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Abstract:

The creation of product line architectures is a difficult and complex task. The resulting architectures
must support the required system variabilities as well as further quality attributes. In the automotive
domain, product lines of software-intensive system models have a great diversity of products, which
leads to vast design spaces. Finding optimal product line architectures as part of the system design
process requires the consideration of a variety of trade-offs. In practice, this challenge cannot be solved
manually for all but the smallest problems, therefore an automated solution is required. Our contribution
is the generation of a sound mathematical formalization of the problem. This formalization makes
the product line optimization problem accessible to various established multi-objective optimization
techniques. The applicability of the chosen approach is shown by means of applying a commercial
tool for multi-criteria decision making.
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1 Introduction

An important activity in product line engineering is the development of an adequate product
line architecture [CN01, Sc03, Ti12]. Due to the great diversity of products that must be
taken into account in this process, Ąnding an optimal product line architecture is a complex
and error-prone task. This is particularly the case when performing optimization of product
line architectures of software-intensive systems (as opposed to product line architectures of
software systems) as this must also account for objectives like weight or production cost.
Creating automated support for architecture optimization in such a context can be extremely
helpful, as it supports architects in navigating the complex and vast design space which
constitutes the basis for a multi-objective decision making problem.

In this paper, we present an approach for product line architecture optimization of software-
intensive systems based on EAST-ADL [Bl13], a domain-speciĄc architecture description
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language for the automotive industry. As opposed to other work in this area [RRV16],
we provide a full mathematical formalization of the optimization problem. In a previous
publication we presented a concept for formalizing product line variability [WW15] as a
basis for exploring the design space. Here, we extend our previous work by including design
goals and variable realization elements (system components) in the formalization. We also
created a prototypical implementation of our approach that uses an off-the-shelf optimization
tool for solving the formalized problems. Since our approach builds on EAST-ADL system
models as the basis for optimization, we must also note that creating such a model in the
Ąrst place (including the aggregation of all relevant data) is a signiĄcant challenge in itself.
However, the language and respective system models are already in industrial use and there
are concerted efforts to further promote the industrial application of EAST-ADL by the
automotive industry.

While the ideas behind our approach are in principle generic and can be transferred to
other layered approaches for representing product line architectures, our implementation
focuses on the use of models deĄned in EAST-ADL. The EAST-ADL language was not
developed for (product line) architecture optimization in particular, but provides modeling
techniques for automotive systems, including techniques for variation modeling. As a
consequence, it contains constructs for variability representation, but not for describing an
optimization space. We therefore have to explicitly differentiate between actual product line

variability and the architectural degrees of freedom (i.e., the design space of the product line
architecture, cf. Section 3.3). Since both are represented using the same language constructs
in EAST-ADL, we introduce a method to differentiate between the two kinds of variation.

The paper is structured as follows: Section 2 gives an overview of the related work and
shows the differences between our approach and existing work. Section 3 describes the
domain-speciĄc architecture description language (EAST-ADL) used in our work. Section 4
discusses the encoding of the architecture optimization problem as a search problem. The
method used for deriving solutions is described in Section 5. Section 6 illustrates our
approach by means of a small case study. Finally, Section 7 concludes the paper and
describes our plans and ideas for future work.

2 RELATED WORK

There is a range of other work being conducted on the multi-objective optimization of
product line system architectures and search-based system design in general. In regard to
optimization approaches based on the EAST-ADL language speciĄcally, to our knowledge
only one other approach has been realized and published. Walker et al. [Wa13] present an
optimization approach based on multi-objective genetic algorithms which considers system
dependability, timing concerns and a simple cost metric. The approach uses HiP-HOPS4 for
fault tree analysis and MAST5 for response time computation and is tightly coupled to these

4 http://hip-hops.eu
5 http://mast.unican.es

120 Tobias Wägemann, Ramin Tavakoli Kolagari, Klaus Schmid



external solutions for the evaluation of objectives. A similar optimization approach for cost
and dependability is presented by Mian et al. [Mi15] for the AADL6 language, also using
HiP-HOPS for fault tree analysis.

