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Transformations on Graph Databases for Polyglot
Persistence with NotaQL

Johannes Schildgen1, Yannick Krück2, Stefan Deßloch3

Abstract: Polyglot-persistence applications use a combination of many di�erent data stores. Often,
one of them is a graph database to model relationships between data items. The data-transformation
language NotaQL can be used to define transformations from one NoSQL database to a di�erent one.
In this paper, we present a language extension for NotaQL to allow graph transformations, graph
analysis, and data migrations on graph databases. NotaQL is schema-flexible, it o�ers filters and
aggregation functions, and it allows for graph traversal and edge creation. Our graph-transformation
platform can be used for iterative graph algorithms and bulk processing.
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1 Motivation: Graph Databases

NoSQL databases are typically classified in four categories: key-value stores, wide-column
stores, document databases, and graph databases. Every NoSQL database has its own
data model, a di�erent support for transactions and distribution, and specific benefits and
drawbacks. In many enterprises, di�erent NoSQL databases are used in combination to
make the best of all. This approach is called polyglot persistence [SF12]. As an example, an
in-memory key-value store manages frequently-updated page-visit counters, a document
database stores user data, and a graph database keeps track of friendship relationships
between the users. Storing everything in a graph database would be possible but slow
because in distributed environments graph databases typically don’t scale as well as other
systems and they have higher access costs. Therefore, our document store manages the
user data items, and the graph database stores relationships between them. Data-analytic
tasks are executed in specific time intervals to extract information from the graph—e.g., the
number of friends for each person—and store it into the document database. Alternatively,
data from the document store can be analyzed to introduce new edges in the graph database,
e.g. to connect people who frequently communicate with each other.

To simplify the development and support the e�ecient execution of polyglot-persistence
applications [Ge14], not just APIs and frameworks are needed, but also languages and
platforms that can transform and move data from one data store into another. At the heart
of our vision for this data-store interoperability is a language for data transformations
that should support a wide range of database systems with all their specific data-model
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concepts. Di�erent from many classical approaches, this language should not unify di�erent
data models and cover only their commonalities, but be extensible and allow to introduce
individual language constructs to fully support all of their data model specifics. Otherwise,
the rapidly evolving landscape of NoSQL databases is di�cult to support. Our language
NotaQL [SD15, SLD16] addresses the above requirements for data transformations between
di�erent NoSQL stores. The language is concise, easy to learn, schema-flexible, and
data-model independent. The latter fact is realized by allowing specific language constructs
for every data model and by using an internal data structure that is a superset of all other
supported models. In our previous work, we described how so-called aggregate-oriented
NoSQL stores (i.e., key-value stores, wide-column stores, document databases) are supported
as sources and targets for NotaQL transformations.

In this paper, we significantly extend NotaQL to support graph databases. The main
challenges we have to address stem from data-model di�erences. Aggregate-oriented stores
focus on storing independent items that are typically accessed by an ID and searched
or transformed one after the other. In contrast, graph databases connect items, provide
graph-traversal languages that include powerful access methods, and support graph APIs for
easy access of property values and related items. Item relationships are natively supported
by graph databases and optimized for fast navigation.

The data model of a graph database is a graph in the mathematical sense. G = (V, E)
defines the graph with its vertices and edges. Vertices in a so-called property graph are
semi-structured—like JSON documents in a document store. A vertex can have a list of
property-value pairs, and optional labels. An edge connects two vertices. It has a label, a
direction and also a list of properties. Figure 1 shows a simple property graph with two
vertices connected by one edge.

type : person

_id : 77

name : Kate

age : 37

city : Rome

type : person

_id : 19

name : Jane

age : 35

city : Bern

friend

since:2016-01-01

Fig. 1: A simple property graph G1.

Due to their emphasis on networks of data items, graph databases typically don’t scale
as well as aggregate-oriented stores. However, they are very important for managing and
analyzing complex connected data, which is often found in social networks or recommender
systems. Typical operations here are traversing the graph by navigating from one vertex to
another and iteratively computing and refining node or edge properties. As a consequence,
graph-database languages and platforms di�er a lot from classical query languages and
computation frameworks. (Please see Section 6 for a more thorough discussion.)

In polyglot-persistence applications that utilize a combination of di�erent systems, frame-
works and languages are needed that can handle both aggregate-oriented data models and
graphs. Here, one main challenge—in addition to the performance—is how a user can
implement algorithms in such a language or framework correctly and e�ciently [Ho12].
Lumsdaine et al. [Lu07] state four software design issues, namely flexibility, extensibility,
portability, and maintainability. There are many approaches that unify the access to di�erent
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stores [Ge14, SGR15, OPV14], but they do not fully support all data-model concepts. Other
systems like ArangoDB [Ar16] use a combination of di�erent data models and introduce
a query language that supports all of them. In this paper, we present a platform for graph
transformations with the language NotaQL. Our platform supports all data-model concepts
without introducing a new database system. The NotaQL platform connects to arbitrary
NoSQL databases and executes user-defined transformation scripts to perform migrations
from one system into another. In graph databases, NotaQL can easily access and modify
properties as well as traverse and create edges. Other use cases for NotaQL are data migration
and integration tasks. If some database stores relationships as arrays, sub-documents, or
foreign keys, and another system uses a graph database, NotaQL can be used to convert the
data from the first schema to the second one, and vice versa.

The following list shows the main contributions of our paper:

• We present an easy-to-learn, concise and powerful language for data transformations
on property graphs (based on NotaQL),

• a syntax to access and create properties and edges, and to traverse to neighbors,
• a solution for defining iterative graph algorithms,
• a transformations platform to execute NotaQL scripts on di�erent graph database

systems,
• an approach for cross-system transformations between graph databases and other

kinds of databases or file formats.

