
A Low-Cost Solution for Frequent Symmetric Key
Exchange in Ad-hoc Networks

Markus Volkmer and Sebastian Wallner

Technische Universität Hamburg-Harburg – Technische Informatik VI
Schwarzenbergstraße 95, D-21073 Hamburg, Germany�

markus.volkmer,wallner � @tuhh.de

Abstract: Next to authentication, secure key exchange is considered the most critical
and complex issue regarding ad-hoc network security. We present a low-cost, (i.e. low
hardware-complexity) solution for feasible frequent symmetric key exchange in ad-
hoc networks, based on a Tree Parity Machine Rekeying Architecture. A key exchange
can be performed within a few milliseconds, given practical wireless communication
channels and their limited bandwidths. A flexible rekeying functionality enables the
full exploitation of the achievable key exchange rates. Characteristics of a standard-
cell ASIC design realisation as IP-core in � � � �
 -technology are evaluated.

1 Key Exchange in Ad-hoc Networks

Authentication and key exchange are of supreme importance with regard to security and
secure routing in ad-hoc networks. Such networks typically lack infrastructure, which pe-
nalises approaches needing a central authority like a trust centre or another third trusted
party as e.g. in ID-based cryptosystems. The dynamic and ephemeral network topology
demands frequent key exchanges (cf. [KA02] for an unbiased survey). In this regard, cryp-
tographic methods with appropriate computational efficiency, that also consider a certain
message or protocol overhead, are inevitable. In ubiquitous and pervasive computing ap-
plications, such as sensor networks, RFID-systems or Near Field Communication (NFC),
the devices in use as nodes of the network often impose severe size limitations and power
consumption constraints. Consequently, the available size for additional cryptographic
hardware components is limited as well [KA02, St03, WGP03].

Public key or threshold cryptography are in general computationally intensive and a dis-
tributed certificate authority does not address the resource limitations of devices in ad-hoc
networks. Asymmetric algorithms for key exchange like RSA and El Gamal perform
computationally intensive arithmetics, typically implemented in software on limited mi-
crocontrollers. The state-of-the-art is represented by (Hyper-)Elliptic Curve Cryptography
(see e.g. [PWP03]). Retaining the security, these representations decrease the size of num-
bers in the necessary arithmetic operations, but increase the operations’ complexity. Still,
a (frequent) key exchange in practice often remains of prohibitive cost.

128

2 Tree Parity Machine Rekeying Architecture

The Tree Parity Machine Rekeying Architecture (TPMRA) is a small hardware solution
for frequent symmetric key exchange in ad-hoc networks, based on a ‘hardware-friendly’
algorithm for secure key exchange by synchronisation of Tree Parity Machines [KKK02].
It is functionally separated into the TPM Unit and its control state machine, the Key Hand-
shake and Bit Package Control and a Watchdog timer (Figure 1).

key_com

key_cha

Keyreq_key error
sync_

package
Bit−

BP_req
BP_ack

Bit Package Control
Key Handshake &

Tree Parity
Machine

Watchdog

Figure 1: Basic diagram of the Tree Parity Machine Rekeying Architecture.

A mutual adaptation process between the two parties � and � realises the exchange pro-
tocol without involving large numbers and methods based on number theory. In the fol-
lowing, the notation � � � denotes equivalent operations for the parties � and � , while a
single � or � denotes an operation specific to one of the parties. The TPM Unit generally
comprises � hidden units (� �
 � �) in a single hidden-layer with non-overlapping in-
puts. Each hidden unit receives different
 inputs (� � � �
), leading to an input of size� �
 . The components are pseudo-random variables realised by equally initialised Lin-
ear Feedback Shift Registers (LFSR). A single output � � � � � � ! # � % � & � � , given bounded
weights (� � �* , � � ! # . % 0 & 0 2 4 5

(from input unit � to hidden unit
) and common random
inputs 6 * , � � ! # � % � & � � , is calculated as

7 � � � 8 : < > ?@A C D E � � �A 8 : < > ?@A C D G
H JKL C D N � � �A L 8 : < P A L 8 : < Q � (1)

The common random inputs can also be kept secret between the parties, yielding authen-
tication. R is a party-specific modified sign-function, that defines an agreement between
the two parties on an opposite sign in case of a sum of zero.

