
A Multiple Platform Approach to Building

a Bus Route Information System for Mobile Devices

Runar Andersstuen Trond Bøe Engell
{runaa,trondboe}@stud.ntnu.no

Rune Sætre Björn Gambäck
{satre,gamback}@idi.ntnu.no

Department of Computer and Information Science
Norwegian University of Science and Technology

Abstract: The paper describes a multiple platform-based approach to creating a bus
route information system for mobile devices. The system is context aware: users only
need to tell the system (in natural language) where they wish to go, and the system
takes care of the rest. The users are presented with a list of possible routes they can
take to reach their desired destination. The results are also shown on a map that makes
finding the bus stops very easy.

In order to make the system available to as many users as possible, the architecture
is client-server-based and relies on technology standards that are widely accepted and
implemented, making it easily adaptable to new platforms. The application can be
run on multiple platforms, with a minimal amount of calculations needed on the client
side. The amount of data transfer between server and client is also kept to a minimum.

The ability to run on multiple different platforms is achieved using technology
such as HTML5, PhoneGap and Sencha Touch. The client’s functionality includes a
search function and a map view, as well as the ability to use bookmarks. The server
handles most of the business logic and communicates with external services such as
the natural language processing back-end and the server for real-time bus departure
information updates.

1 Introduction

The worldwide smartphone market has expanded immensely during the last few years.
There were 440 million mobile devices sold by vendors in the 3rd quarter of 2011 [Pet11].
Of these, 115 million were smartphones. This equals a market share of 26.1%. The market
share has increased continuously during the last few years. Companies like Apple, HTC
and Samsung that have focused on developing smartphones, have gained large parts of the
market share. Other companies, like Nokia, that are big on mobile phones, seem to be
on a negative trend. As smartphones take over the market, the need for mobile-enabled
content and services increases. Unfortunately, the huge amount of available devices has
split the market into several mobile technology platforms. Leading platforms like Android,

71

iOS (Apple), and RIM are all based on different operating systems and code languages.1

Software developers need to make choices on which platform to support and then learn
the native language of that platform. If they want to focus on several platforms and reach
out to a larger audience, duplicate efforts are needed to implement specific software on
each platform and keep maintaining each code base separately. Consequently, application
development time can be immense.

One of the reasons why smartphones are popular is that people always bring their phones
with them, wherever they go. The mobility of smartphones opens up for new use-cases
where stationary PCs cannot compete. Uncertainty in the highly competitive commer-
cial mobile market space causes questions to appear when approaching the challenges of
cross-platform publishing: Which platforms will succeed? What resources and knowl-
edge are needed to make a sensible decision? Fortunately, there is a way around this
issue: multi-platform development. The big advantage here is a single code base, which
reduces application development time greatly. There are several ways of developing multi-
platform software. Determining which strategy that is most suitable can be a challenge,
and it is certain that the project requirements must be the primary decision-factor. The
main alternative strategies to create multi-platform applications are the following:

Web-based applications make use of HTML5, Javascript and Cascading Style Sheets
(CSS) to create mobile websites that aim to look and feel like a native mobile application.
Web applications can use JavaScript frameworks, such as Sencha Touch and jQuery Mo-
bile, that are solely designed for mobile development, to replicate mobile user interfaces.2

Web applications can be conveniently run in a web browser and are therefore already
multi-platform, since most mobile device today are equipped with web browsers. One
disadvantage for web-based applications is that they have only limited access to device-
specific features. Also, they cannot be uploaded to application stores, like the Android
Market or the iOS App Store, which will have a negative effect on the availability of the
product.

Proprietary Middleware. Applications can also be based on web services such as Red
Foundry.3 Developers get access to a web interface where an application is graphically
created by selecting a set of prebuilt modules. When all the modules that provide the
necessary functionality have been picked, the service builds a native application which can
be submitted to an application store or market. The advantage of this strategy is that the
developer does not need any specialist knowledge or programming experience to create
applications that look good and perform well. The drawbacks are that the proprietary
services often are expensive and that the design and functionalities are limited to what is
offered by the service.

