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Abstract: The expectation maximisation algorithm offers several applications in sen-
sor data fusion. An overview of some of this applications and a short course in expec-
tation maximisation algorithm and its properties is given.

The expectation maximisation algorithm (EM) was introduced by Dempster, Laird and

Rubin in 1977 [DLR77]. The basic of expextation maximisation is maximum likelihood

estimation (MLE). In modern sensor data fusion expectation maximisation becomes a sub-

stantial part in several applications, e.g. multi target tracking with probabilistic multi hy-

pothesis tracking (PMHT), target extraction within probability hypothesis density (PHD)

filter, cluster analysis within multidimensional data association, or image computing.

1 Maximum likelihood estimation

Let Z be a random vector with probability density function p(Z | X ) depending on a
parameter X ∈ Ω. The aim is to estimate the parameter X using the observation Z .
Therefore, the likelihood function L(X ) = p(Z | X ) is formed. An estimation X̂ of X is

obtained by the solution of

∂L(X )
∂X

%%%%
X̂

= 0 ⇐⇒ ∂ log L(X )
∂X

%%%%
X̂

= 0 (1)

The Fisher information matrix is given by

I(X | Z) = EX

�
∂2 log L(X )

∂X∂X T

�
= EX



S(Z | X )ST (Z | X )

�
(2)

with the so called score statistic S(Z | X ) = ∂ log L(X )
∂X based on the observed data Z . It

is well known, that the asymptotic covariance matrix of the estimation X̂ can be approxi-

amted by I−1(X | Z).

318



2 Expectation Maximisation for Maximum Likelihood Estimation

The expectation maximisation is well suited when the observed data vector Z is incom-

plete but the maximum likelihood estimation is straightforward for an augmented (com-

plete) observation vectorW . Another application area is, when the complete log likelihood

function cannot be maximised analytically.

Suppose now, that incomplete data Z is given and one wishes to maximise L(X ) = p(Z |
X ). Let W denote the complete version of Z . i.e. WT = (ZT ,AT ), with explicitly
known probability density function p(W | X ). The augmentation part is denoted by
A. It includes the non observable states. Then the EM procedure is as follows [MK97],

[Web99]:

L(X ) = p(Z | X ) =
�

p(Z,A | X )dA (3)

The EM procedure generates a sequence of estimates of X , {X (m)}, from an initial esti-
mate by two steps:

E-step: Evaluate

Q(X ,X (m)) = E[log(p(W | X )) | Z,X (m)]

=
�

log(p(Z,A | X ))p(A | Z,X (m))dA (4)

M-step: Find X = X (m+1) that maximes Q(X ,X (m)), i.e.

X (m+1) = M(X (m)) = arg max
X∈Ω

Q(X ,X (m)) (5)

2.1 Fisher information matrix and score statistic

I(X | Z) = −∂2 log L(X )
∂X∂XT is the second order partial derivative of the (incomplete-data) log

likelihhod function and Ic(X | Z) = −∂2 log p(Z,A|X )
∂X∂XT and Im(X | Z) = −∂2 log

p(Z,A|X)
p(Z|X)

∂X∂XT

the complete one. Then

I(X | Z) = Ic(X | Z)− Im(X | Z) (6)

2.2 Monotonicity

The incomplete-data likelihood function L(X ) is not decreased after an EM step, i.e.
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L(X (m+1)) ≥ L(X (m)) (7)

2.3 Convergence

As a consequence of the monotonicity a sequence of likelihood values {L(X (k))} bounded
above converges monotonically to a value L3. However, it is in general not ensured that

L3 is a stationary value, i.e. the existence of a stationary point X 3, s.t. L3 = L(X 3) holds.
One has the following result [MK97]:

Suppose that Q(X ;Y) is continuous in both variable. Then the limit points of any in-
stance {X (k)} of the EM algorithm are stationary points of L(X ), and L(X (k)) converges
monotonically to some value L3 = L(X 3)

Unfortunately the convergence of the sequence of likelihood values {L(X (k))} to some
value L3 does not automatically imply the convergence of the corresponding sequence of

iteartes {X (k)} to a point X 3. However, one knows the following criterion [MK97]:

Assume that L(X ) is unimodal in Ω with X 3 being the one and only stationary point and
∂Q(X ;Y)

∂X is continuous in X and Y . Then any EM sequence X (k) converges to the unique

maximizer X 3 of L(X ).