Thüm et al. [Th12] present a classiĄcation framework for product line analysis strategies
to provide systematic access and guidance to the research in this particular Ąeld. They
divide the analysis strategies into four different categories: product-based, family-based
and feature-based analysis, as well as techniques that use combinations of these three. Our
approach operates solely on domain artifacts of the product line and can be classiĄed as a
family-based analysis strategy in regard to the classiĄcations introduced by this work.

Colanzi et al. present a number of publications in the Ąeld of search-based product line design
by means of multi-objective evolutionary algorithms. Their work includes an exploratory
study of applying search-based design methods to the SPL-context [CV12], the introduction
of a novel search-based approach for PLA-design based on PLA-speciĄc metrics by the name
of MOA4PLA [Co14], as well as the introduction of a feature-driven crossover operator for
PLA optimization using genetic algorithms [CV16].

Aleti et al. [Al13] give a broad overview of common architecture optimization methods used
in published work and present a taxonomy for the classiĄcation of existing research, based
on the three categories Problem, Solution, and Validation. Lopez-Herrejon et al. [LHLE15]
present a systematic mapping study on research regarding the application of search-based
software engineering methods to the realm of software product lines. The study focuses on the
type of employed SBSE techniques, the stage of the affected SPL life-cycle, commonly used
validation methods and the speciĄc forums for publication. Ramírez et al. [RRV16] present
a comparative study of multi-objective evolutionary algorithms for software architecture
optimization. This publication therefore centers on the internals of evolutionary architecture
optimization, including an empirical exploration of the behavior of a set of selected multi-
and many-objective algorithms in regard to predeĄned optimization problems with up to
nine objectives.

Our approach integrates aspects from three different research Ąelds: software product lines,
system architecture modeling and mathematical optimization. In light of related research in
this area, our approach is distinct by a combination of the following characteristics: (a) The
result of our optimization is not an optimal product but a product line architecture with optimal
architectural decisions. (b) The use of multi-objective integer linear programming (MOILP)
as a rigorous mathematical formulation of the optimization problem. (c) Adaptability
towards tools for optimization and multi-criteria decision making (MCDM) (cf. Section 5).

6 http://www.aadl.info
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3 ARCHITECTURE MODELING APPROACH

EAST-ADL is a domain-speciĄc architecture description language with a focus on capturing
all relevant information to represent variant-rich software-intensive systems in a standardized
way. The language was developed in a series of European research projects with strong
participation of the automotive industry7 and applied/enhanced by a number of national
and international research projects8. Today the EAST-ADL is managed by the EAST-ADL
association9. The language has been tailored towards compatibility with the well-established
AUTOSAR standard10, which in turn serves as an integral part of the EAST-ADL language
by realizing one of its abstraction layers.

This section gives an overview of the EAST-ADL; details about the language can be found in
the EAST-ADL white paper [Bl13] and in the language speciĄcation11. Section 3.1 provides
an overview of EAST-ADL language; Section 3.2 examines the EAST-ADL variability
modeling approach, and Section 3.3 explains the distinction between product line variability
and architectural degrees of freedom.

3.1 EAST-ADL—an Architecture Description Language

EAST-ADL deĄnes a language for modeling automotive systems; the implementation of
these systems is then managed by AUTOSAR in the aforementioned tight coupling with
EAST-ADL. A major advantage of the EAST-ADL language is the organization of the
system model along predeĄned abstraction levels (cf. Figure 1): Abstraction is not only
supported in principleŮas is often the case for ADLsŮbut is enforced by the system
model with deĄned semantics for each level of abstraction. As a consequence, engineering
information is structured in accordance to a reference methodology based on the V-Model
that is widely used in the automotive domain. On each level of abstraction the system is
complete from a given perspective: from a very abstract representation at higher levels to
increasingly detailed representations at lower levels.

