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Abstract: In the future, vulnerable road users (VRUs) such as cyclists and pedestrians will be
equipped with smart devices capable of communicating with intelligent vehicles and infrastructure.
This allows for cooperation between all traffic participants, such as cooperative intention detection
and future trajectory prediction for advanced VRU protection. Smart devices can be used to detect the
pedestriansŠ intentions to warn approaching vehicles. In this article, we propose a method based on
human activity recognition for early pedestrian movement transition detection using smart devices.
These movement detections serve as valuable information for pedestrian path prediction and intention
detection. We represent the pedestriansŠ behavior using four states, i.e., waiting, starting, moving, and
stopping. The movement transition detection is modeled as a classiĄcation problem and tackled by
means of machine learning classiĄers. The labels for training the classiĄer are obtained by evaluation
of recorded high-precision head trajectories. We compare two different classiĄcation paradigms:
A simple support-vector machine with linear kernel and a more complex XGBoost classiĄer. Our
empirical studies with real-world data originating from experiments which 11 test subjects involving
79 different scenes show that we are able to detect movement transitions robust and early, reaching an
F1-score of 85%.
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1 Introduction

1.1 Motivation

In our work, we envision the following mixed traffic scenario in which intelligent, automated
vehicles, trucks, sensor-equipped infrastructure, and vulnerable road users (VRUs), such
as pedestrians and cyclists, equipped with smart devices (e.g., smartphones and other
wearables) are interconnected by means of an ad-hoc network. The collective intelligence
of all road users is used to determine and maintain a cooperative model of the current
(traffic) environment [Bi17a]. To avoid accidents involving vehicles and VRUs, it is not
only important to detect VRUs but also to anticipate their intentions. Modern vehicles are
equipped with forward looking active safety systems (e.g., radar), nevertheless, dangerous
situations involving VRUs may occur as a result of sensor malfunctions or occlusions.
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Fig. 1: An example of a dangerous situation in
an urban environment. A pedestrian is intending
to cross the street occluded by the bus such that
it cannot be seen by the approaching car. The
smart device worn by the pedestrian anticipates the
pedestrianŠs intention and transmits a warning to
the approaching car such that a potential collision
is avoided.

Figure 1 shows a typical critical occlusion
situation involving a pedestrian intending
to cross the street while a vehicle hidden be-
hind the bus is approaching. Smart devices
worn by the pedestrian could anticipate the
pedestrianŠs intention to cross the street and
transmit it to the approaching car. Then,
a driver warning or automated emergency
breaking maneuver can be issued avoiding
a potentially fatal accident. The challenge
is to detect a movement transitions fast and
yet reliable. For illustration consider the
following example of an urban scenario:
An automated vehicle is approaching with
50 km/h and has a braking deceleration of
8 m/s2. If the breaking maneuver is initiated
15 m ahead of the crossing pedestrian, the
car will come to a standstill 3 m before the
pedestrian. After the pedestrian has entered
the driving corridor, the control system of
the vehicle has 0.58 s to initiate a braking
maneuver and to avoid an accident. Never-
theless, the detector must also be robust, i.e., avoid false positive detections potentially
leading to unnecessary emergency braking maneuvers.

Modern smart devices are equipped with integrated global navigation satellite system
(GNSS) receivers and inertial sensors (i.e., accelerometer and gyroscope). In contrast to
GNSS-based sensing, inertial sensors are not affected by GNSS outage (often encountered
in urban environments) and, moreover, are available at a high sample rate, enabling the
detection of fast movement transitions, i.e., within half a second. Our approach to early
detection of pedestrian movementŠs is based on human activity recognition (HAR) [BBS14]
and machine learning techniques using inertial sensors, only. The focus of this article is
the early and robust movement detection of pedestrians. The results can be used to support
trajectory forecasting, e.g., as presented in [Bi17b].

