

Visualization Needs in Computational Social Sciences

Hendrik Heuer, Anna Polizzotto, Franziska Marx, Andreas Breiter

Motivation & Research Question

- Machine learning techniques are increasingly applied by social scientists
- •understanding visualization needs is important for computational social science, which Lazer et al. characterized "as a field that leverages the capacity to collect and analyze data at scale to examine patterns of individual and group behaviors"
- •Research Question: What contextual visualization needs do these researchers have when confronted with such complex systems?

Machine Learning & Topic Modelling

Topics in 956,000 articles published in the New York Times computed using Latent Dirichlet Allocation (LDA)

The New York Times

Method

- within-subjects design, where 7 social science and humanities students used visualizations of how the topics in a newspaper changed over time
- Participants performed three tasks:
 - Reading Values:
 - "Identify the exact proportion of topic X in month M."
 - Comparing Proportions:
 - "How much is the proportion of topic X in month M in relation to the proportion of topic Y in month N?"
 - Recognising Patterns:
 - "Name all patterns that you can recognize for all topics."
- interviews & qualitative coding with inductive category formulation following Mayring

Visualization Needs

- confirmed universal needs like readability, accuracy, and precision
- found a need to quickly establish an overview and a need for intuitively interpretable visualisations
 - heat maps had a big advantage here since color appeared to be intuitively interpretable by most users
- •right visualization technique is highly dependent on the data, the task, and the participant
 - stacked area charts were perceived as difficult for the tasks
- •we suggest giving explicit instructions and making interpretation strategies explicit

Visualizations

Stacked bar chart

- good readability of exact values
- required subtraction of lower unit values
- not always helpful when comparing individual topics

Stacked area chart

- subtraction of lower unit values necessary
- individual values cannot be precisely identified
- known chart type
- uncertainty about the interpretation strategy

Heat map

- no subtraction of underlying unit values necessary
- intuitive interpretation of the hue
- poor readability of accurate values
- visually appealing through structure
- confusion when comparing topics
- visualization that required the least effort