The system model is complemented by several extension packages that allow for modeling
requirements, variability, timing, and dependability (cf. Figure 1). Most of the extensions
are applicable on all levels of abstraction and are adapted to speciĄc modeling needs of the
automotive domain in general and EAST-ADL in particular; while the extensions heavily
rely on the ŞcoreŤ system model, the system model itself is independent of the extensions,

7 ITEA EAST-EEA (http://www.itea3.org/project/east-eea.html), ATESST, ATESST2 (http://www.atesst.org),
MAENAD (http://www.maenad.eu)

8 Artemis CESAR (http://www.cesarproject.eu), ITEA2 SAFE (http://www.safe-project.eu), Artemis MBAT
(http://www.mbat-artemis.eu), to name a few

9 http://www.east-adl.info
10 http://www.autosar.org
11 The EAST-ADL meta-model is published by the EAST-ADL Association: http://east-

adl.info/SpeciĄcation/V2.1.12/html/
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Fig. 1: EAST-ADL System Model [Bl13, p. 4]

such that extension modeling may be plugged in and out as required. Traceability with full
support of SysML semantics is supported for all modeling entities, i.e., between different
levels of abstraction as well as within a given abstraction level and to the extensions.

3.2 Variability Modeling Concepts in EAST-ADL

Managing variability is at the core of software product line engineering, it occurs because
some aspect of a system may change from one variant of a system to another. EAST-ADL,
as a decidedly automotive-speciĄc language, takes these challenges into account and offers
variability modeling techniques applicable for the car manufacturer and for the supplier.
Its variability management starts on Vehicle Level (cf. Figure 1), where the external (i.e.,
user-centric/abstract) variability, as well as the product-line-strategy variability is described
by cardinality-based feature models [CHE05]. The impact of the described variability is then
deĄned on the Analysis and Design Levels, respectively. Traceability links the abstract/root
view on Vehicle Level to the variability impact on lower levels of abstraction, i.e., the
artifact levels. While the details of how variability is actually realized in the system are
largely suppressed on the Vehicle Level, they are the focus of attention when managing
variability on the artifact levels. The artifact levels are Analysis Level, Design Level and
the extensions, where variability may occur as well. For example, one may think about the
different requirements for a rain sensor with and without a rain light sensor. Variability is
described in two ways on the artifact levels:

Feature models used on Analysis and Design Level get a much more concrete meaning
as compared to the feature model on Vehicle Level in order to reĆect detailed internal
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variability as concrete implementation of the variability on the Vehicle Level. ConĄguration
decisions [RTW09] link feature models to one another with the purpose of deĄning conĄg-
uration, both within one abstraction level and across abstraction levels. As a consequence of
linking artifact level variation to Vehicle Level feature models by means of conĄguration
decisions, all major variability conĄguration is essentially controlled by the Vehicle Level.

Explicit variation is used to denote that modeling entities may be optional, i.e., be deleted
from the system model. Dependencies among variable entities are captured in terms
of variation groups. This integrated way of modeling variability can also be linked to
conĄguration decisions such that the (partial) conĄguration of this variability is guided by
feature models on a hierarchy level one step higher and ultimately by the feature models on
Vehicle Level.

3.3 Product Line Variability versus Architectural Degrees of Freedom

For the purpose of this paper it is essential to understand the distinction between two
kinds of (architectural) variabilities: 1. Product line variability [MP07, CN01] describes
the variations regarding components (or modules) of proper products that are well-formed
with respect to the product line design space. 2. Architectural degrees of freedom refer to
potential alternatives for designing the product (line) architecture. In other words, the result
of conĄguring all architectural degrees of freedom would be a product line architecture
(PLA), whereas the result of conĄguring all product line variability would be a product. The
architectural degrees of freedom are the basis for our optimization process, which intends
to produce an optimal product line architecture with respect to (multiple) criteria chosen by
an architect. Therefore, at the end of our optimization process, no architectural degrees of
freedom remain in the system model and the remaining architectural variability is governed
only by the product line design space.

