
Heinrich C. Mayr, Martin Pinzger (Hrsg.): INFORMATIK 2016,

Lecture Notes in Informatics (LNI), Gesellschaft fr Informatik, Bonn 2016 2163

Overview of the current state of research on parallelisation

of evolutionary algorithms on graphic cards

Paul Jähne1

Abstract: Evolutionary algorithms (EA) have a lot of potential for parallelisation, which can be
used by graphics processing units (GPU). They present an available, cheap and energy-ef®cient
alternative to computer clusters. There are already several publications on using GPUs for EAs. This
paper presents selected publications and discusses important implementation details of them. Hence
recommendations are derived on how to ef®ciently implement EAs on GPUs. Thereby it’s important
to take the architecture of GPUs into consideration. Furthermore it’s shown that GPUs can only be
used pro®tably when a certain problem complexity is reached. In addition the speed-up to expect is
critically scrutinised and it’s explained, that it’s impossible to reach a speed-up of 100 or even more
by means of a fair comparison of GPU and CPU implementations.

Keywords: meta-paper, evolutionary algorithm, GPGPU, CUDA

1 Motivation

Often there are no ef®cient algorithms known for dif®cult problems or even impossible

to construct due to their complexity. Then only general search methods remain to get a

good approximate solution within acceptable time. Evolutionary algorithms (EA) are one

option to construct such domain independent searches. Yet also these reach their limits at

a certain problem size. Fortunately they have big potential for parallelisation. This can be

utilised through the use of multiple processors (CPU) or computers. However clusters out

of several computers are harder to use and maintain and also not generally available.

An alternative to this is the use of graphics processing units (GPU). They evolved from

specialised graphic accelerators to ¯exible, highly parallel coprocessors and are available

in every modern computer. Therefore they were recently used for many applications aside

from graphics processing with partly remarkable results [Ow05][Nv16]. Since EAs have a

lot of parallelisation potential, there were also efforts to use graphic cards in this domain.

This paper presents selected works and gives an overview of the different approaches.

2 Evolutionary Algorithms

Evolutionary algorithms are powerful, domain independent search methods derived from

the evolutionary theory. Their search strategy is based on stochastic methods. Because of

this there is no guarantee to ®nd the optimal solution, but in most cases suf®cient approxi-

mate solutions are found. The process is as follows. At the beginning a random population

1 Hochschule für Technik, Wirtschaft und Kultur, Fakultät Informatik, Mathematik und Naturwissenschaften,

Karl-Liebknecht-Straûe 132, 04277 Leipzig, paul.jaehne@gmx.de



2164 Paul Jähne

is generated. This consists of possible solutions for the given problem, referred to as in-

dividuals. Based on this initial population new generations are created by repeating eval-

uation, selection, crossover and mutation. This process iterates until a suf®cient solution

is found or if the maximum number of generations is exceeded. The evaluation assigns

a ®tness value to all individuals, which describes the quality of the solution. Thereby a

search direction is given. The selection chooses promising individuals for the next gener-

ation based on their ®tness value. The crossover uses the chosen individuals to create new

ones through mixing. The mutation alters some of the resulting individuals to retain the

populations diversity and open up new areas of the search space.

Based on this principle the four following classical variants were developed: genetic al-

gorithms (GA), evolutionary strategies (ES), genetic programming (GP) and evolutionary

programming (EP). They differ in the type of individuals and the used operators. Exact

differentiations are dif®cult, as the approaches are interacting and in¯uencing each other

[WW09]. All have in common, that calculation effort increases with increasing number of

individuals, generations and operators. Yet the operators work only with few individuals

at the same time and the evaluation can be executed independently for each individual.

Therefore EAs have a lot of potential for parallelisation.

3 Programming graphic cards

Through the popularity of 3D consumer applications like video games a market for af-

fordable hardware accelerators was established. They implemented parts of the render-

ing pipeline of application programming interfaces (API) like Open Graphics Library

(OpenGL) and DirectX. Graphics calculations need to do a series of operations for every

pixel on the screen. Therefore large computing power is required, but each pixel can be

calculated independently in parallel. Thus graphic cards evolved into powerful and highly

parallel coprocessors, while their price remained in the consumer segment [SK10].

