row vectors of the product of the matrices. In lines 28—
31, the two arguments are migrated back to the current
thread’s thread-local region; the AdoptObj () calls ef-
fectively undo the Shareobj () calls in lines 19-20.

The actual multiplication operation for each row
vector takes place in the ParMatrixMultiplyRow
function in lines 1-15. This is the basic matrix multipli-
cation algorithm for a given row vector. The only differ-
ence compared to the sequential version is the atomic
statement in lines 4-13, which gives the task temporary
shared ownership of the matrix regions. Note that this
is necessary even though the main thread had already
done the same: the tasks have no knowledge of what
the main thread is currently doing and thus have to also
claim shared ownership on their own. Because all tasks
require only read access to the matrices, shared owner-
ship is sufficient and all tasks can execute in parallel (as
long as the hardware permits).

Conclusion

A public beta release of HPC-GAP is planned for the
near future. If you would like access to the current pre-
release version, please contact the author or the GAP
Group.
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What is SingularInterface?

The GAP package SingularInterface is a highly
efficient and robust unidirectional low-level interface to
SINGULAR [2, 3]. It is the outcome of an intensive col-
laboration between core developers of both systems.

The goal of this interface is to map all of SINGU-
LAR’s powerful functionality into GAP. To achieve this
it automatically wraps all SINGULAR datatypes and ex-
ports all of SINGULAR's interface procedures to GAP.!
Furthermore, all procedures of any contributed library
can be loaded on demand.”

This package is a rather “faithful” image of SINGU-
LAR; it does not make an extensive attempt for a better
integration of SINGULAR into the GAP ecosystem. This
is intentionally left to other packages, which are free to
realize this in different ways.

The development of SingularInterface has
reached a [-phase and is already actively used in some
research projects. We hope to attract more users in the
near future, whose feedback will be crucial for a suc-
cessful further development.

How to get it?

To download and install SingularInterface

'With the prefix “SI_" prepended to their names.

max.

horn@math.uni-giessen.de,
motsak@mathematik.uni-kl.de,

hannes@mathematik.uni-kl.de

please follow the instructions on

http://gap-system.github.io/
SingularInterface/

If you are reading this article, say, more than one year
in the future, and have a recent GAP installation, then
hopefully you already have a working version of this
package.

To check that the package has been successfully in-
stalled, start GAP and type:

gap> LoadPackage (
true

"SingularInterface"

)i

To see all imported procedures type:
gap> SI_<press TAB twice>

The SINGULAR library “standard.lib” is loaded
by default. To see all imported SINGULAR library pro-
cedures type:

gap> SIL_<press TAB twice>
To load any other library, e.g. “matrix.1ib”, type:

gap> SI_LIB((
true

"matrix.lib" );

They appear in GAP with the prefix “SI1,_” prepended to their names.
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Goals

The motivation behind developing Singular-
Interface is the increasing interest of various re-
search projects in combining the strength of both sys-
tems: GAP users get access to SINGULAR’s polynomial
arithmetic and highly optimized Grébner basis engine.

SINGULAR users gain a second front end language for
this engine — in addition to the current SINGULAR lan-
guage — with an advanced object model primarily de-
signed for modeling higher mathematical structures, as
well as access to GAP as an expert system for group

and representation theory.

An example

Here is a short example in SINGULAR 4.0.1 demonstrating some basic procedures. On the left you see the SIN-
GULAR code, on the right the corresponding GAP code. SINGULAR uses “=" for assignments and suppresses any
output while GAP uses “: =" for assignments and triggers the so-called View-method, which gives a very brief de-

scription of the object (unless suppressed by a trailing *“; ; ). Basically, SINGULAR’s print procedure is mapped

to the so-called Display-method in GAP. The current version of SingularInterfaceis 2014.09.23.

Start by loading SingularInterface in GAP.

