
Towards Automatic Construction
of Reusable Prediction Models

for Component-Based Performance Engineering

Thomas Kappler1, Heiko Koziolek2, Klaus Krogmann1, Ralf Reussner1

1Chair Software Design & Quality, Universität Karlsruhe (TH)
Am Fasanengarten 5a, 76131 Karlsruhe

{kappler|krogmann|reussner}@ipd.uka.de

2Graduate School TrustSoft, Universität Oldenburg∗

Uhlhornsweg, 26111 Oldenburg
heiko.koziolek@informatik.uni-oldenburg.de

Abstract: Performance predictions for software architectures can reveal performance
bottlenecks and quantitatively support design decisions for different architectural al-
ternatives. As software architects aim at reusing existing software components, their
performance properties should be included into performance predictions without the
need for manual modelling. However, most prediction approaches do not include au-
tomated support for modelling implemented components. Therefore, we propose a
new reverse engineering approach, which generates Palladio performance models from
Java code. In this paper, we focus on the static analysis of Java code, which we have
implemented as an Eclipse plugin called Java2PCM. We evaluated our approach on
a larger component-based software architecture, and show that a similar prediction
accuracy can be achieved with generated models compared to completely manually
specified ones.

1 Introduction

Model-based performance prediction methods [BMIS04] aim at analysing the performance
(i.e., response time, throughput, resource utilisation) of large software systems already dur-
ing early development stages. They support developers by allowing performance analyses
of architectural models even before starting the implementation of code. This approach
avoids realising architectures with poor performance properties, which can cause expen-
sive redesigns and/or re-implementations. Many of these approaches use annotated UML
diagrams [Obj05] to specify performance properties and transform these models into es-
tablished analysis models, such as a queueing networks, stochastic Petri-nets, or stochastic
process algebra [BMIS04].

∗This work is supported by the Germany Science Foundation, grant GRK/1076.

140

A particular challenge for performance prediction arises for component-based systems,
where software architects reuse existing components besides new ones, which are de-
signed for specific requirements. Performance models (e.g., annotated UML diagrams)
for reused software components allow answer sizing questions or determining the impact
of relocations and extensions, but are usually not available from component developers.
They provide their component’s source or binary code, but software architects cannot exe-
cute and measure the performance of these components, if they require other components,
which are designed (i.e., defined via their provided and required interfaces), but not yet
implemented or if the deployment environment is not yet available.

Software architects can apply reverse engineering techniques on existing components to
derive information needed for a performance model (i.e., resource demands and a be-
havioural abstraction of the component services) from component code. However, exist-
ing reverse engineering tools do not support creating performance models from code, but
instead focus on functional properties [Kos05]. They are able to reconstruct static code
structures as UML class diagrams and often also (partially) dynamic behaviour as UML
sequence diagrams [BLL06], which however lack a specification of resource demands
needed for performance models. Furthermore, the resulting sequence diagrams often con-
tain information not necessary for performance analysis and are too fine-granular for an
analytical performance model.

To tackle this problem, we propose a new reverse engineering approach for deriving per-
formance models from implemented software components. We target components imple-
mented in Java and use code analysis techniques to create instances of the Palladio Com-
ponent Model (PCM) ([BKR07, RBK+07]). This performance specification language for
software components allows composing individual component performance models into
a complete architectural performance specification. It is supported by model transforma-
tions and simulation tools to predict performance properties. In this paper, we focus on
one specific step of the reverse engineering approach, namely the static analysis of Java
code to derive abstract behavioural performance models of component services. A spe-
cial benefit of our approach is that software architects can reuse the resulting performance
models in different architecture models.

The contributions of this paper are (i) a generic process for reverse engineering reusable
performance models from code and (ii) a static code analysis method implemented as an
Eclipse plugin called Java2PCM mapping Java code to PCM instances (as example of a
performance model). We have evaluated the applicability of our approach by creating
performance models from the code of CoCoME [RRMP08], a component-based system.
With the performance models generated by Java2PCM and additional manual treatment,
we were able to make performance predictions for CoCoME.

This paper is organised as follows: Section 2 discusses related work, before Section 3
describes the target model of our reverse engineering approach and explains the process
model. Section 4 introduces our static code analysis, and Section 5 describes a case study
evaluating the proposed benefits. Afterwards, Section 6 discusses benefits and limitations
of the approach, before Section 7 concludes.

