
Cloudy Transactions: Cooperative XML Authoring on

Amazon S3

Francis Gropengießer Stephan Baumann Kai-Uwe Sattler

Ilmenau University of Technology, Germany

first.last@tu-ilmenau.de

Abstract: Over the last few years cloud computing has received great attention in the
research community. Customers are entitled to rent infrastructure, storage, and even
software in form of services. This way they just have to pay for the actual use of these
components or services. Cloud computing also comes with great opportunities for dis-
tributed design applications, which often require multiple users to work cooperatively
on shared data. In order to enable cooperation, strict consistency is necessary. How-
ever, cloud storage services often provide only eventual consistency. In this paper, we
propose a system that allows for strict consistent and cooperative XML authoring in
distributed environments based on Amazon S3. Our solution makes use of local and
distributed transactions, which are synchronized in an optimistic fashion, in order to
ensure correctness. An important contribution of this paper is the evaluation of our
system in a real deployment scenario upon Amazon S3. We show the strong impact
of write operations to S3 on the transaction throughput. Furthermore, we show that
fragmenting data increases write performance and reduces storage costs.

1 Introduction

Driven by the big players of the internet who want to better utilize their large data center

infrastructures, cloud computing has often been viewed as the next paradigm shift or even

big revolution in IT over the last few years. Normally the term cloud computing is un-

derstood as a mechanism to provide shared resources (computing capacity, software, data)

on demand to multiple computers over the internet. Though the basic idea of centraliza-

tion and hosting is not new, in fact it goes back to the mainframe era, cloud computing

offers some new benefits and opportunities. First of all, availability and reachability guar-

antees given by the cloud provider by relying on highly redundant infrastructure simplifies

building business-critical services. Second, the elasticity of resources allows to provide the

illusion of infinite resources for customers to rent on demand. This is strongly related to

the scalability: a customer can start with only a few machines and extend the number with

a growing demand of resources. Together with a pay-per-use pricing model this helps to

reduce the TCO dramatically and, therefore, is particularly interesting for small projects

and companies that cannot afford large investments in infrastructure.

In cloud computing resources are provided at different levels, ranging from Infrastructure

as a Service (IaaS) like Amazon Elastic Compute Cloud (short: EC2), where fundamental

computing resources are rented, over Platform as a Service (PaaS) like Amazon Simple

Storage Service (short: S3) or Google AppEngine, where customer-created applications

can be deployed to the cloud, to Software as a Service (SaaS) like Salesforce or Google

307

Docs, where a provider’s application already running in the cloud can be used over the

Internet.

Apart from computing-intensive jobs, web and application hosting or scalable data ana-

lytics using MapReduce [DG04], storage and database services are an application class

well-suited for running in the cloud. Examples like Dropbox, Ubuntu One as cloud file

storage and Slideshare for sharing presentation slides already exist. These systems are all

based on Amazon’s S3, but also the deployment of full-fledged SQL databases using Ama-

zon RDS or Microsoft SQL Azure is possible as well as using data management services

as part of higher level SaaS solutions. Such database services are particularly promising

for cooperative applications in which different users can share and edit a common set of

documents and data. Google Docs or Microsoft Office Web Apps are well-known exam-

ples of these cooperative applications. Engineering design and media production processes

could benefit from cloud-based database services in a similar way. In this work we consider

media production using spatial sound systems based on the wave field synthesis [Ber88]

as an example application. This technique enables the creation of more realistic surround

sound for movies or concerts. During the design process the task of a sound designer is to

animate static objects and to define their locations and movements as well as the charac-

teristics of their surroundings. This way a listener can for example be given the impression

to be in a cave or in a concert hall. The result of this design process is a scene description

stored in an XML-based scene graph. However, apart from relying on a graph-based model

and the usage of specialized authoring tools the approach we are going to present here is

not limited to this application domain but rather usable for any kind of cooperative XML

authoring.

