Evaluation of Workflow Similarity Measures in Service
Discovery

Andreas Wombacher, Maarten Rozie
University of Twente,
7500 AE Enschede, The Netherlands
a.wombacher @utwente.nl

Abstract: Service discovery of state-dependent services has to take workflow
aspects into account. To increase the usability of a query result, the results
should be ordered with regard to their relevance, that is, the similarity of the
query and the result list entry. Although there exist service discovery solu-
tions considering workflow aspects, there is no support of ordering the result
list. However, there exist several similarity measures in different research ar-
eas, which are applied in this paper to workflow similarity based on Finite State
Automata.

1 Introduction

Web Services are an emerging technology. Although right now most applications
mainly make use of the common communication protocols (HTTP and SOAP) and
the good integration support based on a common interface specification language
(WSDL), the loosely coupling is less applied. Reasons for this are the wish of the
designer to manually control and coordinate the application, and the lack of expres-
siveness and precision of the service discovery (UDDI) supporting the design and
the loosely coupling.

With regard to expressiveness of service discovery there exist more expressive ap-
proaches then key-value pairs as supported by standard UDDI. Such extensions of
UDDI consider other aspects like semantic descriptions of the functionality [BKO02,
KBO01, Coa04], syntactical structure of the interfaces as specified in WSDL, Quality
of Service [BS04, LNZ04], or process aspects [WFMN04, WMNO04] representing
the behavior of a service.

As a consequence, having more expressive queries may increase the precision of the
query results since a matching service has to fit to a more precise service descrip-
tion. Hence, a query might also be too specific in the sense that there is no service
providing the complete service description. Quite vague queries on the other hand
side provide a huge bunch of services supporting the query to the extend as it has
been specified. In either case - over and under specification of a query - a similarity
measure is of help. In the first case representing the over specification, a user aims
for the service matching the query best. In the second case representing the under
specification, a user aims to get the best fitting service from the bunch of possible
services derived. However, addressing similarity for all the different aspects men-
tioned above is too challenging therefore in the following the discussion focuses on
workflow aspects.

57

Workflow aspects in service discovery means to decide whether two workflow speci-
fications guarantee successful interaction, that is, are considered to be consistent. We
assume that the workflow models rely on standard message dictionaries like Roeset-
taNet which have a commonly agreed semantics. As a consequence the semantic
equivalence of messages as the basic building blocks of workflows drills down to
syntactic equivalence of message names. So far we haven’t seen work done on work-
flow similarity. Hence, in this paper different notions of workflow similarity are dis-
cussed. In particular, known similarity measures from other domains are presented
and are applied to a set of exemplary behavioral service descriptions represented as
workflows. Finally, the similarity measures are compared and future research issues
are raised.

The paper is structured as follows: In Section 2 the general properties of similarity
measures are discussed and the basis for most presented similarity measures, that
is, the edit distance, is introduced. The used workflow model and the sample data
set used for the discussion of the similarity measures is introduced in Section 3.
Section 4 captures similarity measures based on the structure of automata, while
Section 5 discusses language based approaches. Both sections contain the results
and a brief discussion of the findings on the sample data set derived by applying the
corresponding approach. A comparison of the different approaches again based on
the sample data set is discussed in Section 6. Finally, Section 7 concludes the paper.

2 Similarity Measures

A similarity measure is a method of estimating the ’closeness” between two entities.
In particular, the extreme values of similarity are equivalence and non-relatedness
of the two entities. The function deriving a similarity value of two automata has to
fulfill the following general properties:

o the function is symmetric, that is, the similarity measure of automata A and B
equals the similarity measure of automata B and A;

e the values provided by the similarity measure are between zero (unrelated) and
1 equivalent;

o the triangular inequality applies to all approaches based on a metric space, that
is, the similarity measure of automata A and B plus the one of automata B and
C is greater then the similarity measure of A and C directly.

A similarity measure supporting these properties is the similarity of strings, which
usually drills down to the distance of strings. In particular, there exist different dis-
tance measures for strings like for example the Hamming distance used in informa-
tion theory [TH93] or the edit distance usually applied on strings in the context of
text. The edit distance (or Levenshtein distance) [Lev66] between two words is the
smallest number of substitutions, insertions, and deletions of symbols that can be
used to transform one of the words into the other.

