
133

Towards Auto-Suggested Process Modeling – Prototypical

Development of an Auto-Suggest Component for Process

Modeling Tools

Nico Clever, Justus Holler, Maria Shitkova, Jörg Becker

ERCIS – University of Muenster

Leonardo-Campus 3

48149 Muenster, Germany

{ nico.clever ¦ justus.holler ¦ maria.shitkova ¦ joerg.becker }@ercis.uni-muenster.de

Abstract: Companies have accepted process modeling as a powerful instrument

for business reorganization, requirements specification in software development,

knowledge management and other activities. Huge amounts of processes are being

modeled in organizations nowadays. However, the re-use of existing process

knowledge in order to simplify the modeling process has not yet been thoroughly

studied and applied. We propose an auto-suggest component for process modeling

tools, which, based on existing process knowledge, “auto-suggests” the process

model elements step-by-step, thus saving the modeler time and effort.

1 Introduction

Business process management (BPM) has established itself as a mature field of reseach

during the last decades. There are several commonly used process modeling notations

[Ag04] and process modeling tools as a part of complex business process management

suites supporting modeling projects [Ga10]. Companies have acknowledged process

modeling as a powerful instrument for business reorganization, requirements

specification in software development, knowledge management and other activities

[In09]. As a result, large process model collections are created in organizations

nowadays, such as APROMORE (2000 models with 20-100 tasks in each) [LR11], SAP

reference model (600 models) [Me08] or the repository of Dutch local governments

counsil (500 models) [Di11].

Given the size of process model collections and single process models, manual creation

of all processes within the repository becomes a tedeous, time-consuming, and, thus,

inefficient task. Therefore, we argue that the existing process knowledge from already

created processes in the organization as well as from reference models should be re-used

to facilitate modeling activities and enhance the efficiency in tems of model quality,

modeling time and budget.

Driven by the research question, how process modeling efficiency can be improved by

using existing process knowledge, we propose an auto-suggest component for process

modeling tools. Similar to the T9 system for mobile phones or the auto-completion

134

function in a UNIX shell or web-search [In09], the active modeler is supported by

automatic recommendations for the next process step. These recommendations are

derived logically from a knowledge database filled with the process models created in

the own or reference organizations.

The remaining paper is structured as follows: within the next section we describe the

research design applied, followed by a literature review and the conceptual design of our

auto-suggest prototype. The implementation and application section specifies the design

decisions. In the last section we discuss the applicability of the conceptual design and

prototypical implementation of the auto-suggest component and related future research

and ongoing evaluation respectively.

2 Research design

In this article we follow the Design Science Research Methodology (DSRM) proposed

by Peffers et al. [Pe07]. The DSRM is based on five consecutive phases depicted in

Figure 1, namely problem identification and motivation, definition of the objective of the

solution, design, demonstration and evaluation. Peffers et al. [Pe07] mention a sixth

phase, communicating the research results, which is not depicted in the figure. This step

is achieved by the ongoing research contributions.

In the first phase, we identify and motivate the problem by conducting a literature review

[Vo09, WW02]. We used “auto-completion”, “auto-suggest” and “recommendation-

based” as keywords to find existing approaches in the area of process modeling

facilitation and selected those articles which had an explicit focus on BPM. On the basis

of the literature review, we found that this topic is not widely discussed and present in

the research literature at the moment. Based on the research gap, we define the objective

of our solution.

In the design phase, based on auto-suggest approaches in different IS fields such as

software engineering, web design and mobile application design, we develop a

conceptual model of the auto-suggest component for a BPM tool prototype [Be13]. This

prototype was then implemented as a web-based process modeling tool to demonstrate

its applicability and practicability.

R
e
s
e
a
rc
h

p
h
a
s
e

R
e
s
e
a
rc
h

m
e
th
o
d

Identify problem

and motivate

research

Define objective

of the solution
Design Demonstrate Evaluation

ArgumentationLiterature review
Conceptual

development
Implementation Application

Figure 1: Research methodology

135

The last phase of the DSRM is greyed out in Figure 1: Research Figure , as the prototype

evaluation is not addressed in this paper. The reason for it is the necessity of “learning"

of the auto-suggest component, which will be discussed later in the paper. The

evaluation is taking place at the time of this contribution and the results will be

published after the evaluation is finished. Based on the evaluation results, we will

address the improvement of the prototypical implementation.