Native Applications are written in a specific code language and designed to run in a
specific operating system. The main advantage of native applications is that they work
as intended by the operating system developers. Device features like sensors, contact
lists and storage are easily accessed directly, and the libraries offered by the application
programming interface (API) are optimised for the specific operating system.

1See http://www.apple.com/ios, http://www.android.com and http://www.rim.com.
2Available at http://www.sencha.com/products/touch resp. http://jquerymobile.com.
3http://www.redfoundry.com/

72

Hybrid applications are written as web applications, using coding technologies such as
HTML5, CSS and JavaScript. The web applications are then wrapped by one of the
available “multiple phone web-based application frameworks” in order to emulate na-
tive behaviour. Device features like sensors, contact list and storage are provided by
these platforms. Unlike the other alternatives that are confined to browsers and have
limited functionality, hybrid solutions form a strong strategy for multi-platform devel-
opment [Pad11, Chr11]. Developers get a greater control over application design. They
use one single code base, but still get access to device features.

In a purely server-based system, all the business logic4 resides on the server. Having
the business logic on a server provides several benefits. First, it saves the client from
heavy computations, which is desirable because saved CPU cycles means saved battery
power [FZ94]. Second, if all the business logic is handled on the server side, less data
needs to be transferred to the client. Finally, since there is one place where all the business
logic is handled, optimisation through resource sharing and information caching is easier
to implement. Updates are also made easier, for instance, if one of the external service
providers decides to alter how their service is accessed, only one central update is needed.
If the business logic existed on the client, all existing applications would need to have their
code updated to handle the new service change.

In order to reach many users on different platforms, it is essential that the system relies on
technology standards that are widely accepted and implemented. The paper introduces a
prototype system is called MultiBRIS: a Multi-platform Bus Route Information System.
MultiBRIS gives access to a natural language bus route system for Trondheim. The system
is called BusTUC [Amb00] and was previously only available via the web or SMS, but
through MultiBRIS, it can now be accessed from multiple different smart-phone platforms.
The MultiBRIS work is based on a previous application developed specifically for the
Android platform [Raa10]. MultiBRIS extends and generalizes this into an application
for multiple platforms, supporting real-time bus route information, location tracking and
context awareness. All functionality from the previous native Android application has been
implemented, and the multi-platform application gives the user the look and feel “illusion”
of being a native application. The hybrid application strategy worked out as planned and
gave the benefits from using the multiple platform approach we were looking for, making
it possible to successfully create one application which can run on both Android and iOS
devices without the use of any platform-specific code.

The paper first describes other related bus route applications in Section 2, and then gives an
overview of the multi-platform application in Section 3. The benefits and improvements
rendered by the client-server solution are discussed in Section 4, while Section 5 concludes
and points to areas of future research.

4‘Business logic’ is a term relating to the functional algorithms that handle the information exchange between
a database and a user interface. In this paper, the term will be used to refer explicitly to the part of the system
that makes the actual computations and calls the external services.

73

2 State of the Art

To give an overview of the technology and functionality available in current smartphone
route guidance applications, this section first reviews two topical systems, Google Transit
and OneBusAway, and then makes a thorough comparison of the various smartphone-
based bus route information applications presently available in the city of Trondheim.

Google Transit is a general public transportation planning tool integrated with Google
Maps. It essentially consists of two parts: the Google Transit Trip Planner (GTTP) which
relates to the consumer of the service, and the General Transit Feed Specification (GTFS)
which is used by data providers (typically public transportation agencies) to feed the
Google Transit Service with data [Mor09]. GTTP lets users pose queries to the transit
system in three different forms: by address, by a location name with directional indicators
(NE, NW, SE, and SW), or by GPS coordinates. All queries are accompanied by date
and time, and query types can be combined. A result from GTTP displays both text and
directional lines on Google Maps. Google Transit offers a good way for users to directly
interact with the service. The drawback is the lack of APIs for external developers, making
it impossible for them to use the data in their systems. However, GTFS provides a good
starting point as to what data is needed in order to make a good public transport system.