In the next section, we provide a brief overview of NotaQL based on previous work. We then
present our new extension for graph databases in Section 3. In Section 4, we provide details
on implementing graph database support in our transformation platform. After reporting on
an initial performance validation in Section 5, we present related work on existing graph
languages and frameworks in Section 6 and conclude the paper in Section 7.

2 The Data-Transformation Language NotaQL
NotaQL is a language to transform a set of input items into a set of output items. These sets
can be tables in a wide-column store, collections in a document database, or a map in a
key-value store. In these cases, the items are rows, documents, or key-value pairs.

The main part of a NotaQL script are a filter specification that defines which items to
transform, and attribute mappings. A NotaQL script is output oriented. This means that the
attribute mappings define how the output items should look like, i.e. which attributes they
have and how the values of these attributes are computed. Figure 2 shows how a NotaQL
script is logically executed. First, the items are filtered by the predicate given in the filter
specification in the NotaQL script. Afterwards, intermediate items are created by mapping
each item as defined in the attribute mappings. The mapped items are then decomposed into
output fragments, and fragments which belong to the same output cell are combined with
reference to the aggregation functions used in the transformation script.

In a wide-column store, the input items are the rows of a table. The ones that fulfill the filter
are split into cells. A cell z = (_r, _c, _v) is defined by the row-id _r of the row where it
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Fig. 2: Logical Execution of a NotaQL Script

originates, a column name _c, and a value _v. The attribute mappings define how to create
output cells based on the input cells. As a first example, the following script counts all
people older than 17 in each city:

IN-FILTER: IN.age > 17,
OUT._r <- IN.city,
OUT.numPeople <- COUNT()

The NotaQL script uses a filter to process only rows that have a column called age and a
value greater than 17 in this column. The filtered rows are split into their cells, and here,
only the cell with the column name city is of interest. Each city cell is used to produce an
intermediate cell z0 = (_r 0, _c0, _v0) where _r 0 is the value of the city cell in the input, _c0 is
the string literal numPeople, and _v0 in each output fragment a 1 because the aggregation
function COUNT() is defined as SUM(1). All fragments that belong to the same row (i.e., the
same city) are grouped together and their values are summed up to the final value.

The NotaQL platform presented in [SLD16] extends the possibilities of NotaQL by not only
supporting wide-column stores, but any kind of aggregate-oriented database. The platform
reads from one database system, filters, transforms and aggregates data, and writes its result
to another system. The output system can be a di�erent kind of NoSQL database, or it can
be the same data store. In the latter case, the results are written into a di�erent collection or
table, or it can be the same one as the input to modify data in place. A cross-system NotaQL
script starts with the definition of an input and an output engine. Each engine has a name
and specific parameters. As an example, the CSV engine takes the path to a CSV file in a
local or distributed file system. After the engine definition, an optional input-filter clause
can be used to make a selection. The rest of the NotaQL script are attribute mappings. They
define output attributes and how their values are computed based on the input data. Usually,
the first attribute mapping defines the value of an object ID. In key-value stores, the ID is
called a key; in wide-column stores, it is the row-id. They have to be set in a NotaQL script.
If an ID value is already present in the database, an in-place update of the existing item is
performed, otherwise a new item with the given ID is inserted. Document stores and other
system can automatically generate IDs, so there is no need to define an attribute mapping
for them in that case. Figure 3 shows the syntax of a cross-system NotaQL script.
notaql:

Fig. 3: NotaQL Syntax
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The grammar symbols attr. and value depend on the input and output engine. When—like
in the example above—a wide-column store is used as the input, the value can be IN._r
(row-id), IN._c (column name), IN._v (column value), or IN.x (value of a given column
x). Analogue for the output attributes. Key-value stores do not have named columns but
only keys and values which can be accessed with IN._k and IN._v. Document stores
use IN._id for a document ID, dot notation (IN.x.y) for accessing sub-attributes, and a
function LIST to create arrays.

The following example reads all key-value pairs of a Redis database that represent user
items and stores them into a MongoDB collection:

IN-ENGINE: redis(database <- 0),
OUT-ENGINE: mongodb(database <- 'test', collection <- 'users'),
IN-FILTER: _k LIKE 'user/%',
OUT.username <- IN._k,
OUT.email <- IN._v

Redis
A
P
I

Engine

MongoDB
A
P
I

Engine

Spark

Fig. 4: Cross-System Execution of a NotaQL Script

The access to the key and value using
IN._k and IN._v is specific for key-value
databases. For the MongoDB output docu-
ments, arbitrary attributes can be set, here
username and email. As no OUT._id is
set, each document will have an automat-
ically generated document identifier. No-
taQL is a schema-flexible language. One can access the values of all attributes without
knowing their names using IN.*. An attribute name can be returned with IN.*.name().
Accessing only specific attributes is possible with attribute filters: IN.?(name()!='age')
finds all attributes except the age. On the output side, the indirection operator $ can be
used to create new attributes using a derived attribute name, e.g., OUT.$(IN.*.name())
creates the same attributes in output items as the ones found in the input items. While
iterating over a set of attributes using the * or ?, the attribute of the current iteration can be
accessed with IN.@. This way, all attributes together with their values can be copied using
OUT.$(IN.*.name()) <- IN.@.

Figure 4 shows the execution of a NotaQL script on our Apache Spark-based [Za10] platform.
The internal data model of NotaQL is based on the JSON data model because it is the
most powerful data model of the aggregate-oriented stores. All other supported models
and also CSV or JSON files can be mapped to this model. But it comes to its limits when
we want to support graph databases. That is why we present a new approach in this paper
that extends NotaQL by supporting relationships between items, and performing iterative
transformations.