58

Lets consider for example the strings abab and aab then the first string can be trans-
formed into the second one by the following transformations abab — abac —
aaae — aabe requiring three operations. Alternatively, the following transforma-
tion can be applied abab — acab requiring only a single operation. Since the edit
distance is the minimum number of operations required to transform a string into
another, the edit distance of the two strings is one.

Based on this distance value d the similarity value sim can be calculated by subtract-
ing the distance value from the maximum difference m and diving the difference by
the maximum difference m, that is, sim := mT_d. However, the calculation of the
maximum distance in case of infinite words is potentially infinite which limits the
approach generally to finite strings. Further, also in a finite case the determination of
the maximum edit distance is not that straight forward. Let’s consider the following
example based on the two finite languages L(A) = {a, b} and L(A’) = {aaa}. The
maximum distance between the languages is the product of the maximum number of
words contained in one of the languages and the length of the longest word contained
in one of the languages, that is,

m = Maz(|L(A)|,|L(A")|) * Moazserayurnan(s])

where | L(A)| specifies the length of the language L(A) and |s| the length of a string
s. With regard to the example, the maximum distance m is m = 2 * 3 = 6.

In the following, similarity of automata is investigated based on the structure of
automata or based on the language accepted by automata. However, most of the ap-
proaches are based on a distance measure or use directly edit distance as introduced
above.

3 Workflow Model

A definition of workflow similarity must be based on a formal workflow model.
Different formal models representing workflows exist, in the following, Finite State
Automata [HMUO1] are used. Other more expressive models with operations requir-
ing higher computational complexity are for example Petri Nets [Pet81], Workflow
Nets [AHO2], or statecharts [Har87]. We use the least complex model because the
more complex models still having polynomial computational complexity can be rep-
resented as Finite State Automata. Since this work is motivated by a service dis-
covery scenario applying a workflow model having non-polynomial computational
complexity will result in applications which are inapplicable.

Besides the expressiveness the different approaches can be classified according to
their underlying communication model: The models suggested by van der Aalst
[Aal99] and Kindler et.al. [KMROO], for example, support asynchronous commu-
nication. By contrast synchronous communication is supported by Wombacher et.al.
[WFMNO4]. Since Web Services often use synchronous communication based on
the HTTP protocol, the goal workflow model is an extension of Finite State Au-
tomata which has been introduced as annotated Finite State Automata [WFMNO04].

59

This reduction to Finite State Automata is therefore feasible and has been applied
in the Web Service domain. In particular, a mapping of the orchestration language
BPEL to annotated Finite State Automata has been proposed in [WFNO04] and has
been used in implementing a service discovery engine [WMNOS5].

3.1 Formal Definition

Finite State Automata (FSA) are well studied. Formally, Finite State Automata can
be represented as follows [HMUO1]:

Definition 1 (Finite State Automata (FSA)) A Finite State Automaton A is repre-
sented as a tuple A = (Q, X, A, qo, F) where :

e (Q is a finite set of states,

e X is a finite set of messages,

o A:Q XX X Q represents labeled transitions,
e (o a start state with qy € Q, and

o I C Q a set of final states.

A FSA A generates a language L(A) which enumerates the (possibly infinite) set of
all message sequences supported by a business process. The empty word ¢ indicates
a transition changing a state without a contribution to the accepted word. The graphi-
cal representation of a FSA depicts states as circles and transitions as arcs (annotated
with labels). Final sates are depicted as states with a thick line. Example FSA are
depicted in Figure 1.

With regard to the workflows representing the behavior of a service as mentioned in
the introduction, the alphabet of the automaton contains the set of operations which
are used and provided by a service. As a consequence, an accepted word contained
in the language of an automaton represents an execution sequence supported by a
service representing the order in which the operations are performed.

3.2 Example Workflows

Within this paper, the preliminary analysis of similarity measures is based on a set
of sample data. The sample data is based on an abstract set of operations consist-
ing of the characters a to e. It contains different complexity classes of automata. In
particular, the sample set contains eight acyclic automata accepting a finite language
and four cyclic automata accepting an infinite language. In either automaton class,
different similarities have been considered, which can be used to evaluate the simi-
larity measures derived by the different approaches. In the following, the different
relations are discussed and introduced as evaluation criteria.