This development attracted the attention of some scientists. Since GPUs calculate colour

values out of textures, objects and additional information, which are speci®ed by the pro-

grammer, any data is possible. Only a mapping between the problem, it’s solution al-

gorithm and graphics calculation is required and the result has to be interpreted accord-

ingly. Therefore GPUs could be used for non-graphic computations. This is called general-

purpose computing on graphics processing units (GPGPU) [SK10]. Yet the only way to

interact with a GPU were graphics APIs in which the actual calculation has to be packaged.

In the year 2004 Brook2 was a ®rst attempt to solve these issues and to make GPGPU

accessible for more people. Brook is an extension for the programming language C. It ab-

stracts the graphics APIs and presents the programmer an environment, which he’s used to

from the CPU. Still various constraints existed on the GPU. These were resolved through

architectural evolution of the GPU. In addition in the year 2007 CUDA3 and Open Com-

puting Language4 (OpenCL) were released. These are low-level APIs speci®cally designed

2 http://graphics.stanford.edu/projects/brookgpu/
3 https://developer.nvidia.com/content/cuda-10
4 https://www.khronos.org/news/press/the khronos group releases opencl 1.0 speci®cation



Parallelisation of evolutionary algorithms on graphic cards 2165

for GPGPU. An high-level alternative emerged in 2011 with OpenACC5. OpenACC uses

compiler directives to annotate parallelisable code segments for the GPU. These are pro-

cessed by the compiler. So there is no need to rewrite existing code and the programmer

doesn’t has to bother with details. Also Open Multi-Processing6 (OpenMP) got support for

coprocessors in 2013 with version 4.0. OpenMP is as well based on compiler directives,

but was originally developed for multiprocessor systems with shared memory.

The rise of language extensions and the related simpli®cation increased the adoption of

GPGPU. The development of systems with coprocessors in the 500 most powerful com-

puter systems, which are listed in TOP500, proves this. The development over time of

systems using coprocessors in this list can be seen in ®gure 1.

Oct 2007 Oct 2008 Oct 2009 Oct 2010 Oct 2011 Oct 2012 Oct 2013 Oct 2014 Oct 2015

0

20

40

60

80

100

120

A
m
o
u
n
t

Fig. 1: Temporal development of the amount of systems using coprocessors in TOP500 as per [TO15]

The main limitations for systems in the TOP500 are space and energy consumption [Be08].

This is where graphic cards provide advantages compared to CPUs besides there comput-

ing power. Table 1 shows important features of a high-end server CPU and GPU with

comparable release dates. It can be seen that the GPU has the eightfold computing power

at twice the power consumption. Thus it has the fourfold ef®ciency. To compensate for the

differences in price, power consumption and space, one could compare a graphic card with

two such CPUs. Then a fourfold advantage in computing power remains.

Feature Intel Xeon E5 2697 v2a Nvidia Tesla K40b

Release date September 10, 2013 November 18, 2013

Manufacturing process 22 nm 28 nm

Release price 2614 $ 5499 $

Power dissipation 130 W 235 W

Computing powerc 0.52 T¯op/s 4.29 T¯op/s

Processing powerc/Watt 3.98 G¯op/Ws 18.3 G¯op/Ws
a http://ark.intel.com/products/75283

b http://www.nvidia.com/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001 v05-en.pdf
c For calculations in single precision

Tab. 1: Exemplary comparison of important features of CPUs and GPUs

5 http://www.nvidia.co.uk/object/openacc-parallel-computing-standard-20111114-uk.html
6 http://openmp.org/wp/openmp-40-api-released/



2166 Paul Jähne

4 Early days

Until 2007 there were no programming languages or frameworks speci®cally designed

for GPGPU. So graphic APIs were the only way to interact with a GPU. Because they

were designed for graphic applications, the calculations had to be transformed into graphic

calculations to satisfy there input and output format. Therefore several limitations existed

like a maximum number of arrays and elements within these through the size and number

of textures. Due to such restrictions GPUs were dif®cult to use for general computation.

But when the high initial hurdles were overcome one could get a considerable speed-

up compared to a CPU implementation, which showed the potential of GPUs [Ow05].

Hereafter are several papers from that period presented.