141

2 Related Work

This work is related to reverse engineering, automatic complexity analysis, and model-
based performance prediction. We argue that a tighter integration of both areas is needed
to broaden the scope of performance predictions.

Reconstruction of software architectures is a rich research field [Kos00, pp. 351][TTBS07].
Also, several commercial CASE tools support reverse engineering, in particular design
recovery, from code. IBM Rational Software Architect [IBM07] and Borland Together
[Bor07], for instance, create UML class and sequence diagrams from Java code. The re-
sulting sequence diagrams do not contain control flow guards or forks modelling thread
invocations, however, which are important for performance models. Flowchart4J [Cod07]
visualises the control flow through code. Briand et al. [BLL06] use source code instru-
mentation and execution to create more expressive sequence diagrams (e.g., with thread
invocations). However, none of these approaches is able to provide a performance specific
abstraction of component behaviour.

Automatic complexity analysis such as [Ros90] determines abstract big O notations or av-
erage case execution time [HC88] of algorithms via static code analysis. Later approaches
like [SF96] support analysis of upper-bound (O), lower-bound (Ω), matching of upper and
lower bound (Θ), and asymptotic approximations (“more concise approximate expression
in terms of well-known functions that still can be used to compute very accurate numer-
ical results” [SF96, p. 23]) but do not handle general distributions. Wegbreit [Weg75]
uses dynamic analysis in a semi-automatic approach designed for LISP, but does not sup-
port concurrency in programs nor components and requires expert knowledge for complex
programs. The focus is on min, max, mean, and variance values. Our approach tries to de-
termine more refined performance specifications especially for software components with
contractually specified interfaces by combining static with dynamic analysis.

Model-based performance prediction methods [BMIS04] mostly support a top-down de-
velopment process, where developers create a new software architecture and components
(including models and implementation). These methods rarely foresee integrating exist-
ing components into software architecture models. Although there are many performance
measurement and profiling tools, existing software components cannot directly be perfor-
mance tested when being integrated into a modelled, but yet unimplemented architecture.

3 Reverse Engineering for Component Performance Models

This section first explains the target model of our reverse engineering approach, namely
PCM [BKR07] instances, before it sketches the overall process to generate such models
from code.

The PCM is a meta model to describe component-based software architectures and specif-
ically enables performance predictions during early development stages. Other than UML,
it provides several domain specific modelling languages for different developer roles.
Component developers model the control flow through their components, software ar-

142

chitects can compose the resulting models to an assembly. System deployers model the
hardware environment and the mapping of components to hardware, and domain experts
specify the usage of the system in terms of parameter values and number of users.

All specifications may contain performance annotations, such as expected execution times
or performance-relevant attributes of hardware resources. The PCM itself is specified
in Ecore from the Eclipse Modelling Framework. It consists of more than 100 meta-
classes, therefore a thorough description is beyond the scope of this paper (cf. [BKR07,
RBK+07]).

In this paper, we particularly focus on the semi-automatic derivation of behavioural skele-
tons (Resource Demanding Service Effect Specification, RDSEFF) for component services
from existing source code.

Internal
Action

External
Call Action

HD-Demand
= 500 Bytes

Iterations
= 10

Internal
Action

HD-Demand
= 1000 Bytes

Probability
= 0.2

Probability
= 0.8

CPU-Demand
= 100 Units

Figure 1: RDSEFF

An RDSEFF provides an abstract model of a single
component service’s behaviour. It is reduced to resource
demands (e.g., to CPU, hard disk) of internal actions
(i.e., computations by the service) and calls to external
(i.e., required) services (Fig. 1). An internal action can
subsume a large number of instructions and express its
resource demand as a constant value or probability dis-
tribution function (not shown here, see [BKR07]). The
abstraction from a component service’s actual behaviour
is necessary to keep the models analysable and to not re-
veal the component developer’s intellectual properties,
because the models could eventually be included into
public repositories enabling third-party reuse.