Six acyclic automata are depicted in Figure 1 representing three automata accepting
the same language, although the structure of the automata is different (automaton

60

e} o
o o
o o
o o

automaton 1 automaton 2 automaton 3

automaton 4 automaton 5 automaton 6

Figure 1: Workflow Models: Part 1

1, 2 and 3). In case of language equivalence, the corresponding similarity measure
must be the same.

Criteria 1 The similarity measures between each combination of automaton 1, 2,
and 3 must be the same.

The languages accepted by automata 4 and 5 are complementary subsets of the lan-
guages accepted by automata 1, 2, or 3. Since the subsets have the same size, the
similarity measure must be the same.

Criteria 2 The similarity measures of one out of automaton 1, 2, or 3 and automaton
4 and 5 respectively are the same.

Automaton 6 accepts a language which is different from the first five automata al-
though all words contained in the accepted language have the same length. There-
fore the similarity measures of the first five automata with automaton 6 must be the
smallest. Further, since languages of automata 4 and 5 also do not share a word, the
similarity measures of two out of these three automata must be the same.

Criteria 3 The similarity measures of two out of automata 4, 5, and 6 are the same.

The automata depicted in Figure 2 contain two acyclic ones (automata 7 and 8) and
four cyclic ones (automata 9 to 12). The two languages of the acyclic automata
accept longer words then the first six ones do and the language of automaton 7 is
a subset of the one of automaton 8. The languages accepted by automaton 9 and
10 contain the language of automaton 8. Further, the language of automaton 11
contains the language of automaton 10. The language of automaton 12 shares some
words with the languages of all automata except automaton 6.

Be aware that automata 9 and 10 contain simple cycles, while the cycles in automata
11 and 12 are considered to be complex cycles, where complex cycles are specified

61

a
b e
c d

automaton 7 automaton 8 automaton 9

a
b . a
b b ye
c d c d
automaton 10 automaton 11 automaton 12

Figure 2: Workflow Models: Part 2

by at least two cycles sharing at least a single state. The existence of complex cycles
effects some of the investigated approaches by increasing significantly the computa-
tional complexity.

The size of the language of an automaton not supported by another automaton causes
differences in the similarity measure compared with another automaton while keep-
ing the shared messages equal.

Criteria 4 (a) The similarity measure of automata 7 and 8 must be higher then the
similarity measure of automata 7 and 9.

(b) The similarity measure of automata 7 and 9 must be higher then the similarity
measure of automata 7 and 11.

The language of automata 9 and 10 are contained in the language of automaton 11,
while the language of automaton 11 has a non-empty intersection with the language
of automaton 12. Right now, there is no specific criterion which can be derived from
this.

4 Structural Automaton Similarity

In the following two approaches of structural similarity are discussed, which are
suffering from the fact that different structures may result in accepting the same
language, that is, the same set of message sequences.

4.1 Graph Similarity based on Edit-Distance

An automaton can be interpreted as a directed graph and therefore graph similarity
measures can be applied. An exemplary similarity measure based on edit distance
has been proposed in [CKS98] addressing graph isomorphism, while [MB98] ad-
dresses subgraph isomorphism.

62

In [MB98] an error correcting subgraph isomorphism detection is introduced which
is based on edit operations on the graph structure. However, the provided distance
measure is asymmetric, which contradicts the stated similarity measure properties.
The asymmetry is caused by ignoring parts of one automaton only to calculate the
subgraph isomorphism. However, the general idea of operations modifying the graph
structure seems to be interesting.

[CKS98] can be applied to graphs of the same order and is based on a one-to-one
mapping ¢ of two graphs/automata. The underlying idea is that in two isomorphic
graphs the distance d between two states v and v in one automaton equals the dis-
tance d of the associated states ¢(u) and ¢(v) in the other automaton. In particular,
the distance d based on the mapping ¢ between two automata A and A’ is defined as
the sum of the absolute difference between the distance values between all pairs of
states, that is,

dg(A,A) = Y |da(u,v) = dar(@(u), $(v))|

u,vEQ

where () is the set of states in automaton A. Based on this definition, the distance
of two automata A and A’ is the minimal distance value based on a mapping ¢. A
quite limiting factor in this definition is the requirement of a one-to-one mapping,
which only applies for automata having equally sized sets of states. However, graph
isomorphism is different from language equivalence in automata theory. In partic-
ular, in automata theory several automata may represent the same language having
different automata representations. For example the example automata 1, 2 and 3
accept the same language although having different graph structures.

