
Remote AVX Overhead: Detection and Mitigation
Mathias Gottschlag

Karlsruhe Institute of Technology
mathias.gottschlag@kit.edu

ABSTRACT
Due to power constraints, recent Intel CPUs reduce their
frequency when executing AVX2 and AVX-512 instructions.
Often, this frequency reduction affects other applications
as well, which reduces overall performance and prevents
contemporary operating systems from fairly distributing
system resources. In our work, we show that these problems
are fundamental problems of power-limited computing. We
analyze the problems and show a method to quantify the
underlying AVX overhead. Based on our analysis, we then
describe a set of operating system techniques to improve
performance and scheduler fairness. Our results show the
importance of active management of hardware-controlled
frequency scaling by the OS. Based on this observation, we
sketch improved hardware-software interfaces which could
further reduce AVX overhead and improve the efficacy of
our approach.

KEYWORDS
power management, operating systems, profiling, schedul-
ing, DVFS, AVX-512, AVX2

1 INTRODUCTION
With shrinking transistor sizes, the power density of inte-
grated circuits has increased to the point where the perfor-
mance of modern CPUs is mainly limited by their power con-
sumption [16]. To extract maximum performance, modern
CPUs therefore need to make full use of their power budget.
These CPUs increase their frequency when only a subset of
the cores is active [2, 5] and when cool heatsinks allow tem-
porary excursions beyond regular thermal limits [14]. In ad-
dition, the use of specialized accelerators has been proposed
to achieve further performance improvements [16]. For ex-
ample, the AVX2 and AVX-512 single-instruction multiple-
data (SIMD) instruction set extensions found in recent Intel

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or
to redistribute to lists, contact the Authors.
FGBS ’21, March 11–12, 2021, Wiesbaden, Germany
© 2021 Copyright held by the authors.
https://doi.org/10.18420/fgbs2021f-04

overhead

time

Frequency

Thread AVX-512

Thread Non-AVX
same core

(a) AVX overhead caused by hyper-threading

overhead

time

Frequency

Code AVX-512 Non-AVX

(b) AVX overhead in heterogeneous tasks

Figure 1: In many scenarios, AVX2/AVX-512 code
slows other code down. Figure taken from [8].

CPUs provide both improved energy efficiency and perfor-
mance [4].

Despite their increased energy efficiency, such complex in-
structions can substantially increase power consumption. To
provide maximum performance for all types of code, the CPU
therefore needs to execute code using such energy-intensive
instructions at reduced frequencies while executing other
code at higher frequencies. The underlying power limits
are not only of thermal nature – the CPU also needs to re-
act quickly to power changes to prevent instability due to
voltage droops [12].

When Intel introduced the AVX2 and AVX-512 instruction
set extensions, the company introduced such a technique
to execute different types of instructions at different CPU
frequencies [1]. If no complex and energy-intensive 256-bit
(AVX2) and 512-bit (AVX-512) vector operations are used,
these CPUs increase their frequency to a high non-AVX fre-
quency level. Conversely, the execution of AVX2/AVX-512
instructions quickly triggers a frequency reduction to pre-
vent system instability due to excessive current draw [6]. The
scale of the frequency reduction depends on the instructions
used – only particularly energy-intensive AVX-512 instruc-
tions trigger a transition to the lowest “AVX-512” frequency
level, whereas all other instructions cause the CPU to enter
an intermediate “AVX2” level [1].

1

https://doi.org/10.18420/fgbs2021f-04


FGBS ’21, March 11–12, 2021, Wiesbaden, Germany M. Gottschlag

Although such a frequency scaling technique in general
provides improved performance due to improved utilization
of power budgets, there are two situations where low-power
code is not executed at its optimal frequency [1]. First, as
shown in Figure 1a, any frequency reduction also affects the
code executing on the sibling hyper-thread [8]. Second, as
shown in Figure 1b, the affected Intel CPUs do not imme-
diately restore a higher frequency at the end of a power-
intensive code region as a rate-limiting technique to limit
worst-case overhead, which causes any code following a
section of AVX2/AVX-512 code to be slowed down. Both
situations contribute to what we call remote AVX overhead:
AVX2/AVX-512 code slows other potentially unrelated code
down.
This slowdown can cause a reduction in performance of

more than 30% for the affected code [10]. The performance
reduction also reduces fairness – the scheduler commonly
allocates equal CPU time to individual processes which re-
sults in substantially different shares of CPU performance.
These two problems are to a large degree caused by the fact
that applications are implicitly in control of the dynamic
voltage and frequency scaling (DVFS) policy as instructions
executed at the user level directly affect CPU frequencies.
Remote AVX overhead, however, is caused by the interaction
of multiple software components or tasks, and applications
commonly lack the required information to make informed
decisions on whether to use AVX2 or AVX-512.
The operating system, instead, has a more holistic view

of the system. In our work, we describe operating system
techniques to measure the amount of remote AVX overhead
present the system and describe operating system techniques
to improve both performance and fairness. Our results show
that the operating system should take a more active stance
managing hardware-controlled DVFS. As our work is fre-
quently hindered by insufficient hardware-software inter-
faces provided by the CPU, we also sketch improved inter-
faces to the CPU which would improve the efficacy of our
approaches and would allow for improved DVFS policies to
be implemented by the CPU.