OneBusAway is a set of transit traveler information tools developed for providing real-
time arrival information to Seattle area bus riders [FWB10]. It includes a trip planner, a
schedule and route browser, and a transit-friendly destination finder. The project has con-
centrated on tools for providing real-time arrival information and includes functionality
supporting location sensing. An iPhone application was created first, to exploit its local-
isation framework and built-in multi-touch map support. Later this was generalised in a
JavaScript-based experimental multi-platform web application for real-time arrival infor-
mation. A OneBusAway user study provided valuable user feedback for such applications,
including that the users want a bookmark functionality, enabling them to tap a bookmarked
destination at any time and receive route suggestions to it from their current location.

To find other bus route information applications in Trondheim, both the web, the Android
Market and the Apple App Store were searched. Table 1 compares the functionality of the
applications found on October 5th, 2011. The applications range from simplistic to more
sophisticated with lots of functionality, as indicated by the comparison chart.

Google Transit differs from the other systems by being purely server-based. All business
logic resides on the server. The client, which is a web browser, only handles the display of
information. For the Trondheim applications, it is interesting to note that the web-based
BarteBuss that has been created by means of HTML5 and JavaScript is the most fea-
ture rich and well-working application of them all. This hybrid strategy, using HTML5,
JavaScript, CSS, and a deployment technology can be used to easily create a client pro-
totype that works on several platforms. As discussed above, a server-based solution in
addition offers several other benefits, and is thus chosen here.

74

Buss- Barte- Buss- Alf’s Buss- BusApp Buss- Buss-
Orakel Buss tider Bybuss droid Tr.heim ruter øye

Platform A/iP web A/iP A A A A iP
Multi-Language Yes No No Yes No Yes No No
Cost No No No No No Yes No No
Favourites No Yes No No Yes No No Yes
History Yes Yes Yes Yes No Yes No Yes
Route download No No No Yes No No Yes No
Map function No OSM GM GM No GM No GM
Closest bus stops No Yes No No No Yes No Yes
Uses GPS No Yes Yes Yes No Yes No Yes

Table 1: Comparison of the bus route information applications available in Trondheim
A=Android, iP=iPhone, web=HTML5, OSM=OpenStreetMap, GM=GoogleMaps

3 System Overview

This section describes the prototype server developed during this project. First, the system
services are introduced and then a description of the technologies is given. The impor-
tance of a multi-platform application has been explained earlier. The languages HTML5,
CSS and JavaScript make it possible to create a multi-platform solution. In order to reach
out to all users, the application also needs to be available from a variety of application
stores which provide opportunities for publishing, advertisement and collecting fees. Hy-
brid applications are designed to give the advantages describes above using deployment
technologies. The disadvantages of the hybrid-solutions will dissipate as the deployment
technologies, along with the browsers on the devices, mature and become more robust.

The server offers three distinct services. Figure 1 shows a block diagram of the system.
The “main service” effectively replaces all the business logic implemented in the previous

Fain Service

BussTUC GtB Real
Time

Gdopted Business Hogic

FBServlet

Real-Time Service

GtB Real-Time

RealTimeServlet

Hogging Service

Ienerated Hog-files

HogServlet

JSON Factory

JSON Factory

Figure 1: Block diagram of the server system
(MB = MultiBRIS, JSON = JavaScript Object Notation)

75

Android application [Raa10] and is described in Figure 1. The system also includes a
“real-time service” where the client can send a bus-stop ID to the MultiBRIS server and
get a list of the exact time for the next five buses arriving at that stop. Finally, the server
provides a “logging system service” (for debugging purposes) which is easily accessible
through a web browser.

3.1 The Main Service

Figure 2 shows a complete interaction diagram for the main service.

The HTML returned from the BusTUC natural language system contains both a textual an-
swer and a JSON object, but TABuss only uses the JSON object. Calculating the distance
between two GPS coordinates is done on the server. The distance calculation is not as
trivial as just using the Euclidean distance, because of the approximately oblate spheroid
shape of the Earth. The distance (between two GPS locations) is therefore based on Vin-
centy’s inverse formula [Vin75], using the World Geodetic System (WGS 84) standard.

