a new approach by employing commodity hardware to form an energy-

proportional computing cluster. Small-scale server nodes (aka. wimpy nodes [AFK+09])

can be independently turned on and off, thus providing better scalability in terms of per-

formance and power. By powering nodes based on the overall workload, the total energy

consumption converges to an energy-proportional behavior. For now, however, standard

server hardware components do not provide integrated probes to measure energy consump-

tion of components or entire servers.
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In this demo, we are going to introduce our idea of an energy-proportional database cluster

and show how we measure power consumption. We will present an interactive front-end

that controls the system’s workload and illustrates how the system reacts to rising and

falling loads.

2 Architecture Overview

The key ideas of the database cluster and the architecture of the measurement framework

are both outlined subsequently.

Database Nodes The database cluster consists of 10 identical nodes, two of them have

attached 4 hard disks, these are considered as data nodes, the other 8 nodes are referred

to as compute nodes. The compute nodes are interconnected by a 1Gb/s ethernet switch

(front-end switch). Each node has 2 GB of DRAM and one Intel Atom CPU, a rather

lightweight processor with low thermal design power. The Linux-based operating system

of the nodes is booted from an attached USB stick. In order to fully support dynamic node

powering, we are developing our own database management system, called WattDB. The

system is capable of reacting to changing load situations and able to adapt the cluster to

the workload. By switching nodes on and off, the overall energy consumption is made pro-

portional to the load, thus energy proportional. Each node is providing feedback about its

resource utilization to a coordinator, which uses this information to re-balance the cluster

by automatically powering up and down nodes.

Energy Measurement We developed two devices for measuring energy consumption,

one for measuring a single server down to the component level and a second device for

measuring up to 10 servers in parallel.

(a) Photo

1

3

2

(b) Schema

Figure 1: Measurement Device for a Single Node

We are able to measure the energy consumption of a single node using a custom measure-

ment device. Figure 1 shows a picture of the front of the device and a schematic plan.
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The device is connected to a standard ATX power supply and able to measure voltage and

current of each power line separately. That way, we are able to track the energy consump-

tion of the mainboard and two connected hard disks. The measurements are converted to

digital signals and can be read from a connected PC. We can track the power consumption

with 1% accuracy at a 10 ms resolution. To sum up all corresponding power lines, we

developed an evaluation tool that is able to perform mathematical operations on the mea-

surement, e.g., integrate multiple sources over time to capture total power consumption.

Additionally, the software is able to protocol the data to file.
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Socket
(Input)
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Switch
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… …
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(b) Schema

Figure 2: Measurement Device for a Node Cluster

In order to measure the energy consumption of a whole cluster of nodes, a similar approach

is taken. Measuring such a cluster requires the overall energy consumption of each node

– detailed power consumption of each components is not the main focus in this scenario.

Therefore, a new measurement device is needed, as depicted in Figure 2(b). As illustrated,

this device is able to track the power consumption of 10 server nodes independently. To

measure current, current transducers are used. They provide high accuracy (less than 1%

deviation) and do not influence the lines under measurement. An integrated circuit is used

to provide the power factor of the entire cluster. The new device can measure the total

effective power as well as the apparent power. Besides the current of each server, the

input voltage is needed for calculating precise power consumption. Therefore, a separated

circuit is introduced to measure the voltage. All obtained values are transferred in parallel

over a bus to an outlet. The values can be read out using a connected A/D converter and

a standard PC. The reporting interface is identical to the single-server tool, therefore the

same reporting software can be used.

3 Demo Setup

To demonstrate the capabilities of our measurement device(s), a simple workload driver is

used to trigger workload on the system. Changing energy consumption based on the differ-
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(a) Various GUI Forms reporting the Node States (b) Photo of the Cluster

Figure 3: Demo Setup

ent loads is reported immediately by the devices. The power consumption of each node is

visualized on a GUI, additionally, the cluster’s LEDs show the state of the nodes. The total

power consumption is displayed in a separate graph. Figure 3(a) depicts a screenshot of

the user interface for the cluster demo: The form on the left shows the various states (either

on, off or suspended) of each of the nodes. On the right-hand side, the power consumption

over time is plotted. At the front of Figure 3(a), a specific form makes the progress of the

target and actual workloads visible. Both measurement devices are exhibited during the

demo and can be seen in action.