Chitty presents in [Ch07] an implementation of genetic programming with OpenGL and

C for Graphics (Cg). Therein the ®tness evaluation was of¯oaded to the GPU. GP isn’t

based on the principle Single Instruction, Multiple Data (SIMD) like the GPU, but rather

on Multiple Instruction, Single Data (MISD). The problem is solved by running the ®tness

function on different example data in parallel. For comparison an Intel Pentium 4 and

a Nvidia GeForce 6400 Go is used. The results show that the CPU is faster for small

Problems. Beginning with 200 samples the GPU outperforms the CPU. With a suf®ciently

large data set and complex examples a speed-up between 12 and 30 is reached.

Fok, Wong and Wong implement evolutionary programming on the GPU in [FWW07].

They chose EP, because crossover is not used therein and thus it is easier to implement.

Random number generation and selection is done on the CPU and the results are provided

as a texture to the GPU. The used operators are tournament selection and Cauchy mutation.

The selection of individuals isn’t done by sorting, but by searching the median of the

tournament victories. Subsequently the population is traversed and all individuals with

greater or equal amount of wins are chosen. For comparison an Intel Pentium 4 and a

Nvidia GeForce 6800 Ultra is used. The GPU implementation is up to ®ve times faster for

different test functions with more than 800 individuals. The runtime increase is sublinear.

This is an indication for underutilisation of the GPU. By increasing the problem size more

computing units can be used. Hence the increase in runtime is sublinear.

Wong and Wong present a genetic algorithm based on [FWW07] in [WW09] which is

executed on the GPU except for the random number generation. The used operators are

tournament selection, single point crossover and Cauchy mutation. Different functions are

used to test on an AMD Athlon 64 and a Nvidia GeForce 6800 Ultra. The GPU imple-

mentation is up to ®ve times faster depending on complexity of the function and number

of individuals.

Li et al. present in [Li07] a genetic algorithm, which runs completely on the graphic card.

The used operators are single point crossover, single point mutation and local roulette

wheel selection. Different test functions are used for comparison. The tests are carried out

on an Intel Pentium 4 and a Nvidia GeForce 6800 LE. The GPU implementation reaches

a speed-up up to 74 for large population sizes and complex functions. Also for small

populations a small speed-up is achieved.



Parallelisation of evolutionary algorithms on graphic cards 2167

5 Modern era

The emergence of frameworks, language extensions and development tools speci®cally

designed for GPGPU lowered the initial hurdles and therefore made it accessible to a

wider audience. Furthermore graphic cards developed from ®xed-function devices into

¯exible, highly parallel coprocessors, which resolved several limitations. This facilitated

the implementation of more complex algorithms.

5.1 Fitness evaluation on the GPU

The simplest use of graphic cards is the implementation of the ®tness evaluation on the

GPU. This can be done entirely independent for each individual and is therefore suited

for parallelisation according to the SIMD architecture of GPUs. An easy implementation

can be seen in listing 1. There is an easy and general pattern for parallelisation of loops

shown. evaluateKernel is a GPU function, which is also called kernel. Additionally the

arrays population and fitness have to be transferred to the GPU for processing and

back afterwards. This is not included in the following example.

C:

...

for (int i = 0; i < populationLength; i++) {

fitness[i] = evaluate(population[i]);

}

...

CUDA:

__global__ void evaluateKernel(float *population ,

float *fitness , int populationLength) {

for (int i = blockIdx.x * blockDim.x + threadIdx.x;

i < populationLength; i += blockDim.x *

gridDim.x) {

fitness[i] = evaluate(population[i]);

}

}

...

evaluateKernel <<<BLOCKS , THREADS >>>(population ,

fitness , populationlength );

...

List. 1: Parallel ®tness evaluation in CUDA

The described method is easy to implement and can achieve a reasonable speed-up with

suf®cient individuals and complex ®tness functions. If these conditions aren’t ful®lled, the

GPU isn’t fully utilised or the data transfer takes more time, than what is saved through

parallel execution.



2168 Paul Jähne

An example for this strategy present Cavouti et al. in [Ca12]. They extend an existing

implementation of a genetic algorithm for machine learning with CUDA and of¯oad the

creation of the initial population and the ®tness evaluation to the GPU. For comparison

they used an Intel Core i7-2630QM and a Nvidia GeForce GT540M. The classi®cation

results are the same, but the GPU reaches a speed-up of 75. However the CPU implemen-

tation only used one core out of four. Therefore the comparison is unfair in favour of the

GPU and the achieved speed-up should be divided by four.