1.2 Main Contribution

Our main contribution is an approach based on HAR and machine learning using inertial
sensors to detect pedestrian movements. The approach is based on an adaption of the
cyclistŠs starting movement detection approach using smart device as presented in [Bi18a].
The movement detection is modeled as a classiĄcation task. In this article, we consider
the following aspects: Ąrst, modeling of the pedestrianŠs behavior using four states and
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the detection involving multi-class classiĄcation based on HAR. Second, a comprehensive
evaluation of the approach for pedestrian movement detection, showing promising clas-
siĄcation performance. These results can then be used to improve pedestrianŠs trajectory
forecast [Go16] and ultimately increase safety. In this article, we considered an off-line
evaluation of our approach with real data. Aspects concerning algorithmic runtime and
processing time are neglected.

The remainder of this article is structured as follows: In Section 2 the related work is
reviewed. In Section 3, the general pedestrian behavior modelling, the method for ground
truth label generation, and the approach to detect pedestriansŠ movements are detailed.
In Section 4, the evaluation methodology as well as the data acquisition is presented. In
Section 5, the experimental results are reviewed before Ąnally in Section 6, a conclusion is
drawn and possible directions of future work are sketched.

2 Related Work

As it was shown in [Bi17b], early knowledge of the movement of VRUs can support the
trajectory forecast. Most of the research in intention detection relies on vision-based solutions,
e.g., [KG14,Ko14] the authors showed a promising approach for vehicle-based pedestrian
detection and short-term forecasting using cameras. Vision-based approaches require line of
sight and fail in the presence of sensor-outage and occlusions. Yet, many dangerous situations
occur as a result of occlusion. Cooperative intelligent transportation systems (C-ITS) aim to
overcome this shortcoming by means of cooperation between the different vehicles including
smart devices worn by the VRUs [SvSM17]. Using Car2Pedestrian (C2P) communication,
vehicles and smart devices carried by the VRUs can cooperate [FD09], i.e., the smart
device can share the current VRUŠs position, velocity, and heading to avoid potential
collisions. In [En13], a system relying on C2P communication for tracking pedestrians was
proposed. It combines GNSS data with inertial sensors allowing to transmit position and
movement type to an approaching car. A smartphone-based collision avoidance system is
proposed in [BMD17], where additional context information obtained from a pedestrianŠs
smart device is used to improve the collision detection accuracy. A collision avoidance
system based on 5G/LTE given in [JMD18] identiĄes VRUs in potentially dangerous
situations based on information about the location and movement direction. An approach
to cooperative perception and intention detection of cyclists including smart devices is
presented in [Bi17b] and [Bi18b]. Here, we will present the basis for the extension of these
cooperative approaches to also cover pedestrians.

3 Methodology

We aim at detecting pedestrianŠs movement transitions using smart devices carried by
the pedestrian. The pedestrianŠs movements are modeled using four different states, i.e.,
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ŠwaitingŠ, ŠstartingŠ, ŠmovingŠ, and ŠstoppingŠ. Based on these states, we deĄne four distinct
classes for which we obtain labels by inspection of the pedestrianŠs head trajectory [Go16].
Subsequently, the movement detection is modeled as a classiĄcation task. Whereas the
movement detector, which aims to detect the current movement state, is realized by means of
a HAR pipeline [BBS14] using the inertial sensors of the smart device, i.e., accelerometer
and gyroscope as input.
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Fig. 2: Process for basic movement detection of pedestrians based on smart devices

The HAR pipeline underlying our approach to detect the pedestrianŠs movement is depicted
in Fig. 2. It consists of four steps: Ąrst, preprocessing of the acceleration and gyroscope data,
second, segmentation and feature extraction, third, feature selection and dimensionality
reduction, and Ąnally, classiĄcation by means of machine learning classiĄers, i.e, support-
vector-machine with linear kernel (linear SVM) and extreme gradient boosting classiĄer
(XGBoost) [CG16].

In the remainder of this section, we Ąrst introduce the pedestrianŠs behavior model and the
automated labeling procedure. Subsequently, we present the four steps of our approach.