> // standard.lib is automatically preloaded
> // this example needs no further libraries

gap> LoadPackage ( "SingularInterface" );

true

Define the ring R := Q[x¢, x1, 2, 3] (with the monomial ordering degrevlex):

> ring R=0, (x0,x1,x2,x3),dp;
> short=0;
> option(redTail);

Define the polynomial (z1 + x3)?:

> poly p=(x1+x3)"2; p;
X1M242%x1xx3+x3"2

Define the ideal I := (22 — z173, 2071 — T223) < R:

> ideal I=x0"2-x1#%x3,x0xx1-x2%x3;

> print (I);
x0"2-x1*xx3,
x0*x1-x2*x3

The corresponding matrix %:
> def i=matrix(I);

> print (i);
x0"2-x1%*x3,x0*x1-x2%x3

The sum I + I means the sum of ideals:
> J=I+1I;

> print (J);
x0"2-x1*x3,
x0*x1-x2*x3

Whereas 7 + ¢ means the sum of matrices:
> print (i+i);
2+%xX07M2-2%x1xx3,2+x0*x1-2+x2%x3

The squared ideal 12 <1 R:

> def I2=I"2;

> print (I2);
X0M-2xx0"2+x1*x3+x1"2%x3"2,

X0M"3xx1-x0*x1"2+x3-X0"2xx2+x3+x1*x2%x3"2,
X0M2*xx17M2-2xx0*x X1 *X2*x3+x2"2%x3"2

gap> R := SI_ring( 0, "x0..3", [["dp",4]1] );
<singular ring, 4 indeterminates>

gap> ## short=0 is the default, disable by:
gap> ## Singular( "short=1" );

gap> SI_option( "redTail" );

true

gap> AssignGeneratorVariables( R );

#I Assigned the global variables

#I [ x0, x1, x2, x3 1]

gap> p := (x1+x3)"2;

X1 2+2xx1*x3+x3"2

gap> IsSingularPoly( p );

true

gap> I := SI_ideal ([x072-x1%x3, x0xx1-x2xx3]);

<singular ideal, 2 gens>
gap> Display( I );
x0"2-x1%x3,

x0*x1-x2%x3

SI_matrix( I );
1x2>

gap> i :=
<singular matrix,

gap> Display( i );
x0"2-x1%x3,x0*x1-x2%x3

gap> J := I + I;
<singular ideal, 2 gens>
gap> Display( J );
x0"2-x1%x3,

x0*x1-x2*x3

gap> Display( i + 1 );
24X07"2-2xx1%x3,2+X0xx1-2+x2*X3

gap> 12 := I"2;

<singular ideal, 3 gens>

gap> Display( I2 );

X0 -2+xx0"2%xX1*x3+x1"2*x3"2,
X0"3%x1-x0*x1"2+x3-x0"2+x2*xX3+x1*x2*xx3"2,
X0M24x17"2-2+x0xx1*X2*xX3+x2"2*xx3"2

30



The Grobner basis of the ideal I is returned as a new different (but mathematically equal) ideal G:

> def G=std(I);

> print (G);
X0*x1-x2*x3
x0"2-x1xx3
X1"2%x3-x0*x2%x3

gap> G SI_std(
<singular ideal,
gap> Display( G );
x0*x1-x2%x3,
x0"2-x1xx3,

X172+ x3-x0*xx2*x3

I);

3 gens>

The syzygies of the generators of (G are the columns of the SINGULAR datatype module?:

> def S=syz (G); S;

S[1]=x0xgen (1)-x1+gen (2)-gen (3)
S[2]=x1*xx3*gen (1) -x2*xx3*gen (2) -x0xgen (3)
> print (S);

x0, x1*x3,

-x1,-x2+%x3,

-1, -x0

To access the second column of S use:

> S[2];
x1*x3xgen (1) —-x2+x3+xgen (2)-x0+gen (3)
> print (S[2]);

[x1%*x3,-x2*x3,-x0]

To access the first entry of the second column of S use:

> S[2]1[1];
x1*x3

> p-S[21[1];
x1"2+x1*x3+x3"2

To create a matrix use:

> matrix m[3][2]=x0,x3, x1,x2, x3,x0;
> print (m);

x0,x3,

x1,x2,

x3, x0

To extract the (2,1)-entry from the matrix use:

> m[2,1];
x1

gap> S SI_syz(

<singular module,
rank 3>

gap> Display( S );

x0, x1*xx3,

-x1,-x2+x3,

-1, -x0

gap> S[2];
<singular vector,
gap> Display( S[2]
[x1%*x3, -x2xx3,-x0]

gap> S[2][1];

x1*x3

gap> p - S[2][1];
x1"2+x1*x3+x3"2
gap> m :=

<singular matrix,
gap> Display( m );
x0,x3,

x1,x%x2,

x3, x0

gap> m[[2,1]];
x1

The sum of the module S and the matrix mis their augmentation:

> print (S+m);

x0, x1%x3, x0,x3,
-x1,-x2%x3,x1,x2,
-1, -x0, x3, x0

gap> S + m;
<singular module,
rank 3>

G )i
2 vectors in free module of

3 entries>
)

SI_matrix(R,3,2,"x0,x3,x1,x2,x3,x0");

3x2>

4 vectors in free module of

gap> Display( S + m );

x0, x1%x3, x0,x3,
-x1,-x2+x3,x1,x2,
-1, -x0, %3, x0

The development

How does it work?

SingularInterface aims to be a comprehensive
bridge between GAP and SINGULAR with as little over-
head as possible, both in terms of speed and memory.
To achieve this goal, some key design decisions were
crucial:

(1) Avoid converting data between the two systems,
as conversions are expensive.

(2) Automate generating function bindings as much
as possible.

(3) We stay relatively low-level with the interface,
mostly refraining from trying to change SINGU-
LAR behaviour to be more GAP like (with one
exception, see below).

Regarding (1), on the GAP side we use “wrapper
objects” around SINGULAR objects. That is, tiny GAP
objects which essentially consist of a pointer to the ac-
tual SINGULAR object (such as a polynomial) plus some
meta information (types, attributes). With the excep-
tions of small integers and strings, we never automat-
ically convert SINGULAR objects into “native” GAP

3The datatype module in SINGULAR 4.0.1 is in first approximation a specialized sparse data structure for column oriented matrices
with compressed columns, where each column has the datatype vector. For more details see the SingularInterface manual [1].
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objects. Indeed, in most cases that would be point-
less, as for further operations with the object, we would
have to convert it back into a SINGULAR object any-
way. So when you have a SINGULAR polynomial p
and call ST_deg (p), in the background, Singular—
Interface extracts the pointer to the SINGULAR ob-
ject from it, then invokes the SINGULAR interpreter C
code for deg, and returns the result to the user (since
the result is a small integer, it is not wrapped).

Of course when necessary, you can still convert from
and to “native” GAP objects (although this is one of the
areas where there is still work to be done, in order to
cover all possible SINGULAR coefficient ring types).

A major complicating factor for this approach is that
GAP and SINGULAR use very different memory man-
agement systems (GAP uses a so-called “generational
moving garbage collector”, in which objects change
their position in memory over time, while SINGULAR
use a more traditional “malloc” system plus reference
counting, and expects objects to stay at a fixed position
in memory). With some clever tricks, aided by a few
small but helpful changes on the SINGULAR side, this
now works extremely well.

Regarding (2), here is one example: From the data
structures the SINGULAR interpreter uses to lookup
function names (such as transpose), the build sys-
tem of SingularInterface automatically gener-
ates bindings for all SINGULAR functions in GAP
(SI_transpose). Thus when the SINGULAR team
adds a new function, SingularInterface automat-
ically supports it (after recompiling). This also covers
SINGULAR library functions. Finally, in addition to in-
terpreter and library functions, we also provide direct
access to select SINGULAR C++ kernel functions such
as p_Mult_mm (with _SI_ prepended) which can be
used by experts to further optimize their code. This,
too, is automatically generated and can thus easily be
extended to expose more functionality, if requested.

