(Spacecraft Bus Controller |+ Automotive ECU)
2

=Ultimate Controller

Sergio Montenegro, Frank Dannemann, Lutz Dittrich, Benjamin Vogel
DLR Institute for Space Systems
Dpmt. Central Avionics
Robert-Hooke-Str. 7
D-28359 Bremen
Sergio.Montenegro@DLR.de, Frank.Dannemann@DLR.de, Lutz Dittrich@DLR.de
Benjamin.Vogel@DLR.de

Ulf Noyer, Jan Gacnik, Marco Hannibal, Andreas Richter, Frank Koster
DLR Institute of Transportation Systems
Dpmt. Automotive
Lilienthalplatz 7
D-38108 Braunschweig
Ulf.Noyer@DLR.de, Jan.Gacnik@DLR.de, Marco.Hannibal@DLR.de,
Andreas.Richter@DLR.de, Frank.Koester@DLR.de

Abstract: In many cases, similar challenging problems arise in different domains
and are often solved with an only limited focus. Synergy effects between different
research fields can lead to an enormous technical improvement. This is illustrated
by combining experiences and competencies of the institute of Space Systems and
the institute of Transportation Systems of the German Aerospace Center (DLR).
Their cooperation/collaboration aims at more reliable and highly available
platforms for embedded (software/hardware) systems. Both institutes have
developed software frameworks to be used in embedded systems of their field of
work. In this paper we present an approach of integrating an embedded real time
OS to be used in satellites into the DOMINION implementation-platform, which is
used for the specification of embedded in-vehicle software. Finally a safety critical
application with hard real time requirements will be chosen as a use-case to
demonstrate the combination of aerospace and automotive technologies.

1. Introduction

As pointed out above, similar challenges in the context of embedded systems related
research are currently to be focused in the space as well as in the automotive domain,
e.g. dependability, reliability, availability, and safety of the built systems has to be
improved. The fast growing complexity of the systems leads to the famous "design-gap"
which has to be handled with a more maintainable and structurable design. Re-usability
of requirement analysis, designs, and implementations (e.g. as an intellectual property
(IP) core) lead to faster time to market. If the system can heal itself by being adaptable to
changing circumstances (self-x-properties), it can be used in unknown or at least
unpredictable environments, i.e. the space or a car engine.

103

Besides sharing similar problems, similar trends can be determined. The growing trend
of software driven innovations in the system design emerges as using a large share in the
development costs (up to 70%). While the automotive industry is already fighting the
complexity to be handled and is trying to reduce it, space industry only recently realizes
the growing complexity. With the planned technology transfer, the complexity collapse
could be avoided.

Both above mentioned domains have different approaches and views of common
problems and have reached different maturity in different fields. The following table
shows some of these differences and shows which branch may profit from the
achievements reached by the other one (see the transfer arrow).

Automotive Transfer | Space
Real industrial production Artisan level (hand.-craft): each unit
. — hand made, and unique (thousands

(thousands of units per day) .
of days per unit)

Europe has a leading role — Europe is not in the cutting edge

Good reuse practice — Hardly reuse

Scarcely fault tolerance — Wldely SP read faplt to}erance: No
single point of failure is allowed
All safety/dependability measures

Safety/dependability relies mainly are based on autonomous reactions

on mechanic fall back mechanisms — of the avionics (no

and on the driver mechanic/operator fall back
mechanisms)

Traditionally based on mechanics — Elect.ro'mc and software based from
its origin

One important optimisation factor is . Cost was not important. Now

the cost. changing, but lack of experience.

Power, mass and volume were not . ..

. . Design optimized for lowest

important. Now changing but lack — i

. resources: power, mass, volume

of experience.

Interqperablllty between chfferent No interoperability between

suppliers and between main —

contractor (e.g. AUTOSAR)

104

suppliers.

Complexity management

Active steps to reduce the
complexity (e.g. reduce number of
ECUs: AUTOSAR)

Standardized communication, e.g.
CAN

Complexity is already out of control

Experience on safety critical hard
real-time systems

Experience on handling sensors
failures and errors due to
environment conditions

Transient computation and storage
errors are not a central theme for
fault tolerance

Experience using diversity to avoid
systematic errors (especially for
sensoric)

Large experience on quality
management (but different than
space)

Large experience on system tests
(but different than space)

Complexity Management

No active steps to reduce the
complexity

No global accepted standard. Each
device has its own protocol. Now
one standard is emerging:
SpaceWire, but it is too complex to
be accepted widely.

