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Abstract: The Artificial Hormone System (AHS) is a self-organizing tool able to allocate tasks in a
distributed system. We extend the AHS in this paper by negator hormones to enable conditional task
structures and provide a thorough complexity analysis of the resulting system. The analysis shows that
the problem to decide if a given task 𝐴 is instantiated at all respecting the negators is NP-complete.
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1 Introduction

We describe and analyze the decision problem Negator-Sat occurring when using an
Artificial Hormone System (AHS) [BP12] in this paper. The AHS is able to allocate tasks on a
set of distributed processors without using a central instance and offers a high dependability
of the task allocation. While the original AHS assumes a task model of independent tasks,
we extend it here by assuming conditional dependencies between the tasksȷ E.g. a task 𝑇1

can only be executed when another task 𝑇2 is not executed. This allows to enable alternative
task structures within the AHS.

Our contribution in this paper is twofoldȷ (1) We shortly describe our extension of the AHS
including the negator hormones. Their purpose is to enable conditional task structures.
(2) Conditional task dependencies induced by negators make it hard to determine if a given
task 𝐴 can be instantiated at all. We call this decision problem Negator-Sat and prove its
NP-completeness. We end the paper by providing a transformation example of a satisfiable
propositional formula to a task set using negators allowing to instantiate task 𝐴.

The paper is structured as followsȷ Section 2 presents the State of the Art in self-organizing
systems. Section 3 gives an introduction to the original AHS while section 4 briefly explains
our negator implementation. The complexity analysis of Negator-Sat as well as an
example are provided in section 5. Section 6 concludes the paper and describes future work.

2 State of the Art

IBM’s Autonomic Computing initiative [LMD13] introduced so-called self-x properties
such as self-configuration, self-optimization and self-healing. The MAPE-K loop was
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established to realize monitoring and analyzing of a system’s behavior and to plan and
execute actions controlling its behavior according to a knowledge base and user-defined
goals. This loop has recently been adopted to establish self-explainable systems by using a
MAB-EX loop (monitor, analyze, build, explain), see [Bl19]. The above mentioned self-x
properties are also central to systems realized using Organic Computing concepts [TSM17]ȷ
Here, computer systems and embedded systems are constructed by incorporating concepts
inspired by biological systems and their organization principles. This approach allows
systems to dynamically adapt to changing operational conditions, realizing self-x properties
like self-configuration or self-healing at run-time.

3 The Artificial Hormone System

The AHS’ main purpose is to allocate tasks in a distributed system of processors, called
processing elements or PEs. It is completely decentralized and has no single point of failure.
In addition, it provides self-x properties such as self-configuration, self-optimization and
self-healing and guarantees real-time bounds [BP12].

The AHS uses different kinds of hormones (which are short messages) to allocate the
tasks. The main hormone types are eager values, suppressors and accelerators. Eager values
indicate the suitability of a PE to take a task. As soon as a PE takes a task it sends suppressors
for it. In this way, it tells the other PEs that it has taken the taskȷ This is a life-sign on the
one hand and it saturates the hormone balance on the other hand, thus limiting the number
of allocated instances of this task. Accelerators are used to locate related tasks (i.e. tasks
with communication relations or access to the same sensors or actors) nearby each other.

The core of the AHS is the hormone loop. Each PE iterates the loop, computing the
hormone balance for each task. The duration needed by one hormone loop iteration is
called a hormone cycle. In the receive stage, the hormones for each task are received. In
the compute and decision stage, the suppressors received for a task are subtracted from its
local eager value and the accelerators for this task are added. The result is the modified
eager value which indicates the PE’s current suitability to take this task. This computation
is performed for each task. A PE’s AHS instance then decides for a single task allocation
per hormone loop iteration in order to allow the suppressors and accelerators to unfold
their effect. In the following send stage, the PEs send eager values for all tasks (with the
exception of an eager value that is 0) as well as suppressors and accelerators for all tasks
they are currently executing. In this paper, we want to express conditional task relationships
using the self-organizing AHS. A conditional task relationship means that a task 𝑇1 can
only be executed when another task 𝑇2 is not executed. The concept is realized by special
hormones called negators and allows to use alternative task structures in the AHS. This
may be useful in a heterogeneous system of PEs. Details on the negators are described in
section 4. Figure 2 gives a sketch of the hormone loop (already including the negators).
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4 Conception

As mentioned before, our goal was to enhance the AHS by introducing the possibility to
model conditional dependencies between tasks. To be precise, we introduced so-called
negator relationships between tasks as visualized in Figure 1ȷ Here, task 𝑇𝑗 negates task 𝑇𝑖 ,
meaning that task 𝑇𝑖 cannot be assigned to any PE if 𝑇𝑗 is assigned to a PE. Thinking in
terms of a directed graph, this relationship can be expressed as the tuple (𝑇𝑗 , 𝑇𝑖).

