
M. Meier, D. Reinhardt, S. Wendzel (Hrsg.): Sicherheit 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 23

Distributed Evolutionary Fuzzing with Evofuzz

Fabian Beterke1

Abstract: This paper describes the design of a tool (called Evofuzz) that implements the technique
of evolutionary (or coverage-guided) fuzzing in a scalable, distributed manner. The architecture,
design-choices and implementation specifics of this tool are examined, explained and criticized.
After outlining possible improvements and future work that is not yet completed, the paper finishes
by presenting the results from fuzzing real-world programs and explains how to recreate them using
the provided tool.

Keywords: Fuzzing, Fuzzer, Evolutionary, Distributed Computing, Evofuzz, Security Research,

Memory Corruption

1 Motivation

After the concept of fuzzing [Mi88] was introduced by Barton Miller (University of Wis-

consin) et al. in 1988, the techniques and its variations have led to the discovery of in-

numerable issues, particularly in the field of memory-corruption vulnerabilities. Since

then, the technique has evolved drastically into numerous branches like the original ran-

dom fuzzing, generative fuzzing and mutation-based fuzzing. While those techniques have

been implemented, analyzed and evaluated numerous times before, the idea of guiding the

fuzzing process (i. e. the search through the target-program’s state-space for unexpect-

ed/undefined behavior) by code-coverage is relatively new, the first public mention be-

ing with the goal of exhaustively testing the program without a brute-force approach of

simply generating every possible input. While evolutionary fuzzing has been proposed in

2007 already by DeMott et al. [DEP07], no public and general-purpose implementation

has been available until in February 2014, M. Zalewski published American Fuzzy Lop

[Za15] (subsequently referred to as AFL). AFL has since showed a tremendous story of

success, uncovering hundreds of bugs in otherwise well researched and widespread soft-

ware which is due to its careful balance between a capable concept of mutating data in

an evolutionary fashion and maintaining a sense of pragmatism, e. g. in terms of always

keeping performance (measured in runs of the target program per second) the major focus

because more runs always mean a higher likelihood of discovering crashes. A restricting

factor for this metric however is the single-threaded design of AFL: Concurrently running

it on a few dozen machines can be a very cumbersome task since it can only be achieved

by copying over temporary files from one node to another and running each process in-

dependently, and since the target programs are run on a single core only, no performance

gains can be observed from the use of multicore systems. A customizable, distributed-by-

design, evolutionary general-purpose fuzzer would solve those problems which motivated

the author to start working on a scalable, coverage-guided fuzzing architecture.

1 Universität Hamburg, SVS, Vogt-Kölln-Straße 30, 22527 Hamburg, 2beterke@informatik.uni-hamburg.de



24 Fabian Beterke

2 Background: Evolutionary Fuzzing

While of course the ultimate measurement for a fuzzer is the number of unique crashes

it found, there are a few other metrics to orientate at when designing a new fuzzer, the

most important one being code-coverage. Since the likelihood of finding issues increases

with the amount of actual code that is being tested, covering as much functionality as

possible is a valid (and measurable) metric for the success of a fuzzer. One of the most

prevalent questions when designing a new fuzzer is whether the testcases for the target

program should be generated entirely from scratch or as mutations of already existing

inputs – the so-called corpus [MP07] – to achieve a high coverage and find numerous

bugs. For a general purpose fuzzer that needs no further description of the input data

than the samples in the corpus, many different mutation strategies (like e. g. flipping bits,

inserting or removing bytes and performing arithmetic operations on chunks of the input)

are needed in order to be flexible enough to handle various formats well. If however no

big and coverage-rich corpus is available, the options can become sparse very quickly and

hand-writing a new grammar for each format to be (generatively) fuzzed is a very time-

consuming task.