Initial weights can either be device-specific or they can be provided by an additional
application-specific device, e.g. a thermal noise device. The outer product in eq. 1 can
be realised without multiplication. The product within the sum only changes the sign of
the weight. Thus, an adder is the most complex structure to be implemented. The test for
the sign or the test on equality to zero are easily done in hardware.

We implemented the bit package generalisation of the protocol and the parallel-weights
version (cf. [KKK02]). Parties � and � start with an individual randomly generated
secret initial weight vector (� � �* , � � S ! . After a set of T U � presented inputs, where T

129

denotes the size of the bit package, the corresponding � TPM outputs (bits) � � � � �
 � are
exchanged over the public channel in one package. This reduces output communication
and is advantageous for practical communication channels with protocol overhead. The
Key Handshake and Bit Package Control handles the key transmission with an encryption
unit and the bit package exchange process with the other party. It is accomplished by
partitioning the parity bits from the TPM unit in tighter bit slices. We chose a bit package
length of 32 bit (Bit Package) and the bit package exchange process uses a simple
request/acknowledge handshake protocol (BP ack, BP req). The amount of registers
needed for storage increases in the bit package variant, finally imposing a tradeoff area vs.
speed. The � sequences of hidden states � � � �
 �
 � � � � � � � � are stored for the subsequent
adaption process.

Weights are adapted, using the � outputs and � sequences of hidden states:

� � � �� � � � � � �
��� �� � � � �� � � � � � �
 � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � " � � �� � � � � �

� � � �� � � � � � � � otherwise.

(2)

The sign-operations and additions are well suited for a hardware implementation. Updated
weights with � # � � �
 % �
 � � ' (

are bound to stay in the maximum range) � (� (, - .
by

reflection onto the boundary values.

Synchrony is present when both parties adapted to produce each others outputs and is
achieved only for common inputs. Thus, keeping the common inputs secret between /
and 0 can be used to have an authenticated key exchange. There are � � � � � possi-
ble inputs in each iteration, yielding as many possible initialisations for a pseudo random
number generator. Synchronisation time is distributed, is proportional to

(�
and peaked

around 400 for the parameters given in [KKK02]. The synchronisation criterion basically
comprises a counter, to test on successive equal outputs in a sufficiently large number of
iterations. This excludes equal outputs occurring by chance. The Watchdog timer super-
vises the number of interactions needed for a key-exchange between two parties. If there
is no synchronisation within a specific time, a signal (sync error) indicates a synchro-
nisation error. Once synchronous, parties remain synchronised (see eq. 2) and common
weight-vectors are present in both TPMs. These weights have not been communicated
and can be used as a common key.

We minimise the key lifetime as much as possible employing immediate rekeying, i.e. a
frequent key exchange. Such a rekeying process is often of prohibitive cost due to in-
efficiencies in classical key exchange methods. Yet, using the TPM principle allows for
efficient rekeying (see also section 3). In our hardware design, an external unit can de-
mand a key exchange service. The TPMRA can continuously synchronise new keys, as
long as data needs to be exchanged securely. Once an en-/decryption unit uses the first
key, synchronisation can be triggered again to always provide a new key. Due to different
computation cycles between two key exchange parties, the rekeying procedure employs a
handshake protocol with a key request (req key), a key changed (key cha) and a key
commit (key com) (see Figure 1). The internal bus (Key) hands over the key to an en-
cryption unit when the synchronisation process is finished. Keys can so be exchanged at a
maximum rate subject to hardware constraints and available channel bandwidth.

130

3 Characteristics of an ASIC Implementation

We designed and simulated a parameterisable serial TPMRA using VHDL. The underly-
ing process was a � � � � � six-layer CMOS process with � � � � supply voltage based on the
UMC library. The synaptic summation is performed by Time Devision Multiple Access
(TDMA) of an

�
-bit adder. A standard cell ASIC prototype realisation was build to ver-

ify the suitability of the TPMRA as IP-Core in devices for ad-hoc networks. The linear
complexity of the protocol scales with the size � � � of the TPM structure, which defines
the size � � � �

�
of the key. We chose �
 � , a maximal �
 � � and

�

 � , leading

to a key size of � � � bit. The chosen � allows a significant key length and still keeps the
average synchronisation time low (cf. [KKK02]).

0.4

0.6

0.8

1

1.2

1.4

84 156 228 300 588

0.43

0.54

0.67

0.81

1.45
Serial TPMRA

(a) Chip-area [� � �] vs. key length [� � �].