In this context, cooperativeness means to allow multiple users to work at the same time on

shared XML data and to exchange information in arbitrary directions without restrictions.

This way it is possible for each user to adjust his own work to the current state of the

project and the work of others. Furthermore, a cooperative authoring environment should

support transactional semantics in order to ensure recoverability in case of transaction and

system failures as well as strict consistency. The latter is needed to (i) guarantee that every

user has the current state of the project and to (ii) prevent wrong design decisions of a user

due to incorrect or outdated data.

Thus, the goal of our work is to build a cloud-based data management system for cooper-

ative authoring of XML scene graphs which is as easily usable as a cloud storage system

like Dropbox but supports transactional semantics. Building such a system on top of exist-

ing cloud platforms raises several questions. First of all, an appropriate storage abstraction

and system have to be chosen, this can either be a low-level BLOB store like S3 or a

full-fledged SQL database. Based on this decision a system architecture which maps a co-

operative transaction model to the abstractions and operations of the underlying storage

technology has to be designed. Amazon S3, for example, only supports eventual and read-

after-write consistency (depending on the region where the service is provided) and atomic

updates are restricted to single keys (tuples).

In this paper, we present such a system. Based on our previous work [GHS09], where

we have developed a transaction model and an appropriate synchronization strategy for

closely-coupled client/server-based workgroup environments, we discuss the design and

308

implementation of a cooperative transactional authoring system for XML data on top of

Amazon S3 as an example. The contribution of our work is twofold:

• We discuss the implementation of distributed optimistic synchronization of XML

updates using S3 as storage layer.

• We present results of our experimental evaluation using a real deployment which

shows that fragmenting data reduces storage costs and increases write performance.

Furthermore, we show that S3 write performance has a strong impact on the overall

transaction throughput.

The remainder of this paper is structured as follows. Section 2 summarizes related work.

In Section 3, we briefly introduce our data and fragmentation model, the operations on

tree structured data and Amazon S3. Furthermore, we sketch our optimistic concurrency

control protocol developed in our previous work. In Section 4 we describe our proposed

system model which enables cooperative processing of XML data using Amazon S3. In

Sections 5 and 6 we discuss the applied transaction model as well as synchronizing and

committing transactions in more detail. Section 7 reveals how strict consistency upon an

eventually consistent storage layer can be achieved. In Section 8 we consider some as-

pects concerning transaction and system recovery. Section 9 presents the results of our

evaluation followed by a conclusion in Section 10.

2 Related Work

The CAP theorem [FGC+97] states that only two of the three properties – consistency,

availability and network partitioning tolerance – can be fulfilled in a distributed environ-

ment. Most of the current solutions show a lack of consistency guarantees in favor of a

higher availability. Examples are Amazon S3, Amazon SimpleDB, Dynamo [DHJ+07],

Yahoo PNUTS [CRS+08] and Google Bigtable [CDG+08]. Hence, without further exten-

sions, these systems are not suitable for cooperative environments.

Not only in cooperative environments, but also in fields like business or e-commerce a

strong need for strict consistency exists. With Amazon RDS, Microsoft SQL Azure, and

Google AppEngine three companies tried to fulfill the consistency requirements of their

customers. These systems provide strict consistency and transaction support. In [KKL10]

an evaluation regarding performance, scalability, and costs of these systems (amongst oth-

ers) can be found. However, in these systems transaction processing is either restricted to

a certain entity group (Google AppEngine) or it is only supported on a single database

instance (Amazon RDS, SQL Azure). Since we assume distributed data, support for dis-

tributed transaction processing is essential. Due to this, these systems are not applicable to

our use case without further extensions.