The measurement device for a single server will have various storage disks attached, e.g.

SSD and hard disk drives, and attendees can see the devices’ power consumption while

triggering different kinds of workloads. Additionally, the measurement device for a server

cluster will also be displayed, attached to server nodes and showing a reporting GUI as

well. The user can alter the workload of the cluster using the corresponding GUI. The

power policy for the cluster can also be changed. This policy controls the way nodes are

powered up and down, what sleep states the nodes should enter and how aggressive the

power management is done. The effect of the user’s actions is immediately visible – on

the GUI as well as on the cluster itself (Figure 3(b)). Attendees can see how the system

reacts to changing workloads and how the power consumption is affected.
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1 Introduction

Field-programmable gate arrays (FPGAs) are chip devices that can be runtime-reconfigur-
ed to realize arbitrary processing tasks directly in hardware. Industrial products [Net, Xtr]
as well as research prototypes [MTA09, MVB+09, SLS+10, TMA11] demonstrated how
this capability can be exploited to build highly efficient processors for data warehousing,
data mining, or stream analysis tasks.

On the flip side, the construction of dedicated hardware circuits requires considerable engi-
neering efforts and skills that are often not available in application-focussed development
teams. To bridge this gap, at ETH we have developed a set of tools that aid developers of
high-performance stream processing solutions and enable agile hardware generation for
changing application demands.

In this demonstration, we showcase Snowfall, a compiler tool for low-level stream analysis.
Comparable to scanner generators for software-based systems (e.g., lex/flex), Snowfall
can be used to decode incoming data streams in hardware, react to low-level patterns in a
stream, and perform initial input data analysis. Snowfall plays well together with Glacier,
a query-to-hardware compiler that we described and demonstrated in [MTA09, MTA10].
A typical use case is to use Snowfall for input parsing and pre-processing, then perform
SQL-style query processing on top with a hardware query plan obtained with the help of
Glacier.

In the demo, we illustrate Snowfall based on a real-world use case with exceptionally high
demands for throughput and latency. With the help of Snowfall, we perform risk checking
for financial trading applications. Snowfall allows for a declarative description of the
problem, yet will generate a hardware circuit that can process input streams in real time.

2 Field-Programmable Gate Arrays and State Machines

Field-programmable gate arrays (FPGAs) are programmable chip devices that can imple-
ment electronic circuits directly in hardware. They are programmed with a hardware de-
scription language such as VHDL or Verilog. Vendor-provided synthesis tools map circuit
descriptions expressed in these languages to basic FPGA device primitives (e.g., lookup
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SOH = 0x01; # special value "SOH" (field delimiter)
FIXVersion = "4.2";

# FIX Data Types
Length = [0-9]+;
Qty = [0-9]* (’.’ [0-9]*)?;
String = (any - SOH) *;

# FIX Fields
BeginString = "8=FIX." FIXVersion SOH;
BodyLength = "9=" Length SOH;
CheckSum = "10=" (any - SOH){3} SOH;
AnyField = [1-9] [0-9]{0,3} "=" (any - SOH)* SOH;

NewOrderSingleMessage =
BeginString BodyLength "35=D" SOH # msg type = NewOrderSingleMessage
AnyField * :>> "110=" Qty SOH # quantity of executed order
AnyField * :>> "55=" String SOH # symbol
AnyField * :>> "54=1" SOH # this order is a buy
AnyField * :>> CheckSum

:::::::::::
@check_order;

main := NewOrderSingleMessage;

Figure 1: Excerpt from a parser specification to decode FIX order messages.

tables; flip-flop registers; or Block RAMs). They generate a bit stream that, when uploaded
to the FPGA, instantiates these primitives and realizes the hardware circuit.

Probably the most important design technique for FPGA circuits is the use of finite state
machines, be it to implement the control logic that complements the data flow-oriented
circuit components; to communicate with external devices; or to interpret data streams or
protocols. Finite state machines fit the available FPGA chip resource types well and can
run at very high speeds.

Designing the proper state machine for a given application need, however, can be tedious
and error-prone. Even for relatively simple tasks, the necessary state machine can quickly
grow too large to be truly understood by a human developer. And once programmed
successfully, state machines tend to be hard to document and maintain. The problem is
exacerbated by the necessity to express the state machine in VHDL or Verilog—languages
that typical application developers are rarely familiar with.