Although product line variability and architectural degrees of freedom indeed both describe
variability, their purpose and their role, e.g., in an architecture optimization process, differ
considerably. It would therefore be useful for an architecture description language to manage
these variablities differently. As the EAST-ADL does not support this distinction (similar
to all other established modeling languages we are familiar with), we use the variability
modeling concepts of EAST-ADL for both and differentiate them as follows: we deĄne all
artifact variability that can be traced up to the Vehicle Level by means of conĄguration
decisions as product line variability (i.e., all variability that is rooted on Vehicle Level
is product line variability). Artifact variability without traceability to the Vehicle Level
(i.e., variability that is introduced only at artifact levels) stands for architectural degrees of
freedom; such variability is not conĄgured as part of a product line conĄguration, but is
instead decided at the time of system design. Identifying optimal design decisions for the
architectural degrees of freedom is the primary objective of our optimization approach.
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The chosen approach of distinguishing between product line variability and architectural
degrees of freedom is advantageous in that it can be applied to any (variability) modeling
approach that supports abstraction, which is indeed common. In the context of the EAST-
ADL the chosen approach is especially elegant because of the predeĄned root abstraction
level, i.e., the Vehicle Level.

4 TRANSLATION INTO AN OPTIMIZATION PROBLEM

A general deĄnition of an optimization problem is the problem of Ąnding the best solution
in regard to speciĄc criteria from all feasible solutions. Mapped to our problem domain, this
deĄnition translates to Ąnding the best product line architectures within the optimization
space deĄned by the architectural degrees of freedom as described by the EAST-ADL system
models. The use of EAST-ADL models for architecture optimization requires to formalize
all optimization-relevant system information in a way that is sufficient for optimization
purposes.

In this section we present our formalization approach for variant-rich EAST-ADL sys-
tem models, which involves (a) the identiĄcation of all model elements relevant for the
optimization process, (b) an evaluation of the characteristics of these elements in regard
to the intended optimization goals and (c) a generation of a mathematical formulation,
which constitutes the basis of our optimization process. We also describe how we handle
optimization problems with multiple objectives as part of our approach. It is not the goal of
our approach to fully automate architecture deĄnition.

4.1 Multiple Design Objectives

When considering multiple design objectives in a non-trivial optimization process, there is
usually no solution that is truly optimal for each of the objectives simultaneously. This is
caused by conĆicts among the objectives, e.g., making the system more lightweight will
likely increase costs, etc. There are two different ways of handling this issue, resulting in
two different approaches to multi-objective optimization.

One possibility is to turn the initial multi-objective problem into a pseudo-single-objective
problem, by aggregating all considered objectives into a single weighted objective function.
The resulting single solution of this approach is optimal in regard to the predeĄned weights
used for the design objective aggregate, which have to be determined before the optimization.
This kind of approach is called scalarization or weighted normalization [GR06].

The other possibility, and the one we use in our approach, is to consider all design objectives
simultaneously in a specialized optimization process called Pareto optimization. The result
of a Pareto optimization is not a single solution, but a set of Pareto-optimal solutions, called
the Pareto front. Pareto optimality is based on the concept of dominance; a solution is called
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non-dominatedŮand is thus part of the Pareto frontŮif there are no other solutions that are
better in at least one objective without degrading one or more of the other objectives [BK05,
p. 414ff].

All solutions that are part of the Pareto front, i.e., all dominant solutions, are in principle
equally optimal. Selecting the most suitable solution from the Pareto set is therefore subject
to a trade-off analysis. This step is dependent on the expertise and the end goals of the
user, typically an architect intending to Ąnd the architecture that best suits a speciĄc set
of requirements. From the perspective of an architect, our approach is therefore a means
to efficiently explore the design space of system models, which guarantees that a chosen
architecture is Pareto-optimal in regard to the considered design objectives.