3.1 Pedestrian Behavior Model and Class Labeling

We model the movement of pedestrians using a state machine consisting of four different
states [Go16]. A schematic of this state machine is depicted in Fig. 3 (a). Transitions in
the state machine correspond to changes in the movement dynamics of the pedestrianŠs
behavior. As it was shown [Go16], the integration of this four-state behavior model can help
to signiĄcantly improve the intention detection performance, i.e, the pedestrian trajectory
forecasting quality. The movement states of the pedestrian are deĄned via the velocity
derived from the pedestrianŠs trajectory. In Fig. 3 (b), there is an example of velocity which
is ordered according to the four different movement states. The deĄnition of these movement
states, i.e., the labeling of the classes, follows the approach presented in [Go16]. It uses
thresholds deĄned on the absolute velocity derived from the pedestrianŠs head trajectory.
Moreover, it is based on the observation that pedestrians typically possess a steady-state
velocity. In order to get high quality labels, i.e., avoid cluttered segmentation labels, the
trajectory is smoothed using a mean Ąlter. An offline processing is necessary to compensate
for the delay introduced by the mean Ąltering of the input signal. Waiting is deĄned as the
time segments for which the pedestrianŠs velocity is below a predeĄned waiting threshold,
which is set to 0.2 m/s [Go16]. Waiting is followed by the starting movement, i.e., velocity
exceeds the waiting threshold. The end of the starting movement and the transition to
moving are deĄned by means of a moving threshold. The user dependent moving threshold,
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which is motivated by the steady-state velocity of pedestrians, is set to 80 % of the maximal
velocity of the pedestrian within the considered experiment. Stopping follows moving and is
deĄned as the velocity falling below the moving threshold. Yet, a movement is only labeled
stopping if it is followed by a waiting (i.e., velocity falls below the waiting threshold). If
this is not the case, the potential stopping segment is labeled as moving. Hence, detecting a
stopping movement can also be considered as a forecasting task.

The deĄnition of the movement states via the velocity cannot be directly used for detection
using smart devices, as it involves offline processing methods. Therefore, in the following
we present our approach based on HAR which aims to detect the four states by means of
classiĄcation.
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(a) State machine of the pedestrian model (b) Labeling

Fig. 3: Labeling of the pedestrian states based on head trajectories. Waiting: The pedestrian is standing
in a place(moving of the upper body or head is possible). Starting: The pedestrian starts to move from
a waiting status and reaches a steady-state velocity. Moving: The pedestrian is moving or walking,
continually. Stopping: The pedestrian starts to decelerate and Ąnally stops.

3.2 Preprocessing, Feature Extraction, and Feature Selection

Our approach uses the smart deviceŠs inertial sensors, i.e., data originating from gyroscope
and gravity compensated accelerometer measurements sampled with 50 Hz. The three
components (x, y, and z) of both sensors are transformed using the orientation estimation
supplied by the smart deviceŠs operating system. The resulting local tangential coordinate
frame is leveled with the local ground earth plate, i.e., the z-axis is pointing towards the
sky. We avoid the tedious estimation of the transformation between the device and the
pedestrian orientation by only considering the magnitude of the linear accelerometer and
gyroscope data in the local tangential horizontal x-y plane. This representation is invariant
concerning the smart device orientation. Additionally, we also consider the projection of
the accelerometer and gyroscope measurements on the z-axis of the local tangential frame.
In total, we have four distinct input signals. GNSS data has not been used because of two
reasons: Ąrst, lack of signal coverage and multipath effects in urban areas, second, low
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sampling frequencies of modern smart devices (1 Hz) which do not allow to detect fast
dynamic changes in the pedestrianŠs movement.
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Fig. 4: Two-stage feature selection procedure.

Based on the inputs, we perform a sliding
window segmentation for which we then
compute standard HAR features [BBS14],
e.g., energy, minimum and maximum. To
handle dynamics on different time scales,
we consider four different window sizes,
i.e., 0.1 s, 0.5 s, 1.0 s, and 2 s.