As a consequence of this investigation, the graph based approaches are not applicable
to the addressed problem space, thus are not considered further.

4.2 Inheritance Similarity

The algorithm of automated reconciliation as presented in [DHL *05] inherently uses
a similarity measure. The approach focus on the common alphabet of two automata
and removes the exclusively used messages of the alphabets. Further, automata trans-
formation rules as specified in [vdABry] for Workflow-Nets are used to transform
both automata to a same automaton using only the shared alphabet. If this trans-
formation is not possible in accordance with the specified transformation rules, the
similarity measure is zero, otherwise the similarity equals the degree of overlap of
the shared with the original alphabet.

Due to the similarity definition based on the overlap of the own alphabet with the
shared one, the similarity measure is asymmetric in case the automata have alpha-
bets of different size. This contradicts the claimed properties of a similarity measure
as stated in Section 2. Therefore, the similarity measure has been changed to repre-
sent the overlap of the shared alphabet with the union of both automata alphabets.
Applying this modified definition to the sample data set results in the similarity mea-

63

|| Al | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | AI0 | All | AI2

Al 1.00 | 1.00 1.00 | 0.00 | 0.00 | 0.00 [0.00 | 0.00 [0.00 | 0.00 | 0.00 | 0.00
A2 1.00 | 1.00 | 0.88 | 0.88 | 0.67 | 0.00 [0.00 | 0.00 | 0.00 | 0.00 | 0.00
A3 1.00 | 0.88 | 0.88 | 0.67 | 0.00 | 0.00 [0.00 | 0.00 [0.00 | 0.00
A4 1.00 | 075 | 0.75 | 0.00 | 0.00 | 0.88 | 0.00 | 0.00 | 0.00
AS 1.00 | 0.75 | 0.00 | 0.00 | 0.00 [0.00 | 0.00 | 0.00
A6 1.00 | 0.00 | 0.00 | 0.75 | 0.00 | 0.67 | 0.00
A7 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
A8 1.00 | 0.00 | 0.00 | 0.00 | 0.00
A9 1.00 | 0.00 [0.00 | 0.00
Al10 1.00 | 0.00 | 0.00
All 1.00 | 0.00
Al2 1.00

Table 1: Similarity measure based on IPR

sures depicted in Table 1. The table contains only the upper triangular matrix to
improve the readability. The matrix has been proven to be symmetric.

The checking of the introduced criteria reveals that the Criterion 1 stating the equiv-
alence of automata 1, 2 and 3 is fulfilled by this approach indicated by having a 1.00
similarity measure at each combination of these automata.

The Criterion 2 is not fulfilled because the similarity measure of automata 1 and 4
is zero, while the one of automata 2 and 4 is 0.88 although they are supposed to
be the same. The reason for this difference is that the approach does not support
the removal of an alternative in an automaton. In the above cases, the transition
labeled e has to be removed from automata 1 and 2. However, a transition can only
be removed if the transition ends in a state which is still connected to the start state
after removing that transition. In case of automaton 1 this is not the case, while it is
the case for automaton 2. As a consequence the two similarity measures are different
contradicting Criterion 2.

Criterion 3 addressing empty subsets is fulfilled. This can be observed in the ta-
ble when comparing the similarity measure of automata 4 and 5 with the similarity
measure of automata 4 and 6 or 5 and 6 respectively. The Criterion 4 on the subset
relation of automata can hardly be evaluated, because all similarity measures men-
tioned in the criteria are O thus indicating unrelated automata.

Finally, the similarity measure only provides values in case the automata are struc-
turally quite similar, thus, do not have structural alternatives resulting in a new sub-
automaton as observed in Criterion 2. In particular, in case at least one execution
sequence is not shared, the similarity value is zero, which can be considered as too
restrictive.