2 PROFILING
Before deciding on countermeasures against remote AVX
overhead, software developers and system administrators
need to know to which degree their workloads are affected.
The difficulty in quantifying remote AVX overhead lies in dif-
ferentiating it from local AVX overhead where the frequency
reduction affects the AVX2/AVX-512 code itself. While local
AVX overhead is unavoidable, the increased parallelism of
AVX2/AVX-512 instructions makes up for it.

time

Frequency

Code AVX-512 non-AVXPause

𝑓1 𝑓2

Figure 2: To measure remote AVX overhead, we pause
a physical CPU core and then unpause one hyper-
thread. If the frequency 𝑓1 before the pause is low
and the frequency 𝑓2 after the pause remains high, the
hyper-thread was affected by remote AVX overhead
– in such a situation, the code was executed at a sub-
optimal frequency at the time of the pause. Figure
taken from [11].

“non-AVX core” (fast) “AVX-512 core” (slow)

non-AVX task

non-AVX task

AVX-512 task

AVX-512 task

Figure 3: We employ core specialization to reduce re-
moteAVXoverhead [8]. If only some cores are allowed
to execute AVX-512 instructions, tasks on the other
cores will never execute at AVX-512 frequencies.

To determine whether a frequency reduction is actually
required for the currently executed code, we propose a pro-
filer which periodically samples the frequency of a CPU core,
then pauses the whole core by spinning for 700 µs – longer
than the delay seen in Figure 1b – and finally resumes exe-
cution on one of the two hyper-threads [11]. If, as shown in
Figure 2, the previous frequency is not immediately restored,
the current task was affected by remote AVX overhead. We
use this technique to construct a profiler which can be used
at runtime to quantify the AVX overhead and to identify the
affected tasks.
We determine the accuracy of the profiler via compar-

isons to direct reference measurements taken using non-
AVX/AVX2/AVX-512 variants of the same workload 1. Our
experiments show an average error of only 1.2 percentage
points for a range of scenarios involving AVX2 or AVX-512
applications.

3 CORE SPECIALIZATION
Once significant remote AVX overhead has been identified,
countermeasures can be employed to improve performance.

1In a practical environment, such variants are often not available. If they
were, the need to restart the application would often make direct measure-
ments highly impractical.

2



Remote AVX Overhead: Detection and Mitigation FGBS ’21, March 11–12, 2021, Wiesbaden, Germany

For example, core scheduling can be employed to restrict co-
scheduling of AVX-512 and non-AVX-512 tasks on the same
physical core [13]. If one hyper-thread executes an AVX-512
task, the other hyper-thread is not allowed to execute a non-
AVX-512 task as such a task would be substantially slowed
down. As a result, however, hyper-threads can be left idle
which can have a potentially large impact on performance.

We therefore propose core specialization as a technique
against remote AVX overhead [8]. We designate a subset
of the CPU cores as AVX cores, and only these cores are
allowed to execute AVX-512 instructions. As Figure 3, all
other cores only execute non-AVX-512 code and are therefore
not affected by AVX-512 frequency reduction. As a result,
the impact of AVX-512 code on non-AVX-512 code is greatly
reduced.
To detect attempts to execute AVX-512 instructions on

non-AVX-512 cores, we restrict access to 512-bit registers so
that all corresponding instructions trigger exceptions and
threadmigration to a AVX-512 core [8].We employ heuristics
to detect the end of AVX-512 regions. Our prototype is able to
reduce remote AVX overhead by 70% for a range of workloads
with AVX-512 code, despite imprecise detection of power-
intensive instructions [8] and overhead introduced by thread
migration [7].