Phone Client MultiBRIS
Server

GPS coordinates and
destination name (1)

Ordered list of possible
buses to take (6)

BusTUC
ATB Real-
time

Request string (2)

Answer in part

HTML and part

JSON
(3)

Bu
s s
top
ID
s (
4)

Re
al-
tim
es
for
bu
s

sto
ps
req
ue
ste
d (
5)

Figure 2: Main service overview.
1: The client sends a desired destination and its current location to the MultiBRIS server. The server
looks up a fixed number of bus stops near the client’s location.
2,3: When the bus stops are found, a query is sent to the BusTUC web-interface which responds
with a set of the next scheduled bus routes from the clients destination to the target.
4,5: The MultiBRIS server then updates these routes with real-time departure times. The real-time
update is done by contacting a real-time system provided by AtB, the current public transportation
service provider in Trondheim.
6: The MultiBRIS server sends the updated route alternatives back to the client.

76

3.2 Technologies

The aim of MultiBRIS is to reach as many mobile device platforms as possible. This is the
key point when choosing a deployment technology, ruling out solutions like Appcelerator
Titanium that only supports iOS and Android (As well as solutions placing a heavy burden
on the developer to know a particular technology, e.g. Rhodes which requires knowledge
of Ruby and has an extensive API). Another prerequisite is that the framework should be
easy to use and be able to collaborate with other frameworks that can make it faster and
easier to create well-working GUI-components.

This is easier in PhoneGap5 than in the other deployment technologies. PhoneGap is
an open-source mobile development framework enabling software programmers to build
applications using JavaScript, HTML5 and CSS3. Our MultiBRIS client application does
not require heavy computing or graphics, so the performance weakness of PhoneGap is
not a big problem. We use PhoneGap as our deployment technology, together with the
Sencha Touch JavaScript library for graphical implementation.

The server technology used is Java Servlets, a technology which now is at version 3.0 and
has been around for over a decade. With Java Servlets, business logic can be written in
Java and then made available to consumers through servlets [Per04]. A Java servlet can
be published through any available servlet container, making it very portable. We chose to
use the Jetty6 servlet container which is made up of pure Java code, ensuring portability.

4 Results

Migrating the business logic from the phone to the server resulted in two clear benefits,
in addition to making the implementation easier: query time reductions were obtained by
introducing a new web-interface for BusTUC (Section 4.1), while both the amount of data
transfer and the power usage were reduced (Section 4.2).

4.1 Query Time Reduction

The MultiBRIS server has been optimised in two ways. Sharing the ”bus ID to bus-stop
live ID” lookup list between all the clients using the server, and by the introduction of
threading in the retrieval of real-time data for multiple bus stops. This resulted in compu-
tation times twice as fast as the original, as multiple threads can send queries in parallel,
instead of sequentially. However, the time from when the query was posed to the server
response was still too long, sometimes up to 30 seconds, since the MultiBRIS server had
to wait for answers from the BusTUC server. Hence speeding up the BusTUC server was
imperative for the practical usability of the entire system.

5http://www.phonegap.com/
6http://www.eclipse.org/jetty/

77

Temporary Communication
File

BusTUC Java Factory

Sicstus
Prolog

Prolog Response Filtering

Java Servlet (Web-interface)

BusTUC
Query

JSON or plain text
dependent on the

input

Figure 3: The BusTUC web-interface

As a response to this, a new web-interface for BusTUC was built, using Java Servlet tech-
nology with the same Jetty container as the MultiBRIS server. Figure 3 shows an overview
of the web-interface. When a query arrives at the Java Servlet, the query is sent to what
is called the BusTUC Java Factory. The BusTUC factory poses the query to the BusTUC
Prolog code, which, in turn, puts the answer into a temporary file. This file is then read
and filtered (in the Prolog Response Filtering Module) before the result is returned to the
Java Servlet. By creating a new BusTUC web-interface, a substantial reduction in query
time was achieved. The average query time was reduced from 15 to 6 seconds, but the
most important improvement was in the maximum query time, which was lowered to just
one third of the original (from 30 to 10 seconds).