5 Automaton Language Distance Measures

In the following language based approaches are discussed, which are usually suffer-
ing from handling infinite languages.

64

I Al | A2 | A3 | A4 | AS | A6 | A7 | A8
Al 0] 0] O] 2] 2] 6] 6] 14
A2 0] 0] 2
A3 0] 2

0

2
2
)
0

(=l R K= k=

—_
S| O oo |
—_

[S]

Table 2: Edit Distance on Sets of Strings

5.1 Edit-Distance on Language

A straight forward approach based on string edit distance is to consider a language as
a potentially infinite set of accepted words. The intuitive algorithm is a comparison
of every word of the first language with every word in the second language, calcu-
lating the edit distance, and summing up the derived edit distance values. Applying
this approach to the finite languages in the sample data set results in the edit distance
values contained in Table 2. The table contains only the upper triangular matrix to
improve the readability. The matrix has been proven to be symmetric.

Based on these edit distance values the similarity measure can be calculated as stated
in Section 2. Criterion 1 related to the equivalence of automata turns out to be valid
because all combinations of automata 1, 2 and 3 provide an edit distance zero. Crite-
rion 2 is also fulfilled because the edit distance contained in the table is equal for all
pairs of automata 1, 2, or 3 with automata 4 or 5. Further, Criterion 3 on the empty
subsets is valid since the same distance values are provided in the table. Criterion
4 can not be applied because the approach is limited to acyclic automata only, thus,
does not provide values for automata 9 and 11.

This approach does not work in case at least one language is infinite. However, in
[Moh03a, Moh03b] an approach has been proposed based on composition of au-
tomata and so called transducers. A transducer represents a transformation step of
a transition label and associating costs to these changes. The edit distance is then
the shortest path on the composed automata containing the change operation costs
associated to the transitions. Actually, the approach calculates the minimal distance
of a word accepted by the first automaton with a word accepted by the second au-
tomaton. Applying this approach to the sample data set results in the edit distance
values contained in Table 3 The table contains only the upper triangular matrix to
improve the readability. The matrix has been proven to be symmetric.

Due to the construction of the example, quite a lot of automata have at least one
word in common, thus making the distance value zero. The remaining automata each
have a word which has an edit distance of one. As a consequence, of this uniform
results contained in Table 3 it turns out that this approach can not be considered to be
useful although it can handle cyclic automata. Therefore the analysis of the criteria
is omitted.

65

I Al | A2 | A3 | A4 | AS | A6 | A7 | A8 | A9 | Al0 | All | Al2 |
Al 0] 0] O] 0] 0] T[] 0] 0
A2 0] 0] ©
A3 0] 0

0

f=]] =])
=] =] =] =

>
o

O = =

(=Rl R K] fen])
(=il Rl g i Kol Reo] fe) o)

(=] Kool el el loog Rel Eg Rl Neo] Ren)

[==] o] fen] Rl Nel I Hen] Ren] o) on] Jan}

[=] ==l o Nl e Rl Il) e (]) lan)

Table 3: Edit Distance based on Transducers with Standard Automata

5.2 Edit-Distance on Automata

In the transducer approach the edit distance is defined as the minimum distance of
two strings in the two languages. However, the remaining strings in the language
are not influencing the edit distance value. As a consequence, the similarity measure
represents similarity of the intersection of the two languages rather then the similarity
of the equivalence of the languages.

Alternatively, an approach is presented, which takes all strings into account by con-
sidering the probability of the occurrences of the different words. In particular,
shorter words are considered to be more likely then longer words. Thus, the ex-
pectation value of the minimum number of change operations is calculated based on
transforming every string of one language into a string of the other language and vice
versa.

b e
c d
automaton 2 automaton 2

Figure 3: Automaton 2 and weighted Automaton 2

The algorithm is based on assigning the transitions of automata with probabilities,
which result in weighted automata. Figure 3 depicts the weighted automata derived
from automaton 2. The weights are calculated such that the sum of all weights
assigned to transitions leaving a state is one. The final states are represented as

66

|| Al | A2 | A3 | A4 | A5 | A6 | A7 | A8 |

AT || 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.07 | 0.04 0.05
A2 0.00 | 0.00 | 0.02 | 0.02 | 0.07 | 0.04 0.05
A3 0.00 | 002 | 0.02 | 0.07 | 0.04 0.05
AL 0.00 | 0.03 | 0.03 | 0.0 0.01
AS 0.00 | 0.03 | 0.04 0.04
A6 0.00 | 0.04 0.04
A7 000 | 4.8%x10° 1%
A8 0.00

Table 4: Edit Distance based on Transducers with Weighted Automata

explicit states connected via an ¢ transition, because terminating the processing is
an option which has to be represented explicitly. The probability of an execution
sequence is calculated by multiplying all weights along the path. It is guaranteed
that the sum of weights of all paths is below 1.