2.4 Expectation Maximisation for Maximum a Posteriori Estimation

The expectation maximisation is also suitable for maximum a posteriori estimation [MK97].

log p(X | Z) = log L(X ) + log p(X ) + C (8)

where the last term does not depend on X . Therefore, the expectation maximisation algo-
rithm may be applied as follows

E-step: Evaluate

QMAP (X ,X (m)) = E[log(p(X | W)) | Z,X (m)]

=
�

log(p(X ,A | Z))p(A | Xn,Z)dA (9)

M-step: Find X = X (m+1) that maximes QMAP (X ,X (m)), i.e.

X (m+1) = arg max
X∈Ω

QMAP (X ,X (m)) (10)
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3 Applications of Expectation Maximisation

3.1 PMHT

The perhaps most popular application of expectation maximisation is with the probabilistic

multi hypotheses tracking [RWS96]. Therefore, assume that s enumerates the targets,

s ∈ {1, ...,M}. The dynamic of target s is defined by the prediction:

xs(t + 1) = Fs(t)xs(t) + vs(t) (11)

The measurement of this target related to the measurement equiation

ys(t) = Hs(t)xs(t) + ws(t) (12)

for t = 1, ..., T . Fs(t) is the prediction matrix, Hs(t) the projection onto the measure-
ments space, vs(t) respectively ws(t) the Gaussian distributed process- respectively mea-
surement noise with covariance Qs(t) respectively Rs(t). Assuming that there are nt

measurements {zr(t) | r = 1, ..., nt} at time t the data association problem is addressed
to a variables {ar(t) | r = 1, ..., nt}, s.t. the rth measurement at time t comes from
the kr(t)th model (target), yar(t) = zr(t). The multi target tracking problem is solved

by the application of (a posteriori) expectation maximisation [RW01] on X = {xs(t)},
Z = {zr(t)} and A = {ar(t)} :

p(Z,X ,A) =
M 

s=1

p(xs(1))
T 

t=2

M 
s=1

p(xs(t) | xs(t− 1))

T 
t=1

nt 
r=1

πar(t)N(zr(t); ŷar(t)(t), Rar(t)(t))

(13)

p(Z,X ) =
M 

s=1

p(xs(1))
T 

t=2

M 
s=1

p(xs(t) | xs(t− 1))

T 
t=1

nt 
r=1

	
M"
l=1

πar(t)N(zr(t); ŷl(t), Rl(t)(t))

� (14)

p(A | Z,X ) =
T 

t=1

nt 
r=1

πlN(zr(t); ŷn
l (t), Rl(t))#M

p=1 πpN(zr(t); ŷn
p (t), Rp(t))� �� �

=wn
l,r(t)

(15)
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Now one uses the a posteriori version of the expectation maximisation:

Q(Xn+1;Xn) =
"
A

log(p(Xn+1,A | Z))
T 

t=1

nt 
r=1

wn
ar(t)(t)

= log(
M 

s=1

p(xn+1
s (1))

T 
t=1

M 
s=1

p(xn+1
s (t) | xn+1

s (t− 1)))

+
"
A,t,r

log πar(t)N(zr(t); ŷn+1
ar(t)(t), Rar(t)(t))wn

ar(t),r(t)

(16)

3.2 Other Applications

The PHD filter is also based on expectation maximisation. Here the expectation maximi-

sation is used to extract the targets from the PHD. In [CBdSPP05] this approach is used for

3D sonar tracking whereas [TL04] apply a similar strategy for a passive radar application.

In [GPRS04] the expectation maximisation is used for clustering in the multidimensional

data association context.
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