The endeavor of building databases upon cloud storage systems is not new. Our work

is mainly inspired by [BFG+08], [DAA10a] and [DAA10b]. In [BFG+08] the design

of a database system on S3 is described. The authors address in detail, how atomicity,

consistency and durability of transactions can be fulfilled. Concerning isolation they argue

that protocols, like the BOCC (backward-oriented concurrency control [KR79]) protocol,

can only be partly implemented, as they need a global transaction counter, which might

309

become a bottleneck. For this reason we use timestamps for validation purposes, which are

assigned by every transaction manager separately. This is possible, because the transaction

managers run on virtual machines within an IaaS layer, where synchronized clocks can be

assumed. We discuss this in more detail in Section 6.

The authors of [DAA10a] propose a scalable and elastic layered system approach, called

ElasTraS, for transaction processing upon S3. They assume partitioned data as we do. In

order to process transactions across different partitions they use minitransactions. Mini-

transactions were first used in Sinfonia [AMS+09]. They provide only very restricted

transactional semantics. Precisely spoken, every data object accessed by a minitransaction

must be specified before the minitransaction is started. This is almost impossible in design

environments we consider. However, minitransactions can be used in order to implement

optimistic concurrency control [AGS08].

In [DAA10b] the authors propose a transactional system approach for collaborative pur-

poses, e.g., collaborative editing. They support transactions on so-called key groups, which

can be established dynamically. Amongst others, the authors describe an implementation

of their system on top of existing key-value stores, e.g., Bigtable. However, resolving the

problem of how to ensure strict consistency on top of a weak consistent key-value store is

left as future work.

With our endeavor of synchronizing transactions in distributed environments, we also in-

tersect with current research projects in the field of distributed transactional memories. In

these systems, a preferred solution for distributed transaction processing is to run transac-

tions on a single site and move the accessed objects between different sites [HS07, ZR09].

Although, this is an interesting approach for future work, frequently moving fragments

between different buckets might decrease the overall system performance.

Besides the approach of building a cooperative system upon an existing cloud storage

layer, the development and hosting of a tailored cloud storage system is another possibility.

Thereby, systems like Scalaris [SSR08] and Chubby [Bur06], which use the Paxos commit

protocol [Lam02] to guarantee strict consistency, could be used as an entry point. Further-

more, separating transaction processing and data access, like proposed in [LFWZ09], is an

interesting research area. It should be considered for future work.

3 Preliminaries

In order to understand the approaches proposed in this paper, we briefly sketch some basic

concepts needed. We start with a characterization of the data model before going into de-

tails on the tree operations and concurrency control. A detailed description of all concepts

can be found in [GHS09].

3.1 Data Model and Fragmentation Model

Basically, we assume XML data as a tree structure following the tailored DOM (short:

taDOM) specification [HH03]. There, a tree consists of nodes with unique node ids, node

labels and node values. Nodes are connected via directed edges denoting parent-child

relationships. Figure 1 shows an example.

310

scene

dialog effects

RootNode

speaker 1 speaker 2 crash explosion

root

1

2 3

4 5 6 7

Figure 1: Example XML Tree

fragment 2 fragment 3

fragment 2
fragment 3

scene

dialog effects

RootNode

speaker 1 speaker 2 crash explosion

root

1

2 3

4 5 6 7

fragment 1

Figure 2: Fragmented XML Tree

...

Amazon S3

bucket with url

value (blob)

...

key

Figure 3: Amazon S3

Amazon S3 (see Figure 3), on the other hand, just provides a simple key-value store. Data

is stored as blobs under unique keys. Furthermore, key-value pairs are organized in buck-

ets, which are containers with a unique url. The task is to map our tree model to Amazon’s

storage model. Therefore, we serialize tree data as simple strings and store these under

unique names in S3 buckets. Serializing a whole tree results in a very large string. This

leads to less read/write performance from/to S3 and hampers transaction throughput as

we show later. Another possibility is to store every single node as a string using a unique

key. However, this would increase costs, as multiple get operations have to be performed

in order to retrieve partial tree data. Hence, a fragmentation model – as a trade off be-

tween costs and performance – is necessary. Figure 2 shows an example: The XML tree is

shredded into three fragments with unique ids fragment 1, fragment 2 and fragment 3. In

order to reconstruct the whole tree, we introduce special nodes fragment 2 and fragment

3, which reference the corresponding tree fragments. The reconstruction is performed in a

top-down fashion. This approach is sufficient for our use case.