Regarding (3), we mostly expose the SINGULAR in-
terface faithfully and with no changes (as opposed to
trying to make it “more GAP like”, or trying to fix per-
ceived design flaws etc.). We plan to eventually add a
high-level layer built atop the existing interface which
changes some of this; however, this may well be in a
separate package. But providing this raw access has
multiple advantages: It allows others to build alterna-
tive high-level front ends (as everybody will have a dif-
ferent idea about how to do that), and it also frees us
from making complicated decisions on what is “right”
and “wrong”. Finally, it has the added benefit that the
SINGULAR manual can be used as a reference manual
for SingularInterface. There is one major ex-
ception: We try to hide the SINGULAR concept of a
“global” or “active” ring from users as much as possible.
In SINGULAR, the result of a command like var (1)

implicitly depends on the “active” ring. Working with
multiple rings thus becomes rather tedious. To avoid
this, in SingularInterface, each GAP wrapper
object for “ring dependent” SINGULAR objects (such as
polynomials, ideals, modules, but not integers or rings
themselves) carries a reference to the ring it belongs to.
The user does not need to worry about “active” rings
at all. As a side effect, a few SINGULAR functions
need to be called with one additional parameter, namely
the ring they refer to. For example, var (1) becomes
SI_wvar (r, 1), where r is the (now explicit) SINGU-
LAR ring we refer to.

Note that all of this bypasses the SINGULAR lan-
guage. However, to guarantee complete access to SIN-
GULAR, one can still send arbitrary commands to the
SINGULAR interpreter as a string passed to the function
Singular (). For details, we refer the reader to the
SingularInterface manual (which is still work in
progress).

Activity

The development of SingularInterface started
in May 2011. The project was generously supported
by the University of St Andrews, the University of
Kaiserslautern, and DFG priority program SPP-1489.
The C/C++ code was contributed by Max Horn, Frank
Liibeck, and Max Neunhoffer. To keep the interface
slick and efficient Hans Schonemann and Oleksandr
Motsak made several changes and improvements on the
side of SINGULAR. The homalg project [4] heavily
uses SINGULAR through its own IO-based interface.
It was thus a natural candidate which helped to test
and stabilize some parts of SingularInterface
through its extensive test suite.

Outlook

While SingularInterface can already be used
(and is used) for research work, there is still quite a lot
to be done before we can call it a complete product. We
need to add some more functionality, expand the man-
ual, and add many test cases. Maybe the most urgent is
to make convenient the construction of all types of rings
supported by SINGULAR.*

For this, we would appreciate your help. For ex-
ample, if you experience any issue with Singular-
Interface, please report it using our issue tracker at
GitHub’. The same holds if you feel that some function-
ality is missing or not as easy to access as it should be.
We cannot guarantee to fulfil every wish, but it helps us
to prioritize our efforts.

Beyond this, we also welcome contributions to the
code, the manual or the test suite. Ideally in the form of
pull requests®.

A future challenge would be to port Singular-—
Interface to HPC-GAP? once the future multi-
threaded SINGULAR is available.

4 At the moment, they are accessible via the function Singular ().
‘https://github.com/gap-system/SingularInterface/issues
*https://github.com/gap-system/SingularInterface/pulls

"HPC-GAP stands for “High Performance Computing GAP” and adds parallelization support to GAP(cf. article of R. Behrends, p. 27

in this issue of the CAR).
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Berichte iiber Arbeitsgruppen

Arbeitsgruppe Algebra und diskrete Mathematik an der Universitit Osnabriick

Winfried Bruns (Osnabriick)

Die Arbeitsgruppe Algebra und diskrete Mathematik
des Instituts fiir Mathematik der Universitidt Osnabriick
besteht zurzeit aus vier Professoren (H. Brenner, W.
Bruns, T. Romer, H. Spindler), vier Postdocs und sie-
ben Doktoranden. Die Professur von Bruns, der am
30.09.2014 in den Ruhestand tritt, wird ab April 2015
durch eine Juniorprofessur (M. Juhnke-Kubitzke) er-
setzt.