3 NotaQL for Graph Databases

A graph database can be seen as a document store with documents being the vertices and
connections between documents being the edges. If we leave out the edges, the data model
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is the same as for document databases. So, we can reuse the existing NotaQL language for
vertices and properties.

3.1 Item-to-Item (Vertex-to-Vertex) Transformation
We first focus solely on how vertex information can be access and mapped. So edge
connections are ignored here and will be covered later in Section 3.2. A NotaQL script
defines how to create an output item based on the input. Given a property graph without
edges G1 = (V, ;) stored in a graph database, NotaQL connects to the input graph G1 and
writes its output to an initially empty graph G2. As described in Section 2, an IN-FILTER
clause can be used to filter input items by a given predicate. All vertices that fulfill the
predicate are transformed with respect to attribute mappings. Every attribute mapping has
the form OUT.p <- value, where p is the name of a property of the output vertices and
value an arbitrary definition or computation of a numeric, string or di�erently typed value.
Here, properties of input vertices can be accessed, literals can be used, and functions can be
called.

The following NotaQL script transforms the graph G1 (the one shown in Figure 1) that is
stored in a Neo4J [Ne16a] database into G2 by performing some selections and projections:

IN-ENGINE: neo4j(path <- '/data/G1'),
OUT-ENGINE: neo4j(path <- '/data/G2'),
IN-FILTER: type='person' && age > 0,
OUT.name <- IN.name,
OUT.year_of_birth <- 2016 - IN.age,
OUT.type <- 'person'

type : person

_id : ...

name : Kate

year-of
-birth

: 1979

type : person

_id : ...

name : Jane

year-of
-birth

: 1981

Fig. 5: Selection and Projection of Vertices; Graph G2

The execution of this transformation works as follows: For every vertex having the label
'person' and an age greater than zero, an output vertex is created with the same name and
a new property year_of_birth. All other properties are discarded. As this transformation
writes its output to an initially empty graph, the concept of a vertex ID is not needed here. In
Neo4J, vertices do have identifiers, so in this case, they are automatically generated. When
a NotaQL transformation is used to update an existing graph in place, an ID has to be set to
specify whether to change an existing vertex (the one with the given ID) or to insert a new
vertex (if no ID matches).

In the following example transformation, the age value in every person vertex with an age
greater than zero is incremented by one.

IN-ENGINE: neo4j(path <- '/data/G1'),
OUT-ENGINE: neo4j(path <- '/data/G1'),
IN-FILTER: type='person' && age > 0,
OUT._id <- IN._id,
OUT.age <- IN.age+1

type : person

_id : 77

name : Kate

age : 38

city : Rome

type : person

_id : 19

name : Jane

age : 36

city : Bern

...

Fig. 6: In-Place Updates on a Graph

The OUT._id <- IN._id mapping indicates that the current vertex should be updated.
In case the script might produce multiple output vertices with the same ID, the property
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mappings have to either guarantee the equality of all values within each ID group, or they
have to contain aggregate functions. The aggregation function SUM, COUNT, MIN, MAX, and
AVG are used to generate atomic output values for every property. All property values of
output vertices that have the same ID are reduced to a final value using the given function.

The following transformation produces a new graph G3 that consists of city vertices having
the average age of all people living in this city as a property:
IN-ENGINE: neo4j(path <- '/data/G1'),
OUT-ENGINE: neo4j(path <- '/data/G3'),
IN-FILTER: type='person' && age > 0,
OUT._id <- IN.city,
OUT.city <- IN.city
OUT.avg_age <- AVG(IN.age),
OUT.type <- 'city'

type : city

_id : Rome

city : Rome

avg_age : 37

type : city

_id : Bern

city : Bern

avg_age : 35

Fig. 7: Average Age per City; Graph G3

Because of the trivial functional dependency IN.city! IN.city and the given property
mapping, the functional dependency OUT._id! OUT.city holds. This is why the city
property values are equal within each ID group. For the property IN.age, the aggregation
function AVG is used to calculate an atomic output value for the output property OUT.avg_age.

3.2 Traversing Edges in the Input Graph

As shown above, IN. is used to access property values of input vertices. We added the
following three steps to access its edges: IN._e traverses all edges, IN._>e all outgoing,
and IN._<e all incoming ones. With ?-predicates, which were already used in non-graph
NotaQL (see Section 2), the kinds of edges can be further specified; based on their labels
and properties. After an edge step, one can access the edge properties with the simple dot
notation, e.g. IN._e.since, and one can follow the edge to its neighbor vertex using one
more _ symbol. For selecting only specific neighbors, additional ?-predicates can be used.
The neighbor vertex’s properties and edges can be accessed as usual. E.g., IN._e_.name
returns the neighbor’s name. When iterating over multiple edges, the edge within the current
iteration can be accessed using IN._e[@]. To avoid long lists of edge steps, NotaQL uses
the [min,max] option to follow an edge over multiple hops. The default edge traversal is
exactly one hop: [1,1]. For the transitive closure up to an unbounded number of hops,
[0,*] is used. In that case, termination in cyclic graphs has to be achieved by using proper
predicates. Figure 8 shows the grammar for edge traversals in NotaQL.