Another option emerges if the problem of fuzzing a program for memory-corruption bugs

is seen from another angle: essentially, fuzzing is nothing else than a search through the

state-space of the program for crashing states. The formerly mentioned metric of code-

coverage can be seen as a distance function: The more functionality (coverage) a testcase

triggers, the higher the likelihood of discovering vulnerabilities when mutating it. The term

evolutionary fuzzing (coined by DeMott et al. with their talk at Defcon 2007 [DEP07])

refers to this technique which can be summarized by the following algorithm:

1. Seed input queue with corpus

2. Pop a single testcase from the queue, generate mutations and execute

3. If one of the mutated inputs led to execution of previously unexecuted code: add

testcase to input queue

4. Repeat from 2. until input queue is empty

This algorithm has the property of exploring the target program’s state-space through

evolving the input given to the program. While of course, starting from a good corpus

drastically improves the overall performance of the fuzzer (i. e. in terms of achieved input

complexity vs. CPU cycles spent), an experiment [Za14] by M. Zalewski (the author of

AFL) showed that even an absolutely meaningless input with basically no coverage can

be used as a corpus for a good evolutionary fuzzer to produce coverage-rich inputs. In this

extreme example, Zalewski used only one file containing the ASCII-string “hello” as an

initial corpus for fuzzing the target, a JPEG decoder. After just one day of fuzzing, AFL

generated a wide array of actually valid JPEG files that make use of a variety of JPEG

features – an excerpt of this experiment’s results is shown in Figure 1.



Distributed Evolutionary Fuzzing with Evofuzz 25

Fig. 1: JPEG images generated mutationally by AFL [Za14]

3 Measuring Code Coverage with LLVM’s SanitizerCoverage

In order to develop such a coverage-guided fuzzer, it is crucial to gather data about the pro-

gram’s actual execution flow under a certain input, giving insight about the fuzzer’s code-

coverage. The LLVM Compiler-Suite offers a solution to this problem with a compile-time

instrumentation called Sanitizer Coverage [Te15], or Sancov for short. At compile time,

the tool’s user has to choose between two relevant modes of code-coverage as they are

offered by Sancov:

Basic-Block Level:

A widespread way to track coverage is to instrument every generated conditional jump

instruction, effectively splitting the code into basic blocks of execution. Those blocks are

the unit for the block level coverage method which can be illustrated by the following,

C-like pseudocode:

1 int reset(int *x) {

2 if(x) // A

3 *x = 0; // B

4 return 1; // C

5 }

While line 1 and 5 are irrelevant since they contain no control-flow altering logic, basic

blocks in the assembly code generated from that snippet would be line 2 (A), 3 (B) and 4

(C). The comparison in block A takes place once the function is called, the write-operation

in block B is dependent on the former comparison and the return instruction in block C is

again executed unconditionally. Sancov offers output for this measurement in two differ-

ent formats which may be chosen at runtime through an environment variable, either a list

of instruction-pointers for basic-blocks (i. e. their first instruction’s address) or a ASCII-

bitmap where each index corresponds to a basic block and a 0 or 1 character indicates

whether the block was executed or not. This level of instrumentation has a runtime over-

head of around 30% on average, depending on the properties of the instrumented program.



26 Fabian Beterke

Edge Level:

When imagining the execution flow as a graph of basic-blocks, a shortcoming of sim-

ple block-based coverage measurement emerges. While the coverage actually measured

by block-level instrumentation relies on executed basic blocks (the graph’s vertices), the

edges in this graph represent state transitions which are more meaningful than pure basic

blocks because a bug can seldom be found in a basic block alone but rather emerges from

a faulty state transition. In the example code, without prior knowledge about the logic uti-

lized by the program it is not clear whether a state transition from A to C happened only

via B or directly, without invoking B first. Those edges are called critical edges, and by

introducing dummy basic-blocks into those edges, the execution graph’s edges can be in-

strumented analogous to basic-block coverage. This again increases the runtime overhead

to 40% on average.

Fig. 2: Comparison between Block Coverage (left) and Edge Coverage (right)

4 Distributed Fuzzing: Problems and Challenges

The high-level organisation of the fuzzer follows a master-worker pattern in which a

master-node is responsible for multiple workers, but multiple masters can be present if

needed. While the master-node keeps the state of the overall fuzzing process, governs

the testcase-queue and analyzes e. g. logfiles of crashes or code-coverage information, the

worker-node’s purpose is to execute testcases specified by the master and report the exe-

cution results back.