If one population isn’t enough to keep the graphic card busy, parallel evaluation of mul-

tiple populations through streams is an option to provide enough work. Streams are one

way to do different tasks in parallel on the GPU. All commands placed into one stream are

executed sequentially while different streams run in parallel. So it is possible to run mul-

tiple small kernels on the GPU or to interleave copy processes with computations. Most

CUDA functions provide an additional stream parameter for this purpose. An example for

a kernel launch can be seen in listing 2.

...

cudaStream_t stream1;

cudaStreamCreate (& stream1 );

evaluateKernel <<<BLOCKS , THREADS , 0, stream1 >>>(

population , fitness , populationlength );

cudaStreamDestroy (& stream1 );

...

List. 2: Use of CUDA-streams on kernel call

The parallel evaluation of several small populations is used by Robilliard, Marion-Poty and

Fonlupt in [RMPF08]. They notice that many typical problems are to small to keep a GPU

busy. Therefore multiple small populations are evaluated in parallel. They don’t use the

previously shown approach with streams, but an explicit implementation within the kernel.

Thereby the ®tness evaluation is implemented on the GPU. The remaining operations are

executed on the CPU with the ECJ7 library. The implementation is compared to a serial

one using the ECJ library for all parts. The tests show a speed-up between 8 and 80 in the

evaluation phase. This leads to a reduction of the overall runtime by a factor between 5 and

45. No speed-up is achieved for examples with many conditionals in the ®tness function.

This is due to the SIMD architecture of GPUs, which is unsuitable for branching.

5.2 Complete GPU-implementation

Even though the parallelisation of ®tness evaluation on the GPU is pro®table under certain

circumstances, it is limited by the bandwidth of the interconnection between CPU and

GPU, because the population has to be copied back and forth for each evaluation. One

solution for this problem is a complete GPU implementation, which eliminates the need for

frequent copies. Even if individual steps are slower on the GPU, the overall speed-up can

7 http://cs.gmu.edu/˜eclab/projects/ecj/



Parallelisation of evolutionary algorithms on graphic cards 2169

be increased by removing the slow transfers. However a complete GPU implementation is

more complex, because the algorithm has to be ®tted to the GPU architecture, to use the

full potential.

Debattisti et al. present a complete implementation of a genetic algorithm in CUDA in

[De09]. The test problem is maximizing the number of bits set to one, which isn’t com-

putationally demanding. Therefore it is limited by the available bandwidth. The operators

are tournament selection, two-point crossover and mutation via bitwise exclusive OR with

a template. Random numbers are generated with the Mersenne Twister implementation

out of the CUDA SDK examples. The implementation runs on a Nvidia GeForce 8800

GT and is compared with a sequential implementation, created with TinyGA on an Intel

Core2Duo. A speed-up of 20 is reached for larger populations and individuals.

A critical examination to parallelisation of evolutionary algorithms on GPUs can be found

in [JP12] by Jaroš and Pospı́chal. They notice, that comparisons of GPU and CPU im-

plementations often use less optimised or sequential versions for the CPU, although they

have multiple cores available. Because of this they present and compare one implemen-

tation speci®cally tuned for each architecture. This means using vector instructions and

multiple cores on the CPU and ef®cient memory access and low branching on the GPU.

The paper describes the memory organisation and all operators in detail. The operators are

tournament selection, uniform crossover and mutation via one bit ¯ip. Additionally sev-

eral statistics are gathered. Random numbers are generated via an algorithm based on hash

functions from Salomon et al. published in [Sa11]. Both implementations are available

on GitHub8. Large instances of the knapsack problem (10,000 items, 12,000 individuals)

are used for comparison, to achieve maximal utilisation. They use an Intel Xeon X5650

and a Nvidia GTX 580 for their tests. The tests and there parameters are also described in

detail. They additionally implement the same algorithm with the GAlib9 library, which is

often used for comparison in other papers. The results show that the GPU implementation

reaches a speed-up of 375 compared to GAlib. The speed-up was reduced to 221 when

GAlib is compiled with optimisations. The GPU reached a speed-up of 68 in compari-

son to the proposed CPU implementation with one thread. This value corresponds to the

speed-up values reported in other papers, which as well use only one core. The speed-up

decreases to 12 if all cores are used. This complies with the ratio of the theoretical peak

performance for the CPU and GPU. Compared to two CPUs a speed-up of 6 is reached.