Besides internal actions and external call actions, RD-
SEFFs can contain branch probabilities, loop iterations
numbers, and control flow forks. All model annotations
can be specified in dependency to parameter values. For
example, a loop iteration number can be bound to the
length of a collection provided to the component service as an input parameter. The length
of such a collection is usually unknown to the component developer as the component
could be used in many different contexts. An RDSEFF with such parametric dependen-
cies is reusable in different architecture and deployment models.

Our approach for generating RDSEFFs from code combines static and dynamic code anal-
ysis (also see [Ern03]) trying to leverage the benefits of both methods (Fig. 2). The pro-
posed process model is generic and can be applied with different programming languages,
tools, performance models, and performance prediction methods.

Static analysis starts from source code and parses it to an abstract syntax tree (Fig. 2, 1.1)
for example using the Eclipse Java Development tools. Then, component boundaries need
to be identified (1.2). This is challenging if the code under study is written in an object-
oriented language such as Java, which per se does not support the component paradigm.
There is a large body of research dedicated to design recovery from source code [Kos05].
In the context of the PCM, Chouambe [Cho07] has implemented a component detection

143

Manual
Spec.

AST +
Component
Boundaries

Source Code

Repeated
ProfilingBinary Code

RDSEFF
Structure

Platform-Independent
Resource
Demands

Instr. Code +
TestBed

Abstract Syntax
Tree (AST)

RDSEFF

Instrumentation
+ TestBed
Config.

Component
DetectionParsing Java2PCM

Architectural
Model

Performance
Metric

Test Results Analysis

Decision
Support

Merging

RDSEFF

Com-
position

Deployment+
SimulationAnalysis

Static Analysis

Dynamic Analysis

Performance Prediction

C
om

pi
la
tio
n

1.1 1.2 1.3

2.1 2.2 2.3

3.33.43.5

3.1

3.2

Figure 2: Reverse Engineering and Performance Prediction

tool for arbitrary Java code, which identifies components via different code metrics. For
the scope of this paper, we assume this step as already executed. The static analysis im-
plemented by the Java2PCM tool [Kap07] (1.3), which is presented in this paper, operates
on the AST representation to reconstruct an initial RDSEFF structure without annotations.
It uses the component boundaries identified in the previous step to distinguish between
internal and external actions. Section 4 describes this step in more detail.

Dynamic analysis starts from binary code, instruments it, and additionally sets up a testbed
(2.1) to execute single component services with different parameter values, which is needed
to extrapolate their full behaviour. We have not implemented this step yet and consider
it future work. Dynamic analysis specifically aims at identifying the resource demands
for RDSEFFs, which the static analysis cannot determine (2.2). To simulate potentially
missing required services from external components, the analysis uses generated dummy-
components. Woodside et al. [WVCB01] have set up a corresponding test environment,
which could be used for this step. The resulting execution times need to be analysed with
statistical methods (e.g., linear regression, regression splines) so that function over the in-
put parameter values express the resource demands (2.3). Krogmann [Kro07] proposes
using genetic algorithms to determine complex functional dependencies from the mea-
surement data in this step. The resource demand functions can further be parametrised for
different platforms [KB07].

Tools can merge the RDSEFF structures from static analysis with the resource demand
functions from dynamic analysis to create complete RDSEFFs (3.1). For the scope of this
paper, we specified the resource demands manually and merged them into the RDSEFFs
by hand, as the encapsulation of this step into tools is still missing.

Software architects can then use these parametrised specifications to model complete
software architectures for performance prediction. They may compose modelled com-
ponents containing RDSEFFs resulting from code analysis with manually specified ones

144

[RBK+07] (3.2, 3.3). Adding deployment information to the architectural model enables
simulating or mathematically analysing the model for different usage profiles and hard-
ware environments (3.4). In the PCM context, a discrete-event simulation based on ex-
tended queueing networks is able to derive performance metrics, such as response times,
throughput, and resource utilisation, from the models [BKR07]. The results can then re-
veal the infeasibility of certain performance requirements and support design decisions
with quantitative data (also see [BCdK07]) (3.5).

4 Static Code Analysis to reconstruct RDSEFFs

This paper focuses on the static analysis of Java code to reverse engineer RDSEFFs. The
static analysis reconstructs an abstraction of the control and data flow through a component
service and produces an initial RDSEFF model. RDSEFFs hide internals of a component
service as long as they do not influence calls to required services. Therefore, the goal of
the static code analysis is to hide internal component instructions that do not concern the
interaction with other components.