3 Related work

In [HKO07], one approach for auto-completion based on business rules and structural

constaints is presented. It uses Petri-nets described with the web ontology laguage OWL

[MV04], which makes it possible to implement an efficient algorithm for (semi-)

automatic similarity computation between process variants. Additionally, the semantic

web rule language (SWRL) [Ho04] is used to describe structural and business-

constraints. According to predefined rules, the system can automatically select process

fragments that are then inserted at a particular step of the process model. The

prototypical implementation of the conceptual idea from [HKO07] was presented in

[HKO09]. The authors have extended the OWL description with two properties and

created 18 SWRL rules which allow for automatic detection of suitable process

fragments.

A recommendation-based modeling support system is proposed in [HKL08]. The system

consists of a query interface, recommender and ranking functions and aims at re-using

existing process fragments and, thus, at facilitating process modeling. Process fragments

are described by tags or key words, which are derived from process descriptions

according to the score function. [KO11] extends this approach by additionaly integrating

factors which influence process modeling (modeling purpose, view, role, model

properties and complexity). The solution also includes a collaboration component – the

recommender system tracks the users who have already utilized the recommended

process fragment and shows this information in the query results screen which supports

unexperienced modelers in their recommendation choice.

[Be06] presents a conceptual description of an approach for auto-completion of business

process models based on the OWL which allows for an automatic analysis of process

models. During the modeling process, a recommendation mechanism determines

possible subsequent fragments of all templates by computing similarities. The system

also ensures structural correctness of the models when suggesting fragments (check for

deadlock freeness and soundness of the resulting model). The prototypical

implementation of the approach is not yet finished or presented by the authors.

In [MP08], an alternative approach for reusing business process fragments is proposed.

The authors construct a formal model for the description of process models using a -

calculus for dynamic aspects and an ontology stack for static aspects of process models.

The authors have not yet finished the querying framework, so the approach is not

completely implemented.

136

Table 11. Auto-suggest approaches in literature

Source
Modeling

language

Degree of

automatisation
Technology used Impl.

[HKO07] Petri nets Semi-automatic
Ontology, structural

correctness rules
no

[HKO09]

Petri nets,

(possibly

applicable to WS-

BPEL, EPC)

Semi-automatic
Ontology, structural

correctness rules
(yes)

[HKL08]

[KO11]
Petri nets Manual query Key words yes

[HKL08]

[KO11]
Petri nets Semi-automatic

Key words,

structural

correctness rules

(yes)

[Be06] Petri nets Semi-automatic
Ontology, structural

correctness rules
no

[MP08]
On the example of

BPMN
Manual query

Ontology, -

calculus
no

In Table 11, the approaches to auto-suggest process modeling described above are

summarized. All of the approaches focus on the suggestion of process fragments, and not

single elements. Most of the solutions, except [HKO09] and [MP08], are targeted to

Petri nets, as this language has a formal representation which allows for checking the

suitability of suggested fragments according to structural correctness properties such as

deadlock-freeness or soundness. Most of the approaches are based on representing a

process model with the web ontology language OWL, but two of them, [HKL08] and

[KO11], use key words for describing the models. It has to be stated that, except for the

query interface by [HKL08] and [KO11], the implementation of the approaches is either

not performed or not clearly presented in the articles.

Thus, based on the literature review, we argue that there is still a gap in the area of auto-

suggest functionality for process modeling. There is no universal language-independent

approach to facilitate manual process modeling, which re-uses existing process

knowledge and makes real-time suggestions during model creation. In the next section,

we present a conceptual design for such an auto-suggest component for process

modeling.

4 Conceptual design of the auto-suggest component for process

modeling

4.1 Architectural design scenarios

Concerning the design of the auto-suggest functionality for process modeling, three

different scenarios are applicable. The scenarios differ in their degree of specialization in

favor of a concrete modeling environment and, thus, directly affect the flexibility of the

137

proposed solution. The first scenario seeks for a direct integration of the auto-suggest

component with an existing process modeling environment. The second and third

scenarios favor generic, environment-independent solutions, either based on a specific

modeling language or not.