3 Snowfall

Snowfall, which is part of a tool set that we develop in the context of the Avalanche project
at ETH Zurich, addresses both aspects of the problem. It provides a high-level abstraction
to express state machines and associated semantic actions.1 Snowfall optimizes these state
machines and emits VHDL code that implements them efficiently in hardware.

1Snowfall is based on the Ragel state machine compiler http://www.complang.org/ragel/.
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Figure 1 shows an excerpt of the Snowfall code that decodes FIX messages for online
trading applications. The code describes the lexical structure of buy orders (message type
‘NewOrderSingleMessage’ in the FIX specification) and inspects the quantity and stock
symbol fields (FIX fields 110 and 55).

From the code in Figure 1, Snowfall will build a hardware state machine (expressed in
VHDL) that recognizes the specified FIX message type. Whenever (parts of) the state ma-
chine have successfully matched on the input data, it will trigger the execution of action
code blocks. These contain user-defined VHDL code that can be used to process lexi-
cal elements in the input stream (lex/flex are used in a similar way in software-based
systems).

Since in this demo description we are restricted by space limits, Figure 1 shows only
one example of how action code can be embedded into a Snowfall language specification.
The @check_order annotation after the CheckSum syntactical element specifies that the
routine check_order should be invoked whenever a full NewOrderSingleMessage was
successfully parsed.

A typical implementation of an action code like check_order will build an internal rep-
resentation of a FIX order tuple (e.g., of schema 〈quantity, symbol〉). The tuple is then
forwarded on to further hardware logic that performs high-level analysis of the stream of
FIX orders. One such analysis task could be an assessment of the risk associated with the
orders made. For instance, we would like an alert to be raised whenever the order volume
within a given time window exceeds a certain limit.

3.1 Glacier: A Query-to-Hardware Compiler

Higher-level stream analysis tasks are a good fit for Glacier, another part of our FPGA
toolbox. Glacier is a SQL-to-hardware compiler. Given a query in an SQL dialect with
streaming extensions, Glacier generates the VHDL description of a corresponding hard-
ware query plan. The inner workings of Glacier are the subjects of [MTA09, MTA10].

To implement our risk analysis example, a Glacier-generated hardware plan consumes
tuples that our FIX parser constructed in check_orders and performs aggregation and
windowing on the tuple stream. For instance, the query

SELECT SUM (quantity) AS qsum
FROM orders [ SIZE 600 ADVANCE 60 TIME ]

GROUP BY symbol

aggregates all orders over a window of 10 minutes and reports the ordered quantities for
each stock symbol every minute. A violation of risk limits could easily be detected from
the aggregated output of this query; or a dedicated query could be written that only emits
data in alert situations.

In summary, the combination of Snowfall and Glacier makes the development of stream
processing solutions on FPGAs comparable to a typical software development work flow.
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At the same time, generated solutions will run as bare-hardware implementations and thus
benefit from the architectural advantages offered by the FPGA technology. In particular,
the risk analysis example sketched here benefits from network-speed processing—no order
will be missed even under peak load—and real-time latency—the system could react to
risk violations within sub-microseconds time.

4 Demonstration Setup

The real value of our tool set results from the seamless interplay among our own tools,
but also with commercial FPGA synthesis and simulation tools. To make this point, we
will bring to Kaiserslautern not only Snowfall, but also a full FPGA design environment as
well as FPGA hardware. We will show how a full example application can be developed,
simulated, and debugged; and we will show how the resulting application can process a
(synthetic) FIX message stream in real time.

Visitors of the demo will be invited to modify our code examples, write their own queries
for Glacier, and inspect the generated hardware solution using commercial circuit visual-
ization tools. The focus application for this demonstration, Snowfall, includes function-
ality to debug and visualize generated state machines. We will show and explain this
functionality and illustrate how Snowfall eases the development of FPGA-based stream
processing solutions.
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Abstract: The Mother of all Whiteboards (MOAW) is an innovative visual 

modeling and exploration tool for semi-structured information. It combines 

gesture-based user interaction with deep zooming, particle dynamics and the 

powerful data processing capabilities of SAP’s newly developed Active 

Information Store. This application has been designed to convey complex 

information by easily created visual models which are backed by a formal 

representation and thus allow the fluid navigation to unlimited levels of detail and 

creation of different angles of view. 