In [MohO3a, Moh03b] the edit distance of weighted acyclic automata is presented.
The approach is again based on transducers along the lines as described in Section
5.1. Applying the approach on the acyclic automata of the sample data set results in
the distance values contained in Table 4. The table contains only the upper triangular
matrix to improve the readability. The matrix has been proven to be symmetric.
Criterion 1 addressing the equivalence of automata is fulfilled by the approach as
indicated in the table by the distance of zero of automata 1, 2 and 3 respectively. Cri-
terion 2 addressing the comparable subsets is also fulfilled, and the distance values
contained in the table are 0.02. The Criterion 3 of the empty subsets is also provided
resulting in a distance value of 0.03 in the table. The Criterion 4 is not applicable due
to the lack of support of cyclic automata, which is a limitation on the applicability of
the approach.

5.3 Edit-Distance on n-gram Representations

An alternative approach of representing infinite languages derived from cyclic au-
tomata is proposed in [MWFO05] based on n-grams lists. n-grams have been applied
in text indexing approaches in particular for substring matching [BY92]. The gen-
eral idea behind an n-gram list is representing a single string by an ordered list of
substrings with length n. In particular, only the first occurrence of an n-gram is con-
sidered, while later occurrences of the same n-gram are omitted in the n-gram list.
Thus, an n-gram list results in a single representation of strings with different length.
In particular, an infinite language can be represented as a finite set of n-gram lists,
which comes for the price of a loss of information introducing imprecision. In par-
ticular, the length n on the one hand side controls the complexity of all operations
required in the concrete application scenario, and on the other hand influences the
fuzziness of the operation result applied on the n-gram representation.

With regard to the example, the infinite language of automaton 10 can be represented

67

I Al | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | Al0 | All | Al2 |

Al 0 0 0 4 4 12 16 16 16 88 930 82
A2 0 0 4 4 12 16 16 16 88 930 82
A3 0 4 4 12 16 16 16 88 930 82
A4 0 8 8 12 12 12 92 934 78
AS 0 8 20 20 20 84 934 88
A6 0 24 24 24 120 1136 102
A7 0 0 0 48 508 46
A8 0 0 48 508 46
A9 0 48 508 46
A10 0 - 88
All 0 -
Al2 0

Table 5: String Edit Distance on 2-gram Lists

as 2-grams in accordance to [MWFO05] as follows:

{ < 8$a,ab,bc,c# >, < $a,ab,bd, d# >,

< $a, ab, be, eb, be, c# >, < $a, ab, be, eb, bd, d# >}

In the set a single 2-gram list is represented in < --- > signs and the different 2-
grams are comma separated in the list notation. In particular, the string abc accepted
by automaton 10 is represented as a 2-gram list as < $a, ab, bc, c# > where the
character $ is used as a symbol representing the start of a string needed in case the
string length is shorter then the n-gram itself. thus, the first 2-gram is $a combining
the string start symbol and the first character. Next, the first two characters a and b
form the second 2-gram ab, b and ¢ form the third 2-gram, and ¢ and the termination
symbol # of a string forms the forth and last 2-gram c#.
Following this construction principle and having in mind that only the first occur-
rence of an n-gram is represented in an n-gram list, the strings abebc, abebebc, and
abebebebe are all represented by the same 2-gram list < $a, ab, be, b, be, c# >.
Thus, the infinite language of a cyclic automaton can be represented as a finite set of
n-gram lists.
Considering an n-gram list as a string, the approach in Section 5.1 can be applied. In
particular, the edit distance now can also handle cyclic automata as opposed to the
original approach. Applying this approach to the sample data set results in the edit
distance values presented in Table 5. The table contains only the upper triangular
matrix to improve the readability. The matrix has been proven to be symmetric.
Criterion 1 of the automaton equivalence is fulfilled as indicated in the table by the
edit distances of zero. Criterion 2 of comparable subsets is also supported. The
table contains 4 as the common distance value. Criterion 3 of the empty subsets is
supported and the common distance value is 8 as indicated in the table. Criterion 4
is only partly supported. The edit distance of automata 7 and 8 is zero and equals
the similarity measure of automata 7 and 9. This is conflicting with the criterion.
The explanation of this result is that automata 7, 8 and 9 have the same 2-gram
representation. A change of the encoding of the automata to a higher n increases