Fragmentation of a tree can be performed with respect to different aspects. Regarding

our use case, sound production with spatial sound systems, a whole scene graph could be

fragmented based on cooperation on data units. Assuming that in a sound studio different

teams exist, e.g., one for effects and one for speech, then a possible fragmentation could

be dialogs and effects as most in cases each team works on their own data set. However,

there are other possibilities, for example fragmentation with respect to certain efficiency

criteria. Summarizing, it depends on the application which fragmentation strategy should

be used.

311

3.2 Operations

Our overall goal is to enable cooperative processing of tree data. In order to achieve this,

we specified semantic tree operations. These allow for fine-grained conflict specification

and hence support cooperative synchronization protocols.

In order to read a fragment and the contained tree, we defined a simple read(fragment

id). The manipulation of XML data is possible with the help of some update operations.

An edit(fragment id, n, new node value) (E) is used to assign a new node value to a

node n. The operation insert(fragment id, n, sub tree) (I) adds a new sub tree to node

n. Thereby, a new edge between n and the root node of the sub tree is inserted. The op-

eration move(fragment ids, n, m) (M) assigns node m as new parent of node n so that the

existing edge (p, n) between n’s old parent p and n is removed and the new edge (m,n)

is inserted. A delete(fragment ids, n) (D) removes node n, the edge (p, n) between n and

its parent p and n’s children from the tree. Note that move and delete can affect several

fragments.

Amazon S3 just offers really simple operations in order to read and update data, i.e., get

and put for an object (blob).

The mapping of semantic tree operations to simple get and put operations is performed

as follows. A fragment to be read is retrieved from S3 with the help of a get operation.

Updates on the tree are performed externally with the help of semantic tree operations. In

the end the changed fragment is written back to S3 using a put operation.

3.3 Synchronization Model

Simply using S3 operations in order to perform updates on data would have negative con-

sequences regarding transaction synchronization, as a fine-grained conflict specification is

impossible. Consider, for example, two authors who are working on the example scene

graph in Figure 1. One author changes a dialog element and the other one changes an ef-

fects element. Both operations do not influence each other, because they are executed on

different parts of the scene. However, both operations result in one put operation of the

whole scene graph each and, hence, have to be considered as conflicting. Using seman-

tic tree operations allows fine-grained conflict specifications. Furthermore, we consider

functional dependencies between read and update operations. This leads to the following

conflict definition:

Definition 3.1. Two operations oi and pj , which belong to transactions ti and tj respec-

tively, are conflicting, iff they are incompatible according to the compatibility matrix shown

in Table 1. If both are read(fragment id) operations, they are not conflicting. Without

loss of generality, we assume that oi is a read(fragment id) operation and pj is an up-

date operation. Then both operations are conflicting, only iff oi is followed by an update

operation ui which itself depends on oi. Otherwise, they are not conflicting.

Table 1 shows the compatibility of the update operations with respect to the nodes or edges

our operations consider. Thereby,
√

states that the operations are fully compatible, − that

they are not compatible at all, and + that they are only compatible if the tree they are

performed on is considered unordered. Compatible operations are not in conflict and can

312

be executed in parallel. Read operations are not further considered. In our use case it is

sufficient to investigate update operations in order to detect conflicts between different

transactions.