1 Background 

In collaborative work, a common problem is the visual communication of complex 

situations, especially when large amounts of entities and relationships are involved. 

Common tools for visual communication are plain drawing boards (as e.g. embedded in 

online conferencing tools), slide presentation, diagramming or mind mapping 

applications. 

Common to all these tools is the tradeoff between the effort needed to create the 

visualization and the expressive power of the model. For example, it is very easy to 

create visualizations in a plain drawing board or slide presentation application, but these 

visualizations usually only represent a very narrow view on the problem and need 

interpretation, which makes them easy to misunderstand. Often many different 

visualizations are created to illustrate different aspects of the same problem, but 

consistency between these cannot be ensured and navigation between them is one-

dimensional (e.g. along a slide sequence). 

Mind mapping and diagramming tools create more structured visualizations, but the 

price to pay is a much higher effort in the case of formal diagrams and a limited visual 

expressiveness in the case of mind mapping. 
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A new concept for visual modeling and user interaction has been developed which is 

implemented in the Mother of all Whiteboards (MOAW) prototype, based on the Active 

Information Store (AIS) [1] as the flexible data repository. The core of the prototype is 

the combination of modern user interaction paradigms like touch screens, gesture 

recognition, deep zooming and particle dynamics with the processing of semi-structured 

information, allowing the user to simultaneously create a visual model and a 

corresponding formal representation with very low effort. 

The formal representation, consisting of Info Items with Attributes and Associations, 

ensures that the Visual Model is consistent and that the contents of the model can be 

processed with all the functionality we appreciate in databases: search, query, specific 

views, and analytics. However, the data model of the formal representation must 

correspond to the freedom of visual modeling offered by the Whiteboard-oriented UI. 

Hence, it must not confine the user to a predefined static schema, and nevertheless still 

convey a certain degree of semantics. 

Therefore, the Active Information Store has been chosen as the underlying data 

persistence and processing layer. It provides a schema-flexible and scalable data 

management platform. Data can be stored in AIS without having to define a rigid 

database schema upfront. Rather, the schema of the data is derived automatically by the 

system based on the available data. Due to this flexibility data instances with highly 

irregular structure or heterogeneous data from different sources can be stored and 

processed efficiently. Most of the visual modeling and processing concepts map directly 

to corresponding concepts in the AIS data model and query language. 

2 Applications 

The MOAW has been developed to capture project-relevant information (e.g. processes, 

system landscapes etc.) in customer workshops and to display, analyze, annotate and 

enrich this information through all phases of a project. The whiteboard at the same time 

serves as a visual knowledge map and as a database that can be queried to generate new 

views on the existing content. 

Typically, the whiteboarding process starts with simple boxes representing various facts 

and issues in a sticky note style. In the course of a session, the actual meaning of those 

boxes is clarified; they can be cast into tasks, topics, requirements, boundary conditions 

etc. These entities can be associated to each other and tagged with attributes of 

predefined or user-defined types. Details can be exposed by zooming in and creating 

new structures within the boxes. 

The objects created on the whiteboard (including associations and attributes) are stored 

together with master data about people, skills, products, projects in a common 

knowledge base. The mass data operations offered by the AIS, which are exposed by 

very simple, gesture-based interaction patterns, allow the quick exploration and 

generation of multiple views on all this content. 
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By blurring the borderlines between visual modeling, formal modeling and data 

exploration, the demonstrated technology also shows new ways for efficient user 

interaction in many other knowledge-intensive application areas, e.g. the collaborative 

discovery of trends from publicly available information and fraud detection. 

3 Basic Interaction Types 

Almost all user interaction in the MOAW is based on: 

 the ability to move and zoom in and out of the viewport very quickly, 

 dragging of objects and 

 drawing of gestures as temporary lines on the screen in order to interact with the 

visual content. 

The fluent deep zooming in combination with a Level of Detail (LOD) mechanism 

allows the user to navigate from a high-level overview to the finest details in seconds 

and without any hard context changes. 