Complexity is becoming out of
control

Time violations are not considered
to be mission critical

Systematic sensors errors/failures
are not a central theme of fault
tolerance

Experience on handling transient
computations and storage (CPU +
MEMORY) errors, due to radiation
effects.

Diversity is not a central theme for
dependability

Large experience on quality
management (but different than
automotive)

Large experience on system tests
(but different than automotive)

Both domains can learn from each other about quality management, systematic tests and
complexity management because both have totally different solutions for the same kind
of problems. In the other fields one has more experience than the other one, and in one
filed (getting rid of complexity) both are having the same problem. In any case both can

profit from sharing experiences and competencies.

105

2. Partners

2.1 The DLR Institute of Space Technology

The DLR Institute of Space Technology (www.dlIr.de/irs) has the aim to investigate and
evaluate complex astronautic systems in the context of space research given
consideration of technological, economic as well as socio-political and security aspects.
Furthermore, the dynamic team of employees at the institute develops concepts for
innovative space missions on national and international levels. The focal points of the
working groups are: system analysis for space transport systems and space segments,
system technology (rover wheels, satellite data management, and attitude control,
cryogenic rocket propulsion systems) and operation of test and simulation facilities.

The Department Central Avionics develops software and hardware for the core avionics
of a spacecraft (avionics, excluding devices). The central element in our architecture is a
network to interconnect devices, computers, storage units, and radio communication
units. Usually devices are attached directly to the central computer, in our architecture
the computer has only link(s) to the network and all devices are attached to the
spacecraft network (SAN).

2.2 The Institute of Transportation Systems

With basic research activities and numerous projects with industrial as well as scientific
partners the institute of Transportation Systems (www.dlr.de/ts) aims for improving
safety and efficiency of road and rail transportation. Therefore, scientists from different
disciplines like engineering, psychology, and computer sciences strive for innovative
solutions for automotive and railway systems as well as for future traffic management.

Beside activities in the institute’s departments of Railway Systems and of Traffic
Management, the human-centered design of advanced driver assistance and automation
systems is the major topic of the institute’s automotive department. This and other
research activities are supported by elaborated research facilities: With the DLR
ViewCar® driving in real traffic is observed with regard to understand driver behavior
and the dynamics of surrounding traffic. Based on such results assistance and automation
systems are developed to support the driver in an adequate manner and to prevent errors
as well as accidents. First prototypes are usually implemented in a virtual reality
laboratory and other simulation facilities for fast and efficient testing and evaluation. If
necessary, a special dynamic driving simulator can be used for further evaluation steps.
Experimental vehicles (FASCar-1/II) are available to demonstrate proposed concepts of
assistance and automation in reality.

For different purposes technologies from the aerospace sector are adapted. That includes
e.g. image processing, location services, and control- as well as planning algorithms. For
an effective integration of functions flexible and modular system architectures are being
developed.

106

3 RODOS - Building Blocks Execution Framework

In the first step, the Real Time Onboard Dependable Operating System (RODOS) [3] is
provided by the DLR Institute of Space Technology to the joint venture between the
space and automotive industry. In the near future, network technologies, and hardware
implementations of middleware’s may be included to the joint venture.

Figure 1: The RODOS Environment executes S/W building blocks.

RODOS is a building block execution platform (see figure 1) designed for space
applications and for applications demanding high dependability. Simplicity is our main
strategy for achieving dependability, as complexity is the cause of most development
faults. The system was developed in C++, using an object-oriented framework simple
enough to be understood and applied in several application domains. Although targeting
minimal complexity, no fundamental functionality is missing, as its microkernel
provides support for resource management, thread synchronization and communication,
input/output, and interrupts management. The system is fully preemptive and uses
priority-based scheduling and round robin for threads sharing the same priority level.

The execution platform provides a (software) interconnection network between
applications / building blocks. A building block requires some services (incoming
messages) in order to be able to provide other services (outgoing messages). The
execution platform RODOS distributes such services (messages) from producer to
consumers.

107

RODOS may be executed on top of other operating systems or TSP (Time Space
Partitioning) systems, or directly on the hardware in case no other operating system is
running on the target hardware. In all cases, the interfaces to the building blocks (or
applications) remain the same, and a network of applications may be executed on
different platforms and operating systems without modifications.