E I M D

E −

√ √

−

I
√

+ + −

M
√

+ + −

D − − − −

Table 1: Compatibility of Update Operations

In order to synchronize transactions, several approaches exist, each depending on the con-

sidered scenario. Pessimistic protocols, e.g. locking, are useful for working environments

with high conflict rates. Optimistic protocols are applied in situations where a lower con-

flict rate is assumed. In our scenario we assume that in most cases authors are working

on different parts of the same scene. Furthermore, the semantic tree operations lead to a

lower conflict probability, as shown in Table 1. Hence, we apply an optimistic synchroniza-

tion protocol, which is based on the well-known BOCC protocol. Here, we only present

a short summary, more detailed information can be found in [GS10]. Like the traditional

BOCC, we divide a transaction into three phases – read, validate and persist. Within the

read phase all operations are performed on local copies of the data. In the validation phase

the transaction is checked against all successfully committed transactions that interleaved

the considered transaction. After successful validation the changes are stored persistently.

Like the inventors of the BOCC protocol we assume validate and persist phase as an indi-

visible unit.

The interesting part of the protocol is the validate-persist phase. First, we summarize the

validation criterion, as this is the main point where our protocol differs from the tra-

ditional BOCC protocol. For this purpose we introduce the notion of UpdateSets. An

UpdateSetTi
contains all update operations a transaction Ti has performed. Update opera-

tions may or may not conflict, as it is shown in Table 1. Let Tj be a transaction with transac-

tion number (or timestamp) tn(Tj). Tj is successfully validated, iff ∀Ti, tn(Ti) < tn(Tj)
one of the following conditions holds:

1. Ti has completed its validate-persist phase before Tj starts its read phase.

2. UpdateSetTi
is not in conflict with UpdateSetTj

according to Table 1.

The first case follows the traditional BOCC approach. Hence, if Ti and Tj are executed se-

rially, Tj is validated successfully. The second case implies that validation is not successful

if the transactions conflict in their UpdateSets. Otherwise, if the transactions used differ-

ent data items, serializability is preserved and Tj is validated successfully. The validation

criterion works, because we assume less functional dependencies between read and up-

date operations. In [GS10] we show that this validation criterion leads to fewer transaction

aborts, even in case of environments with high conflict rates.

Finally, we briefly show correctness of our protocol.

313

Theorem 3.1. The proposed validation criterion produces serializable schedules. Hence,

every local transaction manager following this protocol produces locally serializable

schedules.

Proof. We construct a conflict graph G where nodes denote transactions and directed

edges denote conflicts between these transactions [WV01]. A conflict is defined as in Def-

inition 3.1. Iff G is acyclic, the schedule is serializable. Otherwise, it is not serializable.

Now assume G is an acyclic graph of the form (... → ti → ... → tk → ...). This im-

plicitly means that all transactions were successfully validated and committed (Aborted

transactions are not contained). By inserting a running transaction tj this graph becomes

cyclic. This means there must be at least one conflict directed from tj to ti and one directed

from tk to tj , where k = i is possible. However, if there are conflicts detected during the

validation phase where tj is involved in, then tj is aborted. Hence, the graph stays acyclic.

Note that validation is performed indivisibly. This means, only one transaction is validated

at a certain time. Hence, if tj is conflicting with another running transaction tz , these con-

flicts are detected during validation of tz (in case tj has successfully been committed).

4 System Architecture

In Section 3 we discovered discrepancies between our requirements and what is provided

by S3. Namely, these are the different data models and the different operation sets. Fur-

thermore, we want to enable strict consistent and cooperative transaction processing upon

S3 which by itself provides at most read-after-write consistency for put operations of new

data. Hence, we need to define a system model which maps our data model and operations

to S3 and provides strict consistency for the application.

Our proposed system architecture is shown in Figure 4. We chose a layered approach on

top of Amazon S3.

Amazon S3 is organized in buckets, as described in the last section. In the context of media

production with spatial sound systems we assume that all scene data (fragment sets) is

partitioned over a set of buckets. This way every fragment belongs to exactly one bucket.

The partitioning is performed in a way that a bucket contains the amount of scene data

which is shared within a certain group of authors (clients). This is a natural approach with

respect to huge movie projects, where we can find several teams for, e.g., sound effects or

music.