4.2 Formalization Approach

In order to establish a sound basis for the exploration of an architecture optimization
space, all optimization-relevant information of a given variant-rich system model must
be formalized into a rigorous mathematical form. Our optimization problems have binary
decision variables and multiple design objectives. Therefore, our problem domain is that of
multi-objective integer linear programming (MOILP) with all variables ∈ {0, 1}. In order to
translate our optimization problems into MOILP form, we Ąrst assign all relevant variable
elements to numbered decision variables x1...xn. We can then formulate the program as
follows:

Minimize Cx

subject to Ax ≥ a0

x ∈ {0, 1}n
(1)

where C is a (m, n)-Matrix of design objective values, A and a0 are a (p, n)-matrix and a
p-vector representing a set of constraints which maps the optimization space and x is an
n-vector of binary decisions variables; with m being the number of design objectives, n

being the number of decision variables and p being the number of program constraints. The
matrix Cx translates to a set of linear objective functions F(x) = ( f1(x), f2(x), ..., fm(x))

T ,
which represent the pursued design objectives.

First of all, a formalization approach must be able to distinguish between product line
variability and the systemŠs architectural degrees of freedom (cf. Section 3.3). The intended
output of our optimization approach is a product line with Pareto-optimal architectural
decisions, not a Pareto-optimal conĄguration of the product line, i.e., not a product.
Therefore, it must be possible to omit all product-line-related variability from the constraint
formalization, so that it doesnŠt get resolved as part of the optimization process. Our approach
accomplishes this distinction between product line variability and architectural degrees of
freedom by an evaluation of the language traceability across the abstraction levels of the
EAST-ADL model. If a variation point is part of the systemŠs product line variability, it must
be possible to trace its origin up to the modelŠs Vehicle Level, where the product line design
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space is deĄned by means of feature models. If however the trace ends below the Vehicle
Level, the variation point must necessarily be part of the architectural degrees of freedom
instead. Using this distinction, we assign decision variables to the variable elements of the
architectural degrees of freedom.

In order to generate the objective functions from our variant-rich EAST-ADL models, we
parse a type of native EAST-ADL language annotations called GenericConstraints. Using
predeĄned GenericConstraintKinds like weight or piece cost, GenericConstraints can be
used to annotate quantiĄable quality attribute information to elementsŮincluding variable
elementsŮof the model. The set of possible objectives is therefore deĄned by the available
GenericConstraintKinds in the EAST-ADL language speciĄcation. To generate the objective
functions for these annotations, we allocate the numeric values of the GenericConstraints
(of one speciĄc GenericConstraintKind) to the previously introduced decision variables.
In doing so, we produce linear objective functions in the form of f (x) = cT x, where cT

is the transposed vector of the numeric values of the GenericConstraints for the variable
elements associated with the decision variables x. Performing this step for all pursued
design objectives produces a set of linear objective functions.

Next, we formalize the variability information into program constraints. Having established
a way of Ąltering out the (for the formalization process) unwanted product line variability, the
formalization of desired variability (i.e., architectural degrees of freedom) into constraints
for our MOILP is done by applying a set of transformation rules based on an intermediate
conversion into propositional logic. These transformation rules were presented in detail in
one of our former publications [WW15], which was focused solely on a method for generating
propositional constraints from variability descriptions. In this paper we incorporate this
method into a fully-Ćedged multi-objective optimization approach. Table 1 gives a summary
of the rules and Section 6.2 demonstrates their application by means of a case study. With the
formalization of (a) quality attributes into design objectives and (b) variability information
into program constraints in place, we can now assemble full MOILP representations of
optimization problems for variant-rich EAST-ADL models. Our implementation generates
these MOILPs in the standard formats of OPL12 and AMPL13.