Figure 2: Example of the network centric network

RODOS provides a middleware which carries out transparent communications between
applications and computing nodes. The messages exchange is asynchronous, using the
publisher-subscriber protocol. Using this approach, no fixed communication paths are
established and the system can be reconfigured easily at run-time. For instance, several
replicas of the same software can run in different nodes and publish the result using the
same topic, without having to know each other. A voter may subscribe to that topic and
vote on the correct result. The middleware core distributes messages only locally, but
using the integrated gateways to the “NetworkCentric” network [2] [3], messages can
reach any node and application in the network (see figure 2). The communication in the
whole system includes software applications, computing nodes and 10 devices.

108

Our interconnection links in the network define a very simple message distribution
protocol. Each message in the network receives a topic tag which identifies its content
and purpose. Examples of topics could be: position, temperature, and attitude. Services
will be published as topics regardless of whether they are produced by software tasks or
by hardware devices. Any application or device may subscribe to the topics which it
needs to help to produce its services.

This method is used to interconnect service providers and consumers including hardware
and software. All our devices and software components provide this interface. In order to
be able to attach COTS (Commercial Off The Shelf) devices (with their own protocols)
to the network, the network provides the required interfaces and protocol converters. The
COTS devices receive and send their own messages, and then the protocol converters
translate them into our internal “universal language”. The network will perform all
required transformations in order to make the message transport transparent.

4. Implementation-Platform DOMINION

DLR Institute of Transportation Systems has defined an architecture for development of
in-vehicle services called DOMINION [1]. The step especially seems reasonable with
the current standardization of Intelligent Transport Systems (ITS) technologies,
including wireless communications (C2X — car to car, and car to infrastructure
communication) and related services (e.g. Internet enhanced navigation, hazard warnings
etc.).

Part of DOMINION uses modified versions of business standards, like VSDL (in-
Vehicle Service Description Language) and VPEL (in-Vehicle Process Execution
Language) . This concept integrates model-driven aspects like code-generation for real-
time targets as well as the deployment of very flexible SOA services. The focus of the
development of in-vehicle services is in the context of assistance and automation
systems. A lightweight, platform independent (currently Windows, Mac OS X, iPhone
0OS, and RT-patched Linux are supported) DOMINION runtime environment has been
developed, providing a flexible test environment of time-critical services. By using
service descriptions, the description of communication and data structures etc. are
independent of the programming language. A built-in code generator generates source
code for heterogeneous platforms and programming languages. This allows deploying
DOMINION based software on various environments and makes DOMINION a
valuable approach for testing in different research facilities like simulators or even entire
vehicles. Furthermore, to integrate the DOMINION runtime environment and SOA
technology, DOMINION services might be deployed into both worlds by configuring the
bindings of ports and operations of a service. Moreover, DOMINION offers general
development services, especially when dealing with recording and storing data from
testing assistance and automation systems.

109

5. Merging Automotive and Space Technology

The first step in our joint efforts is a software rendezvous: Generating RODOS
applications out of DOMINION's semi-formal service descriptions.

Model driven development including high-level formal specification of services is more
and more used within the automotive domain, which abstracts from low-level target
implementations. Using DOMINION, services are specified in a simple, reproducible
way, independent from implementation details.

In the aerospace domain, the complementary part to this approach is located. RODOS is
an execution platform which handles real hardware of embedded systems taking into
account all possible limitations and restrictions of real resources like memory, CPU
performance, power consumption etc. RODOS targets dependability even if running on
non-dependable components, while the fault tolerance mechanisms are transparent to the
applications. These fault tolerance mechanisms can be added to the DOMINION
applications without having to modify them. The available redundant hardware resources
will be managed by RODOS to obtain the maximum of possible redundancy at any
moment without intervention of the DOMINION applications.

A demonstrator which will be controlled by the RODOS-DOMINION pair is developed
by the two DLR institutes (see Chapter 5.1 for details). During the development of the
demonstrator, the shared problems can be handled by the know-how of both institutes. In
the joint-venture, a fault tolerant embedded computer running RODOS is combined with
the automotive applications specified in DOMINION. The code generator of
DOMINION will be adapted to generate C++ code for RODOS. The DOMINION
specification only contains a complete description of the service interface and its timing
aspects, whether functional aspects nor low-level dependencies and restrictions are
included. Fault tolerance aspects will be added by RODOS in a transparent way. This
allows the application programmer to concentrate all his efforts on functional
development. Both systems, RODOS and DOMINION, support the distribution of
services, but in a different way. RODOS uses a publishers/subscriber message passing
system while DOMINION uses a shared memory paradigm. As the distribution
mechanism is transparent to the applications, i.e. an application doesn't need to know
how data is transported, the DOMINION-RODOS system is easily ported to the message
passing system.

