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Abstract: The expectation maximisation algorithm offers several applications in sen-
sor data fusion. An overview of some of this applications and a short course in expec-
tation maximisation algorithm and its properties is given.

The expectation maximisation algorithm (EM) was introduced by Dempster, Laird and
Rubin in 1977 [DLR77]. The basic of expextation maximisation is maximum likelihood
estimation (MLE). In modern sensor data fusion expectation maximisation becomes a sub-
stantial part in several applications, e.g. multi target tracking with probabilistic multi hy-
pothesis tracking (PMHT), target extraction within probability hypothesis density (PHD)
filter, cluster analysis within multidimensional data association, or image computing.

1 Maximum likelihood estimation

Let Z be a random vector with probability density function p(Z | X’) depending on a
parameter X € (). The aim is to estimate the parameter X using the observation Z.
Therefore, the likelihood function L(X) = p(Z | X) is formed. An estimation X of X’ is
obtained by the solution of

OL(X) dlog L(X)
- o/ 1
ox |4 0= X . 0 (D
The Fisher information matrix is given by
0?log L(X) .
I(X‘Z):EX {W]:EX[S(Z|X)S (Z|X)] 2)

with the so called score statistic S(Z | X') = m%f((x) based on the observed data Z. It

is well known, that the asymptotic covariance matrix of the estimation X can be approxi-
amted by I~1(X | 2).
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2 Expectation Maximisation for Maximum Likelihood Estimation

The expectation maximisation is well suited when the observed data vector Z is incom-
plete but the maximum likelihood estimation is straightforward for an augmented (com-
plete) observation vector VV. Another application area is, when the complete log likelihood
function cannot be maximised analytically.

Suppose now, that incomplete data Z is given and one wishes to maximise L(X) = p(Z |
X). Let W denote the complete version of Z. ie. WT = (2T, AT), with explicitly
known probability density function p()V | X'). The augmentation part is denoted by
A. Tt includes the non observable states. Then the EM procedure is as follows [MK97],
[Web99]:

L(X)=p(Z | X) = / p(Z,A| X)dA 3)

The EM procedure generates a sequence of estimates of X', {X' ("™}, from an initial esti-
mate by two steps:

E-step: Evaluate

Q(X, X)) = Ellog(p(W | X)) | 2, x™)]

“4)
— [log(o(2. 4| 2))p(A | 2,2)A
M-step: Find X = X'(™+1) that maximes Q(X, X(™)), i.e.
X+ — Ar(xm)y = arg max Q(X, X(™) (5)
Xeq
2.1 Fisher information matrix and score statistic
(x| 2)=- % is the second order partial derivative of the (incomplete-data) log
0% log p(Z,A|X) 0% log ZZA)
likelihhod function and I.(X | Z) = —%X’Tl and I,,(X | 2) = ———5za5r
the complete one. Then
I(X | 2) = L(X | 2) — (X | 2) ©)

2.2 Monotonicity

The incomplete-data likelihood function L(X’) is not decreased after an EM step, i.e.
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LX) > pam) ()

2.3 Convergence

As a consequence of the monotonicity a sequence of likelihood values { L(X(*))} bounded
above converges monotonically to a value L*. However, it is in general not ensured that
L* is a stationary value, i.e. the existence of a stationary point X*, s.t. L* = L(X™*) holds.
One has the following result [MK97]:

Suppose that Q(X'; Y) is continuous in both variable. Then the limit points of any in-
stance {X'(*)} of the EM algorithm are stationary points of L(X'), and L(X(*)) converges
monotonically to some value L* = L(X™)

Unfortunately the convergence of the sequence of likelihood values {L(X'(*))} to some
value L* does not automatically imply the convergence of the corresponding sequence of
iteartes { X' (¥)} to a point X*. However, one knows the following criterion [MK97]:

Assume that L(X) is unimodal in {2 with X'* being the one and only stationary point and

% is continuous in X and ). Then any EM sequence X (¥) converges to the unique
maximizer X* of L(X).

2.4 Expectation Maximisation for Maximum a Posteriori Estimation
The expectation maximisation is also suitable for maximum a posteriori estimation [MK97].

logp(X | Z) =log L(X) + logp(X) + C ®)

where the last term does not depend on X'. Therefore, the expectation maximisation algo-
rithm may be applied as follows

E-step: Evaluate

Quap(X, X™) = Ellog(p(X | W)) | Z,x™)]

)]
— [tog(p(x. 4| 2)plA| 27, 2)dA
M-step: Find X = X'(™+1) that maximes Qs 4p (X, X(™), ie.
(m+1) _ , (m)
X arg max Qrmap(X, X)) (10)
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3 Applications of Expectation Maximisation
3.1 PMHT

The perhaps most popular application of expectation maximisation is with the probabilistic
multi hypotheses tracking [RWS96]. Therefore, assume that s enumerates the targets,
s € {1, ..., M'}. The dynamic of target s is defined by the prediction:

zs(t+ 1) = Fs(t)xs(t) + vs(t) (11)
The measurement of this target related to the measurement equiation

ys(t) = Hs(t)xs(t) + ws(t) (12)

fort = 1,...,T. Fs(t) is the prediction matrix, H;(t) the projection onto the measure-
ments space, vs(t) respectively w,(t) the Gaussian distributed process- respectively mea-
surement noise with covariance (,(t) respectively Rs(¢). Assuming that there are n;
measurements {z,(t) | » = 1,...,n;} at time t the data association problem is addressed
to a variables {a,.(¢t) | r = 1,...,m:}, s.t. the rth measurement at time t comes from
the k. (t)th model (target), y,,(r) = 2-(t). The multi target tracking problem is solved
by the application of (a posteriori) expectation maximisation [RWO1] on X = {z,(¢)},
Z={z()}and A = {a,(t)}:

T M

p(Z,X, A) Hpo:s VT I pes() |2t = 1))

t=2s=1
T nt (13)

LTI 7o 9N (20 (8); 0, ) (), Ra, 0y (1))

t=1r=1

(14)

ni

m N (2 (t); 97 (t), Ri(t))
PALTE )= HH I N (2 (0): 2(0), Ry(0) >

321



Now one uses the a posteriori version of the expectation maximisation:

T ny

Q(XnJrl’Xn) :ZIOg(p(X”Jrlv‘A | Z)) H H er(t)(t)
A

t=1r=1
T M

M
=log([] patt* ) [ [ pait ) | 222 — 1)) (16)
s=1

t=1s=1

+ Z log ma, 1y N (21 (t); 172:2%) (), Ra, 1) (1)) wg (1), (t)
At,r

3.2 Other Applications

The PHD filter is also based on expectation maximisation. Here the expectation maximi-
sation is used to extract the targets from the PHD. In [CBdSPPO05] this approach is used for
3D sonar tracking whereas [TL04] apply a similar strategy for a passive radar application.
In [GPRS04] the expectation maximisation is used for clustering in the multidimensional
data association context.
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