Clients possess fragment caches in which they store local copies of the fragments they

want to work on in form of trees. Every update operation is first executed on these copies.

Only after the successful validation of the corresponding transactions the updates are

stored persistently in Amazon S3. The advantage is that in case of a transaction abort

no compensation (or version restoring) has to be performed in order to remove inconsis-

tencies from S3. Clients are only allowed to read and update fragments via transaction

managers within a transactional context.

The VM layer is situated between S3 and the clients. This layer consists of a set of virtual

machines, which are started when needed and closed if they get dispensable. The virtual

314

READ-Man

1

TXN-Man n

global registry

daemon

bucket 1 ...

...

...
local registry

GTXN-Man n

fragment cache

TXN-Man 1

...
fragment cache

client

client layer

VM layer

Amazon S3

global coordination layer

local coordination layer

Figure 4: System Architecture

client global registry local transaction manager S3 bucket

lookup txn manager

instantiate

ACK

URL

read fragment

get fragment

fragment as string

store fragment as tree
fragment as tree

perform update

log update

request commit

validate transaction

put fragment as string

ACK

ACK

start transaction

commit

perform update

Figure 5: Sequence Diagram: Client Request

machines execute three kinds of services - local transaction managers (TXN-Man), orga-

nized in the local coordination layer, global transaction managers (GTXN-Man), organized

in the global coordination layer and a single global registry. (Note that several services can

run on a single virtual machine.) Every local transaction manager is exactly assigned to

one single bucket and vice versa. It retrieves (get operation) copies of the scene data from

the bucket it is assigned to, parses the XML string and stores this data in form of a tree in

its fragment cache. The copies are written back to the bucket (in form of an XML string us-

ing the put operation) after manipulation. A local transaction manager is started/executed

if at least one client intends to work on a certain bucket, otherwise it is stopped. Occasion-

ally it is required that several groups of authors synchronize their work. This may result in

concurrent access to different buckets. In order to handle this, global transaction managers

are needed. Their task is to route client operations or requests to the responsible local

transaction managers. However, they are not allowed to access S3 buckets. Hence, they

have a local registry where they store which local transaction manager is responsible for

which fragment of the tree. A global transaction executed by a global transaction manager

is decomposed into several sub transactions. These are then executed by the responsible

local transaction managers. Note that the sets of local transaction managers accessed by

different global transaction managers do not necessarily have to be disjoint in order to

allow for correct transaction synchronization. We show this in Section 6. Similar to local

transaction managers, global transaction managers are only instantiated when needed. In

addition to the transaction managers a single global registry is maintained. It is respon-

sible for starting, stopping, and monitoring transaction managers and their corresponding

315

virtual machines. The registry knows which fragments are stored in which bucket. This is

required in order to route client requests to the right transaction manager.

Next we give a brief example of how client requests are treated (Figure 5). Assume an

author knows a fragment he wants to work on. It could have been assigned to him by the

supervisor in his team. The client sends a lookup request to the global registry in order

to get the address of the responsible transaction manager. In the case that an appropriate

transaction manager is not yet running, it is instantiated. After obtaining the transaction

manager’s address, the author is able to start his work. Every atomic unit of work is en-

capsulated into a transaction. The client retrieves the fragment copy the author wants to

work on with the help of a read operation. Thereby, a new transaction is started implic-

itly by the transaction manager. The transaction manager retrieves a copy of the fragment

from S3 and stores it locally if it is not yet in the cache. Thereafter, the client (author)

performs an update on the local copy which is also logged by the transaction manager.

After a certain number of update operations were performed, the transaction manager tries

to commit the transaction. Therefore, the transaction enters the indivisible validate-persist

phase. If validation is successful, the logged updates are applied to the local fragment copy

and the updated fragment is written back to the S3 bucket. The validation and committing

of transactions is described in more detail in Section 6.

We briefly discuss two possible APIs which enable application developers to connect to the

proposed system. Using the first approach, the client application directly communicates

with the VM layer (see Figure 4). However, this way application programmers have to

care about fragment caching and have to use the tree operations proposed in Section 3.2.