Drag and drop operations are used to move visual objects into and out of sets and the 

drawn gestures are an extremely fast and yet intuitive way of invoking more complex 

interactions like creating objects and object sets and of performing queries. 

3.1 Creation of Objects and Associations 

Objects are created by simply drawing a contour on the screen, where the type of the 

contour corresponds to the type of object. By typing the caption of a newly created 

visual object, the user determines whether a new data object (Info Item) is created or 

whether the visual object is mapped to an existing Info Item in the AIS. In the latter case 

all the properties (attributes and associations with other Info Items) of the Info Item can 

be shown in a property sheet and selectively integrated into the visual model. New 

properties of an Info Item can be added or removed flexibly at any point in time. 

Associations between Info Items can be created by drawing a line between the 

corresponding visual objects. The type of the association is inferred from metadata 

attached to the Info Item types. If no such metadata exists, the item types themselves are 

used as association types. These can be changed at any time in the property sheet. 

3.2 Mass Manipulation of Objects 

Sets of objects can be selected by drawing an ellipse around them or created by using a 

gesture-based query mechanism. These visual item sets correspond to the concept of Info 

Item Sets in AIS and for every operation the AIS offers for such sets, a corresponding 

gesture is implemented: 

 A set of common properties for all set elements can be defined (e.g. an association 

with a certain person as displayed in Fig 1). Consequently, moving visual items 

into or out of the set’s contour will change the corresponding Info Item’s 

properties in the AIS. 
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 A query is performed by drawing a line from the outside to the inside of a set with 

specified common properties. All Info Items matching these properties will be 

retrieved from the Active Information Store, and corresponding visual items will 

be generated in the visual item set if they are not already there. 

 The AIS offers the ability to derive the common properties for a given set of Info 

Items. Correspondingly, opening the property sheet for a selection of objects will 

invoke this function and display the extracted properties. 

 

 

Fig 1: Association of multiple objects to a person and their reflection in a property sheet. 

4 Demo 

The demo will show the visual modeling of a consulting project with the MOAW and 

explain how the corresponding Info Items are created, maintained and processed in AIS. 

Starting with an empty screen, visual objects for the project itself and several sub-topics, 

process steps, tasks, people etc. will be created by gestures and then partly bound to 

existing Info Items by means of an autosuggest feature. 

The association of single tasks with process steps and people by gestures and the 

specification of further properties in a property sheet will be shown. Then the selection 

and association of whole sets of tasks with people will be demonstrated, as well as the 

subsequent maintenance of priorities for sets of tasks. 

Then, a set of people will be selected, and the set of common properties (skills, location) 

will be extracted by a gesture. A subsequent query gesture will find additional people 

with the same properties, some of which are then added to the project by drag and drop. 
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Abstract: To benefit from the large amounts of data, gathered in more and more ap-
plication domains, analysis techniques like clustering have become a necessity. As
their application expands, a lot of unacquainted users come into contact with these
techniques. Unfortunately, most clustering approaches are complex and/or scenario
specific, which makes clustering a challenging domain to access. In this demonstra-
tion, we want to present a clustering process, that can be used in a hands-on way.

1 Introduction

Clustering is the partitioning of a set of objects into clusters [EKSX96, JMF99], so that
similar objects are in the same cluster, while dissimilar objects are not. In order to create
a clustering, an appropriate algorithm must be selected, parameterized and executed. The
obtained result is evaluated and if necessary, algorithm and/or parameters are modified
and the clustering is generated again. Each of these actions determines the course and
outcome of the clustering process [JL05, JMF99]. Even so, user-support is lacking in
practise, which made ‘trial and error’ a common approach to clustering, for users not
familiar with the subject. Obviously, this often results in numerous iterations, unsatisfying
results and eventually user frustration.

With ensemble clustering[GMT05, SG02], an alternative to single-algorithm clustering
has been established. This approach creates multiple partitionings of a data set—the clus-
ter ensemble—and aggregates them into one final clustering result. In doing so, quality
and robustness are increased in comparison with single input clustering [GMT05, SG02].
Additionally, this procedure eases algorithm selection and parameterization. However, the
overall resemblance to ‘trial and error’ remains, as unsatisfying aggregation results can
only be adjusted by modifying the cluster-ensemble and repeating its creation and aggre-
gation.