4 FAIR SCHEDULING
In many cases, techniques such as core specialization [8] or
core scheduling [13] can improve overall throughput. Not
all remote AVX overhead can be prevented though. Even if
remote AVX overhead is present, it is highly desirable that
the system limits the impact that AVX2/AVX-512 tasks can
have on other tasks.
Commonly, such performance impact between different

tasks is prevent by a fair scheduler such as CFS that allocates
equal CPU time to different tasks as a technique to share CPU
performance equally between them. As Figure 4a shows, the
frequency reduction caused by AVX2/AVX-512 means that
equal CPU time does not result in equal CPU performance
anymore – whereas AVX2/AVX-512 tasks profit from the
increased parallelism of these SIMD instructions, other tasks
do not, yet still execute at reduced frequencies.
We therefore propose fair scheduling that takes remote

AVX overhead into account by scaling CPU time account-
ing in proportion to remote AVX overhead. As shown in
Figure 4b, the resulting prioritization of tasks whose perfor-
mance is affected negatively by other AVX2/AVX-512 tasks
restores fairness. In such a situation where overall CPU per-
formance is impacted by reduced frequencies, fairness is not
equivalent to performance isolation, though. If, as shown in
Figure 4c, we additionally reduce the priority of tasks caus-
ing remote AVX overhead, we get a scheduling algorithm

non-AVX
task

AVX-512
task

CPU time

non-AVX
task
AVX-512
task

Throughput

AVX overhead

(a) Equal allocation of CPU time

non-AVX
task

AVX-512
task

CPU time

non-AVX
task

AVX-512
task

Throughput

AVX overhead

(b) Prioritize non-AVX tasks (fairness)

non-AVX
task

AVX-512
task

CPU time

non-AVX
task

AVX-512
task

Throughput

AVX overhead

(c) Deprioritize AVX tasks (performance isolation)

Figure 4: As remote AVX overhead slows non-AVX –
and sometimes AVX2 – tasks down, equal CPU time
allocation leads to unequal throughput. Our scheduler
prioritizes affected tasks to restore a fair allocation of
CPU performance [10] (b) and optionally slows down
the tasks causing overhead to minimize the perfor-
mance impact on non-AVX tasks (c).

that minimizes performance impact on, for example, non-
AVX tasks at the expense of AVX2 and AVX-512 tasks. Such
performance isolation may be desirable in situations where
a customer pays for fixed CPU performance.

While implementing these scheduling algorithms, we no-
ticed that quick thread migration between CPU cores is nec-
essary to give the scheduler sufficient leeway for prioritiza-
tion between different types of tasks. A prototype using a
custom fair scheduler based on the MuQSS scheduler for the
Linux kernel was able to reduce both unfairness as well as
inter-task performance impact by 70%.

5 OS MANAGEMENT OF
HARDWARE-CONTROLLED DVFS

The results gained with the prototypes described in the last
two sections show the large potential of active management
of AVX frequencies by the operating system. Although our
prototypes target recent Intel CPUs, the concepts are not

3



FGBS ’21, March 11–12, 2021, Wiesbaden, Germany M. Gottschlag

limited to these CPUs. As described in the introduction, fre-
quency scaling based on the energy consumption of different
instructions is an efficient approach to solve a fundamental
problem of power-limited computing and, albeit currently
patented by Intel [15], is likely to be used in other future
CPUs as well. We expect active management of hardware-
controlled DVFS by the OS to be beneficial on these platforms
as well.

Our experiments, however, have also shown that current
CPUs are not particularly suited for software control over
their DVFS policies. Our prototypes provide large benefits,
yet they are not able to completely mitigate the impact of
remote AVX overhead, mainly due to insufficient hardware-
software interfaces provided by existing CPUs. Often, the
prototypes could benefit from more information about code
currently executed on the CPU – such information would
allow more precise low-overhead profiling and would allow
fairer scheduling [11]. Similarly, if the operating system was
informed in advance of impeding frequency changes with
the option to intervene, more effective core specialization
implementations might bring further performance improve-
ments [8].
Besides these minor interface improvements, we identi-

fied the DVFS policy implemented by the CPU as the main
area where hardware modifications could yield improved
performance. Currently, as described in Section 1, the CPU
waits for a fixed timeout before restoring higher frequencies
which bears great similarity to fixed-timeout policies for dy-
namic power management [3]. We show that the delay and
the resulting performance impact can be prevented by better
policies. For example, if the software executed on the system
notifies the CPU when no further AVX2/AVX-512 code is ex-
pected in the near future, the CPU can conduct an immediate
frequency change [9]. Such notifications can, for example,
be sent as part of the context switching code based on previ-
ously observed behaviour of the tasks. We simulated such
an improved policy in a simple simulator and achieved a 4%
performance improvement for a single-threaded workload.
Although insufficient resources prevented implementing an
optimized DVFS policy within a representative custom hard-
ware platform, our results pave the way for future work
by demonstrating the general potential of improved DVFS
policies.

