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Improving Anonymization Clustering

Florian Thaeter1, Rüdiger Reischuk2

Abstract:

Microaggregation is a technique to preserve privacy when confidential information about individuals
shall be used by third parties. A basic property to be established is called k-anonymity. It requires that
identifying information about individuals should not be unique, instead there has to be a group of size
at least k that looks identical. This is achieved by clustering individuals into appropriate groups and
then averaging the identifying information. The question arises how to select these groups such that
the information loss by averaging is minimal. This problem has been shown to be NP-hard. Thus,
several heuristics called MDAV ,V-MDAV , . . . have been proposed for finding at least a suboptimal
clustering.

This paper proposes a more sophisticated, but still efficient strategy called MDAV∗ to construct a good
clustering. The question whether to extend a group locally by individuals close by or to start a new
group with such individuals is investigated in more depth. This way, a noticeable lower information
loss can be achieved which is shown by applying MDAV∗ to several established benchmarks of real
data and also to specifically designed random data.
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1 Introduction

We consider databases X containing n individuals that are characterized by quasi-identifiers
and confidential attributes. Quasi-identifiers deliver information that can identify a person,
for example date and location of birth. Confidential attributes contain sensitive information
about a person, for example the amount of his income or his current diseases that should
not be disclosed, more precisely should not be linked to an individual.

In order to discuss algorithmic solutions to the anonymization problem, a precise mathemati-
cal model for this setting is needed that will be given first. For a sequence of m quasi-identifiers
the set of possible values is given by a cartesian product QI := QI1 × · · · ×QIm, where QIi
denotes the values the i-th quasi-identifier can take. Similarly, for a sequence of p confi-
dential attributes we define C A := C A1 × · · · × C Ap . The database X consists of n records
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(xi, yi) ∈ QI ×C A with i ∈ [1 . . . n], where n denotes the number of individuals. The vector
xi := (x1

i , x2
i , . . . , xmi ) ∈ QI denotes the quasi-identifiers and yi := (y1

i , y
2
i , . . . , y

p
i ) ∈ C A

the confidential attributes of the i-th individual. Restricting X to the quasi-identifiers
we write XQI := (x1, . . . , xn) and analogously XCA := (y1, . . . , yn) for the confidential
attributes. The removal of the i-th individual from X will be denoted by X − (xi, yi).

Such non-public databases may be used by third parties to investigate relations between
quasi-identifiers and confidential attributes, for example how the age of a person has
influence on his diseases. But the database owner should not simply provide all the tuples
(xi, yi) with their real values because this could violate the privacy of the individuals.
Instead, the data has to be anonymized first which is done by an anonymization algorithm µ.

Definition 1.1. Let Xx := {i | xi = x} be the index set of all individuals in X whose QI
value is x. A database X is k-anonymous if for all x ∈ QI |Xx | ≥ k or Xx = ∅ [S02].

This condition means that every vector x ∈ QI contained in X has to occur with multiplicity
at least k. In the special case k = n all values for the quasi-identifiers have to be identical
and thus provide no additional information if the set of individuals in X is known. Such a
database guaranteeing maximum privacy will be called QI-uniform.

Definition 1.2. An anonymization algorithm µ is a mapping µ : (QI×C A)n → (QI×C A)n,

µ : X := (x1, y1), . . . , (xn, yn) 7→ X̂ := (x̂1, y1), . . . , (x̂n, yn) ,

that changes the values of the quasi-identifiers in a database X to generate an anonymous
database X̂. µ achieves k-anonymity if µ(X) is k-anonymous for every X. If X is already
QI-uniform we require that µ does not change X to exclude trivial mappings.

The computation of the new values x̂i is often done with the help of a centering algorithm
c. In case of real-valued or ordered data c might be the arithmetic mean denoted by cMEAN
or the median cMEDIAN taken of every coordinate independently. cMEAN(X) is also called the
centroid of X.

Definition 1.3. A centering algorithm c : QI∗ → QI calculates a vector x ∈ QI that is
supposed to represent the elements of a sequence x1, x2, . . . ∈ QI∗. For the case of identical
vectors we assume that c(x, x, . . . ) = x.

To evaluate the quality of an anonymization algorithm a metric d(x, x′) is used on the set
QI. We extend d to a metric for two sequences XQI,X′QI of equal length with the help of
a function f : Rn

+ → R+ by d(XQI,X′QI ) = f (d(x1, x′1), . . . , d(xn, x′n)). The aggregation
function f could, for example, be any `p-norm for 1 ≤ p ≤ ∞.