In our previous work, we have already adressed some of the described issues. In [HVR+09]
we proposed an extended aggregation algorithm, utilizing soft clustering input and allow-
ing result adjustments by parameterization of the aggregation only. To enable user support,
we introduced an interactive visualization to control our aggregation, assist with result in-
terpretation and indicate appropriate result adjustments [HHL10b].

In our demonstration, we present a clustering process composed from this components and
show how this easy-applicable process allows the step-by-step refinement of a clustering.
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2 Process

In this section, we will outline the structure and components of our clustering process.
This process incorporates an algorithmic platform, which covers selection and execution
of algorithms and a visual-interactive interface, assisting the user during result evaluation
and modification.

The already introduced ensemble-clustering concept, built the conceptual starting point
in the development of our algorithmic platform. Besides positive effects on the cluster-
ing result, this method aids the user by reducing the emphasis on the identification of a
single optimal algorithm/parameter combination. All existing aggregation approaches we
examined, lacked controllability [HVR+09], thus result adjustments were only possible
through modification of the input clusterings. Unfortunately this effectively nullifies the
benefits regarding user support, since now a whole set of clusterings must be reconfig-
ured. To overcome this issue, we proposed our enhanced flexible clustering aggregation
concept [HVR+09], which extends the classic approach in three major areas. First, the
aggregation input is enriched with additional information about object-cluster relations,
by utilizing soft clustering algorithms [Bez81] to generate the cluster ensemble. To benefit
from this gain in information, the core aggregation method was modified in a second ex-
pansion. Finally, these arrangements allowed the derivation of a scoring function and with
it the implementation of a control mechanism for the clustering aggregation. With flexi-
ble clustering aggregation users can adjust results without touching the cluster-ensemble.
The necessary parameters could be abstracted in a user-friendly way, so that clusterings
are adjusted by ”merging” and ”splitting” clusters.

To support result interpretation and identification of appropriate adjustments, we devel-
oped a visualization concept that is tightly coupled to our algorithmic platform. Our
approach augur [HHL10b] can be seen as a hybrid between the two major groups of
data/clustering visualizations, which are: (i) data-driven and (ii) result-driven. The first
group depicts all objects and dimensions of the data, resulting in incomprehensible pre-
sentations and information-overload, as datasets exceed a certain scale. In contrast, the
second group is relatively scale-invariant since only analysis results are presented (e.g. a
clustering can be depicted as bar chart showing relative cluster sizes). Unfortunately these
visualizations often shows not enough information. The hybrid character of our approach
is achieved by visualizing the result and its relations to data, which are already incorpo-
rated in the soft input of our aggregation.

In compliance with Shneiderman’s mantra, ‘overview first, zoom and filter, then details-
on-demand’ [Shn96], our visualization features views for theses three levels of detail.
Our overview acts as a visual entry point and shows basic characteristics of the cluster-
ing aggregate, like relative size and the distances between the prototypes (centroids) of
all clusters. If the user identifies clusters of interest in the overview, e.g. two very close
clusters, these can be selected individually to get more information regarding their compo-
sition and their relations to other clusters, thus performing ‘zoom and filter’. More detailed
information concerning a cluster’s internal similarity resp. composition are presented in
the attribute view.
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Figure 1: Touch it, Mine it, View it, Shape it

By combining the flexible clustering aggregation with our augur visualization we, devised
our clustering process. The course of the process begins with the presentation of an initial
clustering result to the user. Using augur, this result is interpreted and the parts that need
adjustment are identified. Via an interactive component of the visualization, the users
modifications are forwarded to the algorithmic platform. After they are applied to the
clustering, the adjusted result is again presented using the augur visualization. With this
procedure, users can refine clustering results in an iterative manner. A theoretic description
of this process model and its components, e.g. the available user-feedback operations, are
published in [HHL10a].