68

the precision of the representation and can resolve this issue. However, increasing
the n results in higher operational costs, which is not intended when considering the
already high computational effort as indicated for example by the edit distance of
automata 6 and 11. Thus, this approach can handle cyclic automata on the price of
higher computational complexity and potentially imprecise edit distance measures.

6 Comparison of Approaches

An analytical comparison of the approaches would require a reference solution of
similarity. Such a reference would indicate what a human workflow expert consid-
ers to be most similar. Such an investigation has not been performed so far and
a corresponding reference similarity value is not available (in case it exists at all).
The work presented here is the first step in the direction of a workflow similarity
measure which requires further investigation. Therefore the evaluation can not be
performed in an analytical way but must be performed on an empirical evaluation of
the different results.

Comparing the different approaches it turns out that the structural based approaches
as discussed in Section 4 are not applicable. This is because equivalence of automata
as the highest possible similarity is defined in terms of equivalence of languages.
Since automata with different structure may represent the same language these ap-
proaches are ruled out very fast.

The language based approaches as discussed in Section 5 turn out to be quite helpful
for finite languages, that is, acyclic automata. The results contained in Table 2 and 4
are a good basis for the similarity measure due to the differences in values. However,
comparing the tables one by one, it turns out that a relation of distance values of the
two tables can be defined which is violated only in a few cases. These differences are
the interesting parts, which require a deeper investigation on the usability of these
similarity measures.

The language approaches supporting cyclic automata require more research work.
The approach based on weighted automata turns out to provide a distance measure
which provides only a coarse grained differentiation of automata (see Table 4). How-
ever, the n-gram based approach (see Table 5) has two major draw backs: it requires
high computational effort in case of automata with complex cycles, that is, at least
two cycles in an automaton share at least a single state. Further, due to the abstrac-
tion introduced by the n-grams, the certain imprecision is introduced resulting in
automata to be considered equivalent although they are not (see automata 8 and 9 in
Table 5).

7 Conclusion and Future Work

In this paper, the need of a similarity measure of workflow models in the Web Ser-
vice domain is motivated and several similarity measures are investigated based on
a sample data set, which has been constructed such that different relationships of
automata are covered. Applying and analyzing the different approaches reveals that

69

there are applicable solutions for acyclic automata, while further research is needed
to get efficient approaches for cyclic automata. The similarity measures of acyclic
automata result in an ordering of automata, but further research is required to under-
stand better which similarity measure fits best the human intuitive similarity measure
(in case there exists something like that).

References

[Aal99] W.MLP. van der Aalst. Interorganizational Workflows: An Approach based on
Message Sequence Charts and Petri Nets. Systems Analysis - Modelling - Simulation,
34(3):335-367, 1999.

[AHO2] W.ML.P. van der Aalst and Kees van Hee. Workflow Management - Models, Meth-
ods, and Systems. MIT Press, 2002.

[BKO2] Abraham Bernstein and Mark Klein. Discovering Services: Towards High-
Precision Service Retrieval. In Proceedings of CAISE International Workshop, Web Services,
E-Business, and the Semantic Web (WES), LNCS 2512, pages 260-275. Springer, 2002.
[BS04] A. Soydan Bilgin and Munindar P. Singh. A DAML-based Repository for QoS-
Aware Semantic Web Service Selection. In Proceedings of IEEE International Conference on
Web Services, pages 368-375, 2004.

[BY92] R. A. Baeza-Yates. Text retrieval: theory and practice. In J. van Leeuwen, edi-
tor, Proceedings of the 12th IFIP World Computer Congress, pages 465-476, Madrid, Spain,
1992. North-Holland.