Die Arbeitsgruppe war 2009-2012 Bestandteil des
universititseigenen Graduiertenkollegs ,,Kombinatori-
sche Strukturen in Algebra und Topologie* und ist seit
Oktober 2013 am Osnabriicker DFG-GRK ,,Kombina-
torische Methoden in der Geometrie® beteiligt. Das seit
1997 bestehende Normaliz-Projekt wird aktuell durch
das DFG-SPP ,Experimentelle Methoden in Algebra,
Geometrie und Zahlentheorie* gefordert.

Zu den langjidhrigen Kooperationspartnern gehoren
Mathematiker in Ann Arbor, Bukarest, Essen, Genua,
Hanoi, Lexington, San Francisco, Salt Lake City, Shef-
field und Tokio.

Das zentrale Forschungsgebiet der Arbeitsgruppe ist
die kommutative Algebra unter Einbeziehung der alge-
braischen Geometrie, algebraische Aspekte der Kom-
binatorik und der Darstellungstheorie. Uber viele Jah-
re sind Beitrdge zu determinantiellen Ringen und Idea-
len, affinen Monoiden und Monoid-Algebren, homo-
logischen Invarianten graduierter Ringe, Hilbert-Kunz-
Theorie, Tight closure, Grothendieck-Topologien, tropi-
scher Geometrie und Arrangements von Hyperebenen
hervorgegangen.

Die gegenwirtig und in den letzten Jahren bearbei-
teten Themen sind insbesondere die (Nicht-) Lokalisie-
rung von Tight Closure, Irrationalitidt von Hilbert-Kunz-
Multiplizitdten, arithmetische und geometrische Defor-
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mationen von Vektorbiindeln, symmetrische Asympto-
tik von Moduln, Grobner-Basen und Initial-Ideale bzw.
-Algebren determinantieller Ideale bzw. Algebren, Rela-
tionen von Minoren, Stanley- und Hilbert-Zerlegungen,
algebraische Aspekte von Hyperebenen-Arrangements,
generische tropische Varietiten.

Fiir die Computeralgebra ist das Projekt Normaliz
sicherlich am interessantesten. Fiir ein normales affi-
nes Monoid berechnet Normaliz die Hilbert-Basis, die
Hilbert-Reihe zu einer Z-Graduierung sowie zusitzliche
Daten, die bei der Berechnung von Hilbert-Basen und
Hilbert-Reihen notwendig sind oder sich nebenbei erge-
ben. Dazu gehoren insbesondere Triangulierungen und
Stanley-Zerlegungen.

Ein normales affines Monoid entsteht als Durch-
schnitt eines rationalen Kegels mit einem Gitter. Des-
halb ist es nichts anderes als die Losungsmenge eines
homogenen Systems linearer diophantischer Unglei-
chungen, Gleichungen und Kongruenzen. Die Hilbert-
Basis ist das eindeutig bestimmte minimale Erzeugen-
densystem (beziiglich der Addition).

Seit Version 2.11 berechnet Normaliz aber auch Lo-
sungen von entsprechenden inhomogenen Systemen, al-
so Gitterpunkte in rationalen Polyedern. Die Erweite-
rung Nmzlntegrate berechnet Hilbert-Reihen zu poly-
nomialen Gewichtsfunktionen und Integrale von Poly-
nomen iiber Polytope.

Normaliz ist in C++ geschrieben, nutzt GMP fiir
Grof3zahl-Arithmetik und OpenMP fiir Parallelisierung.
Es steht als ausfiihrbares Programm fiir die gingigen
Betriebssysteme zur Verfiigung und ist iiber sein Biblio-
theks-Interface in CoCoA, polymake, GAP, Regina und
als optionales Paket in Sage eingebunden. Auflerdem
gibt es Interfaces zu Macaulay 2 und Singular.