Additionally the cache hit ratio is analysed. GAlib reaches a hit ratio of 18 % and the

proposed CPU implementation achieves 98 %. This shows how well they utilise the CPU

architecture. Overall the paper shows that a GPU can’t achieve a speed-up of 100 or even

more, if an equally optimised CPU implementation is considered.

5.2.1 Cellular EA

In contrast to standard EAs cellular EAs use operators, which work locally. This means,

that individuals are arranged in some structure and the operators apply to a certain neigh-

8 https://github.com/jarosjir/GPU-GA-Knapsack und https://github.com/jarosjir/MPI-GA-Knapsack
9 http://lancet.mit.edu/ga/



2170 Paul Jähne

bourhood within this structure. Costly global communication and dependencies between

threads are thereby reduced. An example is the Moore neighbourhood, where the eight

surrounding cells in a 2D grid are considered as neighbours. A schematic representation

of the ®eld of action for the Moore neighbourhood can be seen in ®gure 2.

individuals
sphere of the

cellular operator

Fig. 2: Schematic presentation of the Moore neighbourhood for a cellular operator

An implementation can be found in [LL06] by Luo and Liu. They develop a genetic algo-

rithm to solve the 3-SAT problem. The individuals are arranged in a 2-dimensional toroidal

grid and the Moore neighbourhood is used. This grid structure avoids borders where indi-

viduals have fewer neighbours. They use an Intel Pentium 4 and a Nvidia GeForce 6200

for comparison. The results are comparable and the GPU reaches a speed-up of 5.

5.2.2 Island model

The island model tries as well to reduce the amount of global communication. This is also

accomplished by the use of neighbourhood relationships. Separated subpopulations are

used for this purpose. They only exchange few individuals in set intervals by the additional

migration operator. This can lead to better solutions because the different populations are

more likely to not get stuck at the same local optimum. Then again arbitrary models can

be used within one island. Figure 3 shows a schematic representation.

migration

island

individual... ...

Fig. 3: Schematic presentation of the island model with migration

Pospı́chal, Jaroš and Schwarz present in [PJ09], [PJS10] and [PSJ10] a genetic algorithm

based on the island model. Therein each thread is assigned to one individual and a thread

block corresponds to an island. Therefore the fast shared memory and synchronisation,

which are only available within one block, can be used for each subpopulation. A migration

is performed between blocks in intervals. The best individuals of a subpopulation replace

the worst. This exchange is done asynchronously in a circle. Therefore a set interval isn’t

guaranteed, due to different thread blocks that run independently. Though this is no big

issue as EAs are stochastic algorithms. The implementation is compared with a sequential



Parallelisation of evolutionary algorithms on graphic cards 2171

one of the same algorithm. The algorithms are compared on an Intel i7-920 and Nvidia

GeForce 8800 GTX, GTX 260 and GTX 285 for different test functions and the knapsack

problem. The results are speed-ups up to 1000 for a suf®cient number of individuals and

generations. As mentioned earlier such values are unrealistic and caused by less optimised

CPU implementations. The island model converges faster then a standard algorithm, while

the quality of results stays the same. Additionally the compiler option -use fast math

is tested. This instructs the compiler to replace mathematical operations with faster but

less precise ones. The runtime can be reduced further without deterioration of the solution

quality.

5.2.3 Multi-GPU

Using multiple GPUs is the logical continuation if the processing power of one GPU isn’t

enough. Multi-GPU con®gurations are still feasible for consumer computers and become

more common. This use case is also addressed by modern APIs. When multiple GPUs in

one computer should be used, the CUDA function cudaSetDevice can be called. After-

wards all commands use the speci®ed device.

The communication between GPUs in one computer can take place directly via the Periph-

eral Component Interconnect Express (PCIe) bus. The transfer bandwidth between GPUs

is limited by PCIe bandwidth, which is signi®cantly slower, than memory access to GPU

main memory. If multiple computers are needed, the communication between them can be

done via the Message Passing Interface (MPI). Thereby communication costs are further

increased, because the data has to be copied from the GPU to the main memory of the

computer, then transferred to another computer and copied into memory of the other GPU.