In order to avoid complex synchronization scenarios between a multitude of worker-nodes,

one of the fuzzer’s major design goals is to keep as little state as possible and do it on the

master-node(s) only, wherever possible in the (itself distributed) persistent storage engine.

This design allows the fuzzer to be scaled infinitely in theory. Since worker- and master-

nodes are connected via a network-connection, one of the aims for a high throughput of

target-program executions is to keep the network’s bandwidth-utilization as low as possi-

ble. The problem that must be solved to achieve this is to actually produce the mutations

on the worker-node itself and execute them right away while still centrally guiding the

fuzzing process by e. g. specifying the testcase to be mutated, which mutation should be

used as well as the amount of mutated testcases to produce.



Distributed Evolutionary Fuzzing with Evofuzz 27

5 Designing Evofuzz: Architecture and Implementation

Master

The master server is written in Python 2.7 and is responsible for central, stateful tasks. Its

main functionalities are bundled into modules, each run in their own thread and commu-

nicate via a simple, message-passing based IPC implemented using the threading.Queue

class. The persistence layer is built around Redis [SN10] (short for “Remote Dictionary

Server”), an in-memory database with optional persistence to disk that offers simple but

effective datastructures like e. g. hashes, lists and sets. Redis itself is highly scalable, on the

one hand in a redundant way with many synchronized nodes propagating updates through

the cluster to form a high-availability system with failover capabilities (called Redis Sen-

tinel) and in a sharded fashion on the other hand (Redis Cluster), theoretically allowing the

fuzzer to utilize up to 214
= 16384 nodes as one big, distributed in-memory database (this

number is an artifact of Redis Cluster’s implementation, however the authors recommend

1000 nodes as a reasonable upper limit for stable operation).

Notable modules of the master include the ProvisionServer which provides (target pro-

gram) binaries, testcases and configuration to the workers on request and the ReportServer

which generates a job description for the next chunk of work to be sent out to the worker

while at the same time receiving their reports. The latter are redirected to the ReportAn-

alyzer module which is responsible for implementing the evolutionary fuzzing-logic of

enqueuing mutations of testcases that lead to previously unexecuted code. Additionally,

signatures of the newly found basic-blocks (or edges if that coverage method is used)

are pushed to the UpdatePublisher, a caching layer that propagates those newly found

signatures to the worker-nodes in order to prevent a high network utilization by useless

re-submissions.

Fig. 3: Master Architecture and Overview



28 Fabian Beterke

Worker

Since the main purpose of a worker node is to mutate data and actually run the target-

program as fast as possible and at the same time, keep as little state as possible, the author

chose to develop it in Javascript (JS) using NodeJS. The main reason for this choice is

the comparably easy implementation of asynchronous, heavily callback-oriented actions:

nearly all APIs to the underlying Operating System’s features like spawning processes or

doing network-/fileystem-IO are available as fully asynchronous versions by default since

JS embraces this style of programming. Also, NodeJS is powered by Google’s V8 JS in-

terpreter which makes use of just-in-time compilation, leading to negligible performance

disadvantages compared to native languages like C or C++ while being suited for explo-

rative, rapid development due to JS being a memory-safe and loosely typed language.

Fig. 4: Worker Architecture

As shown in the figure above, the worker architecture is again separated into a parent and

one or more multiple child processes. The parent process manages the connection to the

master-node and initializes the fuzzing-loop by requesting a provision from the master,

effectively setting up the (virtual) machine this process is running on by e. g. transfer-

ring the target program and it’s command line arguments and environment variables from

the master. Other responsibilities include buffering reports (coverage and crash informa-

tion) before sending them to the server in chunks, subscribing to the UpdatePublisher and

maintaining a cache to prevent redundant reports as well as load-balancing incoming work

between children.