Furthermore, it tries to create boolean expressions for branch conditions and arithmetic
expressions for loop iterations numbers, which do not reference local variables, but only
parameters declared in the component interfaces. The static code analysis is not concerned
with resource demands to the CPU or memory, which shall later be added by the dynamic
analysis.

The Java2PCM transformation tool implementing the static code analysis is a plugin for
Eclipse. The user selects classes in the Eclipse package explorer and starts the transforma-
tion. First, the Eclipse Java Development Tools (JDT) parser creates an Abstract Syntax
Tree for the selected code, which is then processed by Java2PCM using a visitor provided
by the JDT. After the transformation, a Palladio instance with the created RDSEFFs is
serialized as XMI, based on the Eclipse Modelling Framework (EMF).

Listing 3 shows a Java code fragment and the RDSEFF created for it. Following this
example, we explain the four main tasks of Java2PCM’s mapping. RDSEFFs are centered
around calls to external services and resource demanding internal actions, which we call
relevant actions in the following.

Mapping Control Flow. When parsing source code, the transformation creates the ap-
propriate Palladio elements for the Java elements in the RDSEFF. In Listing 3, one of
the “if” statements shows as a branch (the omission of the other is addressed in the next
paragraph).

Java2PCM also maps thread invocations to RDSEFF forks. They are recognized as meth-
ods named start when the providing object extends the class Thread or implements
the interface Runnable, both given by the Java API. It recognizes loops iterating over a
collection as there is a designated Palladio element for this case, and re-orders switch/case
branches to match the Palladio semantics.

145

1 public void someMethod(List elements) {
2 storeHelper(elements)
3 }
4

5 private void storeHelper(List data) {
6 if (data.size() > 0) {
7 if (data.size() < MAXSIZE)
8 wrapper.externalCall(data);
9 } else {

10 // some non-relevant statements
11 if (anotherCondition)
12 // some more statements
13 }
14 FileOutputStream f =
15 new FileOutputStream(LOGFILE);
16 PrintStream ps = new PrintStream(f);
17 ps.println("List " + data + " stored.");
18 }

(a) Code

elements.NUM
BER_OF_ELE
MENTS <= 0

Internal
Action

External
Call Action

Internal
Action

IO-Demand
= 1000 Bytes

CPU-Demand
= 100 Units

elements.NUMBER_OF_ELEMENTS > 0
AND
elements.NUMBER_OF_ELEMENTS <=
MAXSIZE.VALUE

elements.NUM
BER_OF_ELE
MENTS <= 0

(b) RDSEFF

Figure 3: Example

Raising Abstraction. Java2PCM raises the level of abstraction by mapping control flow
constructs not containing relevant actions to summarized internal actions, and by inlining
private helper methods.

If, for example, an if statement only has actions in its body that are deemed non-relevant
by the analysis, it need not explicitly be present in the RDSEFF. The “else” branch starting
on line 9 of Listing 3, although containing another “if” statement, is summarized to one
internal action, because the inner branch does not contain any relevant action. The dynamic
analysis or a developer later annotate this action with resource usage information, so that
the model contains the effect of the summarized statements. Also, consecutive branch
conditions with no relevant actions in between can be merged into one branch. The two
branches on lines 6 and 7 are merged into one branch.

The analysis inlines the relevant actions of private methods, analogous to the inline expan-
sion method known in compiler construction [GW95]. In the example, the actual contents
of the RDSEFF are in the local storeHelper method, and the resulting RDSEFF con-
tains them at the location of the invocation of storeHelper.

Locating Resource Usages. Java programs access resources either implicitly, like CPU
or memory, or explicitly via API calls. Java2PCM addresses the implicit resource usages
by summarizing blocks of statements to one internal action. It classifies Java API calls
according to a predefined list of packages and methods which are likely to use resources
such as storage or network, for instance, java.io and java.sql. For such invocations,
the tool creates separate internal actions. In Listing 3, the invocation of println from
the java.io package in line 17 is mapped to an internal action in the RDSEFF. The
dynamic analysis or a developer later quantify both kinds of internal actions.