Moreover, we also consider features based on orthogonal polynomial approximations (i.e.,
best estimators of mean, slope, and curvature) up to the third degree for window sizes
of 0.5 s, 1.0 s, and 2.0 s. In addition to that, the discrete Fourier Transform (DFT) of two
separated window sizes of 5,12 s and 0,64 s up to 5th degree (as human movement is
well described by lower frequencies [Pa12]) are considered. To make the DFT coefficients
independent of the energy, a normalization is required. In total, 164 features are computed.

We applied a two-stage feature selection for obtaining robust and human understandable
features [Bi18a]. A schematic of this is depicted in Fig. 4. In the Ąrst stage, four feature
extraction Ąlters, i.e., mutual information (MIFS), minimum redundancy maximum relevance
(mRMR), Ąlters based on ElasticNet, and XGBoost, are applied. The ten best scoring
features are unioned. In total, maximal 40 features are selected. In the second stage, a
feature selection reĄnement using a backward feature selection is applied. Here, features
are selected to optimize the F1score in conjunction with the respective classiĄer, i.e., SVM
with linear kernel or XGBoost classiĄer. A comprehensive and detailed description of the
preprocessing, feature extraction and selection can be found in [Bi18a].

3.3 ClassiĄcation

The detection of pedestrian movement is realized by means of a frame-based XGBoost
[CG16] and SVM with linear kernel classiĄer. The XGBoost algorithm combines the
optimization of an arbitrary differentiable loss function for consideration of the training
loss with an additional regularization to reduce model variance. Additional regularization
techniques based on shrinkage of the learning rate and random feature sub-sampling further
enhance the generalization ability. The linear SVM is selected because of its simplicity and
good generalization, i.e., classiĄcation performance in many applications. The Hinge loss is
applied to optimize the linear SVM classiĄer and due to a large number of training samples,
the linear SVM is trained in the primal space. Frame-based classiĄcation is implemented at
the discrete points at a 50 Hz frequency.

Both classiĄer are trained based on labeled data with the four pedestrian movement classes.
The classes are highly imbalanced, i.e., starting and stopping classes are underrepresented. A
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resampling strategy based on [BPM04] known as SMOTETomek compensates imbalanced
classes combining under- and oversampling. The effective class ratio is an important factor
inĆuencing the result of the movement classiĄcation. In our approach, we use the results of
the classiĄcation to calculate posterior class probabilities. These probabilities represents
conĄdence estimates about the classiĄcation of each movement state. Based on these
probability estimates, the classiĄcation can be derived, i.e., class with highest probability.
Well-calibrated probability estimates represent the detectors conĄdence and are important
for the fusion of different detection results, e.g., combination of detections from vehicles and
smart devices for cooperative perception in the envisioned future traffic scenario. In addition,
the probabilities are also used for trajectory prediction [Bi17b]. Therefore, a probability
calibration using a Platt scaling is performed.

4 Data Acquisition and Evaluation Methodology

For evaluation of our approach, we consider a dataset consisting of pedestrian movements. It
contains 11 female and male test subjects. The test subjects were instructed to move between
predestined points at an urban intersection with public, uninstructed traffic. They were
obliged to obey the traffic rules. While the pedestrians moved across the chosen intersection
located at the city of Aschaffenburg, Germany, their movements, i.e., trajectories, were
recorded by a high-resolution wide-angle stereo camera system [Go12]. To obtain the head
trajectory for labeling a pedestrianŠs movement, we manually annotated the pedestrianŠs
head detections on both cameras. The 3D position of the head is obtained by triangulation
of the annotated positions. Based on this head trajectory, we applied the automated labeling
procedure as described in Section 3.1. In total, the data comprises a length of 38 minutes
including 79 scenes.

The smart devices used during the experiments are Samsung Galaxy S6 smartphones.
The test subjects were equipped with a smartphone in their left front trouser pocket. The
smartphone was placed in an upright position with the screen facing outwards. Note, that
this setup aims to increase the reproducibility of our experimental setting and does not
limit the general applicability of our approach with respect to potential other wearing
locations [Bi18a].