100

1000

10000

84 156 228 300 588

127
NFC, 106 kbps

126 126 126 125

292

Bluetooth, 723 kbps

292 291 290 290

WLAN 801.11g, 54000 kbps

6879 6263 5925 5501
4350

(b) Worst case average key exchange rate [� �]
vs. key length [� � �] for three channels/protocols.

Figure 2: Post-synthesis results: (a) Chip-area (logic) vs. key length. (b) shows worst case average
key exchange rate (log-scaled) vs. key length (worst case of an avg. synchronisation time of 400
iterations for a 588 bit key assumed for all key lengths) and a selection of typical protocols with their
bandwidths: Bluetooth (190 bit minimum packet length), WLAN 801.11g (512 bit minimum packet
length) and a Near Field Communication channel (64 bit minimum packet length). All data refers to
a UMC 0.18 micron six-layer standard cell process realisation.

The area (Figure 2a) of the TPMRA realisation scales approximately linear due to the lin-
ear complexity of the adders and ranges around one square-millimetre for the investigated
key sizes. Note, that most of the area is consumed by the bit packaging, because of the
necessary storage of the inputs for the adaption (see section 2).

The nearly linear decrease of the throughput (Figure 2b) for all channels is due to the
linear complexity of the key exchange protocol. We assumed the maximally achievable
clock frequency with regard to each key length, which can be achieved by Digital Phase
Lock Loop (DPLL), regardless of the systems clock frequency. Furthermore, we appoint
an average synchronisation time of 400 iterations for all key lengths, although it is al-
ways less than the size of the key (a worst-case scenario). For every protocol, we used

131

the minimum available packet length due to our bit packages of 32 bit. A comparison
among the different communication channels indicates different slopes of the calculated
(approximately linear) throughput characteristics. They denote the rising influence of the
bit packaging calculations at smaller key lengths for channels of higher bandwidth such as
WLAN. Thus, the slope of the WLAN throughput characteristic is significantly higher than
for Bluetooth and NFC. As expected, the influence of the channel bandwidth significantly
determines the performance of the key exchange protocol.

4 Summary and Outlook

We presented a low-cost solution for frequent symmetric key exchange for devices with
severely limited resources, as they are typical in ad-hoc networks. The proposed Tree
Parity Machine Rekeying Architecture’s silicon area lies within a square-millimetre and
allows to exchange keys of practical size within milliseconds. The relatively small size of
the TPMRA allows an implementation in general embedded systems with only small over-
head. Thus we promote it as an IP-core for wireless ad-hoc network devices. A detailed
discussion of the security of the method itself is beyond the scope of this paper. All cur-
rently known attacks, however, require significant hardware expenses, are successful only
with a certain probability and all refer to a non-authenticated key exchange. A future fully
serial realisation of the architecture will use TDMA of a single hidden unit. This further
decreases the silicon area consumption but at the cost of an increase in necessary cycles for
one output bit. Key exchange between multiple parties, to secure group communication in
a broadcast or multicast scenario, is also possible and under investigation. An efficient au-
thentication and key management is needed here, due to frequent key exchanges on join or
leave actions. The integration into concrete devices of an ad-hoc network and its practical
evaluation is also subject to future work.

References

[KA02] Khalili, A. und Arbaugh, W. A.: Security of wireless ad-hoc networks. ACM Computing
Surveys. 2002. (submitted, http://www.cs.umd.edu/˜aram/wireless/survey.pdf).

[KKK02] Kanter, I., Kinzel, W., und Kanter, E.: Secure exchange of information by synchroniza-
tion of neural networks. Europhysics Letters. 57(1):141–147. 2002.

[PWP03] Pelzl, J., Wollinger, T., und Paar, C.: Low cost security: Explicit formulae for genus-4
hyperelliptic curves. In: 10th Annual Workshop on Selected Areas in Cryptography (SAC
2003). Springer Verlag. 2003.

[St03] Stajano, F.: Security in pervasive computing. In: Proc. of the 1st International Con-
ference on Security in Pervasive Computing (SPC 2003). volume 2802 of LNCS. S. 1.
Springer Verlag. 2003.

[WGP03] Wollinger, T., Guajardo, J., und Paar, C.: Cryptography in embedded systems: An
overview. In: Proc. of the Embedded World 2003 Exhibition and Conference. S. 735–744.
Nürnberg, Germany. Feb. 18-20 2003. Design & Elektronik, Nürnberg.

132

