
Integrating the Concept of Standard Software into a

Certifiable Development Process

Wolfgang Friess

AUDI AG

wolfgang.friess@audi.de

Dr. Franz Duckstein

3SOFT GmbH

franz.duckstein@3soft.de

Abstract: The need for a certifiable development process for automotive systems is
increasing due to the rising number of safety-relevant software functions. In this ar-
ticle, we describe the actual work in the Bavarian research project mobilSoft on this
topic and the usage of configurable commercial-off-the-shelf (COTS) standard soft-
ware modules as a special aspect of automotive software development. Furthermore,
the necessity for a formalised integration process for such COTS-modules as a pre-
condition of a certifiable development process is explained and a concept for such a
process is introduced. Finally, an outlook on further steps is given.

1 Introduction

As more and more functions realised by software directly influence the driving behaviour,

the number of safety-relevant software functions will increase in the next years. A struc-

tured and certifiable development process is the key to ensure safety and quality. An im-

portant aspect in automotive software development is the usage of statically configurable

commercial-off-the-shelf (COTS) software modules for system software functions. Typi-

cal examples for such modules are operating systems and bus drivers. Actual development

processes focus on safety-relevant application software. To integrate COTS-modules into

a safety-relevant system, a certified integration process for such modules has to be ap-

plied. In the following section, the different steps to integrate standard software modules

are identified and described. After that, a general process for integrating standard software

modules into an ECU software system is introduced.

2 Integration of Standard Software

Standard software often provides some safety related functionality itself, like the Protected

OSEK [AG04] or AUTOSAR COM 1. If standard software provides mechanisms for error

detection, it must be assured that these mechanisms work correctly. Therefore, the config-

uration of standard software must be done without faults impacting the safety mechanisms,

1www.autosar.org

746



on which the complete system relies. So the configuration has to be ’safe’, or the standard

software has to be secured against configuration faults. The process of integrating COTS

standard software modules into an ECU-software system can be divided into three main

steps:

1. selection of software modules

2. parametrisation of the selected modules

3. building of the resulting binaries

Usually these steps are performed without explicit control. Therefore they are strongly

depending on the individual skills of developers and integrators. For these steps we need

to prove, that all possible sources of defects are identified, and that all of these defects will

be discovered during configuration. These three configuration steps are controlled by a

combination of project requirements, explicit constraints between or within the software

modules, and individual decisions including existing experiences.

Selection of Software Modules

On the base of certified modules a controlled selection process will include

• documentation of selection
• documented proof of completeness on module dependency level2
• documented proof of compatibility

The proofs will be based substantially on the given module documentation. In order to pro-

vide tool support, the documentation must be formal. Possible check items are resource or

scheduling constraints within the combination of modules. Example: an implicit module

dependency by shared memory communication will potentially not be discovered by the

linker.

Parametrisation of the Selected Modules

The selected software modules are the initial configuration, which should be subject of

protection to avoid unintended manipulation. Software modules in the embedded area

usually support functions with a broad flexibility. The use of a module needs a proper

parametrisation per project, typical examples are

• hardware settings like controller-derivate, frequency or memory areas
• software settings for scheduling, communication or functional behaviour
• compilation settings like switches or optimisation
2all primary dependencies between the selected modules are resolved (e.g. the versions of the selected moduls

are compatible and there are no unresolved external functions left)

747



As a prerequisite for certification, the parametrisation per module must also be docu-

mented. This includes for each parameter the dependencies to other parameters, the pa-

rameter effect, the necessity of use and the reasoning of choice. The verification of a

parametrisation includes

• review of completeness per function (all affected modules)
• proof of compliance with parameter constraints
• prevention of unauthorised or unintentional changes

Constraints are a commonly used technique. They provide additional information like

valid ranges or dependencies. As a typical solution, the parameter constraints are defined

in a separate file (e.g. in XPATH or OCL format). If the parametrisation is encapsulated

by a tool, parameter settings in contradiction with given constraints are blocked.