Tj Ti

Fig. 1ȷ Negator relationship be-
tween tasks 𝑇 𝑗 and 𝑇𝑖 ȷ If 𝑇 𝑗 is
assigned,𝑇𝑖 must not be assigned

This allows to express task dependenciesȷ Suppose one PE𝛼
can execute a task 𝑇 realizing some functionality. Multiple
other PEs cannot execute 𝑇 but rather a set of tasks that
realize the same functionality as 𝑇 but with some kind of
degradation, e.g. loss of precision. If PE𝛼 is running, 𝑇’s
negator relationships to the other tasks prevent them from
being instantiated. If PE𝛼 fails,𝑇 is no longer available but the other tasks can be instantiated,
keeping the functionality available.

4.1 Implementation

We implemented our concept of negator relationships that realize conditional inter-task
dependencies by modifying the AHS’ hormone loop as shown in Figure 2 (cf. [Br13] for
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information on the AHS’ original hormone loop)ȷ We added an additional type of hormone,
the so-called negators. If some task 𝑇𝑗 is running and a negator relationship (𝑇𝑗 , 𝑇𝑖) exists,
𝑇𝑗 will send a negator hormone to 𝑇𝑖 during the hormone loop’s send stage.

The received negator hormones are counted for each task. If at least one negator was received
for some task 𝑇𝑖 , two things happenȷ (1) 𝑇𝑖 is stopped if it is running. (2) 𝑇𝑖 gets blocked by
forcing its modified eager value to 0, regardless of any suppressors or accelerators received
for 𝑇𝑖 . This prevents 𝑇𝑖 from being assigned. If the negating task 𝑇𝑗 is no longer assigned
to any PE (e.g. because the PE it was running on failed), it won’t send a negator for 𝑇𝑖
any longer. This allows 𝑇𝑖’s modified eager value to rise above 0 again, allowing 𝑇𝑖 to be
assigned again.

5 Theoretical Analysis

As has been seen in the previous section, the introduction of negators allows to model task
dependencies, e.g. alternate sets of tasks to realize some functionality. However, negators
also introduce new kinds of possible mistakes a designer can make during a system’s design.
Consider the following problemȷ

Definition 1 (Negator-Sat). Let T be a finite set of tasks and N ⊆ T × T a set of
negator relationships among those tasks.

The decision problem Negator-Sat is now stated as followsȷ Given a task 𝐴 ∈ T , does
a set of assigned tasks V ⊆ T exist (with 𝑇 ∈ V iff 𝑇 is assigned to a PE) so that the
following conditions are all satisfiedȷ

(1) There is no task 𝑇 ∈ (T \V) that could be assigned to a PE even if all PEs had infinite
computational resources,

(2) V is a stable task assignment, i.e. all negator relationships among tasks fromV are
respected,

(3) 𝐴 ∈ V, i.e. task 𝐴 is assigned to some PE.

In simple terms, Negator-Sat asks whether a stable task assignment exists so that 𝐴 can
be assigned to a PE. Condition (1) prevents the system’s computational capacities from
imposing any limits on such task assignment. Clearly, it can be regarded a design mistake
if some task cannot be assigned to a PE at all. Thus, it should be checked if each task is
assignable. However, it turns out that this seemingly simple problem is difficult to solve
algorithmicallyȷ

Theorem 2. Negator-Sat is NP-hard.

Proof. By reduction of 3-Sat to Negator-Satȷ We will show 3-Sat ≤𝑝 Negator-Sat

where ≤𝑝 denotes a polynomial-time reduction. If 3-Sat is reducible to Negator-Sat

in polynomial time, we can deduce that Negator-Sat is at least as hard as 3-Sat. With
3-Sat being NP-complete, the NP-hardness of Negator-Sat follows.
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We will thus describe a transformation 𝜏 so that

(i) 𝜏 can be computed in polynomial time w.r.t. the input length and
(ii) 𝑓 ∈ 3-Sat ⇐⇒ 𝜏( 𝑓 ) ∈ Negator-Sat.

Let 𝑓 ≔
𝑛∧
𝑖=1
𝑐𝑖 with 𝑐𝑖 ≔ (𝑙𝑖,1 ∨ 𝑙𝑖,2 ∨ 𝑙𝑖,3) be a 3-Sat formula with 𝑙𝑖, 𝑗 ∈ {𝑥𝑘 , 𝑥𝑘 } for

some 𝑘 .2 We will transform 𝑓 into a task set T with negator relationships N so that the
transformed input 𝜏( 𝑓 ) ≔ (T ,N , 𝐴) is an instance of Negator-Sat for the task 𝐴 ∈ T .