The first implementation scenario relies on a complete integration of the auto-suggest

component into the modeling environment (Figure 2). This scenario does not require or

make use of an external data source. It solely uses the existing models in the modeling

environment or a predefined exemplary set of models. Due to the close integration with

the modeling language and tool, semantic characteristics can be considered for providing

the suggestions. For example, models in the notation of the Event-driven Process Chain

(EPC) in its original form consist of alternating events and functions [Sc00]. When

providing a suggestion for an element of type „event“, all the „events“ will be excluded

from the suggestion set. Since no interface to an external database, e. g. other modeling

environment has to be designed, no non-trivial generalizations of heterogenous process

information is necessary on the one hand. On the other hand, this is a clear disadvantage

of this solution, since only process elements can be transferred between two instances of

the same modeling environment via export and import and, therefore, the reutilization of

existing knowledge is hindered.

Modeling environment

A

B C

A

Knowledge

database

Figure 2: Completely integrated auto-suggest architecture

In the second scenario, the business logic and database of the auto-suggest component

are outsourced from the actual modeling environment to a self-contained application.

Both the modeling environment and the auto-suggest component communicate via a

specifically designed interface. However, since the suggestions are – as they are in the

integrated scenario – provided for one and the same modeling language, specific

structural and semantic characteristics can still be utilized. As shown in Figure Figure 3,

the architecture of this solution allows for the outsourcing of the auto-suggest

component to an external server which, in turn, simplifies the exchange of knowledge

between different process repositories.

138

Modeling environment A Modeling environment B

Knowledge

database

A

B C

A

A

B C

A

A A

A

B

A

C

A

B

A

C

Figure 3: Self-contained, language-dependent auto-suggest architecture

In the third scenario, the auto-suggest component is not only self-contained but

language-independent, as well. Here, only the denotations of the process elements – also

called labels – are transferred to the knowledge base and used for suggestion. Unlike in

the other scenarios, utilization of the language-specific semantic or syntactic

characteristics for suggestion provision is not possible. A precondition for the conjoint

utlization of such a central language-independent knowledge base for several different

modeling environments is a consistent use of denomination conventions/patterns for

process elements. In

Figure 4Fehler! Verweisquelle konnte nicht gefunden werden., the general

architecture of such a central process modeling knowledge base scenario is shown. As

outlined in the figure, the semantics incorporated by the previous solutions – in terms of

concrete model elements represented by rounded rectangles – are left out. This

represents storing process modeling knowledge in the external database purely based on

the labels of the process elements.

Modeling environment BModeling environment A

Knowledge

database

A

B C

A

A A

A

B

A

C

A

B

A

C

A

A

B C

Figure 4: Self-contained, language-independent auto-suggest architecture

139

4.2 Additional requirements

Next to selecting the architechtural design scenario for the prototype implementation,

some additional requirements have to be considered. These requirements will be

discussed in this section.

First of all, the selection process of a potential suggestions has to be determined. Several

criteria are relevant in this case:

 Frequency of the sequence – an element would be selected if it is the successor

of the predecessor in a large set of models in the knowledge base.

 Date of the insertion – an element would be selected depending on whether it

was lately used as the successor of the previous element and would not be

selected if it has not been used in a specific timespan.

 Previous users of the suggestion – following [KO11], social structures of

process modeling is an important aspect to consider. Thus, entries from

experienced users or own entries could be selected preferably.

 Frequency of suggestion-adoptions – a ratio between how often a successor was

suggested and how often it was actually accepted as a valid process model

element. The higher the ratio, the more likely an element will be suggested.

After a certain threshold the element would not be suggested anymore.

 The similiarity of element labels – calculated according to the Levenshtein

distance
3

between two labels without taking semantic peculiarities of certain

modeling languages into account [HM11].

On the basis of these criteria, learning of the knowledge database is realized. It can be

divided into two phases. In the first phase, process models and their elements are loaded

into the database by transferring predecessor-successor-pairs of elements. In the second

phase, the frequency for suggestion (score) of these pairs is continuously adjusted as

soon as new pairs of connected elements are created, or the existing ones are deleted in

the modeling environment. For our prototype, a rather basic selection methodology is

chosen. It is a combination of two aspects mentioned above, the frequency of usage and

the date of the last usage counted in days. This is done to prove the applicability of such

a selection method, but at the same time to be able to evaluate the learning functionality

of the prototype in a comprehensible way. Thus, the selection formula is:

 represents the score assigned to a pair while represents the frequency of usage and
represents the date of the last usage counted in days. In simple words, this exponential

function can be interpreted in the way that the score of a certain connection is cut in half

if it has not been used in a year.