Building of the Final Binary

The build process is also challenging, in order to guarantee the proper input data, the

intended creation sequence and its final results. Items of interest are

• using the proper tools (type and version)
• unambigous processing, secured against disruption or wrong intermediate results
• completeness of build and its documentation

The created results (binaries) should provide clear attributes, like generation settings, hash

values and a significant labelling. This can be used during further processing to protect

against unintentional changes.

Using separate tools for the different standard software configuration steps is state of the

practice. But with the rising number of safety-relevant software functions and the increas-

ing importance of certifiability, a seamless tool chain based on a formalized configuration

process is needed.

3 Formalised Integration Process

To prove the correctness of standard software integration in real life projects, a formalised

process and an appropriate tool support based on this process is essential. Therefore, a

formalised integration process is introduced in the following. The starting point for the

integration process are the requirements, that must be fulfilled by the standard software

modules. These requirements arise from different sources, like the application, the used

microcontroller or the network topology, the ECU is integrated in. For example, if the

ECU is connected to a CAN network, a CAN driver suitable for the used microcontroller

has to be selected. Detailed information about the network (like the used baud rate or

network topology) is needed, in order to complete the step of CAN driver parametrisation.

748



Starting from these requirements, the steps of selection, parametrisation and building must

be connected by the formalised process. To enable a seamless integration process a com-

mon description for all the possibilites of the three integration steps is needed. Therefore,

the sum of all configuration possibilites is considered as a configuration space which is

influenced by different requirements. This configuration space concept is the basis for the

tool chain supporting the integration process. Figure 1 shows this concept.

Figure 1: configuration space concept

The implementation of the configuration space can be done for example by a properitery

data model or by standardised models like UML. The actual choice depends on outer cir-

cumstances like the surrounding tool framework or the established development process

in the considered company. To support a seamless fulfillment of the requirements, we

investigate feature models for describing the configuration space. Feature models were

introduced by Kang [KCH+90] and are widely used in the domain of generative program-

ming [CBUE02] and software product lines [Beu03] in order to model the configuration

options in software systems. The formalised integration process, which is the precondition

for a certifiable integration process, combines the configuration space with the integration

steps explained in section 2. An overview about this process is shown in figure 2.

This formalised integration process is the basis for establishing a certifiable configuration

process and a seamless tool support for the configuration of standard software which is

still missing nowadays.

4 Outlook and Conclusion

The integration process described in this paper will be implemented based on existing tool

solutions for the three integration steps explained in Section 2 namely the tresos configu-

ration framework [Sch03]. After that, an extensive verification with several use cases will

take place.

A certifiable integration process for standard software must consider the fact that several

companies are part of the overall development process. Therefore, the research project

749



Figure 2: formalised integration process

mobilSoft is the platform to define such a common and certifiable process. This research

project is partly funded by the Bavarian Ministry of Economic Affairs, Infrastructure,

Transport and Technology.

The increasing number of safety-relevant software functions in modern cars offer a great

potential for Bavarian companies to remain the technological leader of the automotive

industry world wide, but a certifiable development process is the key for realising this

benefit. The work in this research project is one step to face this future challenge.

References

[AG04] DaimlerChrysler AG. OSEK OS Extensions for Protected Applications. Technical
report, HIS, http://www.automotive-his.de/download/HIS ProtectedOSEK10.pdf, July
2004.

[Beu03] Danilo Beuche. Composition and Construction of Embedded Software Fam-
ilies. PhD thesis, Otto-von-Guericke Universität Magdeburg, http://ivs.cs.uni-
magdeburg.de/ danilo/, 2003.

[CBUE02] Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ulrich W. Eisenecker. Gen-
erative Programming for Embedded Software: An Industrial Experience Report. In
GPCE ’02: The ACM SIGPLAN/SIGSOFT Conference on Generative Programming
and Component Engineering, pages 156–172, London, UK, 2002. Springer-Verlag.

[KCH+90] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, November 1990.

[Sch03] Dr. Jochen Schoof. OSEK trifft Middleware. Elektronik Automotive, 6:28–33, 2003.

750