146

Parameter Tracing. When a service takes input parameters, the analysis must trace
them through the code to capture their influence on branch conditions, loop iterations,
and the data flow to other components. If a parameter occurs on the right hand side of
an assignment, for instance, and the assigned variable is used later in a conditional, the
chosen branch depends on the parameter although the it does not explicitly occur in the
conditional.

Java2PCM records assignments and the passing of parameters to local methods. Whenever
a Java expression (including simple variable names) is translated to a branch condition or
loop expression in the generated RDSEFF, its variables are checked for being influenced
by a service parameter. If so, their occurrences are replaced by the expression currently
assigned to them until all service parameters affecting the value of the variable are present.

Parameter tracing is a data flow analysis and has similar goals as symbolic execution
[Kin76]. It statically determines boolean expressions for branch conditions and arithmetric
expressions for loop iteration numbers, which only reference service parameters but does
not expose local variables. This adheres to the information hiding principle of software
components. Other than def-use-chain or use-def-chain analysis [Wol96] and program
slicing [Wei81], it tries to determine boolean or arithmetic expressions over service pa-
rameters and not only code lines influencing a parameter usage.

In the running example, the branch conditions include the parameter “elements”, even
though in the actual variable name in the “if” statement is “data”, because the service
parameter was traced through the method invocation.

For simple assignments, this algorithm works as it simply exchanges one variable name
for another name, the parameter name, which is also valid in the PCM instance. For more
complex variants, such as expressions including method calls, the simple replacement
renders long Java expressions which are not valid in RDSEFFs and have to be manually
edited. However, their presence aids the developer in understanding what is happening at
that point in the model.

5 Evaluation

We applied Java2PCM to a component-based software architecture (CoCoME). We wanted
to find out whether the models produced by our tools enhanced with manual additions
achieved the same prediction accuracy as fully manually specified ones, and how much
time could be saved opposed to a fully manual specification.

Several CBSE research groups have recently jointly specified the ”Common Component
Modelling Example” (CoCoME1, [RRMP08]). CoCoME is an application managing a
supermarket chain by providing billing and storage information and allowing the exchange
of goods between different stores. It intends to provide a reference model to compare
different component modelling and analysis models. The specification consists of a set
of UML diagrams involving more than 20 software components, textual descriptions, and

1see http://www.cocome.org

147

performance annotations. A Java implementation of CoCoME is available, enabling the
comparison between model-based predictions and code-based measurements to improve
current prediction methods.

Product
Dispatcher

StoreFacade

Reporting

Application

Enterprise

Persistence

Data

CashDeskLineStore Server

Enterprise Server

Store

Figure 4: Extract from the CoCoME Software Architecture

In our case study, we focused on use case 8 of CoCoME, which models the exchange of
goods between different stores of the supermarket chain. Fig.4 shows an excerpt of the
CoCoME software architecture relevant for this use case. Multiple store servers interact
with a single enterprise server, which manages the overall storage information of the su-
permarket. The components Application, CashDeskLine, and Data are composite
components, consisting of nested inner components.

We ran our Java2PCM tool on the Java implementation of CoCoME to generate the RD-
SEFFs of all services involved in this use case. Notice, that we only used generated RD-
SEFFs in this case study and did not combine them with manual specified ones. As the
dynamic analysis part of our reverse engineering approach is still incomplete and not able
to produce the resource demands needed for complete RDSEFFs, we used performance an-
notations from the CoCoME specification to manually add missing resource demands and
incomplete parametric dependencies to the RDSEFF structures generated by Java2PCM.

Java2PCM produced 10 RDSEFF structures for this use case. As an example, Fig. 5 shows
the Java code and the corresponding RDSEFF of the service markProductsUnavai-
lableInStock. The service invokes two external services (lines 4 and 15), which are
mapped to two ExternalCallActions. It includes a loop iterating over a list given as
a parameter (line 13), visible in the RDSEFF as a backwards connection from the third to
the second InternalAction, annotated with the number of iterations: the number of
elements in the given list. The InternalActions stem from summarizing code blocks
that do not contain relevant actions. The only manual work required in reconstructing this
RDSEFF was giving the concrete resource demands for the InternalActions.