Those children-processes implement the actual generation of testcases, generating all pos-

sible mutations of a certain kind for a single testcase before starting to use the next mu-

tation. Furthermore, those processes execute the target program with the mutated input,

collect the Sancov-output and probe for the existence of a crashlog after each run and

eventually send the results of those operations up to the parent process for reporting to the

master.



Distributed Evolutionary Fuzzing with Evofuzz 29

6 Performance and Scalability

The design outlined in the previous section allows the fuzzer to be scaled arbitrarily in the-

ory while this has practical limitations of course (e. g. the resources of the machines used,

the network connection between them or database capacities). The actual performance in

terms of execution runs per second however is highly dependent on the inner loop, i. e. the

execution of a single testcase. Because of the use of AddressSanitizer (another sanitizer

from the LLVM suite that instruments memory accesses to detect e. g. out-of-bounds reads)

and Sancov in conjunction with the lack of in-process fuzzing mechanisms for the sake of

genericness, this performance-critical part of the fuzzing loop is not (yet) as optimized as

it could be – currently, the fuzzer exhibits between 120 and 150 runs per second per core

on average with a Intel Xeon CPU (E5-2630L) clocked at 2.4GHz (AFL for comparison

reaches around 800 executions per second on this CPU but can only utilize one core), obvi-

ously varying wildly for different target programs. As stated previously, this shortcoming

can be overcome easily by scaling horizontally, i. e. adding more worker nodes to the clus-

ter due to the fuzzer’s distributed design. The reason why this is a necessary requirement

for a long-running fuzzer is that performance may not only be measured in runs per second

or the percentage of basic-blocks discovered but also in terms of cost-effectiveness: It is

a lot cheaper to rent 100 separate machines with 1 core each for an hour than it is to rent

a single 100-core machine while at the same time, the latter is also more prone to error

due to being a single point of failure. Furthermore, effectiveness is influenced by resource

utilization: It is mandatory for the fuzzer to utilize all available ressources at all times,

meaning 100% CPU utilization at every point in time for a worker node and preferably

very little load on a master node so that new work may be handed out without latency, thus

preventing idle times (as shown in Figure 5).

Fig. 5: CPU utilization on different node types

(a) Master (1 CPU, 512M, 30 Workers)

(b) Worker



30 Fabian Beterke

7 Usage

Prior to configuring and starting the fuzzer, the user needs to compile the desired target

with AddressSanitizer and Sancov enabled. This boils down to the use of 2 simple com-

mand line flags in a recent version of clang:

clang target.c -fsanitize=address -fsanitize-coverage=X

where X is replaced by a number to indicate which coverage instrumentation should be

used, i. e. 2 for block-level and 3 for edge-level coverage. The actual usage of the fuzzer

can be summarized into 3 high-level steps:

1. Initialize Redis with config and corpus using project-specific initRedis.sh (lo-

cated in misc/)

2. Run master.py on master node

3. Start desired number of worker nodes and run worker.js <master IP>

This process can of course be automated for specific cloud-computing hosters, making

use of their APIs for e. g. fully automated deployment of an arbitrarily sized fuzzing clus-

ter. While the results outlined in this paper have mainly been produced by using Digital

Ocean, a deployment on e. g. Amazon Web Services would work analogous. After a suc-

cessful fuzzing run, crashes may be extracted from the database by simply running the

utility in misc/analyzeCrash.py.

Fig. 6: Set up of the fuzzer + CLI interface while running



Distributed Evolutionary Fuzzing with Evofuzz 31

8 Results

The three main objectives of the evolutionary fuzzer as outlined in this paper are a design

that enables it to be scaled horizontally on commodity hardware, the ability to discover

more complex inputs leading to previously unseen behaviour as well as finding crashes,

obviously. The design choices that allow the fuzzer to achieve the first of the mentioned

goals have been explained in depth in the previous parts, the fulfilment of the second

objective can be measured easily by keeping track of the number of discovered basic blocks

in an exemplary target program (libharfbuzz in this case, an advanced font parsing

library used e. g. in Google Chrome). Also, the general effects of lowering the time needed

to trigger the execution of those new basic blocks by simply adding more workers to the

cluster has been successfully demonstrated (see Figure 7, comparability is given since

only deterministic mutations have been used for this measurement). In a few test runs

conducted with various numbers of worker nodes, the fuzzer was able to discover crashes

in numerous targets, including libharfbuzz, libfreetype, speexdec and p7zip just

to name the most important ones. It has been shown that the tool fulfills all of it’s objectives

in a sufficient, though still improvable way.