Definition 1.4. The anonymization distortion of an algorithm µ applied to a database X is
defined by Dµ (X) := d(XQI, µ(X)QI ).
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Scaling the values of a database X by a factor α > 1 will increase the anonymization
distortion, too, except for trivial metrics. Thus, distortion should be measured relative to the
data expansion in X which will be called diversity.

The diversity ∆(X) ∈ R+ should fulfill the condition: ∆(X) = 0 iff X is QI-uniform. For
example, ∆(X) could be the sum of pairwise distances

∑
1≤i<i′≤n d(xi, xi′ ) denoted by

∆PD. Alternatively, one could use the sum of distances to a center of the whole sequence
given by ∆c :=

∑
i d(xi, c(XQI )). Then the information loss is defined as the quotient of

anonymization distortion and diversity.

Definition 1.5. The information loss Lµ (X) when applying an anonymization algorithm µ
to a non-QI-uniform database X is defined as Lµ (X) := Dµ (X)/∆(X).

The anonymization technique considered in this paper is called microaggregation [D09].
Given k it creates a k-clustering of a sequence X that is described by a partition G :=
G1 ∪G2 ∪ · · · ∪Gt of the indices of the elements ofX into groups G` such that |G` | ≥ k for
every `. Let us denote the elements of a group G` by `1, . . . , ` |G` | . We call a k-clustering
strict if each group contains exactly k elements except at most one (in case the size of X is
not a multiple of k).

After the partitioning for every group G` a representative vector x` = c(x`1, . . . , x`|G` | ) is
created by applying a centering algorithm c. In the anonymized output X̂ each vector x
belonging to group G` is replaced by its corresponding group representative x` . Obviously,
microaggregation achieves k-anonymity.

For microaggregation there are specific choices for the functions c, d, f ,∆ which are
commonly used for real-valued quasi-identifiers [DMS06, DM02a, DSS08, LM05, SMD06].
The squared euclidean distance of two vectors x, x′ ∈ Rm is defined as dSSE(x, x′) :=∑

j (x j − x ′j )
2. Now if f is chosen as the sum operator, for two sequences X, X̂ the value

dSSE(X, X̂) is called the sum of squared errors. This defines the anonymization distortion

DSSEµ (X) :=
n∑

i=1
dSSE(xi, µ(X)i) .

For a k-clustering with groups G1, . . . ,Gt this can be rewritten as
∑t
`=1 dSSE(G` ) where

dSSE(G` ) :=
∑

i∈G`
dSSE(xi, x` ). In this case it can be shown

Lemma 1.6. If the representative x` of a group G` consisting of vectors x1, . . . , x |G` | is
chosen as cMEAN(x1, . . . , x |G` |) then dSSE(G` ) is minimized.

This motivates to measure the diversity of a database X by considering it as a single group
and to measure the individual SSE-distances to a center x̄ for the whole group that is computed
by x̄ := cMEAN(x1, . . . , xn). Thus, we define ∆SSE(X) :=

∑n
i=1 dSSE(xi, cMEAN(x1, . . . , xn)).

For this setting it can be shown:
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Lemma 1.7. ∑t
`=1 dSSE(G` ) ≤ ∆SSE(X) for any partition of X into groups G` .

As a consequence, the information loss LSSEµ (X) := DSSEµ (X)/∆SSE(X) is normalized to the
interval [0, 1] for every microaggregation algorithm µ.

The obvious optimization problem for microaggregation is to find a k-clustering into groups
G` that minimizes

∑t
`=1 dSSE(G` ). It has been observed that there always exists an optimal

clustering with group sizes between k and 2k − 1 [DM02a]. Still, finding an optimal
clustering remains a computationally difficult problem.

Theorem 1.8. [OD01] Optimal microaggregation for m ≥ 2 and k = 3 is NP-hard for the
metric dSSE.

This claim has also be made for k > 3 without giving a proof. For k = 2 finding an optimal
strict clustering can be reduced to the weighted matching problem and thus is efficiently
solvable. In the nonstrict case, in an optimal clustering every group can consist of 2 or 3
elements and its computational complexity seems to be open. It is also unclear how well
this problem can be approximated. Therefore, good heuristics for arbitrary k are of interest.