5 SOLVING OUR OPTIMIZATION PROBLEM

We use our formalization of the optimization problem as input for third-party optimization
tooling. Our tool of choice is the commercial optimization software FINNOPT14, which
provides a human decision maker with an interactive process for Ąnding the most preferred
compromise among all Pareto-optimal solutions of a multi-objective optimization problem.
The FINNOPT approach is inherently iterative and allows the user to guide the process
towards preferred solutions as part of a trade-off analysis. FINNOPT is based on the

12 https://www-01.ibm.com/software/commerce/optimization/modeling
13 http://ampl.com
14 http://www.Ąnnopt.com
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Variability Propositional Logic Program Constraints
F
ea

tu
re

T
re

e

Feature has
parent

f → fparent fparent − f ≥ 0

Feature is
excluded

!f (1 − f ) = 1

Feature
Group

for all m:
fparent → Mm(f1, .., fn)

for all m:
Mm(f1, .., fn) − fparent ≥ 0

F
ea

tu
re

L
in

k needs fstart → fend fend − fstart ≥ 0

optional
alternative

!(fstart ∧ fend) fend + fstart ≤ 1

mandatory
alternative

fstart ⊕ fend fstart + fend = 1

V
ar

ia
ti
on

G
ro

up needs f1 → (f2 ∧ f3 ∧ . . . ∧ fn)
∧n

k=2
(fk − f1 ≥ 0)

optional
alternative

for all m:
Mm(f1, .., fn)

f1 + f2 + . . . + fn ≤ 1

mandatory
alternative

f1 ⊕ f2 ⊕ . . . ⊕ fn f1 + f2 + . . . + fn = 1

ConĄguration
Decisions

criterion → effect effect − criterion ≥ 0

Tab. 1: Overview of our transformation rules for EAST-ADL system variability [WW15].

IND-NIMBUS [Mi06] software that was developed by the Industrial Optimization Group
of the University of Jyväskylä, Finland15. The tool integrates an external ILP-solver and
utilizes it as part of its process. For this purpose we use the commercial solver CPLEX that
is part of the IBM ILOG CPLEX Optimization Studio16 for mathematical optimization.

FINNOPT is well-suited to the task of identifying solutions that are both Pareto-optimal
in regard to a preferred emphasis on speciĄc design objectives and useful for a system
architect. The software is able to handle large and complex optimization problems and has a
user interface that is well suited to analyzing trade-offs for system architectures. However,
since we generate our problem formalization in standardized formats (OPL, AMPL), the
FINNOPT-based tool setup can in principle quite easily be exchanged with alternative
optimization tools for multi-criteria optimization and decision making.

15 http://www.mit.jyu.Ą/optgroup
16 http://www.ibm.com/software/products/en/ibmilogcpleoptistud
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Fig. 2: The wiper control system demonstration model.

6 CASE EXAMPLE

We demonstrate the application of our architecture optimization approach by means of
an example. The demonstration model is an extended version of an existing EAST-ADL
example, which was previously used for showcasing the variability language concepts of
the language in the MAENAD project17. While the demonstration model is smaller than
real-world system models, it adequately serves the purpose of demonstrating our approach
in the context of this paper. We will Ąrst give an overview of the modelŠs structure and its
contained variabilities. We then demonstrate our MOILP-based formalization approach,
before the formalized program is used to explore the optimization space. The resulting
Pareto-optimal product line architectures are used for a discussion of the correctness and
consistency of the solutions and the adequacy of our optimization approach in general.

6.1 The Demonstration Model

The model used for this demonstration is illustrated in Figure 2. The system shows a product
line architecture for the control electronics of a windscreen wiper. To keep the example
concise, the demonstration model does not show the full EAST-ADL realization, but gives
an overview of all elements that are relevant to the optimization process and makes a clear
distinction between elements on the Vehicle Level and those on the artifact levels of the
model. The level of abstraction used here also coincides with the level of abstraction used in
the source document of the model. In this representation, variable elements are indicated by
dashed lines, public feature models of containers are shown at the top right of the containers,

17 MAENAD Concept Presentation on EAST-ADL Variability: http://www.maenad.eu/public/conceptpresentations
/6_Variability_EAST-ADL_Introduction_2013.pdf
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weight / g cost / e power consumption / W