Fig. 7: Discovery of basic blocks with different numbers of workers in libharfbuzz

9 Criticism and future work

A few known issues in the actual implementation (rather than the design) exist at the

current point of development that have not yet been tackled because of time constraints.

The main problem the author currently faces in terms of performance improvements is

the inner-loop optimization in order to make the fuzzer yield more executions per sec-

ond per core: the possibilities of the implementation in Node.js have been exhausted to a

maximum, meaning that further improvements like generic in-process fuzzing or forkless

execution as well as saving copy- and process-spawning overhead would need a rewrite of

the worker-implementation in C/C++ or another hardware-close language that compiles to

native code and allows more fine granular access to the underlying operating system’s API.



32 Fabian Beterke

Another major improvement would be automatic testcase minimisation, the so called prun-

ing: once a testcase leading to new behaviour is found, it could be repeatedly trimmed in

size at different positions while examining which is the smallest mutation (by number of

bytes) that still leads to the exact same behaviour of the target program.

An improvement that was planned but not yet implemented is the automated reproducibil-

ity check for crashes: A crash that can not immediately be reproduced is worthless for

the fuzzing process since there may be numerous indeterministic reasons why a program

could crash without the crash being related to the actual input which is why those inputs

should be instantly discarded rather than having the user figure out which crashes can be

actually reproduced. Finally, the software could be made more usable by a more intuitive

interface, e. g. a Web-Interface.

10 Conclusions

The author proposed a design for a distributed, evolutionary fuzzing solution that may

be used with arbitrary target programs (as long as they are available in source code and

compile in clang / clang++) and as such, is generic. An upper limit for its scalability is yet

to be found and the fuzzer behaved as expected even in tests with more than 50 worker

nodes, yielding over 100,000 executions per second in total. The tool introduced in this

paper may be used by developers or security researchers alike to fuzz for security bugs,

even if no sophisticated corpus is available for the target program. Also, the codebase is

kept quite small as well as comparably clean and modular, enabling interested parties to

improve or customize the solution for their individual needs and expectations.

References

[DEP07] DeMott, Jared; Enbody, Richard; Punch, William: , Revolutionizing the Field
of Grey-box Attack Surface Testing with Evolutionary Fuzzing. https:
//www.blackhat.com/presentations/bh-usa-07/DeMott_Enbody_and_Punch/
Presentation/bh-usa-07-demott_enbody_and_punch.pdf, 2007. Talk at
Blackhat.

[Mi88] Barton Miller: Random fuzz testing. http://pages.cs.wisc.edu/~bart/fuzz/, ac-
cessed 8.12.2015.

[MP07] Miller, Charlie; Peterson, Zachary N. J.: , Analysis of Mutation and Generation-Based
Fuzzing, 2007.

[SN10] Salvatore Sanfilippo: Redis. http://redis.io, accessed 8.12.2015.

[Te15] The Clang Development Team: Sanitizer Coverage. http://clang.llvm.org/docs/
SanitizerCoverage.html, accessed 8.12.2015.

[Za14] Michal Zalewski: Pulling JPEGs out of thin air. http://lcamtuf.blogspot.de/2014/
11/pulling-jpegs-out-of-thin-air.html, accessed 8.12.2015.

[Za15] Michal Zalewski: American Fuzzy Lop’s technical details. http://lcamtuf.
coredump.cx/afl/technical_details.txt, accessed 8.12.2015.