The rest of this paper is structured as follows. In section 2 we discuss the standard
microaggregation heuristic MDAV and two important variants of it. Next in section 3 we
present a new strategy for k-clustering called MDAV∗ . This section also contains a concrete
example of a simple instance where MDAV∗ outperforms the other algorithms by far. Its
complexity is analyzed in section 4. Experimental results on established benchmark databases
are presented in section 5 that illustrate the improvements achieved.

2 MDAV

The two most common microaggregation algorithms for k-anonymity are MDAV
[DM02a][DT05][D09] and the more recent PCL [RFP13]. MDAV (maximum distance
to average vector) relies on a greedy nearest-neighbor aggregation technique and generates a
strict k-clustering, whereas PCL uses a modification of the Lloyd algorithm for aggregation.
PCL achieves lower information losses than MDAV on synthetical as well as on standard
data sets, but this comes at the cost of a substantially longer running time [RFP13]. There
are several variations of MDAV that differ slightly in time complexity and information loss
obtained. We use the MDAV specification from [D09].

[SMD06] applies several simplifications and improvements to MDAV. Instead of forming two
groups at extremal regions simultaneously only a single group is constructed at a time, the
global centroid is not recomputed each time, and leftovers at the end are assigned to their
closest groups instead of forming a new group out of them. This variant denoted by MDAV+
is formally defined below.
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Algorithm MDAV+

1. Compute the centroid x of the input dataset X.

2. Select an unassigned record xr furthest away from x.

3. Form a group around xr consisting of xr and its k − 1 closest unassigned neighbors (these
elements are now assigned).

4. If there are at least k unassigned records left go back to step 2,
otherwise put each not yet assigned element into its closest group.

A significant improvement of MDAV is V-MDAV (Variable group size MDAV) that can generate
nonstrict k-clusterings. If a region contains more than k elements, MDAV splits it to obtain
groups of fixed size k. V-MDAV solves this problem by considering the inclusion of additional
records to newly formed groups.

Let U be the index set of all unassigned records and G be the most recently established
group. If the size of G is smaller than 2k − 1 we select a pair of elements (xī, x j̄ ) with
ī ∈ U and j̄ ∈ G that minimizes dSSE(xi, xj ) over all (i, j) ∈ U × G. Denote this value by
din := dSSE(xī, x j̄ ). It is compared to the distance of xī to the closest unassigned element

dout := min
i∈U−ī

dSSE(xī, xi).

To decide, how to handle xī V-MDAV uses a gain factor γ. xī is added to G iff din < γ · dout ,
otherwise a new group is established around xī . For γ = 0 V-MDAV equals MDAV+. With
0 < γ ≤ 1, xī can extend G only if it is closer to G than to its closest unassigned neighbor.
For γ > 1 V-MDAV favors to assign xī to G even if there might be a closer unassigned
neighbor. The last decision seems only reasonable for k > 2. As stated in [SMD06] it is
not clear how an optimal choice of γ should look like. The authors recommend γ = 0.2 for
scattered data sets and γ = 1.1 for grouped data sets.

3 MDAV*

The main novelty of the heuristic MDAV∗ is to take into account the effects on nearby records
when the extension of a group has to be decided and to handle group extension before
creating a new group instead of after the creation. When assigning elements to groups
we consider the additional costs per element (marginal costs) a decision would cause and
(greedily) select an optimal one.

Before we go into details, consider the simple example of a database X with
a single quasi identifier attribute. It contains 11 records depicted by values x ∈
{1, 2, 3, 5, 6, 19, 20, 21, 98, 99, 100} of this attribute. The centroid of X is 34 resulting
in diversity ∆SSE = 17966. For the anonymity parameter we choose k = 3.
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To construct a k-clustering of X the heuristic V-MDAV starts with a group G1 containing the
values 98, 99 and 100. Because there are no unassigned elements near that group G1 does
not get expanded. Then the group G2 with elements 1, 2 and 3 is created – similarly this
group will not be expanded because xī = 5 is chosen, which results in din = d(3, 5) = 4 and
dout = d(5, 6) = 1, thus 5 is not included in G2. The third group G3 is created out of 5 and
contains 5, 6 and 19. Finally, the elements 20 (din = d(19, 20) = 1, dout = d(20, 21) = 1)
and 21 (din = d(20, 21), dout = ∞) join this group. The centroids of these groups are 2,
14.2 and 99 yielding an anonymization distortion of

DSSEV-MDAV = dSSE(G1) + dSSE(G2) + dSSE(G3) = 2 + 2 + 254.8 = 258.8

and information loss LSSEV-MDAV ≈ 1.44%.