3 Demo Details

The demo at BTW comprises a detailed explanation of the necessary concepts and com-
ponents of our process and its live demonstration. We are going to show how our visu-
alization and interaction concepts can be used to conduct a visually-driven exploration of
scientific data sets. Furthermore, we will prepare some application scenarios based on syn-
thetic as well as real-world data-sets. Within these scenarios, we will illustrate the benefits
of our iterative refinement approach with regard to its handling by users not familiar with
the domain of clustering. Additionally, we want to use the BTW environment to discuss
possible future developments for our employed aggregation algorithms and visualization
concept with interested demo visitors.
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4 Summary

In this paper, we introduced our hands-on clustering process, which offers inexperienced
users an accessible way to generate a satisfying clustering. Execution and Parameteriza-
tion are eased by the user-friendly character of our algorithmic platform. In tight coupling
with this platform, our visual-interactive user-interface, supports the interpretation of clus-
tering results by revealing characteristics of clusters as well as relations between them and
the underlying data. This result- and relation-oriented approach offers assistance to the
user during the identification of appropriate result modifications. In contrast to existing
clustering procedures our approach allows the iterative refinement of a clustering.
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Abstract: SAP applications are mission-critical for many enterprises today. 
However, projects to introduce a new SAP solution or consolidate existing SAP 
solutions often fail respectively overrun budget and time. A common root cause is 
the underestimation of data migration work. Data quality in legacy systems is often 
not sufficient for SAP, and specifications of the target data model often change 
very late in the project lifecycle, e.g. due to new business requirements or new 
insights about legacy systems and legacy business processes. This can cause 
significant re-work in the ETL jobs that extract data from source systems, cleanse 
that data and load it into the target SAP system(s). We apply a model-driven 
architecture (MDA) approach [MP10] to such data migration projects. We generate 
ETL infrastructure from SAP metadata. This novel approach (known as the IBM 
Ready-To-Launch (RTL) for SAP solution [Ibm10]) significantly reduces project 
risk and cost. In addition, data quality is addressed and improved. Our demo will 
show programmatic access to SAP metadata and its systematic exploitation 
throughout the data migration project, including the generation of logical and 
physical data models from this metadata, and the generation of ETL jobs.   

1 The RTL for SAP Solution – System Architecture 

The IBM InfoSphere Information Server platform is the technology foundation of the 
RTL for SAP solution. It delivers enterprise information integration capabilities across 
all integration areas such as discovery, data profiling, ETL, replication, federation 
[GH10] and SOA services. It also offers SAP-certified application connectors to extract 
data from SAP applications and load data into SAP applications. By applying an MDA 
approach, RTL provides several novel capabilities to SAP data migration projects. On 
the one hand, using MDA principles, functional data requirement specifications are 
linked to business process specifications. On the other hand, functional data requirement 
specifications are linked to programmatic SAP metadata access. RTL has a so-called 
Rapid Generator component which can generate ETL jobs for data exchange with SAP 
systems. By linking ETL jobs model-based to functional data requirement specifications, 
which in turn are linked to business process specifications, it is now easy to adapt to 
changes in the business process requirements. If, for example, a change of a business 
process results in an additional, new business object attribute, the ETL jobs just need to 
be regenerated whenever such a change happens.  In a traditional approach [LN06] such 
changes are often not detected until system integration test and require manual, often 
cumbersome adjustments in the ETL code base and additional testing.  
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Using the conceptual system architecture shown in Figure 1, we will now explain where 
we apply the Rapid Generator capability. On the source system side, there might be 
some legacy SAP R/3 systems as well as some non-SAP systems. The target(s) are SAP 
Netweaver systems such as SAP ERP. While the data is moved from source to target, 
there are three distinct areas where the data is persisted while in transit – the areas are 
usually separated using database schemas within the same database. The staging (STG) 
area is modelled identically to the source system data models. For SAP sources, the STG 
area is modelled and the tables are automatically physically created exploiting 
programmatic access to SAP metadata. Based on the same metadata Rapid Generator 
generates all extract jobs extracting the data from SAP into STG. The alignment (ALG) 
area is programmatically created from the SAP target system data model. It is not an 
exact copy of the SAP target data model. For example, there might be a need to map a 
hierarchical IDoc model to a relational model or to not enforce foreign key relationships 
yet. The rationale is that we want to be able to get all records from all sources into ALG. 
Once the data from all sources is in ALG in a common format, we can analyze, report, 
and later resolve all data quality issues on it in a uniform way.   