[CKS98] Gary Chartrand, Grzegorz Kubicki, and Michelle Schultz. Graph Similarity and
Distance in Graphs. Aequationes Mathematicae, 55:129-145, 1998.

[Coa04] OWL Service Coalition. OWL-S: Semantic Markup for Web Services.
http://www.daml.org/services/owl-s/1.0/owl-s.pdf, 2004.

[DHL"05] Zongxia Du, Jinpeng Huai, Yunhao Liu, Chunming Hu, and Lei Lei. IPR: Auto-
mated Interaction Process Reconciliation. In Proceedings of IEEE/ACM International Con-
ference on Web Intelligence (WI), 2005. accepted for publication.

[Har87] D. Harel. Statecharts: A Visual Formalism For Complex Systems. Science of
Computer Programming, 8(3):231-274, June 1987.

[HMUO1] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 2001.

[KBO1] Mark Klein and Abraham Bernstein. Searching for Services on the Semantic Web
using Process Ontologies. In Proceedings of 1st Semantic Web Working Symposium (SWWS),
Stanford, 2001.

[KMROO] Ekkart Kindler, Axel Martens, and Wolfgang Reisig. Inter-operability of Work-
flow Applications: Local Criteria for Global Soundness. In Business Process Management,
Models, Techniques, and Empirical Studies, pages 235-253. Springer-Verlag, 2000.

[Lev66] L. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals,. Soviet Physics—Doklady, 10(8):707-710, 1966.

[LNZ04] Y. Liu, A. H. H. Ngu, and L. Zeng. QoS Computation and Policing in Dynamic
Web Service Selection. In Proceedings of WWW, page 66ft, 2004.

[MB98] Bruno T. Messmer and Horst Bunke. A New Algorithm for Error-Tolerant Sub-
graph Isomorphism Detection. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 20(5):493-504, 1998.

[MohO3a] Mehryar Mohri. Edit-Distance of Weighted Automata. In Jean-Marc Champar-
naud and Denis Maurel, editors, Proceedings of International Conference on Implementation
and Application of Automata (CIAA), volume 2608 of Lecture Notes in Computer Science,
pages 1-23. Springer, 2003.

70

[Moh03b] Mehryar Mohri. Edit-Distance of Weighted Automata: General Definitions and
Algorithms. International Journal of Foundations of Computer Science, 14(6):957-982, 2003.
[MWFO05] Bendick Mahleko, Andreas Wombacher, and Peter Fankhauser. Process-annotated
Service Discovery facilitated by an n-gram based Index. In Proceedings of IEEE International
Confernce on e-Technology, e-Commerce and e-Service (EEE), pages 28, 2005.

[Pet81] James L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall,
1981.

[TH93] Hans Tzschach and Gerhard Hasslinger. Codes fuer den stoerungssicheren Da-
tentransfer. Oldenburg Verlag, 1993.

[vdABry] W. M. P. van der Aalst and T. Basten. Inheritance of workflows: an approach to
tackling problems related to change. Theor. Comput. Sci., 270(1-2):125-203, uary.
[WFMNO4]Andreas Wombacher, Peter Fankhauser, Bendick Mahleko, and Erich Neuhold:.
Matchmaking for Business Processes Based on Choreographies. Intl. Journal of Web Services,
1(4):14-32, 2004.

[WENO4] A. Wombacher, P. Fankhauser, and E. Neuhold. Transforming BPEL into anno-
tated Deterministic Finite State Automata enabling process annotated service discovery. In
Proceedings of International Conference on Web Services (ICWS), pages 316-323, 2004.
[WMNO04] Andreas Wombacher, Bendick Mahleko, and Erich Neuhold. IPSI-PF: A Business
Process Matchmaking Engine. In Proceedings of Conference on Electronic Commerce (CEC),
pages 137-145, 2004.

[WMNO5] Andreas Wombacher, Bendick Mahleko, and Erich Neuhold. IPSI-PF:A Business
Process Matchmaking Engine based on annotated Finite State Automata. Journal on Informa-
tion Systems and E-Business Management, 3(2):127-150, 2005.

71