1 2 3 5 6

G2 G1G3

19 20 21 98 99 100

Fig. 1: 3-Clustering generated by V-MDAV

Creation of the group G3 with 5 elements from 5 to 21 seems to be a bad decision. It is
caused by the fact that 5 has a close neighbor 6 to open a new group. However, this should
not be considered as reason enough not to include 5 in the already established close group
G2. It would be better to compare the consequences of including 5 in G2 to building a new
group out of 5. This fact brings us back to MDAV∗.

The state of MDAV∗ can be described by a partitioning G := G1∪· · ·∪Gt ∪U , which consists
of t disjoint groups G` of size at least k and an additional group U containing all records
which are still unassigned. Given the state of the algorithm we define the neighborhood
Nq (x,G) ⊆ G as the subset of a group G, containing the indices of x and its q closest
neighbors. Furthermore, clos(x) ∈ G \ {U } denotes a group G that is closest to x. If an
element x is included in a group G, we write G + x, if it is removed G − x.

After the choice of a new cluster origin xr ∈ U , MDAV∗ considers two options. The first one
is to build a new group Nk−1(xr,U) as usual. The second one is to extend clos(xr ) by xr in
which case the group Nk−1(xr,U) cannot be built. Instead the rest of Nk−1(xr,U) has to
be assigned somehow differently. For this, we take the closest neighbor y ∈ U of xr and
consider establishing a new group around y. The underlying decision rule considers the
marginal costs in both cases. Still, this is only an estimate of a best possible usage of xr
because we do not know whether y should ever be chosen as the origin of a new group.

The costs divided by the number k of elements for creating a new group Nk−1(xr,U) out of
record xr are

dSSE(Nk−1(xr,U))
k

(1)
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while the costs per element of extending the group clos(xr ) by xr and establishing a new
group around y (now assigning k + 1 elements) are

dSSE(clos(xr ) + xr ) − dSSE(clos(xr )) + dSSE(Nk−1(y,U − xr ))
k + 1

. (2)

Algorithm MDAV∗

1. Compute the centroid x of the input dataset X and initialize U with X.

2. Select xr ∈ U furthest away from x.

3. Compute Nk−1(xr,U) and the group clos(xr).

4. Based on the marginal costs (1) and (2) choose between
• extending clos(xr) by xr and removing xr from U versus
• establishing the new group Nk−1(xr,U) and removing these elements from U.

5. If |U | ≥ k go back to step 2,
otherwise assign each x ∈ U to clos(x).

We are now able to describe how MDAV∗ handles the situation from above. After creating
group G1 and G2 as V-MDAV does, considering the next element 5 it is included in G1,
because the costs for creating a new group N2(xr,U) (containing 5, 6 and 19) are 40.6
whereas the costs for expanding the group G2 are 32.19. Also 6 is included in G2, because
the costs for a new group are 40.6 and costs for expanding G2 are only 2.6125. The centroid
of G2 becomes 3.4 and results in a distortion

DSSEMDAV∗ = dSSE(G1) + dSSE(G2) + dSSE(G3) = 2 + 17.2 + 2 = 21.2

and information loss LSSE
MDAV∗ ≈ 0.118%. Now, comparing LSSEV-MDAV and LSSE

MDAV∗ we see that
for this instance the information loss of V-MDAV is more than 12 times larger than that of
MDAV∗.

1 2 3 5 6

G2 G1G3

19 20 21 98 99 100

Fig. 2: 3-Clustering generated by MDAV∗

An important part missing so far is the calculation of clos(xr ). In V-MDAV the distance
between a group G and a record x is measured by the distance between x and the record
from G closest to x. Our goal is to increase dSSE of a group as little as possible when x is
included. However, the increase of group SSE depends on the group’s size. This implies that
this shortcut may deliver a non-optimal record when searching for the best group to extend
with a fixed record.
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Fact 3.1. The distance measure between a group and a record used by V-MDAV depends on
the group size and is not optimal in general.

To address this problem, MDAV∗ chooses clos(x) by looking directly at the growth of dSSE
the extension would cause:

clos(x) := arg min
G\{U }

dSSE(G + x) − dSSE(G) .

4 Complexity analysis

MDAV+ requires bn/kc rounds to create that many groups of size k each except possibly the
last one. Computing xr and its (k − 1)-neighborhood can be done in time O(k n). This
gives a total time complexity of O(n2).

V-MDAV and MDAV∗ may run for almost n rounds if the extension of a group by a single
element happens often. din and dout can be computed in O(k n) steps which results in an
upper time bound O(k n2) for V-MDAV.