Following the second approach, application programmers use a low-level client provided

by us. This client software cares about fragment caching. Additionally, it maps application

operations onto the tree operations used by our system. Hence, it would be possible to

use, for example, XPath or XUpdate for XML processing on the application side. These

operations are then transparently mapped onto semantic tree operations.

5 Transaction Model

In [GHS09] we defined a transaction model for cooperative XML processing. However, it

has to be simplified for this use case, because of the following reasons. First, managing root

transactions in such a distributed environment causes too much overhead. They are simply

running too long. During this time a client could change the transaction manager and the

transactional context has to be exchanged between the participating transaction managers.

Second, splitting up operations on sub trees (like deleting a node with its corresponding

children) into sub transactions (containing operations on nodes and edges) for recovery

purposes is unnecessary, because S3 does not provide versioning of nodes and edges but

only of fragments. Hence, a fine-grained recovery is impossible at all.

The resulting transaction model looks as follows. A transaction starts with a set of

read(fragment id) operations followed by a set of update operations. Thereby, every data

item that is affected by these update operations has to be read. This means we do not allow

so-called “blind writes”. Hence, we can assure that every author knows the current state

of the project before he starts to make changes. This is necessary to allow for coopera-

316

bucket 2 bucket 3

TXN-Man 2 TXN-Man 3

GTXN-Man 1

GTXN1 := read(fragment 2) read(fragment 3)

edit(fragment 2, 4) edit(fragment 3, 6)

STXN11 := read(fragment 2)

edit(fragment 2, 4)

STXN12 := read(fragment 3)

edit(fragment 3, 6)

fragment 2 fragment 3

Figure 6: Example Transaction Execution

tive working. We illustrate our transaction model with a short example. Assume an author

wants to balance the volumes of a crash and a speaker in the fragmented scene in Figure 2.

Therefore, he reads fragment 2 and fragment 3 and performs two edit operations, one on

node 4 and another on node 6. Figure 6 shows the resulting transactions in case that both

fragments are stored in different buckets. In order to ensure atomicity across two buckets, a

global transaction manager is used. All operations performed by the client are encapsulated

in the global transaction GTXN1. The global transaction manager knows the responsible

local transaction managers and, hence, performs a decomposition of the global transaction

into two sub transactions (STXN11 and STXN12). In case both fragments are stored in

the same bucket, no global transaction manager is needed. Then, the client communicates

directly with the responsible local transaction manager and the example transaction is not

decomposed at all.

Finally, the transaction boundaries (begin and commit) have to be determined. On one

possibility they are explicitly specified by the designers or the application programmers.

However, specifying transactions in design environments is not an easy task. In contrast

to, for example, banking applications, where predefined transactions exist, e.g., for with-

drawal, in design environments, the transactions are constructed during the interaction of a

designer with the system. Usually, designers are not interested in specifying transactions.

Hence, this task must be performed transparently by the system. In [GS10] we described

an appropriate method, which automatically determines transaction boundaries based on a

user defined degree of cooperation and the importance of the executed update operations.

6 Transaction Validation and Commit

In the last section, we described how it is determined, when a transaction is started and

when it should be committed. Now, we clarify how transactions in this distributed envi-

ronment are committed in order to guarantee atomicity and correctness.

In case an author works with XML data that belongs to a single bucket, there is no need for

further investigation, because only a local transaction is executed at a single site. Here, val-

idation is performed, and in case of success, the transaction is committed and the changes

are stored persistently in S3. Correctness is guaranteed, because of our validation scheme

described in 3.3.