Jaroš presents in [Ja12] an implementation of a genetic algorithm for multiple GPUs.

Different implementation options are discussed at the beginning. Mapping individuals to

threads is restricted by the size of the individuals and therefore only applicable for small

problems. A thread block per individual is only useful for large individuals. Using thread

groups is proposed as a middle course. The individuals are divided into subpopulations

and each GPU is assigned to one such island. The used operators are uniform crossover,

tournament selection and mutation via one bit ¯ip. The migration between islands is done

in a ring topology. The communication between GPUs is done via MPI. Furthermore the

memory organisation is described in detail. Two different memory layouts for the popu-

lation are discussed. These are the gene- and chromosome-based layouts. The gene-based

structure stores the same genes of the different individuals in succession. The chromosome

based structure stores individuals continuously. This is favoured because it preserves data

locality and leads to better cache utilisation. Figure 4 schematically represents these lay-

outs. The same algorithm is also implemented for the CPU. The knapsack problem with

10,000 items is used to compare both implementations. The hardware used are two servers

each with two Intel Xeon X5650 and seven Nvidia GTX 580. Both implementations scale

well for suf®ciently large islands. The graphic cards need bigger islands to be fully utilised.

The fourteen GPUs reach a speed-up of 35 when compared to the four CPUs and 194 com-



2172 Paul Jähne

pared to one CPU. Scaled down to one GPU this results in a speed-up of 9 and 14 times

respectively.

gene-based chromosome-based

logical

memory

Fig. 4: Schematic presentation of the gene- and chromosome-based memory layout

6 Summary

This paper presents different approaches to performing evolutionary algorithms on graphic

cards. It is shown that a complete GPU implementation is possible and sensible. The best

implementation can differ depending on structure and complexity of the problem. In gen-

eral the following recommendations can be given. The algorithm should be implemented

completely on the GPU to avoid slow transfer between CPU and GPU memory. Also the

architectural features should be considered. This includes the avoidance of branching and

global communication, which can be achieved via cellular operators or an island model.

These methods are also able to increase the quality of results. The chromosome based

memory layout is recommended to increase locality and therefore makes better use of

caches.

It’s possible to reduce the runtime by an order of magnitude for suf®ciently large prob-

lems, if a fair comparison between a GPU and a CPU implementation is considered. This

corresponds to the ratio of theoretical peak performance of CPUs and GPUs. Therefore

speed-ups of 100 or even more are unrealistic and result from comparisons with less opti-

mised CPU implementations. Common mistakes are the use of only one core on multi-core

processors or bad access patterns, which reduce the effectiveness of caches.

It’s noteworthy that nearly all publications use CUDA for their implementation since it was

released. No information could be found on the use of newer frameworks like OpenACC

or OpenMP 4.0. This is because of the lack of freely available compilers supporting these

standards. At present only commercial compilers offer useful support for these standards.

However the GNU Compiler Collection aims to support these too10.

Overall it can be seen, that only a few publications release their source code. This compro-

mises the traceability and impedes further use or improvement. It also makes more detailed

analysis and comparison impossible.

10 https://gcc.gnu.org/wiki/OpenACC



Parallelisation of evolutionary algorithms on graphic cards 2173

References

[Be08] Bergman, Keren; Borkar, Shekhar; Campbell, Dan; Carlson, William; Dally, William;
Denneau, Monty; Franzon, Paul; Harrod, William; Hiller, Jon; Karp, Sherman; Keck-
ler, Stephen; Klein, Dean; Lucas, Robert; Richards, Mark; Scarpelli, Al; Scott, Steven;
Snavely, Allan; Sterling, Thomas; Williams, R. Stanley; Yelick, Katherine: , Ex-
aScale Computing Study: Technology Challenges in Achieving Exascale Systems.
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf, 2008.

[Ca12] Cavuoti, Stefano; Garofalo, Mauro; Brescia, Massimo; Pescapâe, Antonio; Longo,
Giuseppe; Ventre, Giogio: Genetic Algorithm Modeling with GPU Parallel Comput-
ing Technology. Neural Nets and Surroundings, Proceedings of 22nd Italian Workshop
on Neural Nets, WIRN 2012, 2012.