To compute clos(x) for at most n/k groups their distortion has to be recomputed which
requires O(k) steps per group. For the (k − 1)-neighborhoods time O(k n) suffices as in
MDAV+. Again this gives the bound O(k n2) for MDAV∗.

If we consider k as a constant then the asymptotic growth of the time complexity of these
three algorithms is quadratic with respect to the size of the database. This can even be
lowered if we order the elements in U with respect to their distance to the centroid and in
each round perform a bounded search for closest neighbors.

It remains to compare the performance of these heuristics with respect to the information
loss. Since the optimization problem has shown to be hard it will be difficult to compute the
minimum possible distortion achievable by clustering. Thus, there is little hope to derive
performance bounds analytically in general. To get some insight in how the heuristics
perform in practice we have conducted a bunch of experiments.

5 Information loss – experimental results

The information loss has been estimated on different kinds of data. On the one hand, three
benchmark data sets (CENSUS, TARRAGONA and EIA) from the CASC project [DM02b]
have been used. CENSUS contains 13 numerical attributes and 1080 records. It was created
using the Data Extraction System of the U.S. Bureau of Census in 2000. TARRAGONA
contains 13 numerical attributes and 834 records. It contains data of the Spanish region
Tarragona from 1995. The EIA data set consists of 15 attributes and 4092 records. As in
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[DMS06] we only use a subset of 11 attributes precisely 1 and 6 to 15 and ignore categorical
data in attribute 2 and 3 as well as attributes with small width in attributes 4 and 5.

We have also tested the information loss on synthetic data. For this process the uniform data
set SimU and the grouped data set SimC as in [DMS06] have been created. SimU contains
1000 records with 10 independent numerical attributes which values are chosen uniformly
at random. SimC contains clustered data. First 100 cluster centers with 10 attributes are
chosen like in SimU. Then for each cluster a number in the interval [4 . . . 21] is randomly
chosen as its size and the cluster is filled with that many elements differing from the cluster
center by at most 0.5% in every attribute dimension. Finally x/3 independent records are
added, where x is the number of records created so far. For uniform as for grouped data
we have created 25 data sets and taken the average information loss as final result for all
algorithms.

5.1 Test methodology

In all test cases we have standardized the data prior to anonymization. By adjusting the
mean value to 0 and the variance to 1 for every attribute the influence by the size of numbers
(some attributes have a small range, others a much larger one) has been eliminated. As a
consequence no attribute looks more important than others to an anonymization algorithm.
LSSEµ is used on the standardized database X as information loss measure. The numerical
values shown in the tables have been multiplied by 100, thus percentages are listed (the
same format as in previous publications). Thus, our results are directly comparable to the
results e.g. in [DMS06] or [SMD06]. All tests have been conducted for k ∈ {3, 4, 5, 7, 10}.
V-MDAV has been tested with gain factors γ between 0.0 or 2.0 in steps of 0.1. Only the best
result is shown here (see table 4 for the values used in every test case).

5.2 Results

The results are listed in table 1 and table 2 as well as in graphical form in figure 3 to figure 5.
As summarized in table 3a) there are only 3 out of 25 test cases in which MDAV+ is slightly
better than MDAV∗. In all other cases the information loss inflicted by MDAV∗ is between 0.9
and 45.4 percent lower than the one of MDAV+ on the same data. On average over the 25 test
cases shown the information loss of MDAV∗ is about 7.5% lower.

In table 3b) MDAV∗ is compared to V-MDAV. Because V-MDAV can behave like MDAV+ (setting
γ = 0) it can never be worse than MDAV+ if for every instance the (unknown) optimal scaling
factor is used. The results show that there are scenarios in which V-MDAV takes profit from
this. However, in most cases MDAV∗ has an even lower information loss than V-MDAV. This
clearly shows the further improvement achieved by MDAV∗.
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Another interesting question is how the information loss increases with k. For our data
sets this has a significant impact. In figure 6 the impact of k for the SimC test in the range
k ∈ {2, 3, . . . , 100} is shown. The graphs for other test cases look similar and are omitted
here.

k = 3 k = 4 k = 5 k = 7 k = 10
MDAV 5.677 7.537 9.056 11.608 14.186
MDAV+ 5.662 7.514 9.007 11.657 14.073
V-MDAV 5.662 7.514 8.978 11.586 14.043
MDAV∗ 5.782 7.433 8.809 11.369 14.003