Aggregation functions in NotaQL take a list of values and compute one output value. In the
examples in Section 3.1, the lists where created due to the cell groupings. All values that
belong to the same output cell—i.e., in a graph database, the same property for the same
output vertex—, are collected in a list, and an aggregation function combines the values in
this list. NotaQL also allows calling aggregation functions on lists that are not created after
grouping but already existed in the input data. These lists are automatically created when
using ambiguous expressions, e.g. IN.a[*] contains all elements of an array, IN._e_._id
are the IDs of all neighbor vertices.
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edge:

vertexAccess: minmax:

Fig. 8: Syntax for Traversing Edges and Access to Properties

The following NotaQL script shows an example with some edge accesses and aggregations.
IN-ENGINE: neo4j(path <- '/data/G1'),
OUT-ENGINE: neo4j(path <- '/data/G1'),
IN-FILTER: type='person',
OUT._id <- IN._id,
OUT.num_neighbors <- COUNT(IN._e_._id),
OUT.num_old_friends <- COUNT(IN._e?('friend')_?(age>=80)._id),
OUT.num_friends_of_friends <- COUNT(IN._e?('friend')_[1,2]._id),
OUT.oldest_friendship_date <- MIN(IN._e?('friend').since),
OUT.mother_name <- IN._>e?('mother')_.name

The edge predicate ?('friend') is a short form for ?(_l = 'friend'), where _l
designates the edge label. Most edge traversals in this example use the _e path to traverse
an edge independently of its direction. However, to navigate to the mother’s vertex, the _>e
path selects only outgoing edges. The aggregation functions used in this example are COUNT
and MIN. They are called on lists of property values of neighbor vertices, respectively on
edge properties. When a NotaQL transformation groups multiple vertices, it is possible
that values are lists before grouping. This results in lists of lists after grouping. These are
resolved by using two aggregation functions in combination. The following example shows
how to compute the average number of friends people have per city:
IN-ENGINE: neo4j(path <- '/data/G1'),
OUT-ENGINE: neo4j(path <- '/data/G3'),
OUT._id <- IN.city,
OUT.avg_num_friends <- AVG(COUNT(IN._e?('friend')_._id))

The expression IN._e?('friend')_._id is a list of friend IDs. After grouping by city,
every city vertex contains a list of lists of these IDs. The cardinalities of the inner lists are
computed with the COUNT function. The AVG function computes the average of these count
values.

3.3 Creating Edges

For traversing edges or accessing their properties, we handle edges almost like vertex
properties, as seen above. However, creating an edge is not as trivial as setting a vertex



Transformations on Graph Databases for Polyglot Persistence with NotaQL 91

property. This is because an edge has a target vertex, a label, a direction, and a list of
properties. We decided to define the target and direction of an edge on the left-hand side
of the mapping arrow <-, and the edge data as parameters of an EDGE constructor on the
right-hand side. This approach is consistent with NotaQL’s support for other data models
and data types, where the construction of complex objects or list values is specified in a
similar way. The target of an edge is determined by a predicate that matches the target vertex.
If multiple vertices match the predicate, then multiple edges are created. Figure 9 shows the
syntax for edge creation.
outEdge:

Fig. 9: Syntax for Edge Creation

From the current vertex’s view, OUT._>e creates an outgoing and OUT._<e an incoming
edge to respectively from the vertices that fulfill the given predicate. The EDGE constructor
function requires a label and a (possibly empty) list of edge properties.

In the following example, two edges are created for every vertex: The first one says that
everybody is a friend of Sam, and the second one is an edge to each person’s grandmother4:

OUT._id <- IN._id,
OUT._>e?(name = 'Sam') <- EDGE('friend'),
OUT._>e?(_id = IN._>e?('mother' || 'father')_._>e?('mother')_._id)
<- EDGE('grandmother', via <- IN._>e[@]._l)

Within the latter ?-predicate, the ID of the grandmother vertices are searched, and edges
are created to the vertices having this ID. The edge is an outgoing one; it has the label
grandmother and one property via. The term IN._e[@]._l navigates to the current edge
that is bound in the edge-target predicate and reads its label. So the value of the via property
is either 'mother' or 'father'. If a vertex does not have a mother or father edge, or if the
neighbor does not have a mother edge, the predicate is evaluated to false for every vertex. In
this case, no grandmother edge is created. Multiple paths to the same vertex do not result
in the creation of multiple edges. But if a person has multiple mother or father edges to
di�erent vertices, the equality predicate checks for list containment so that multiple edges
would be created. Same if more than one person is named Sam. Then friendship edges are
created to all of them.

3.4 Iterative Computations

Many graph algorithms that change the graph in place have to be executed multiple times to
produce the final result. In NotaQL, we therefore introduce the REPEAT: n clause, which
can be used to run a transformation n times. The repeat iteration also stops if the graph has
not changed since the previous iteration. For REPEAT: -1, the computation runs as long as

4 In this and the following examples, we omit the IN-ENGINE and OUT-ENGINE clause when the output graph is
the same as the input graph, i.e., for in-place updates. We also omit the IN-FILTER, which should be used to
only apply the transformation on vertices with a specific label.
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the graph changes. Another possibility is to monitor the change of a single given vertex
property (property(p%)), and to stop as soon as the change of this property value is below
a certain percentage p for all vertices. Figure 10 shows the syntax of a REPEAT clause.
repeat:

Fig. 10: Repeat Clause

The following example shows the PageRank [Pa99] algorithm in NotaQL. It uses a global
function NumVertices(), which returns the number of vertices in the graph.
OUT._id <- IN._id, # initialization
OUT.pagerank <- 1/NumVertices();

REPEAT: pagerank(0.0005%), # main iteration
OUT._id <- IN._>e_._id,
OUT.pagerank <- SUM(IN.pagerank/count(IN._>e._id))

PR(p) = 1
N

PR(q) =
’

p2in(q)

PR(p)
|out(p)|

Fig. 11: PageRank

There are two transformations. After having initialized the graph with pagerank = 1/N for
all vertices—with N being the number of vertices—the iterative part of this NotaQL script
is then executed until all PageRank values change less than 0.0005% within one iteration.
For a given input vertex p, the PageRank values of all neighbors q 2 out(p) via the outgoing
edges are influenced. The final value of q’s PageRank is the sum of all PageRank values
from vertices like p divided by their out-degree. It can be seen in Figure 11 that the NotaQL
definition is very similar to the original PageRank formula. Improvements like a damping
factor [Pa99] can easily be added into the NotaQL script.