5.1. Demonstrator (Car Case Study)

A safety critical application with hard real time requirements, which is a standard
practice in automotive engineering, should be chosen to demonstrate the combination of
aerospace and automotive technologies as described in the previous chapters. An
emergency brake assistance system represents a suitable application. Such an assistance
system is proposed to avoid rear-end collisions in case of critical situations, or at least
attenuate possible impacts.

110

Reliability of hard- and software components as well as plausibility of sensor
information illustrate typical problems with such an assistance system. To deal with that
problem the system is equipped with two independent front radar sensors that are
connected to a set of three redundant Electronic Control Units (ECUs).

Handling transient computations and storage errors is one of the main problems in
aerospace and is mainly caused by cosmic radiation. A possible way of dealing with this
problem is the usage of triple modular redundancy (TMR). In a TMR-based system,
three ECUs perform a calculation, while the result is checked by a voting instance. Only
if two of the three ECUs deliver the same result, the result is treated as correct. In
automotive engineering, different problems arise in the reliabilty of sensor information
and defective hardware components such as ECUs. As an example, different ECUs
process sensor inputs with different algorithms providing a wide variety of different
sensor information combined with different processing algorithms.

DOMINION’s automatic code-generation for both DOMINION and RODOS run-time
environments allows parallel development and testing of the assistance system in DLR’s
driving simulators using the DOMINION run-time environment as well as in test
vehicles using the RODOS run-time environment.

On the one hand, this allows an economic and fast functional processing already in very
early stages of development (software-in-the-loop implementation and evaluation). On
the other hand, hardware components can also be tested early and without the need of
expensive integration into test vehicles. In addition, it is possible to test functionalities or
system failures, especially in simulated critical situations without any “real-life” risks
and with the benefit of exact reproducibility of the simulated situations.

Since DOMINION provides a run-time environment supporting all research facilities in
the transportation system branch, it is easy to migrate from one facility to another during
different development steps or changing requirements. Necessary steps for migration are
supported by DOMINION. During the development process of advanced driver
assistance systems, the actual site of operation is completely transparent from the
developers or users point of view. For this reason, it is not necessary to gain expert
knowledge regarding the different research facilities such as driving simulators or test
vehicles. Thereby, the developer can completely concentrate on the implementation of
their functions.

The components of the emergency brake assistance system that will be developed in this
car case study, shall be, as shown, developed, parametrized, and evaluated in the
simulators to be finally tested under real-life conditions in the test vehicle.

Detailed Description

The figure 3 shows the usage of the combined DOMINION and RODOS environment in
practical usage. Inputs for the DOMINION-code-generation are the architecture
definition as well as the behavior description.

111

Brake Actuator Wehicle
Brake Actuator (simulated) Hardware Level
Computing
Hardware Level
ECU1 ECU2 ECU3 PC Hardwara
. - . Generic System
Rodos Middleware Dominion Middleware Saftware Level
Brake Assistant (1) Brake Assistant (2) 5 Arpp"f::'_';’; o
A 'Y
_ . Deployment
DaominionBuilder {Code Generation) Engineering Level
[} A
Architecture Definition Behaviour Definition
Development
3 4 1 1 Engineering Level
WSDL
VED CiC++ VPEL SCADE

Figure 3: Combination of RODOS and DOMINION

The architecture definition describes modules and their input and output parameters,
specified in VSDL. The code-generation can be switched to produce code for different
target platforms. The application logic itself can then be described in programming
languages like C/C++, VPEL, or SCADE. In case of critical functional development
model-driven tools like SCADE support the development process by the application of
certified code generators [1].

In the shown case, RODOS and DOMINION are based on C/C++, so code generation
transforms all input specifications into valid C/C++ code. Practically, for the conversion
of the code to another target platform only the specially generated base classes have to
be exchanged.