The evaluation of our movement detection approach is performed offline using a ten-fold
cross-validation over the test subjects. For the purpose of comparing the performance of the
two classiĄers, a number of scores including F1-score, accuracy, precision, and recall are
evaluated. Moreover, we considered the confusion matrix for evaluation.

5 Experimental Results

This section presents the results for the SVM and XGBoost classiĄers. We evaluate the
detection performance for 250 random parameter combinations by means of a ten-fold
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cross-validation over the test subjects. For the XGBoost classiĄer, we considered the
following parameter conĄguration: Number of trees (50, 100, 200, 300, 500, and 700), the
maximum tree depth (between 3 and 10), and the learning rate (between 0.01 and 0.2).
For the linear SVM we only considered the penalty term (between 2−8 and 28). A random
subsampling was performed in order to speed up the training and evaluation process. We
considered three classiĄers. One linear SVM classiĄer and XBoost classiĄer (XGBoost
classiĄer F1) based on the highest validation F1-score and one XBoost classiĄer (XGBoost
classiĄer conf.) based on inspection of the confusion matrices.

(a) SVM classiĄer (b) XBoost classiĄer F1 (c) XBoost classiĄer conf.
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Fig. 5: Confusion matrix for classiĄcation precision of each class shown at the diagonal. Both
classiĄers with the highest F1-Score (a) and (b) have more than 90 % precision for waiting. (c) The
XGBoost classiĄer conf. reaches for the class waiting a precision of 81 % but has the best precision
for the class starting with a value of 85 %, where the selected SVM classiĄer (a) only shows a 51 %
precision and the selected classiĄer of XGBoost at (b) gives a low precision of 56 %. The best result
for the class moving is given at (b) with a precision of 93 %. Furthermore, we observe the best result
for the classiĄcation accuracy for the class stopping with the SVM classiĄer, which reaches a value of
72 %.
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Fig. 6: Selected Scene

The Ąrst two classiĄers (a) and (b)
shown in Fig. 5 were selected ac-
cording to the maximum F1-score.
(a) The SVM classiĄer with the
sweeping parameter 2.0 reaches
an F1-score values of 85.6 %. (b)
The selected XGBoost classiĄer
reaches an F1-score of 88,9 %. The
parameters are 200 tree, a maximal
depth of 7 and a learning rate set
to 0.041. (c) The selected XBoost
classiĄer based on the confusion
matrix reaches an F1-Score of 84,98 %.

In the following, we consider a sample scene of the latter XBoost classiĄer. It is depicted
in Fig. 6. Blue, green, orange, and red lines represent the probability assigned to waiting,
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starting, moving, and stopping separately in the Ąrst plot. The labeling plot represents the
ground truth data as given in section 3.1 and the prediction plot gives the state of the highest
class value at certain time.

6 Conclusions and Future Work

In this article, we have presented an automated procedure for data labeling based on [Go16]
and a pedestrian behavior model, which has been used for training and evaluation of linear
SVM and XGboost classiĄers. The approach is based on HAR pipeline with a two-stage
feature selection procedure. In experiment including 79 Scenes with 11 pedestrians, we
compared different classiĄers, including a linear SVM and different XGBoost classiĄers.
The selected XGBoost classiĄer reaches a F1-Score of 88,9%. Yet, the detailed evaluation
of the confusion matrix hints that only the consideration of the F1-score is not sufficient for
selecting fast and robust movement detectors. Nevertheless in the following, we are going
to integrate the presented early movement detection approach for improved pedestrianŠs
trajectory forecast [Bi17b].

The approach presented in this article, is a step towards our envisioned future traffic
scenario involving cooperative intention detection [Bi17a]. Fusion methods comprising
information originating from smart devices and vehicles to identify potential dangerous
situations [JMD18] shall be investigated in future work. Moreover, we will considered the
integration of a different user-centric coordinate system for feature extraction [Ja17] for
improved movement detection.
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