3.5 Modeling Relationships in Non-Graph Databases

Not all applications use graph databases to store relationships between data items. We want
to present three popular schema approaches that are often found in relational and NoSQL
databases to model graphs using data-model concepts like tables, lists or nested objects.
During this discussion we show (non-graph) NotaQL scripts that work with these schema
approaches and transfer one representation into another. Later, we present cross-system
transformations between a graph database and a non-graph database that uses one of the
three presented schemes.

Vertex and Edge Table This schema is often found in relational databases to model
graphs. A vertex table has a primary-key column for a vertex ID, a type column for the label,
and one column for each property. The edge table consists of two foreign-key columns for
the source and target vertex IDs, also one column for the label, and one for each property.
For querying and transforming the data, the two tables need to be accessed multiple times
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and joined to traverse the graph, once for every hop. As NoSQL databases try to avoid joins,
this approach is mostly used in relational databases. Furthermore, the properties have to
be defined in advance, and every vertex can only have one label. This can be solved by
introducing separate label and property tables [Su15]. Tables 1 and 2 show the schema of
the graph shown in Figure 1.

id type name age city
77 person Kate 37 Rome
19 person Jane 35 Bern

Tab. 1: Vertex Table

source target label since
77 19 friend 2016-01-01

Tab. 2: Edge Table

Adjacency Lists Adjacency lists and adjacency matrices are the most common ways to
represent graphs for mathematical computations. While adjacency matrices are rarely used
in databases or files, the lists are often found to store graphs, e.g., in CSV files. Every line
in this file represents a vertex. The first value in one row contains a vertex ID, the other
values are IDs of neighbors via outgoing edges:

77,19,28,39,21

19,40,28

The same graph can be represented in a wide-column store (see Table 3). Here, multiple
column families can be used to both store vertex properties and neighbors in one table
[Ch08]. Instead of leaving the column values empty, they can also hold edge properties.

row-id friends info
77 19:- 28:- 39:- 21:- name:Kate age:37 city:Rome
19 40:- 28:- name:Jane age:35 city:Bern

Tab. 3: Adjacency Lists in a Wide-Column Store

Adjacency lists are also often found in document databases in the form of arrays. Again,
vertex properties and outgoing edges can be stored within one single JSON document.
We want to show a NotaQL transformation to convert a vertex and edge table into this
schema. We do this by taking the edge table (see Table 2) as the input, construct lists of
neighbor-vertex ids, and write these lists in the original vertex table (see Table 1).

OUT._id <- IN.source,
OUT.$(IN.label) <- LIST(IN.target)

The indirection operator $ is used to produce individual lists for every edge label. The result
documents look like this:

{ _id: 77, name: "Kate", age: 37, city: "Rome",

friend: [ 19, 28, 39, 21 ] }

Nested Objects Forming Tree Structures If the data items form tree structures, relation-
ships between items can be modeled by nesting them. In a document store, we use an array
of sub-documents to model edges to these sub-documents. The following example shows a
blog post with comments that can again be commented:
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{ _id: 1420733, user: "Kate", text: "I'm in Berlin now",

comments: [{ user: "Carl", text: "Have fun!" },

{ user: "Jim", text: "I'm also in Berlin!",

comments: [{ user: "Kate", text: "Let's meet!" }]}]}

All these variants are often found in databases. But for complex graphs, they are not
applicable. This is because writing programs and queries over such schemata is hard,
analysis and transformations are slow, and joins are often not supported. The solution are
graph databases which o�er special query languages and a better performance.

3.6 Cross-System Graph Transformations

In polyglot-persistence environments, it is often necessary to transfer or copy data from
one data store to another. As graph databases exhibit worse horizontal scalability than for
example document stores, it is a popular approach to use a graph database only for storing
relationships between items, while the item’s properties are stored in a document store.
The grammar in Figure 12 is a modified version of Figure 3 from the beginning of this
paper. With the graph-database extension of NotaQL, it is possible to mix the usage of
graph and other databases in the IN-ENGINE and OUT-ENGINE definition. For each engine,
data–model-specific language constructs can be used, e.g. IN._k and IN._v for a key-value
store or IN._e for a graph database as input. All this is part of the definition of the value
symbol in Figure 12.
notaql:

Fig. 12: Syntax for Cross-System NotaQL Transformations with Edge-Creation Option

In the next example, we want to show a typical data transformation, namely a data-migration
task from MongoDB to Neo4J. As MongoDB does not support direct relationships between
documents, a one-to-n relationship for a person’s status updates can be modeled as a list of
nested sub-documents, and an n-to-m relationship for friendships can be modeled as an
adjacency list of the friends’ IDs. Figure 13 shows one input document and the desired
output of the documents-to-graph transformation.

Using the following script, the data is transformed into a graph with person and status
vertices plus the connecting edges.

#1. create status vertices
IN-ENGINE: mongodb(database<-'socialnet', collection<-'people'),
OUT-ENGINE: neo4j(path <- '/data/socialnet'),
OUT._id <- IN.status[*].sid, OUT.ts <- IN.status[@].ts,
OUT.text <- IN.status[@].text, OUT.type <- 'status';
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{ _id: 77, name: "Kate", age: 37,

status: [

{ sid:714, ts:1448269379,

text:"I'm in Berlin now!!!"},

{ sid:788, ts:1448372647, text:

"The currywurst museum is amazing!"}

], friends: [ 19, 78, 81, 103 ]

}

type : person

_id : 77

name : Kate

age : 37

type : status

_id : 714

ts : ...379

text : I‘m...

type : status

_id : 788

ts : ...647

text : The...

friend

friend

... ... ... ...