The right part of the figure shows the classic DOMINION work-flow. The application is
based on the DOMINION foundations and is deployed on a standard PC. To test the
application, a simulation environment providing vehicle dynamics, street traffic, and a
visualization is used. In this simulation environment, an easy and comparatively cheap
evaluation of the newly added functions is possibly.

112

After successful testing, the same application is generated for the RODOS platform (see
left part of the figure). Code generation provides the necessary base integration classes,
whereby the behavior description (i.e. the actual logic) of the considered application
itself remains unchanged. No manual programming is necessary to adapt the application
for the RODOS platform. To control the brake, three completely separated instances of
the application are built to be run on three EDUs. The redundant setup then controls the
brake. To minimize the influence of erroneous sensor signals, every application
compares sensor inputs itself and performs plausibility checks. With that scenario, the
most likely state of the environment is considered (sensor fusion). As pointed out, triple
modular redundancy is used before the hardware brake is triggered. In this way the
application can be tested in the FASCar-I as a real testing vehicle. The FASCar-I is
equipped with several diferent sensors (e.g.. radar, laser scanner, (D)GPS). Furthermore,
steering and acceleration can be completely controlled by application logic on the on-
board computers [2].

Because of the previous testing in the simulator the function is already in a mature stage
and should be even work in critical situations as designed. However, since reality is
more complex than any simulation, still further more testing and development is always
necessary. Furthermore, development cycles can be performed, in which new advances
are tested in the simulator again, before deploying them in the testing vehicle.

For the presented scenario the application logic for the brake controller application is
diverse implemented three times by different developers. It is important to mention that
only the application logic is implemented three times. As the application logic is only
concerned with basic physical formulas for the braking conditions, it is short and
reasonably well to understand. Therefore, errors in the application logic should be
detectable by code reviews or similar precautions. Furthermore, the application logic is
also checked with static software analysis for error recognition, which is the standard
procedure for software in the space industry.

6. Summary

In this paper the merging of two software frameworks with a different background is
discussed. The one is named RODOS and is mainly concerned with safety issues like
redundancy and real-time communication with space industry background. The other
platform, DOMINION, is developed within the context of automotive systems and
allows to formally specifying services for later code generation and deployment on
different target platforms. With that approach, we are basically able to combine the
strength of both products. That allows us to use service descriptions and code generation
for safety critical applications, dramatically accelerating software development in such
scenarios. Until now, basic functionalities of RODOS and DOMINION have been
successfully combined to show the potential of this approach. For further development, a
complex scenario for a redundant, safety critical brake is planned, which proofs the
value of the approach under realistic conditions.

113

Space sector and automotive employees have recognized that they can learn many things
from each other and can even combine their work to reach more than just adding two
parts. Based on the results of the planned scenario, further developments would be easily
possible, i.e. a redundant steer-by-wire wheel controller. The authors believe that the
described combination of the products offers great chances for future software
development activities in the space and automotive sector.

References

[1] Schroder, Mark und Hannibal, Marco und Gacnik, Jan und Kdster, Frank und Harms,
Christian und Knostmann, Tobias (2010) Ein Labor zur modellbasierten Gestaltung
interaktiver Assistenz und Automation im Automotive-Umfeld. AAET 2010 , 10.-11.
Feb. 2010, Braunschweig

[2] Noyer, Ulf und Schomerus, Jan und Mosebach, Henning und Gacnik, Jan und Léper,
Christian und Lemmer, Karsten (2008) Generating High Precision Maps for Advanced
Guidance Support. In: IEEE Intelligent Vehicles Symposium 2008 , Seite 67. IEEE
Intelligent Vehicles Symposium 2008 , 2008-06-04 - 2008-06-06 , Eindhoven
(Niederlande).

[3] Dr. Sergio Montenegro, Frank Dannemann RODOS: Real Time Kernel Design for
Dependability , In: DAta Systems In Aerospace (DASIA) May 26 - 29, 2009, Istanbul,
Turkey

[4] Dr. Sergio Montenegro, John Richardson: RODOS for Network Centric Core
Avionics In: Conference on Advances in Satellite and Space Communications July 20-
25, 2009 - Colmar, France

[5] Dr. Sergio Montenegro, Gunter Schoof, Ebrahim Haririan, In: Network Centric Core
Avionics, DASIA 2009 DAta Systems In Aerospace, 26 to 29 May 2009, Istanbul

114