[Ch07] Chitty, Darren M.: A data parallel approach to genetic programming using pro-
grammable graphics hardware. In: GECCO ’07: Proceedings of the 9th annual con-
ference on Genetic and evolutionary computation. volume 2, ACM Press, London, pp.
1566±1573, 2007.

[De09] Debattisti, Stefano; Marlat, Nicola; Mussi, Luca; Cagnoni, Stefano: Implementation of
a Simple Genetic Algorithm within the CUDA Architecture. GPUs for Genetic and
Evolutionary Computation Competition at 2009 Genetic and Evolutionary Computation
Conference, 2009.

[FWW07] Fok, Ka-Ling; Wong, Man-Leung; Wong, Tien-Tsin: Evolutionary Computing on
Consumer-Level Graphics Hardware. In: IEEE Intelligent Systems. volume 22, pp.
69±78, 2007.

[Ja12] Jaroš, Jiřı́: Multi-GPU island-based genetic algorithm for solving the knapsack problem.
In: WCCI 2012 IEEE World Congress on Computational Intelligence. IEEE, pp. 1±8,
2012.

[JP12] Jaroš, Jiřı́; Pospı́chal, Petr: A Fair Comparison of Modern CPUs and GPUs Running
the Genetic Algorithm under the Knapsack Benchmark. Lecture Notes in Computer
Science, 2012(7248):426±435, 2012.

[Li07] Li, Jian-Ming; Wang, Xiao-Jing; He, Rong-Sheng; Chi, Zhong-Xian: An Ef®cient Fine-
grained Parallel Genetic Algorithm Based on GPU-Accelerated. In: 2007 IFIP Interna-
tional Conference on Network and Parallel Computing Workshops. IEEE, Liaoning, pp.
855±862, 2007.

[LL06] Luo, Zhongwen; Liu, Hongzhi: Cellular Genetic Algorithms and Local Search for 3-
SAT problem on Graphic Hardware. In: 2006 IEEE Congress on Evolutionary Compu-
tation. IEEE, Vancouver, pp. 2988±2992, 2006.

[Nv16] GPU applications. http://www.nvidia.com/object/gpu-applications.html.

[Ow05] Owens, John D.; Luebke, David; Govindaraju, Naga; Harris, Mark; Krger, Jens; Lefohn,
Aaron E.; Purcell, Timothy J.: A Survey of General-Purpose Computation on Graphics
Hardware. In: Eurographics 2005, State of the Art Reports. pp. 21±51, 8 2005.

[PJ09] Pospı́chal, Petr; Jaroš, Jiřı́: GPU-based Acceleration of the Genetic Algorithm. Genetic
and evolutionary computation conference, 2009.

[PJS10] Pospı́chal, Petr; Jaroš, Jiřı́; Schwarz, Josef: Parallel Genetic Algorithm on the CUDA
Architecture. In: In Applications of Evolutionary Computation, LNCS 6024. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 442±451, 2010.



2174 Paul Jähne

[PSJ10] Pospı́chal, Petr; Schwarz, Josef; Jaroš, Jiřı́: Parallel Genetic Algorithm Solving 0/1
Knapsack Problem Running on the GPU. In: 16th International Conference on Soft
Computing MENDEL 2010. Brno University of Technology, pp. 64±70, 2010.

[RMPF08] Robilliard, Denis; Marion-Poty, Virginie; Fonlupt, Cyril: Population Parallel GP on the
G80 GPU. In: Genetic Programming, pp. 98±109. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[Sa11] Salmon, John K.; Moraes, Mark A.; Dror, Ron O.; Shaw, David E.: Parallel Random
Numbers: As Easy As 1, 2, 3. In: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis. SC ’11, ACM, New
York, pp. 16:1±16:12, 2011.

[SK10] Sanders, Jason; Kandrot, Edward: CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley, Boston, 2010.

[TO15] Coprozessoren TOP500. http://www.top500.org/statistics/list/.

[WW09] Wong, Man-Leung; Wong, Tien-Tsin: Implementation of Parallel Genetic Algorithms
on Graphics Processing Units. In: Intelligent and Evolutionary Systems. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 197±216, 2009.