Construction of 𝜏. The basic construction principle of this transformation is shown in
Figure 3a. For each variable 𝑥𝑘 occurring in 𝑓 , we create two assignment tasks 𝑋𝑘 and 𝑋𝑘
that negate each other. This ensures only one of them can be assigned in a stable system,
representing 𝑥𝑘 ’s interpretation. Condition (1) ensures at least one of those assignment
tasks is assigned per variable while condition (2) ensures that both cannot be assigned
simultaneously.
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C1 . . .

A
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. . .

1 inverted
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per clause ci

Task A
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Xi and Xi for
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(a) Basic construction principle
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Fig. 3ȷ Construction principle of transformation from 3-Sat to Negator-Sat

Additionally, we introduce one inverted clause task 𝐶𝑖 per clause 𝑐𝑖 . Thus, the resulting
task set is

T =
⋃

𝑥𝑘 ∈Variables( 𝑓 )

{
𝑋𝑘 , 𝑋𝑘

}
∪

𝑛⋃
𝑖=1

{
𝐶𝑖

}
∪

{
𝐴
}

where 𝑛 is the number of clauses in 𝑓 .

We will ensure that each inverted clause task 𝐶𝑖 can (and per condition (1) will) be assigned
iff 𝑓 ’s interpretation does not satisfy the corresponding clause 𝑐𝑖 by introducing negator
relationships as follows (cf. Figure 3b)ȷ

• (𝑋𝑘 , 𝐶𝑖) ∈ N ⇐⇒ 𝑐𝑖 contains the literal 𝑥𝑘 and
• (𝑋𝑘 , 𝐶𝑖) ∈ N ⇐⇒ 𝑐𝑖 contains the literal 𝑥𝑘 .

Finally, the following negator relationships ensure that task 𝐴 can (and, again, per condi-
tion (1) will) be assigned iff no inverted clause task𝐶𝑖 is assigned (and thus, all corresponding
clauses 𝑐𝑖 are satisfied)ȷ (𝐶𝑖 , 𝐴) ∈ N for all 1 ≤ 𝑖 ≤ 𝑛.
2 For simplicity, we require that each clause in 𝑓 consists of exactly three literals. Note that this restriction does not

change the problem’s complexity as a clause can be padded to exactly three literals by repeating one of its literals.
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See section 5.1 for an example of this construction.

𝜏 is a polynomial-time reduction. We now need to show that above claims (i) and (ii)
hold for 𝜏, i.e. that 𝜏 is indeed a reduction of 3-Sat to Negator-Sat.

(i)ȷ Polynomial timeȷ It is easy to see that a formula 𝑓 with 𝑛 clauses and 𝑣 different
variables (with 𝑣 ≤ 3𝑛) can be transformed in polynomial time w.r.t. 𝑓 ’s lengthȷ We only
need to construct 2𝑣 assignment tasks, 𝑛 inverted clause tasks and the task 𝐴. This sums to
2𝑣 + 𝑛 + 1 ≤ 7𝑛 + 1 tasks which is polynomial in the input formula’s length.

Additionally, we construct 2𝑣 negator relationships for mutual exclusion of 𝑋𝑘 and 𝑋𝑘 , 3𝑛
negator relationships between 𝑋𝑘 resp. 𝑋𝑘 and 𝐶𝑖 and 𝑛 negator relationships between 𝐶𝑖
and 𝐴. This totals at 2𝑣 + 4𝑛 ≤ 10𝑛 relationships which is also polynomial in the input
formula’s length.

(ii), part 1ȷ 𝑓 ∈ 3-Sat⇒ 𝜏( 𝑓 ) ∈ Negator-Satȷ

Proof. Since 𝑓 ∈ 3-Sat, there must exist a satisfying interpretation I : Variables( 𝑓 ) →
{0, 1}. Thus, consider the setV ⊆ T of assigned tasks given as followsȷ

• 𝐴 ∈ V,
• for each inverted clause task 𝐶𝑖ȷ 𝐶𝑖 ∉ V,
• 𝑋𝑘 ∈ V ⇐⇒ I(𝑥𝑘 ) = 1 and 𝑋𝑘 ∈ V ⇐⇒ I(𝑥𝑘 ) = 1.

Due to 𝜏’s construction, it is easy to see thatV satisfies conditions (1) to (3) as given by
Definition 1ȷ3

(1) All tasks in (T \ V) have an inbound negator link coming from an assigned task, thus
no additional task can be instantiated.

(2) All negator relationships are respectedȷ No two tasks fromV share a negator relation-
ship.

(3) 𝐴 is assigned. ⋄

(ii), part 2ȷ 𝜏( 𝑓 ) ∈ Negator-Sat⇒ 𝑓 ∈ 3-Satȷ

Proof. Let V ⊆ T be a set of assigned tasks so that conditions (1) to (3) as given by
Definition 1 are satisfied. Thus, task 𝐴 must be assigned. Therefore, per condition (2), no
inverted clause task 𝐶𝑖 can be assigned. Thus, at least one assignment task per inverted
clause task 𝐶𝑖 must be assigned (else, 𝐶𝑖 would have to be assigned per condition (1)).
Additionally, per condition (2), for each assignment task 𝑋𝑘 resp. 𝑋𝑘 , the inverse assignment
task 𝑋𝑘 resp. 𝑋𝑘 cannot be assigned.