Two additional aspects have to be considered prior to the development of the prototype.

First, handling of sensitive data plays an enormous role in the development of an auto-

suggest component for process modeling. Since business process modeling is often a

3 The Levenshtein distance is a metric, measuring the distance between two string sequences.

140

matter of highly sensitive organizational information, the possibility of restricting the

access to intra-organizational knowledge has to be accounted for in the concept.

Second, the extent of suggested elements is of high importance. Since the aim of auto-

suggested process modeling is to save the modeler time, it would be suboptimal if too

many suggestions would be provided by the tool. Hence, the challenge is to provide a

number of choices which is as big as necessary and as small as possible. Based on the

calculation of the weighted score , two approaches are feasible. First, a threshold

could be defined which has to be exceeded by an element in order to be suggested.

Second, a fixed number of suggestions provided by the tool could be defined ordered by

the decreasing score . Advantage of the first method is a well-formed result set

matched to the modeler’s needs if the threshold is well-chosen and the quality of the

knowledge in the database is good. Pitfall of the first method is a possibly too broad

result set if the initialing element is an often used one. This, in turn, is not the case if the

second method is applied. If an adequate number of elements to be suggested is defined
4
,

the modeler can get an overview quickly and choose the fitting suggestion. Pitfall of this

method could be that the modeler could be provided with suggestions which are of no

interest in the explicit modeling context. For our prototype, we chose the latter method,

because its pitfall of possibly providing unfitting suggestions is more acceptable than an

excess supply of suggestions. However, extensive evaluation of the prototype will be

carried out in order to assess and possibly correct the decisions made in the conceptual

design phase of the auto-suggest component.

4.3 Architecture of the auto-suggest component

Given the multiplicity of process modeling tools and notations, as it was stated in the

introduction of the article, the self-contained, language-independent approach is chosen

for the auto-suggest component. Since it is detached from a specific modeling language,

the application of the auto-suggest functionality is possible in a much broader context

and is not limited by language-specific characteristics. Thus, a more meaningful

application with respect to the potential of auto-suggest based process modeling itself is

enabled.

Due to the choice of a self-contained solution, the auto-suggest component has two main

tasks. On the one hand, it has to provide an interface to the process modeling tools which

are delivering the learning input. As a matter of course, the tools which are to benefit

from the functionality and to be included in the evaluation, have to match this interface

when providing the information. On the other hand, it has to provide the business logic

for the selection of the recommended successors of process elements. As an additional

third, trivial task, the component serves as a process knowledge storage, containing all

the information about existing internal and reference processes. The architecture of the

resulting auto-suggest component and its interfaces is depicted in Figure 5.

.

4 Adequate in this case always depends on the modeling purpose and the modeling context. Furthermore, a

comprehensive evaluation of the prototype has to be carried out in order to provide a general statement in this
context. Thus, no generally appicable rule can be provided at the current point.

141

Auto suggest-

component

Modeling

environment

Application

data

Application Interface

Knowledge

database

Interface

Exchange

format Auto suggest-

logic

Figure 5: Architecture of the auto-suggest component

The data exchange format between the modeling environment(s) and the auto-suggest

component, should account for three requirements. First, it has to be simple to be

integrated into the interfaces of various modeling environments allowing for a wider

application of the approach. Second, it has to be powerful enough to transfer all the

necessary information. Third, in consideration of the excecution time requirements of

auto-suggested process modeling it has to allow for a short processing time of a

suggestion-request and the respective response from the component. As the de-facto

standard for data exchange on the web fulfilling all of these requirements, the JSON

(JavaScript Object Notation) format is chosen for our prototype [Nu09].

5 Implementation and application

As pointed out in the conceptual design, our auto-suggest component for process

modeling tools prototype is a self-contained, modeling language-independent web

application. It can be viewed as a client-server application, where the auto-suggest

component acts as a server and the associated modeling tools are clients. The application

provides the following functionality:

 Web-interface: To respond to requests from the modeling tools, the application

has a web-interface which provides the suggestions via the JSON-based

exchange format.

 Knowledge database: To store the information about the process elements

which is delivered by the modeling environments, the prototype possesses a

high-performance database. The interface to this database allows for an

efficient processing of the incoming requests, e. g. either storing information or

accessing existing knowledge.

142

 Auto-suggest logic: To assess the quality of the suggestions and provide an

adequate and fitting amount of recommendations, the prototype features the

auto-suggest logic with the characteristics described in the previous section.