Fig. 13: Left: Input as JSON Documents; Right: Output as a Graph

#2. create person vertices and edges to their statuses and friends
IN-ENGINE: mongodb(database<-'socialnet', collection<-'people'),
OUT-ENGINE: neo4j(path <- '/data/socialnet'),
OUT._id <- IN._id, OUT.name <- IN.name, OUT.age <- IN.age,
OUT._>e?(type='status' && _id=IN.status[*].sid) <- EDGE('posts')
OUT._>e?(type='person' && _id=IN.friends[*]) <- EDGE('friend'),
OUT.type <- 'person';

There are two transformations. The first one creates status vertices. A new vertex is created
for every element in each person’s status list. With [*], we iterate over the list. While
iterating, the current element can be accessed with [@]. For the example document in Figure
13, two status vertices are created. In the second transformation, the person vertex is created.
There, an edge links to every status vertex and other edges to the friends. As we explain in
the next section, edges are created at the very end of a transformation. So, it is guaranteed
in this case, that the target vertices of friendship relationships exist—assumed that there
are no dangling references in the input database. Usually, the list of friends in the input is
symmetric, so Kate’s friend Jane will have Kate’s ID in its friends list. To avoid the creation
of edges in both directions, one can simply add && _id>IN._id. Then, the friendship edge
points from the vertex with the smaller ID to the one with the larger one. The typical way
to model symmetric relationships in graph databases is creating an edge in an arbitrary
direction. At query time, an edge is traversed independently of its direction.

A transformation in the opposite direction, i.e. from a graph database to a di�erent database,
is possible with the edge-accessing steps shown in Section 3.2. To reverse the transformation
in Figure 13, the following NotaQL script can be used:

IN-ENGINE: neo4j(path <- '/data/socialnet'),
OUT-ENGINE: mongodb(database<-'socialnet', collection<-'people'),
IN-FILTER: type='person',
OUT._id <- IN._id,
OUT.name <- IN.name, OUT.age <- IN.age,
OUT.status <- LIST(OBJECT(sid <- IN._>e?('posts')_._id,
ts <- IN._e[@]_.ts, text <- IN._e[@]_.text)),
OUT.friends <- LIST(IN._e?('friend')_._id)
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The transformation is performed for every person vertex. It creates person documents in
which the status attribute is a list of objects, filled with property values of neighbor
vertices using the outgoing posts edges. For friends, only the vertex IDs are retrieved to
create a list of foreign keys. In the given example, we used the constructor functions LIST
and OBJECT, which are specific for document stores as an output.

As there are also input and output engines for CSV and JSON files, NotaQL can be used to
easily import and export graphs.

4 Realization

While our implementation in [SLD16] is based on Apache Spark [Za10], we developed
our graph transformation prototype as a simple Java tool. This is because we found no
good framework that supports the di�erent data models of graphs and simple datasets
properly. The other reason is that graph databases are usually accessed with their own API
and not with frameworks because they are typically not stored in a distributed system with
multiple machines. We decided not to use the direct API of a graph database but to use the
graph-database gateway Tinkerpop Blueprints [Ap16] (see Figure 14). This gateway gives a
unified access to di�erent graph database systems like Neo4J, Titan [Ti16], Tinkergraph
[Ap16] and many others. This way, we support a magnitude of various stores at the same
time. One drawback is that Blueprints does not support vertex labels. As seen in the previous
examples, we used a type property for storing it.

Neo4J Blueprints

BlueprintsNeo4J

Java

Fig. 14: NotaQL-Script Execution on Graphs

A graph-to-graph transformation is done in
five steps:
1. Parsing
2. Vertex Access and Pre-Filter
3. Input Filter
4. Creation of Vertices
5. Creation of Edges

In iterative algorithms, the steps (2) to (4) are repeated until the stop condition is fulfilled.
For parsing in step (1), we use the ANTLR [Pa16] parser and lexer. Step (2) uses the
Blueprints method getVertices(String key, Object value) to find a superset of all
vertices of interest. As this method only checks for equality on one single property, complex
input-filter predicates have to be converted into the conjunctive normal form (CNF) first.
After that, one clause that only consists of one equality literal, can be used for pre-filtering
with the getVerticesmethod. If there is no such single-equality-literal clause, or if there is
no input filter at all, all vertices are received. But in fact, in typical NotaQL transformations
there is such a equality literal, namely a type predicate (e.g., type = 'person').

In step (3), our algorithm iterates over all found vertices from step (2) and filters out the
ones that violate the input filter. If Blueprints adds a support for complex predicates in the
future, or if we change the implementation so that it uses the native graph-database API,
step (3) can be dropped.
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Within the iteration over the input vertices, new vertices are created and the attribute
mappings in the NotaQL script are performed (step (4)). Simple property mappings like
OUT.a <- IN.b or OUT.a <- 5 can be easily evaluated to create an output vertex’s
property values. Traversals over edges in the input graph are converted into method calls
of the Blueprints API to navigate to neighbors. Aggregation functions that are applied on
lists in the input can also be easily evaluated by retrieving all values from neighbors and
computing the aggregated result, e.g. a sum. Aggregation functions after grouping are more
complex to evaluate as they combine data from multiple input vertices. One solution would
be grouping all output vertices by their ID and afterwards applying a reduce function to
produce one single vertex for every group. This behavior is similar to MapReduce [DG04]
or Spark [Za10]. But these frameworks split the data into chunks and distribute them over a
cluster of machines. In our case, all data has to be kept in memory of our computing node.
Our solution is simple and e�ective: The aggregation functions are ignored first. When the
output vertex is written into the target graph database, this write is done in an incremental
fashion with reference to the given aggregation function. For example, if the function is
MIN, the property value is overwritten only if it is smaller than the current one. If it is SUM,
the current property value is incremented by the new one.