In addition to the RDSEFFs, we manually added models of the servers and the number
of concurrent requests in the modelled use case. Together, the models formed a complete
PCM instance, which we used as input for the Palladio simulation tool. As one of the

148

1 public void markProductsUnavailableInStock(
2 ProductMovementTO requiredProductsAndAmount)
3 throws RemoteException, ProductNotAvailableException {
4 PersistenceContext pctx = persistmanager.getPersistenceContext();
5 TransactionContext tx = null;
6 try {
7 tx = pctx.getTransactionContext();
8 tx.beginTransaction();
9

10 Iterator<ProductAmountTO> productAmountIterator =
11 requiredProductsAndAmount.getProducts().iterator();
12 ProductAmountTO currentProductAmountForDelivery;
13 while(productAmountIterator.hasNext()) {
14 currentProductAmountForDelivery = productAmountIterator.next();
15 StockItem si = storequery.queryStockItem(
16 requiredProductsAndAmount.getDeliveringStore().getId(),
17 currentProductAmountForDelivery.getProduct().getBarcode(),
18 pctx);
19 if(si == null) {
20 throw new RuntimeException(<...>);
21 }
22 // set new remaining stock amount:
23 si.setAmount(si.getAmount() -
24 currentProductAmountForDelivery.getAmount());
25 System.out.println(<...>);
26 }
27 tx.commit();
28 } catch (RuntimeException e) {
29 <...>
30 }
31 }

(a) Java Code

External
Call Action

Internal
Action

Internal
Action

External
Call Action

Internal
Action

Internal
Action

Service
= getPersistenceContext

Service
= queryStockItem

CPU-Demand
= 1 Units

CPU-Demand
= 0 Units

CPU-Demand
= 10 Units

Iterations
= requiredProductsAndAmount.NUMBER_OF_ELEMENTS

CPU-Demand
= 0 Units

markProducts
UnavailableInStock

(b) RDSEFF

Figure 5: CoCoME Service markProductsUnavailableInStock

simulation results, Fig.6 shows the end-to-end response time in this use case for the given
number of requests as a cumulative distribution function (CDF, blue line, median 6200
ms).

In a former case study [KR08], we had modelled the same use case fully manually, there-
fore we were now able to compare the results from manual model construction with the
results from semi-automatic model construction involving Java2PCM. The CDF from sim-
ulating the manual model is shown in Fig. 6 (red line, median 6150 ms). As the curves
are widely overlapping, we conclude that the prediction based on semi-automatically built
model with Java2PCM achieved a similar accuracy as the prediction based on manually
built models.

Table 1 summarizes the most important observations from comparing the manually cre-
ated models with the semi-automatically constructed ones. The code analysis captured all
relevant actions, while the developer modelling the services had omitted some external
service calls, or captured their estimated impact in InternalActions, thereby losing
accuracy. On the other hand, the generated models contain additional actions in compar-
ison to the manually created ones, as the developer could reason that certain parts of the
code would have no measurable impact on performance. However, by setting the resource
demand of these additional actions to zero, they had no impact on the prediction results
except a slightly slower run time of the simulation itself. Java2PCM showed weaknesses
in tracing parametric dependencies. Although most of the dependencies were roughly cap-
tured, they mostly had to be corrected. For instance, when an element from a list given as
a parameter was used in a service, Java2PCM modelled a dependency on the whole list.

149

Figure 6: Predictions for execution times as cumulative distribution functions: manually specified
versus automatically reconstructed

Generated model Manual model
Static structure + Complete. − Developer overlooked actions.
Abstraction ◦ Too many internal actions,

yet not distorting pred. re-
sults.

+ Developer could omit non-
relevant parts altogether.

Parametric
Dependencies

− Roughly captured, with
errors and omissions.

+ Correctly modelled.

Time needed 4 person-hours. 40 person-hours.

Table 1: Comparison of generated and reference service models

150

6 Discussion

This section discusses the benefits of using Java2PCM, open issues of our approach, and
general limitations of static code analysis in this context.

Benefits. Using Java2PCM has several benefits over manual modelling. The automatic
code analysis is less error-prone that human modelling, which was especially evident in
our case study, which involved complex models. During manual modelling, several sim-
plifications had been made to reduce the model’s complexity, which had lead to incon-
sistencies not present in the automatically generated model. Errors still present in the
generated models are systematic and can be fixed by for example reanalysing the com-
ponent boundaries or debugging the tool. Besides higher correctness, using Java2PCM is
less labour-intensive than manual modelling (4 vs. 40 person-hours for the use case in our
case study) and thus can substantially reduce the costs for performance modelling.