This allows to construct an interpretation I for 𝑓 so that I(𝑥𝑘 ) = 1 ⇐⇒ 𝑋𝑘 ∈ V and

3 Note that—since I satisfies 𝑓 —at least one literal is satisfied for each clause 𝑐𝑖 , thus the corresponding inverted
clause task 𝐶𝑖 is not assigned. Since all inverted clause tasks are not assigned, 𝐴 can (and per condition (1) will)
be assigned to some PE.
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I(𝑥𝑘 ) = 0 ⇐⇒ 𝑋𝑘 ∈ V. In addition, I must satisfy 𝑓 ȷ Suppose I would not satisfy 𝑓 .
Then, there must be a clause 𝑐𝑖 in 𝑓 so that I does not satisfy any of its literals 𝑙𝑖, 𝑗 . Due

to 𝜏’s construction, this would mean that the inverse clause task 𝐶𝑖 must be assigned per
condition (1) which forbids 𝐴’s assignment per condition (2). ⋄

Final remarks. Since 𝜏 can be constructed in polynomial time w.r.t. the input length, it
follows that 𝜏 is indeed a polynomial-time reduction from 3-Sat to Negator-Sat. Thus,
Negator-Sat is at least as hard as 3-Sat. Since 3-Sat is NP-complete, the NP-hardness
of Negator-Sat follows.

However, Negator-Sat is not only NP-hard, but also complete for NPȷ

Theorem 3. Negator-Sat is NP-complete.

Proof. Let (T ,N , 𝐴) be an input consisting of a set of task T , a set of negator relationships
N and a task 𝐴 ∈ T . A nondeterministic Turing machine can now nondeterministically
select a subsetV ⊆ T of assigned tasks and then deterministically check that conditions (1)
to (3) from Definition 1 are all satisfiedȷ

(1) This condition is satisfied if, for each 𝑇 ∈ (T \ V), there is a negator relationship
(𝑇 ′, 𝑇) ∈ N so that 𝑇 ′ ∈ V. However, this can be checked in O(poly( |T |, |N |)) time.

(2) This condition is satisfied if, for each 𝑇 ∈ V, there is no negator relationship
(𝑇 ′, 𝑇) ∈ N so that 𝑇 ′ ∈ V. This can also be checked in O(poly( |T |, |N |)) time.

(3) This condition is satisfied if 𝐴 ∈ V which can be checked in O(poly( |V|)) time.

The Turing machine shall accept the input iff all three conditions are satisfied.

Since, after nondeterministically guessingV, the verification can be performed in polynomial
time w.r.t. the input length, it follows that Negator-Sat ∈ NP. Together with Theorem 2,
it follows that Negator-Sat is NP-complete.

This shows the power introduced by negatorsȷ Unless P = NP holds, it is not possible to
decide in deterministic polynomial time whether a given task 𝐴 can be assigned to a PE at
all (when requiring a stable task assignment in which no additional tasks can be assigned).

5.1 Example of Construction

Figure 4 shows the construction result 𝜏( 𝑓 ) for the formula 𝑓 = (𝑥1∨𝑥2∨𝑥3)∧ (𝑥1∨𝑥2∨𝑥3).
Note that 𝑓 is satisfiable and hence 𝑓 ∈ 3-Sat. It is easy to see that assigning either 𝑋𝑖 or
𝑋𝑖 for 𝑖 ∈ {1, 2, 3} allows assignment of 𝐴 iff the assignment corresponds to a satisfying
interpretation of 𝑓 .

Additional examples of this construction and further considerations on problems involving
negators can be found in [HPB20].
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X1 X1

X2 X2C1 C2

X3 X3

A

(a) With task assignment corresponding to satisfying
interpretation of 𝑓

X1 X1

X2 X2C1 C2

X3 X3
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(b) With task assignment corresponding to unsatisfying
interpretation of 𝑓

Fig. 4ȷ Negator-Sat instance constructed from 3-Sat instance 𝑓 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

6 Conclusion

We presented an negator extension for the AHS middleware in this paper. Negators enable
conditional task execution in the AHS which is useful in a heterogeneous processor system.
The use of negators impose the problem to determine if a given task 𝐴 can be instantiated
in the context of a stable task allocation in the overall system. We called the problem
Negator-Sat and proved its NP-completeness. Future work will consider the negators’
impact on the AHS’ real-time bounds and the stability of task allocations. This is important
as it is simple to see that negators can generate oscillating task allocations.
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