78

Figure 4: Power usage with business logic on the client (left) vs. on the server

4.2 Server-side Testing

One of the results of moving the business logic to a server is a decrease in the data transfer
to the client. If all business logic were to be handled on the client side, all the data would
need to be transferred to the client. A lot of data needs to be transferred, since the business
logic requires one request to be sent to BusTUC, and several requests to be sent to a SOAP
service for the real-time data. By handling the business logic on the server, the server can
make all these requests to the various services. Since some of the requested resources can
be shared between all the clients using the server, the server can also relieve the external
services from heavy request load, by caching the results.

The average data transfer for the client before and after the business logic was moved to
the server was reduced from 570 KB to 5 KB (measured with WireShark 1.6.1; the client
used was an AppleWebKit 535.2 based browser). The measurement scenario consists of
starting the client and making (a bus route alternatives) query, that is, using the “main
service” on the MultiBRIS server (Section 3.1). This scenario was chosen as it would
represent the most natural usage pattern. About 400 KB of (extra) transferred data comes
from downloading the live ID to bus-stop ID list from AtB. Regarding the saved power
usage, Figure 4 shows a comparison between power usage for having business logic on the
client and on the server. The topmost graphs display the total amount of milliwatts (mW)
usage for each application, and clearly show that the solution where the business logic is
on the client consumes more power than the server-based solution.

79

(a) Results shown on the map (b) Close-by bus stops (c) Real-time information

Figure 5: Screenshots

4.3 The Client Application

When the MultiBRIS client application starts it tries to retrieve the user’s current location.
A search bar always resides on top of the application, giving the user quick access to bus
route search functionality from wherever the user has navigated in the application. The
search bar has an auto-complete function that suggests bus stops in Trondheim.

As the result of a search query, the user is presented with a list of the five most optimal
bus routes, sorted by total travel time. The user can either tap on the most suitable result
to switch to the map and view the target bus stop and travel route to that bus stop, or click
on a map tab and be presented with all the bus stops in the result. Coloured lines show the
user how to get to the respective bus stops from the current location (Figure 5a).

The map of the application consists of a Google Map with added functionality. The current
location is centered on the map when the user taps the “Meg” (me) button. In the map tab
the user can also click on “Nær meg” (close to me) to add nearby bus stops to the map
(Figure 5b). The user may click on a bus stop to get real-time information on the next
five buses passing through it. Buses are marked in red if they have actual real-time values,
or black if only scheduled times are available. If any of the buses are among the user’s
previous search results, they are also marked with an “*” (Figure 5c).

80

5 Conclusions and Future Work

The implementation of the MultiBRIS server and update of the BusTUC web-interface
proved successful. The system as a whole went from having a client-application that
transferred up to 500 kB of data for a bus route query and a query time that was around 20
seconds, to transferring only 5 KB of data and having query times at around 10 seconds.
Saving both time and data transfer was imperative for the practical viability of the client.
When looking at the power usage in Figure 4, a surprising property was revealed: the
difference in power usage in a large part comes from the extra data transferred and not
from more CPU usage. Normally, the CPU cycles and the display are portrayed as the
main battery power consumers; however, the results here indicate that data transfers can
consume as much power as CPU cycles in some cases.

As shown, there are a lot of benefits from moving much of the business logic to a server.
The client saves battery and it is easier to maintain and update the system. However,
there are some possible drawbacks with adding a server as part of the solution. Doing this
effectively creates another layer which the information has to pass through to reach the
client, adding another point which can potentially fail to work properly. Another aspect
is that the server, when used in a production environment, needs proper infrastructure as
a foundation in order to be reliable enough for any client to use. Hence, in a commercial
solution, the infrastructure cost for a server-infrastructure has to be considered.