Open Issues. Concerning the current implementation of Java2PCM, the tool so far only
supports primitive data types and requires manual effort for structs and objects. As the
PCM supports including arbitrary complex data types into RDSEFF specifications, we will
improve Java2PCM to include such data types. For example, Java Collections could be
translated into collection data types from the PCM. Furthermore, parametric dependencies
found by tracing input parameters through the code are still limited to simple cases and
require manual effort for complex cases to be processable by the simulation tool.

General Limitations. In general, the halting problem and polymorphism limit static
code analyis and require a combination with dynamic analysis techiques. Due to the halt-
ing problem, it is not possible to determine loop iteration numbers or dependencies to
them in the general case. Polymorphism allows data types that are only known during run
time and therefore limits static analyses. Furthermore, tracing parametric dependencies
with static analysis is limited to simple cases, as a whole program slice may influence the
values of a variable at a particular point in code, which cannot be used as a parametrisation
of a performance model and requires manual abstraction.

7 Conclusions

We have presented an approach to reconstruct reusable performance models (called RD-
SEFFs, from the Palladio Component Model) from Java source via static code analysis.
This approach is embedded into a larger reverse engineering framework targeting the in-
tegration of the performance properties of existing components into model-based perfor-
mance predictions. We validated the applicability of our Java2PCM tool by applying it
on CoCoME, where less erroneous models could be created in fewer time compared with
completely manual modelling.

151

Our method benefits software architects and performance analysts, who want to assess the
expected performance of a component-based system, which includes existing components
besides newly designed ones. The resulting performance predictions can reveal perfor-
mance bottlenecks in an architecture during early design stages and reduce the required
effort for fixing performance problems in code.

We intend to further improve the Java2PCM tool to enable analysing more complex archi-
tectures and more complex parametric dependencies in single services. The approach will
be combined with dynamic code analysis techniques to create a complete tool chain for
automatic construction of reusable performance models from code.

References

[BCdK07] Egor Bondarev, Michel R. V. Chaudron, and Erwin A. de Kock. Exploring perfor-
mance trade-offs of a JPEG decoder using the deepcompass framework. In WOSP ’07:
Proceedings of the 6th international workshop on Software and performance, pages
153–163, New York, NY, USA, 2007. ACM Press.

[BKR07] Steffen Becker, Heiko Koziolek, and Ralf Reussner. Model-based Performance Predic-
tion with the Palladio Component Model. In Proceedings of the 6th International Work-
shop on Software and Performance (WOSP2007). ACM Sigsoft, February5–8 2007.

[BLL06] Lionel C. Briand, Yvan Labiche, and Johanne Leduc. Toward the Reverse Engineering
of UML Sequence Diagrams for Distributed Java Software. IEEE Transactions on
Software Engineering, 32(9):642–663, September 2006.

[BMIS04] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. Model-
Based Performance Prediction in Software Development: A Survey. IEEE Transactions
on Software Engineering, 30(5):295–310, May 2004.

[Bor07] Borland. Together.
http://www.borland.com/us/products/together/, 2007. Last ac-
cessed 2007-09-23.

[Cho07] Landry Chouambe. Rekonstruktion von Software-Architekturen. Master’s thesis, Insti-
tute for Program Structures and Data Organisation, Chair Software Design and Qualitiy
(SDQ), Faculty of Informatics, Universität Karlsruhe (TH), Karlsruhe, Germany, May
2007.

[Cod07] CodeSWAT.com. Flowchart4J.
http://www.codeswat.com/cswat/index.php?option=com_
content&task=view&id=34&Itemid=55, 2007. Last accessed 2007-09-
23.

[Ern03] Michael D. Ernst. Static and dynamic analysis: Synergy and duality. In WODA 2003:
ICSE Workshop on Dynamic Analysis, pages 24–27, Portland, OR, May 9, 2003.

[GW95] Gerhard Goos and William Waite. Compiler Construction. Springer, 2nd edition, 1995.

[HC88] Timothy Hickey and Jacques Cohen. Automating program analysis. Journal of the
ACM (JACM), 35(1):185–220, 1988.