Thus, it calculates the score of a certain suggestion based on the formula

, which is dependent on the frequency of

recommendation usage and the date when the recommendation was used for the

last time. To put it simply, the score is halved if a connection has not been used

in the last 365 days. This approach provides only a predefined number of

suggestions to keep the time-saving effect for the modeler as high as possible.

Furthermore, it accounts for sensitive (organizational) information as it allows

the connections to be flagged for usage in a specific modeling environment

only.

To enable the usage of the prototype, modeling environments have to be connected to

the prototype in order to facilitate the learning of the knowledge base and to evaluate the

effect of the auto-suggest functionality on the modeling time. Hence, a web-based

modeling tool should be extended by an interface to communicate with the auto-suggest

component. Likewise, it provides the following functionality:

 Obtain suggestions: For obtaining suggestions, the interface recognizes the

label of the process element and sends a request for suggested elements to be

placed after this element.

 Maintain connections: The interface is able to provide the auto-suggest

component with the data set from the modeling environment to account for an

initial knowledge database setup. Furthermore, it provides the component with

changes in the modeling environment, either by inserting new connections

between process elements or by changing the existing ones.

 Display suggestions: The modeling environment displays the suggestion

provided by the auto-suggest component by outlining them in their potential

position.

 Apply suggestions: The interface of the modeling environment allows for

inserting the suggested element if the user accepts a certain suggestion.

Figure 6 shows the information flows between modeling environment and auto-suggest

component. First, the user selects a process element in the modeling environment (1).

The modeling tool then transfers this information to the web-interface (2) which, in turn,

converts the information to the JSON-based exchange format and sends it to the auto-

suggest component (3). The interface of the component converts the data to the native

format and passes it to the auto-suggest logic (4). A query to the knowledge database is

constructed to find possible successors of the element (5). The database responds with a

set of possible recommendations (6). The auto-suggest logic calculates the scores for

each returned element and passes the results via the web-interface (7) to the web-

interface of the modeling tool (8). The data is converted back to the native format of the

modeling tool and proceeds it to the application (9). The suggestions are then shown to

the user (10). If the user decides to accept a suggestion (11), the further steps are carried

out. As this is optional, i. e. that the user does not have to accept the suggestion, the

further steps are denoted in brackets in the figure. The accepted suggestion is processed

143

by the modeling tool and stored in the process repository (12). The resulting process

model is then shown to the user (13). In parallel, the information that the user has

accepted the suggestion, is passed to the auto-suggest component via the web-interfaces

(14, 15 and 16). The auto-suggest logic then increases the frequency of this particular

connection in the underlying knowledge base (17).

User

Auto-suggest-

component

Modeling

environment

Application

data

Application

(1
3
)

(1
2
)

9

2

8

3

Interface

Knowledge

database

Interface

6 5

7

4

Auto-suggest-

logic

11
0

(1
1
)

(1
4
)

(16) (17)

(1
8
)

(15)

Figure 6: Prototypical information flow of the suggestion process

6 Discussion and further research

In this article, we have proposed an auto-suggest component for process modeling tools.

An introduction of such a component should facilitate process modeling activities by

supporting the user in manual creation of the process models.

We have designed our prototype as a self-contained, modeling language-independent

web application with a rather simple recommendation mechanism to prove its

applicability. We are going to extend and improve the recommendation mechanism after

the evaluation of our solution has finished. The evaluation of the recommendation

mechanism and the overall protoype is taking place at the time of this contribution and

first results will be available in the near future. At the current state we can say that the

protoype successfully demonstrates the concept’s feasibility. As the perceived

usefullness has to be evaluated by users in concrete modeling settings, we cannot yet tell

if the research goal is fully reached. To prove it, we need to access the change in

144

modeling speed, quality and overall usability of the solution. Therefore, we are planning

to conduct a number of experiments to measure time spent with and without the auto-

suggest component. Furthermore, we want to elaborate on possiblities of increasing

comparability of process lables and, therefore, process elements themselves. Possible

approaches to solving this problem can be found in [HKO09, HKL08].

Bibliography

[Ag04] Aguilar-Savén, R. S.: Business process modelling: Review and framework. In

International Journal of Production Economics. 90, 2004; pp. 129–149.