V1_Supplier_A 122 3.30 2.80
V1_Supplier_E 131 3.25 2.75
V2_Supplier_B 154 5.32 3.10
V2_Supplier_C 154 5.90 3.15
WI_Supplier_A 155 3.54 2.60
WI_Supplier_C 167 3.51 2.55
WI_Supplier_D 158 3.58 2.50
RS_Supplier_A 143 10.65 5.50
RS_Supplier_B 150 10.82 5.50
RS_Supplier_D 126 11.46 5.45

Tab. 2: (Excerpt of) quality attribute values for system components from different suppliers.

and (non-obvious) conĄguration decisions are represented by arrows from public feature
models to conĄguration targets.

The system can be conĄgured in either a basic or an advanced conĄguration, which toggles
between two different system variants V1 and V2. The system further includes an optional
rain sensor that is mandatory for the advanced conĄguration. These variation points are part
of the product line design space.

In addition, the demonstration model also contains variabilities that describe degrees
of freedom for the architecture. In this example, these variability descriptions represent
alternativeŮbut functionally identicalŮcomponents from different suppliers and the
interdependencies among them. The basic variant V1 and the advanced variant V2 each
have two alternative components, the rain sensor and the wiper integrator each have three.
The alternative components from different suppliers have varying weight, cost and power
consumption (cf. Table 2). The following constraints exist:

• The basic variant V1 from supplier A needs the wiper integrator from supplier A;
e.g., because it is a built-in feature of the wiper integrator.

• The advanced variant V2 from supplier B and the rain sensor from supplier B need
each other; e.g., because they are sold as a set and not as separate modules.

• The rain sensor from supplier D needs the wiper integrator from supplier D; e.g.,
because supplier D uses a non-standard proprietary connector.

6.2 Problem Formalization

In order to conduct an automated optimization of the architecture, we Ąrst need to
formalize all optimization-relevant data of the demonstration model. The Ąrst step of
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formalization is to assign ordered decision variables to all variable components of
the model: x1 = V1_Supplier_A, x2 = V1_Supplier_E , x3 = V2_Supplier_B, x4 =

V2_Supplier_C, x5 = W I_Supplier_A, x6 = W I_Supplier_C, x7 = W I_Supplier_D,
x8 = RS_Supplier_A, x9 = RS_Supplier_B, and x10 = RS_Supplier_D.

Next, we formalize the variability annotations of the model. The formalization follows the
general process described in Section 4, more speciĄcally the transformation rules shown
in Table 1. This step produces the set of equality and inequality constraints for the integer
linear program, i.e., the optimization space. The formalization of the degrees of freedom
of the demonstration model results in the following set of constraints (with all decision
variables xi ∈ {0, 1}):

x1 + x2 = 1

x3 + x4 = 1

x5 + x6 + x7 = 1

x8 + x9 + x10 = 1

x5 − x1 ≥ 0

x7 − x10 ≥ 0

x3 − x9 = 0

(2)

Our goal is to Ąnd a Pareto-optimal product line architecture, not a Pareto-optimal product.
Therefore, we only formalize the architectural degrees of freedom, not the product-line-
related variability (which will still be present in the resulting architectures). In our demon-
stration model, the product line variability from the Vehicle Level traces to the WiperControl
variation point on the artifact levels, which was thus omitted from the formalization. All
other variabilities (i.e., supplier choices and dependencies) have no traceability to the Vehicle
Level; they are thus architectural degrees of freedom and are included in the formalization.