6 CONCLUSION
As modern CPUs are mainly limited by power consumption,
Intel has introduced a frequency boost mechanism where
code without complex AVX2 and AVX-512 instructions is exe-
cuted at higher frequencies. The frequency reduction caused
by AVX2/AVX-512 instructions often affects other poten-
tially unrelated code that executes on the same physical CPU

core, though, an effect which we call remote AVX overhead.
We present technique to measure and to reduce this over-
head and we propose improved scheduling algorithms for
workloads consisting of AVX2/AVX-512 tasks and non-AVX
tasks scheduled on the same CPU cores. Our experiments
show that the approaches can reduce the impact of remote
AVX overhead by 70%. This result shows the importance
of active management of hardware-controlled DVFS by the
operating system. As the underlying problem is caused by
fundamental properties of power-limited computing and is
likely to surface on more systems in the future, we sketch
hardware changes to further empower the OS to take control
over short-term power-related frequency changes.

REFERENCES
[1] 2019. Intel® 64 and IA-32 Architectures Optimization Reference Manual.
[2] Murali Annavaram, Edward Grochowski, and John Shen. 2005. Mit-

igating Amdahl’s law through EPI throttling. In 32nd International
Symposium on Computer Architecture (ISCA’05). IEEE, 298–309.

[3] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. 2000. A
survey of design techniques for system-level dynamic power manage-
ment. IEEE transactions on very large scale integration (VLSI) systems 8,
3 (2000), 299–316.

[4] Juan M Cebrian, Lasse Natvig, and Magnus Jahre. 2019. Scalability
analysis of AVX-512 extensions. The Journal of Supercomputing (2019),
1–16.

[5] James Charles, Preet Jassi, Narayan S Ananth, Abbas Sadat, and Alexan-
dra Fedorova. 2009. Evaluation of the Intel® Core™ i7 turbo boost
feature. In 2009 IEEE International Symposium on Workload Characteri-
zation (IISWC). IEEE, 188–197.

[6] Travis Downs. 2020. Gathering Intel on Intel AVX-512 Transitions.
https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html.

[7] Mathias Gottschlag and Frank Bellosa. 2018. Mechanism to Mitigate
AVX-Induced Frequency Reduction. arXiv:1901.04982 [cs.DC]

[8] Mathias Gottschlag, Peter Brantsch, and Frank Bellosa. 2020. Auto-
matic core specialization for avx-512 applications. In Proceedings of
the 13th ACM International Systems and Storage Conference. 25–35.

[9] Mathias Gottschlag, Yussuf Khalil, and Frank Bellosa. 2020. Dim
Silicon and the Case for Improved DVFS Policies. arXiv preprint
arXiv:2005.01498 (2020).

[10] Mathias Gottschlag, Philipp Machauer, Yussuf Khalil, and Frank Bel-
losa. 2021. Fair Scheduling for AVX2 and AVX-512 Workloads. Sub-
mitted.

[11] Mathias Gottschlag, Tim Schmidt, and Frank Bellosa. 2020. AVX over-
head profiling: how much does your fast code slow you down?. In
Proceedings of the 11th ACM SIGOPS Asia-Pacific Workshop on Systems.
59–66.

[12] Charles R Lefurgy, Alan J Drake, Michael S Floyd, Malcolm S Allen-
Ware, Bishop Brock, Jose A Tierno, and John B Carter. 2011. Active
management of timing guardband to save energy in POWER7. In 2011
44th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 1–11.

[13] Aubrey Li. 2019. Core scheduling: prevent fast instructions from
slowing you down. (Sept. 9 2019). https://linuxplumbersconf.org/
event/4/contributions/430/ Linux Plumbers Conference.

[14] Arun Raghavan, Yixin Luo, Anuj Chandawalla, Marios Papaefthymiou,
Kevin P Pipe, Thomas FWenisch, and Milo MKMartin. 2012. Computa-
tional sprinting. In IEEE international symposium on high-performance
comp architecture. IEEE, 1–12.

4

https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html
https://arxiv.org/abs/1901.04982
https://linuxplumbersconf.org/event/4/contributions/430/
https://linuxplumbersconf.org/event/4/contributions/430/


Remote AVX Overhead: Detection and Mitigation FGBS ’21, March 11–12, 2021, Wiesbaden, Germany

[15] Daniel J Ragland, Pavithra Sampath, Kirk Pfaender, Kahraman D
Akdemir, and Ariel Gur. 2017. Processors, methods, and systems
to adjust maximum clock frequencies based on instruction type. US
Patent App. 15/055,578.

[16] Michael B Taylor. 2012. Is dark silicon useful? Harnessing the
four horsemen of the coming dark silicon apocalypse. In 49th
ACM/EDAC/IEEE Design Automation Conference. IEEE, 1131–1136.

5


	Abstract
	1 Introduction
	2 Profiling
	3 Core Specialization
	4 Fair Scheduling
	5 OS Management of Hardware-Controlled DVFS
	6 Conclusion
	References