[Be06] Betz, S.; Klink, S.; Koschmider, A.; Oberweis, A.: Automatic user support for business

process modeling. In Proceedings of the Workshop on Semantics for Business Process

Management. 2006; pp. 1–12.

[Be13] Becker, J.; Clever, N.; Holler, J.; Püster, J.; Shitkova, M.: Semantically

Standardized and Transparent Process Model Collections via Process Building Blocks.

In Proceedings of the The Fifth International Conference on Information,

Process, and Knowledge Management - eKNOW 2013. Nice, 2013; pp. 172–

177.

[BKR11] Becker, J.; Kugeler, M.; Rosemann, M.: Process Management: A Guide for the Design

of Business Processes. Springer, Berlin, 2011.

[Di11] Dijkman, R.; Dumas, M.; Van Dongen, B.; Käärik, R.; Mendling, J.: Similarity of

business process models: Metrics and evaluation. In Information Systems. 36, 2011;

pp. 498–516.

[Ga10] Gartner: Magic Quadrant for Business Process Management Suites. 2010.

[HM11] Haldar, R.; Mukhopadhyay, D.: Levenshtein Distance Technique in Dictionary Lookup

Methods: An Improved Approach. In arXiv preprint arXiv:1101.1232. 2011.

[Ho04] Horrocks, I.; Patel-schneider, P. F.; Boley, H.; Tabet, S.; Grosof, B.; Dean, M.: SWRL :

A Semantic Web Rule Language Combining OWL and RuleML. In W3C Member

submission, 21, 2004; 79.

[HKO07]Hornung, T.; Koschmider, A.; Oberweis, A.: Rule-based autocompletion of business

process models. In Proceedings at the 19th Conference on Advanced Information

Systems Engineering (CAiSE). 247, 2007.

[HKO09]Hornung, T.; Koschmider, A.; Oberweis, A.: A recommender system for business

process models. In 17th Annual Workshop on Information Technologies & Systems

(WITS). 2009.

[HKL08] Hornung, T.; Koschmider, A.; Lausen, G.: Recommendation based process modeling

support: Method and user experience. In Conceptual Modeling-ER 2008. 2008; pp. 265–

278.

[In09] Indulska, M.; Green, P.; Recker, J.; Rosemann, M.: Business process modeling:

Perceived benefits. In Conceptual Modeling-ER 2009. 2009; pp. 458–471.

[KO11] Koschmider, A.; Oberweis, A.: Designing Business Process with a Recommendation-

Based Editor. In Data & Knowledge Engineering. 70, 2011; pp. 483–503.

[LR11] La Rosa, M.; Reijers, H.: APROMORE: An advanced process model repository. In

Expert Systems with Applications. 38, 2011; pp. 7029–7040.

[Me08] Mendling, J.; Verbeek, H. M. W.; Van Dongen, B. F.; Van der Aalst, W. M. P.;

Neumann, G.: Detection and prediction of errors in EPCs of the SAP reference model. In

Data & Knowledge Engineering. 64, 2008; pp. 312–329.

[MV04] McGuinness, D. L.; Van Harmelen, F.: OWL web ontology language overview. In W3C

recommendation. 10, 2004; 2004-03.

145

[MP08] Markovic, I.; Pereira, A.: Towards a formal framework for reuse in business process

modeling. In Business Process Management Workshops. 2008; pp. 484–495.

[Nu09] Nurseitov, N.; Paulson, M.; Reynolds, R.; Izurieta, C.: Comparison of JSON and XML

data interchange formats: A case study. In Computer Applications in Industry and

Engineering (CAINE). 2009.

[Pe07] Peffers, K.; Tuunanen, T.; Rothenberger, M. A.; Chatterjee, S.: A Design Science

Research Methodology for Information Systems Research. In Journal of Management

Information Systems. 24, 2007; pp. 45–77.

[Sc00] Scheer, A.-W.: Aris - Business Process Modeling. Springer, Berlin, 2000.

[Vo09] Vom Brocke, J.; Simons, A.; Niehaves, B.; Riemer, K.; Plattfaut, R.; Cleven, A.:

Reconstructing the Giant: On the Importance of Rigour in Documenting the Literature

Search Process. In Proceedings of the ECIS 2009. Verona, 2009; pp. 2206–2217.

[WW02] Webster, J.; Watson, R. T.: Analyzing the Past to Prepare for the Future: Writing a

Literature Review. In MIS Quarterly. 26, 2002; pp. xiii–xxiii.