Step (5) starts as soon as all vertex creations are completed. In that step, our algorithm
iterates again over all input vertices that fulfill the input filter. Then it evaluates the OUT._id
definition and all edge creation parts. With this information, it can produce all edges between
vertices in the output graph.

Tinker-
graph

MongoDB
A
P
I

Engine

JSON
A
P
I

Engine

Spark

Blueprints

BlueprintsNeo4J

Java

Fig. 15: Cross-System Execution of NotaQL be-
tween a Graph and a di�erent NoSQL Database.

For cross-system transformations, we com-
bine our existing Spark-based platform
[SLD16] and the graph-to-graph transfor-
mation platform presented in this paper.
This way, we combine the benefits of both
worlds: The first system is optimized for
aggregated stores and files and supports
distributed storage and computation. The
second one works directly on graphs so that
connections between data items are sup-
ported as native data-model concepts. Both
platforms communicate with each other us-
ing a common in-memory graph database
Tinkergraph [Ap16] as an intermediate for-
mat. A transformation from a graph to a
non-graph system uses the given NotaQL
script to produce a Tinkergraph without edges. After that, a generic Tinkergraph-to-JSON
tool is executed to produce a JSON file that can be read by the Spark-based platform to
write the output in the target database. A transformation in the opposite direction, i.e.,
from a non-graph to a graph database, produces the intermediate JSON file first. This one
is converted into a Tinkergraph, and the Tinkergraph is the input for a graph-to-graph
transformation that produces the output. Both the intermediate JSON file and Tinkergraph
do not contain edges. We perform query rewriting to move the edge access and creation
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part of a NotaQL script to the graph platform. The result is a fast execution that involves
di�erent kinds of databases and data models.

Figure 15 shows the execution of a transformation from a MongoDB collection to the graph
database Neo4J. The NotaQL script is rewritten so that it writes the (filtered) MongoDB
documents into a JSON file. After that, the generic JSON-to-Tinkergraph tool is used to
create a Tinkergraph. This Tinkergraph acts as an input for the NotaQL graph-transformation
platform that writes the result into Neo4J using the rewritten NotaQL script.

5 Initial Validation

We ran some initial experiments to validate our general approach in terms of feasibility and
performance, For that, we used a single machine with a double-core Intel i3 M 370, 2.4
GHz and 3 GB of memory. As a test database, we used a subset of the data of the Slovenian
social network Pokec [TZ12] in JSON format. Our test dataset consists of 15, 000 vertices
and 200, 000 edges. Di�erent from our examples above, friendships are asymmetric, so if A
has a friend B, this does not imply that B also has a friend A. The data from [TZ12] consists
of one collection of person documents, and one containing the relationships between them.
This corresponds to the vertex/edge-table schema described in Section 3.5. In a first step,
we combined both collections into person documents with adjacency lists. These documents
look like this:

{ "_id":"14943", "user-id":"14943", "username":"14943",
"avatar":"185 cm, 65 kg, ????asi:d",
"follower": ["8303"], "following": ["8934","544"] }

In [Pa15], a complex Java program is presented to import such a graph that is stored in a
JSON file into Neo4J. The program iterates over all JSON documents and creates Cypher
statements to create vertices for every person and statements to add the edges between them.
The list of statements is written into a file, which is then executed on Neo4J. We tested the
proposed program on our Pokec database. It took 207 minutes to import the data into Neo4J.
With NotaQL, the transformation can be expressed in only four short lines of code and the
import needed only 95 seconds. In applications where we have much larger data sets, the
solution that generates Cypher statements is not suitable because it would need many days
for the import.

In a second experiment, we imported the Pokec dataset into a MongoDB database. We used
the MongoDB aggregation pipeline to compute the number of friends plus the number of
friends of friends for every person. The algorithm starts with unwinding the following
array, grouping by the ID, and counting the direct neighbors. Then, the number of indirect
neighbors are added to this number by performing a $lookup operation and another
grouping and counting. This computation took 23 minutes. Next, we formulated the query
as an NotaQL script. As neither the input nor the output is a graph database, we cannot apply
the NotaQL graph-transformation platform here directly. So, we first load the MongoDB
collections into an in-memory Tinkergraph, and apply the friends-of-friends computation
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on this, using the MongoDB output engine. All in all, this job took only 40 seconds, so we
have a speed-up of more than 3,000%.