The formalization of quality attributes into objective functions naturally use the same
assignment of decision variables. The quality attribute values deĄned in Table 2 result in the
following linear objective functions for weight, cost and power consumption, in this order:

MIN 122 ∗ x1 + 131 ∗ x2 + 154 ∗ x3 + 154 ∗ x4+

155 ∗ x5 + 167 ∗ x6 + 158 ∗ x7 + 143 ∗ x8+

150 ∗ x9 + 126 ∗ x10

MIN 3.30 ∗ x1 + 3.25 ∗ x2 + 5.32 ∗ x3 + 5.90 ∗ x4+

3.54 ∗ x5 + 3.51 ∗ x6 + 3.58 ∗ x7 + 10.65 ∗ x8+

10.82 ∗ x9 + 11.46 ∗ x10

MIN 2.80 ∗ x1 + 2.75 ∗ x2 + 3.10 ∗ x3 + 3.15 ∗ x4+

2.60 ∗ x5 + 2.55 ∗ x6 + 2.50 ∗ x7 + 5.50 ∗ x8+

5.50 ∗ x9 + 5.45 ∗ x10

(3)

Having generated both objective functions and program constraints means that we now
have a proper multi-objective integer linear program (cf. Equation 1). This enables us to
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Fig. 3: Petal diagram of the Pareto-optimal solutions.

explore the optimization space and to identify Pareto-optimal solutions for the given quality
attributes.

6.3 Discussion of Optimization Results

Even for the small optimization space of our demonstration model, Ąnding Pareto-optimal
solutions by hand can already be a tedious exercise. When scaling up the size of the problem
to real-world models, Ąnding solutions by hand quickly goes from tedious to impractical to
outright impossible. In order to demonstrate our approach, we apply commercial tooling (cf.
Section 5) for solving the formalization of our optimization problem and thereby identify
four Pareto-optimal solutions. Regarding the consistency of our results, it should be noted
that each solution directly corresponds to a real product line architecture for the given
system, since all product line variability is still present in the resulting models. In other
words, the product line variability space remains intact.

The optimization solutions can be described using a notation of 4-tuples in the form
of (V1,V2,W I, RS); e.g., (A,C, A, A) is a solution where V1, the wiper integrator and
the rain sensor use components from supplier A, and V2 from supplier C. Using our
optimization tooling, we identiĄed the Pareto solutions (E, B,D, B), (E,C,D,D), (E, B,C, B)
and (E,C,D, A). Figure 3 shows a Petal diagram of these solutions, where the petals depict the
relative quality of criteria per solution, thereby giving a rough overview of the characteristics
of each solution. Petal diagrams are one of the visualization options of the FINNOPT tool
(cf. Section 5). Such visualizations can be used (among other methods) to conduct a trade-off
analysis of the Pareto-optimal alternatives for a system architecture. Pareto analyses for large
and complex real-world industrial models are a non-trivial task that requires considerable
system expertise from the conducting architect or engineer.

The Pareto set for our case study example has a particularly interesting characteristic: out
of all products that can be conĄgured from the given product line design space, the most
lightweight possible product (277g, V1 from supplier A, WI from supplier A, no rain
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sensor) is not part of the most lightweight product line architecture (E,C,D,D) (its most
lightweight product has 289g). Effects like this are a consequence of family-based analyses
like our product-line-aware optimization and must be taken into account when considering
the adequacy of Pareto-optimal product line architectures for speciĄc use cases.

7 CONCLUSIONS

In this paper we introduced a novel approach for product line architecture optimization and
demonstrated its application by means of a case study. The approach deĄnes a complete
mathematical formalization as a multi-objective integer linear program that comprises the
architectural degrees of freedom, the implementation components and the design objectives
(cf. Section 4). We demonstrated that our approach has characteristics that differentiate
it both from our previous work and from other research in this area. Furthermore, our
approach is not merely theoretical, but has been implemented with the help of off-the-shelf
optimization tooling (cf. Section 5).

As future work, we plan to compare our approach to other optimization frameworks in terms
of efficiency and optimality of the results. We also plan to address variants of the given
problem domain like an (optional) inclusion of speciĄc border conditions, e.g., optimal
product variants that shall always be part of a resulting product line architecture. Furthermore,
we plan to identify useful application scenarios for the so far unused formalization of product
line variability in addition to our current approach of optimizing only the architectural
degrees of freedom. We plan to continuously evaluate our efforts with the aid of industry
experts from the automotive domain. A Ąrst round of evaluations has already been concluded
and yielded positive feedback.
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