(a) CENSUS

k = 3 k = 4 k = 5 k = 7 k = 10
MDAV 16.922 19.540 22.459 27.525 33.195
MDAV+ 16.951 19.767 22.872 28.255 33.254
V-MDAV 15.849 19.695 22.872 28.249 33.251
MDAV∗ 16.143 19.189 22.250 28.399 34.743

(b) TARRAGONA

k = 3 k = 4 k = 5 k = 7 k = 10
MDAV 0.483 0.672 1.668 2.187 3.846
MDAV+ 0.488 0.673 1.775 2.211 3.547
V-MDAV 0.465 0.673 1.056 2.211 2.794
MDAV∗ 0.449 0.617 0.911 2.032 2.633

(c) EIA

Tab. 1: Information loss on standard test data sets given in percentages (100 · LSSEµ )

6 Future work

Can the clustering problem be solved by an approximation algorithm with a guaranteed
approximation rate for the information loss? The only result known to us is an algorithm
in [DSS08] with a quite high rate of O(k3). It should be possible to improve this bound
significantly. The simple 1-dimensional example given above illustrates that in the worst
case MDAV∗ might be much better than V-MDAV. It would be interesting to prove a bound on
the approximation ratio of MDAV∗ or a further improved strategy.

The property k-anonymity has been extended to stronger privacy requirements called `-
diversity and t-closeness. However, these properties seem to induce even higher information
loss and algorithmic solutions are significantly more difficult to analyze in a rigorous way.
Can one establish any performance guarantees for these settings?
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k = 3 k = 4 k = 5 k = 7 k = 10
MDAV 18.181 23.656 28.072 34.671 40.826
MDAV+ 18.026 23.618 27.897 34.043 40.625
V-MDAV 17.993 23.551 27.803 34.006 40.427
MDAV∗ 17.756 23.095 27.280 33.371 39.643

(a) SimU

k = 3 k = 4 k = 5 k = 7 k = 10
MDAV 6.957 9.294 11.246 14.511 18.436
MDAV+ 6.856 9.233 11.045 14.114 18.086
V-MDAV 6.192 8.355 10.155 13.142 16.973
MDAV∗ 5.999 8.163 9.659 12.315 15.683

(b) SimC

Tab. 2: Information loss on synthetic test data sets given in percentages (100 · LSSEµ )

k = 3 k = 4 k = 5 k = 7 k = 10
CENSUS +1.8% −1.4% −2.7% −2.1% −1.3%
TARRAGONA −4.6% −1.8% −0.9% +3.2% +4.7%
EIA −7.0% −8.1% −45.4% −7.1% −31.5%
SimU −2.3% −2.4% −2.8% −3.7% −2.9%
SimC −13.8% −12.2% −14.1% −15.1% −14.9%

(a) MDAV∗ versus MDAV+

k = 3 k = 4 k = 5 k = 7 k = 10
CENSUS +2.11% −1.08% −1.89% −1.87% −0.29%
TARRAGONA +1.85% −2.57% −2.72% +0.53% +4.49%
EIA −3.40% −8.23% −13.71% −8.09% −5.77%
SimU −1.32% −1.93% −1.88% −1.86% −1.94%
SimC −3.11% −2.29% −4.88% −6.30% −7.60%

(b) MDAV∗ versus V-MDAV

Tab. 3: Percental information loss difference of MDAV∗ compared to MDAV (a) and V-MDAV (b)
Note that negative numbers show an improvement.

k = 3 k = 4 k = 5 k = 7 k = 10
CENSUS γ = 0.0 γ = 0.0 γ = 0.2 γ = 0.1 γ = 0.2
TARRAGONA γ = 0.3 γ = 0.3 γ = 0.0 γ = 0.6 γ = 0.3
EIA γ = 0.6 γ = 0.0 γ = 0.4 γ = 0.0 γ = 1.3
SimU γ = 0.176 γ = 0.208 γ = 0.232 γ = 0.108 γ = 0.244
SimC γ = 0.368 γ = 0.456 γ = 0.528 γ = 0.660 γ = 0.776

Tab. 4: Optimal gain factors used for V-MDAV in the experiments. For SimU and SimC the arithmetic
mean of the optimal γ for each of the 25 sets is shown.
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Fig. 3: Information loss for EIA benchmark

Fig. 4: Information loss for SimU benchmark

Fig. 5: Information loss for SimC benchmark
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Fig. 6: Information loss tendency for different k
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