152

[IBM07] IBM. Rational Software Architect. http://www-306.ibm.com/software/
awdtools/architect/swarchitect/, 2007. Last accessed 2007-09-23.

[Kap07] Thomas Kappler. Code-Analysis Using Eclipse to Support Performance Prediction for
Java Components. Master’s thesis, Institute for Program Structures and Data Organisa-
tion, Faculty of Informatics, Universität Karlsruhe (TH), Germany, September 2007.

[KB07] Michael Kuperberg and Steffen Becker. Predicting Software Component Performance:
On the Relevance of Parameters for Benchmarking Bytecode and APIs. In Ralf Reuss-
ner, Clemens Czyperski, and Wolfgang Weck, editors, Proceedings of the 12th Inter-
national Workshop on Component Oriented Programming (WCOP 2007), July 2007.

[Kin76] James C. King. Symbolic execution and program testing. Communications of the ACM,
19(Issue 7):385–394, July 1976.

[Kos00] Rainer Koschke. Atomic Architectural Component Recovery for Program Understand-
ing and Evolution. phd thesis, Institut für Softwaretechnologie, Abteilung Program-
miersprachen, Fakultät Informatik, Elektrotechnik und Informationstechnik, Univer-
sität Stuttgart, Germany, Stuttgart, Germany, August 2000.

[Kos05] Rainer Koschke. Rekonstruktion von Software-Architekturen – Ein Literatur- und
Methoden-Überblick zum Stand der Wissenschaft. Informatik – Forschung und En-
twicklung, 19(3):127–140, April 2005. Springer Berlin / Heidelberg.

[KR08] Klaus Krogmann and Ralf Reussner. Palladio - Prediction of Performance Properties. In
The Common Component Modeling Example: Comparing Software Component Mod-
els,, To Appear in LNCS. Springer, 2008.

[Kro07] Klaus Krogmann. Reengineering of Software Component Models to Enable Architec-
tural Quality of Service Predictions. In Ralf Reussner, Clemens Szyperski, and Wolf-
gang Weck, editors, Proceedings of the 12th International Workshop on Component
Oriented Programming (WCOP 2007), July 2007.

[Obj05] Object Management Group (OMG). UML Profile for Schedulability, Performance and
Time. http://www.omg.org/cgi-bin/doc?formal/2005-01-02, January 2005.

[RBK+07] Ralf H. Reussner, Steffen Becker, Heiko Koziolek, Jens Happe, Michael Kuperberg,
and Klaus Krogmann. The Palladio Component Model. Interner Bericht 2007-21, Uni-
versität Karlsruhe (TH), Faculty for Informatics, Karlsruhe, Germany, October 2007.

[Ros90] Mads Rosendahl. Automatic complexity analysis. In FPCA ’89: Proceedings of the
fourth international conference on Functional programming languages and computer
architecture, pages 144–156, New York, NY, USA, 1990. ACM Press.

[RRMP08] Andreas Rausch, Ralf Reussner, Raffaela Mirandola, and Frantisek Plasil, editors. The
Common Component Modeling Example: Comparing Software Component Models,
volume to appear of LNCS. Springer, Heidelberg, 2008.

[SF96] Robert Sedgewick and Philippe Flajolet. An introduction to the analysis of algorithms.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1996.

[TTBS07] Paolo Tonella, Marco Torchiano, Bart Du Bois, and Tarja Systä. Empirical studies in
reverse engineering: state of the art and future trends. Empirical Software Engineering,
Springer, March 2007. Published online first.

[Weg75] Ben Wegbreit. Mechanical program analysis. Communications of the ACM, 18(9):528–
539, 1975.

153

[Wei81] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th international
conference on Software engineering, pages 439–449, Piscataway, NJ, USA, 1981. IEEE
Press.

[Wol96] Michael Wolfe. High Performance Compilers for Parallel Computing. Addison-
Wesley, Reading, MA, 1996.

[WVCB01] M. Woodside, V. Vetland, M. Courtois, and S. Bayarov. Performance Engineering:
State of the Art and Current Trends, volume LNCS 2047/2001 of Lecture Notes in
Computer Science, chapter Resource Function Capture for Performance Aspects of
Software Components and Sub-Systems, pages 239–256. Springer, Heidelberg, Hei-
delberg, 2001.

154