6 Related Work: Graph Languages and Frameworks

The three most common ways to work with a graph database are (1) working with the
database-specific API to find, create, and modify vertices and edges of a graph, (2)
using a graph query language, and (3) utilizing a graph-processing framework. The API
methods provide e�cient access to individual vertices and support a simple graph traversal.
Application developers can directly use these methods to work with graph databases.
However, for complex tasks like data analytics or iterative computations, much code needs
to be written. A NotaQL script can be written in one minute and executes the same complex
graph transformation. As an alternative to APIs, graph query languages like Gremlin and
Cypher can be used. Gremlin [Ro15] belongs to the Tinkerpop [Ap16] stack and uses the
common Blueprints API for graph databases. Thus, Gremlin is widely supported. A query
consists of multiple steps such as filters to select vertices and edges based on their labels
or properties, traversal steps to move to neighbor edges or vertices, or aggregation steps.
Side-e�ect steps can be used to store intermediate values in variables so that they can
be accessed in later steps. Gremlin is easy-to-use and powerful for reading, but not for
graph transformations. For vertex and edge creation, there are only simple methods that are
typically only used to modify one single vertex or edge. NotaQL also uses the Blueprints
API and thus, it supports all graph databases that are supported by Gremlin. However,
NotaQL is used for the tasks Gremlin cannot do, namely complex graph transformations.
Another language is Cypher, the graph query language for Neo4J [Ne16a]. Its syntax is
similar to SQL and consists of pattern-matching elements like in SPARQL [Pr08]. A MATCH
clause is used to define a pattern that is searched for in the whole graph. In this pattern,
variable names can be introduced. For every match, the rest of the query is executed. This
can be a WHERE clause for filtering, a RETURN clause to return a result for each match, or a
writing clause like UPDATE, CREATE or DELETE to modify the graph in place. While this
allows for set-oriented graph transformations, Cypher has restrictions with respect to the
complexity of these transformations. In writing clauses, no aggregation functions can be
used. Furthermore, Cypher does not support iterative algorithms, it cannot properly handle
flexible schemata or transform metadata into data and vice versa. NotaQL supports all these
features and it allows for cross-system transformations. Cypher queries can only be based
on one single graph, and they can only change the graph in place.

There are many graph-processing frameworks that are optimized for distributed graph
processing. Pregel [Ma10] and its open-source implementation Apache Giraph [Av11] are
frameworks to define an iterative algorithm as a user-defined function that is called on
every vertex. Within this function, the properties and neighbors of a vertex can be accessed,
properties can be modified, messages can be sent to neighbors, and incoming messages
from the previous iteration can be processed. These frameworks are typically not used for
computations on graph databases but on graphs stored in a file, a relational database or a
wide-column store. NotaQL supports both graphs in one of these formats and also graph
databases. Furthermore, there is no need to have programming skills. One simple writes a
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concise script to map input data to the output. The data-processing framework Apache Spark
[Za10] has a component called GraphX [Xi13] which supports iterative graph analysis
similar to Pregel. The graph has to be stored in a vertex table and an edge table. However,
again, this framework is not used to work on graph databases. There are Spark connectors
for graph databases, e.g. for Neo4J, but they o�er a flattened look on the graph without
the information about vertex neighbors. Edges can be traversed by writing Cypher queries
within Spark methods. In our graph extension for NotaQL, edges are first-class citizens. It
natively supports the full graph data model and not just a greatest common divisor between
graphs and aggregate stores.

Spark can be used to implement a cross-system transformation from a graph database to a
di�erent database. However, these kinds of transformations do not work in the opposite
direction, and they only work on simple graphs. There are special tools for graph imports and
exports, but no generic ones like our NotaQL platform. The Neo4J Doc Manager [Ne16b]
is a tool that loads documents from MongoDB [Mo16] into the graph database Neo4J. A
vertex is created for every document d and one for every of their sub-documents s with an
edge between d and s. This is very restricted and requires an extra e�ort on the source and
target side before and after the import process to bring the data in the desired format. With
the other languages and frameworks presented above, graph transformations to or from a
di�erent kind of data store are not possible.

Green-Marl [Ho12] is a language for graph analysis. It can be used to compute scalar values
from the graph or a property for every vertex. Users can develop algorithms in a few lines
of code which is then optimized and compiled into e�cient parallel C++ code. Green-Marl
is not a query or transformation language, but a programming language especially for
graphs. Thus, users need to write code that defines how to compute a result, not what the
result should be—as in SQL or NotaQL. In the paper, the authors claim that the PageRank
algorithm can be expressed with 15 lines of code, in contrast to its native implementation in
C++, which has 58 lines. As shown in Figure 11, the PageRank definition in NotaQL has
only 5 lines of code.

7 Conclusions and Future Work

As a summary, we presented a language extension for NotaQL to define graph transformations
as short transformation scripts. This way, we showed the extendability of NotaQL for complex
data models. The language is more powerful than existing graph languages, it supports graph
traversal, edge access and creation, and iterative algorithms. NotaQL can be used to modify
a graph in place, to produce new graphs, and perform graph analytics using groupings and
aggregations. We presented an approach for cross-system graph transformations between
a graph database and any kind of NoSQL database or file format. For this, we used
system-specific NotaQL engines and a combination of the Apache Spark framework and
the Blueprints API for graphs. Our data–model-independant language fully supports the
di�erent data models, not the greatest common divisor of those. For that, we use tailored
access paths for each model: graphs, documents, key-value pairs, tables, files, and more.
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The most complex ones are graphs. For those, we presented an powerful and intuitive syntax
to work with edges, neighbor vertices and their properties.

Our results show that our platform is very fast in graph transformations. This is because a
NotaQL script is directly executed on a graph database using an API, not an intermediate
query language. Cross-system transformations between graph and non-graph databases use
the combination of the Blueprints API and the Apache Spark framework for distributed
computations.

The NotaQL graph-transformation platform fulfills the four requirements for graph-process-
ing software described in [Lu07]. It is flexible regarding data models and the data schema,
extensible through user-defined engines and functions, portable to di�erent database systems,
and maintainable as a NotaQL script is concise and well understandable.

For future work, we want to improve the performance by integrating our Spark-based and
graph-transformation platform closer. Instead of using an intermediate JSON file, we want
to build a Tinkergraph engine for the Spark-based platform. This way, the in-memory graph
database Tinkergraph can be accessed with Spark like a document store. After that, we
plan more performance evaluations and tests. As the NotaQL language is independent of
its implementation, more e�cient implementations based on systems like Apache Giraph
[Av11] or Green-Marl [Ho12] can follow.
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