An interesting extension would be to look at systems taking intelligent decisions on where
to compute, such as Spectra [FPS02] which dynamical decides whether to perform compu-
tation on the server or on the client. “Spectra” monitors resource usage both on server and
client, and makes an “optimal choice” based on given system parameters. This functional-
ity could be implemented for MultiBRIS so that if, for example, the MultiBRIS server was
under such heavy load that it would delay query times, the clients could be instructed to
perform the route calculations and contact the underlying services themselves. However,
this would make the client code grow substantially, as it would need to contain all the
business logic necessary to perform computations and service calls.

Acknowledgments

Thanks to to LingIT AS and AtB AS for allowing the use of the BusTUC and the real-
time bus information services, respectively; to Chistoffer Jun Marcussen and Lars Moland
Eliassen for their valuable ideas and feedback during the project; and to Magnus Raaum
for providing the source code of the original Android application.

Special thanks to Tore Amble: your memory lives with us and with the BusTUC system
which you devoted so much of your life to.

The work of the third author was partly funded by the Research Council of Norway,
through the project 187865/S10 UbiCompForAll.7

7http://www.sintef.no/Projectweb/UbiCompForAll/

81

References

[Amb00] Tore Amble. BusTUC: A Natural Language Bus Route Oracle. In 6th Conference on
Applied Natural Language Processing, pages 1–6, Seattle, Washington, 2000. ACL.

[Chr11] Adam M. Christ. Bridging the Moble App Gap. Sigma, 11(1):27–32, October 2011.
Special Issue: Inside the Digital Ecosystem.

[FPS02] Jason Flinn, SoYoung Park, and M. Satyanarayanan. Balancing Performance, Energy, and
Quality in Pervasive Computing. In Proceedings of the 22nd International Conference
on Distributed Computing Systems, pages 217–226, Vienna, Austria, July 2002. IEEE.

[FWB10] Brian Ferris, Kari Watkins, and Alan Borning. OneBusAway: Location-Aware Tools for
Improving Public Transit Usability. IEEE Pervasive Computing, 9(1):13–19, January–
March 2010.

[FZ94] George H. Forman and John Zahorjan. The Challenges of Mobile Computing. IEEE
Computer, 27(4):38–47, April 1994.

[Mor09] Daniel Moraff. Google Transit Feed Specification: A Primer. Website, November
2009. http://www.eot.state.ma.us/downloads/developers_beta/

MassDOT_GTFS_Primer.pdf.

[Pad11] Richard Padley. HTML5 - bridging the mobile platform gap: mobile technologies in
scholarly communication. Serials, 24(3):S32–S39, November 2011.

[Per04] Bruce W. Perry. Java Servlet & JSP Cookbook. O’Reilly Media, Sebastopol, CA, USA,
January 2004.

[Pet11] Christy Pettey. Gartner Says Sales of Mobile Devices Grew 5.6 Percent in Third Quarter
of 2011; Smartphone Sales Increased 42 Percent. Website, November 2011. http:

//www.gartner.com/it/page.jsp?id=1848514.

[Raa10] Magnus Raaum. An Intelligent Smartphone Application. Master’s thesis, Department of
Computer and Information Science, Norwegian University of Science and Technology,
Trondheim, Norway, June 2010.

[Vin75] Thaddeus Vincentry. Direct and Inverse Solutions of Geodesics on the Ellipsoid with
Application of Nested Equations. Survey Review, 23(176):88–93, April 1975.

82

SESSION 3

Health, Wellness and Emergency Support

Marius Mikalsen, Ståle Walderhaug, Dario Salvi, Geir Kjetil Hanssen

Key Technological Success Features for a Domain Specific Open Software Ecosystem
for Ambient Assisted Living ...84

Davy Preuveneers, Andreas D. Landmark, Leendert W. M. Wienhofen

Probabilistic Event Processing for Situational Awareness...96

Volkmar Schau, Kathrin Kirchner, Steffen Späthe, Sebastian Scharf, Stefan
Hellfritzsch, Gerald Eichler, Christian Erfurth, Wilhelm Rossak, Jens Reichel

Simulation of Rescue Forces Communities in Mass Causal Incident Situations108

83