 

Figure 1: Conceptual System Architecture of the RTL for SAP Solution 

Two steps are done when data is moved from STG to ALG: Structural alignment which 
means harmonizing the various source data models into a common model and semantical 
alignment which means transcoding the lookup values from the source system into the 
lookup values understood by the SAP target system. The country code value for 
Germany in a source system might be for example 62 whereas the corresponding code 
value in the SAP target system might be DE. Once the data is in ALG, data cleansing is 
performed. Common cleansing operations include data standardization, matching and 
de-duplication. The third area known as preload (PLD) area is also generated from the 
data model of the SAP target system. Data types and foreign key relationships are 
enforced now. Moving data from ALG to PLD requires a structural transformation 
generated by Rapid Generator. All jobs required to load the data from PLD into SAP are 
also generated by Rapid Generator. In addition, Rapid Generator generates all jobs to 
extract the data from all lookup tables used for attributes in the model.  The values of the 
lookup tables are needed for the Data Validity Gap Report (DVGR) which measures 
how many of the source records have code values that are not valid in the context of the 
SAP target. The DVGR is just one type of gap reports in RTL. Other gap reports are 
checking data completeness, data validity and field length. In general, gap reports are 
used to measure data quality defects while the data resides in ALG, and to measure data 
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load readiness in PLD. They are executed periodically during the data migration project 
to provide the project manager the ability to see how much progress has been made since 
their last execution. All gap reports are dynamically created. Technically they are based 
on SQL templates and take SAP metadata into account. For example, if in the SAP target 
system an optional attribute becomes mandatory (a normal SAP customization step), this 
change is visible in the SAP metadata, and the Data Completeness Gap Report would 
then start to report how many source records are not providing values for this attribute. 
Technically, SQL statements are used for these checks.  

2 Demo Scenario  

The key ingredient for the RTL for SAP solution is SAP metadata. Without a 
programmatic access to SAP metadata, the modelling of the STG, ALG and PLD areas 
for SAP source and target systems is cumbersome, very time consuming and, if done 
manually, prone to errors. An SAP Netweaver ERP solution has about 70000 logical 
tables – some of them are data tables where data tables can have more than 150 
attributes. Dozens of these attributes could be backed by lookup tables. In addition, 
without an understanding of the dependencies among SAP business objects and their 
data models, it is difficult to define the right order of migrating data for the various SAP 
business objects. For example, transactional business objects like orders require that 
master data business objects such as product and customer have been successfully 
loaded. Furthermore, SAP exposes different attribute subsets for the business objects 
through different application-level load interfaces such as IDoc. An IDoc is a 
hierarchical structure representing a business object. It could easily have more than 300 
attributes. Without an in-depth understanding of the technical metadata of these 
interfaces, and how they are related to the logical data model of the SAP business 
objects, it is difficult to prepare the data for load. Combining this with the fact that the 
functional data specifications might change while the data migration project is executed 
drives the need to automate the loading with a model-driven approach.  

 

Figure 2: IBM InfoSphere Rapid Generator for SAP applications – IDoc example 
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The Rapid Generator approach delivers many benefits. Re-generating the physical tables 
for STG, ALG and PLD is seamless because the programmatic SAP metadata access 
reacts to data model changes in the SAP systems. Rapid Generator removes the manual 
efforts for extract and load jobs for SAP systems almost entirely. It automates the 
generation of jobs extracting a large numbers of lookup tables as well as the related 
lookup description tables by automatically joining them together and making them 
available in ALG for code value transcodings and gap reports. If the IDoc interface is 
used for load, the technical details in linking together all the tables at the right place in 
the hierarchy with the right foreign key relationships are now hidden from the ETL 
developer. This removes a previously tricky and error prone manual task. An example 
for the customer business object for SAP ERP with the corresponding DEBMAS IDoc 
structure is shown for a portion of the tree in Figure 2.   

Among others, in the demo we will show the following steps: We demonstrate how to 
access SAP metadata programmatically, build corresponding logical and physical 
models, and persist SAP metadata in an auxiliary schema in the RTL database. Also, the 
functional data requirement specifications are linked to and persisted in this auxiliary 
schema. Then we demonstrate how the STG, ALG and PLD areas are instantiated in a 
model-driven way. Third, we show how Rapid Generator consumes the models and 
generates jobs. An example load job using the IDoc interface is shown in Figure 3. 

 

Figure 3: IBM InfoSphere Rapid Generator for SAP applications – IDoc example 
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