However, in case an author works on scene data that is distributed across several buck-

ets, a global transaction manager and several local transaction managers are involved. The

317

task is, i) to synchronize the global and local transactions against other global and local

transactions in order to assure correctness and ii) to commit a global and all its local trans-

actions entirely in order to guarantee atomicity. A common approach for these problems is

the adaption of the two phase commit protocol [WV01] to optimistic concurrency control

protocols. If a distributed transaction shall be committed, the global transaction manager

becomes the coordinator and sends PREPARE messages to all affected local transaction

managers. This message is a request for validation. Every local transaction is validated

at its corresponding site. If validation is successful, a READY for commit message is

sent to the coordinator. Otherwise, the local transaction manager answers with an ABORT

message. If all local transactions voted for commit, the coordinator sends COMMIT mes-

sages to all participating local transaction managers and the whole distributed transaction

is committed and the changes are stored persistently. If at least one transaction fails, all

local transactions are aborted by the coordinator with the help of ABORT messages, fol-

lowed by an abort of the global transaction itself.

Global transaction managers support parallel validation of several global transactions.

However, local transaction managers treat the validate-persist phase including commit as

indivisible unit, leading to serial validation.

The two phase commit protocol described above can lead to deadlocks between global

transactions, because of cyclic wait-for graphs between sub transactions waiting for the

entrance into the validate-persist phase. Two alternatives are known to deal with deadlock

situations. First, avoid deadlocks - all transactions are validated simultaneously. If at least

one sub transaction is not able to enter validation phase, the global transaction is aborted

and, hence, all sub transactions are aborted, too. Second, deal with deadlocks - in the

literature, e.g. [WV01], several mechanisms to detect and handle deadlocks are described.

In order to determine the serialization order of global and local transactions global trans-

action counters or timestamps are necessary. Since using a global transaction counter can

become a bottleneck in highly distributed systems (as mentioned in Section 2), we chose

timestamps for our solution. These can be assigned in a distributed manner. However, the

precondition is, that clocks are synchronized at all transaction managers. In commonly

known distributed systems this is hard to achieve. However, we assume our system (VM-

layer) to be running in a data center on top of virtualization software like Eucalyptus,

which also needs synchronized clocks. Current versions of the network time protocol pro-

vide time accuracy in the range of less than 10 milliseconds for local networks. We believe

this is sufficient for our use case. However, for the unlikely case, that accuracy is too

low, the approach described in [AGLM95] could be adapted and applied. However, this is

beyond the scope of this paper.

Finally, we show that the proposed protocol is correct.

Theorem 6.1. If every global transaction Ti follows the proposed commit protocol, the

resulting schedule is globally serializable.

Proof. Due to our proposed validation method, all locally executed transactions are serial-

izable. Now, assume a schedule of committed global transactions Tk, k ∈ N. We construct

a global conflict graph S. A conflict is defined according to Definition 3.1. Iff S is acyclic,

318

validation/persist

thread
read thread 1 read thread n...

fragment cache

bucket

local transaction

manager

Figure 7: Local Transaction Manager Threads

the schedule is globally serializable. Assume, without loss of generality, that S contains

a cycle of the form (Ti → ... → Tk → ... → Ti). Hence, there must be a (direct or

indirect) conflict directed from tir to tks and one directed from tku to tiv , where tmn is

the n-th sub transaction of Tm executed at the n-th local transaction manager. Since all sub

transactions were successfully validated and committed at the corresponding local trans-

action managers, Ti and Tk must have been serialized in opposite directions at different

local transaction managers. This is not possible - at a local transaction manager site the

validation phase is indivisible. Hence, only one transaction can be performed at a certain

point in time. If a sub transaction entered the validation phase, it cannot leave it until its

corresponding global transaction commits. (And a global transaction cannot commit if at

least one sub transaction is not validated successfully.) This means, validation (serializa-

tion) order can only be unidirectional.

Note, that we did not assume, that the validation phase at the global transaction manager

site must be indivisible. Hence, validation can be performed in parallel. This also means, it

does not matter, if two global transactions are validated in parallel on the same or different

global transaction managers.

7 Ensuring Consistency and Enhancing Read Performance

In order to understand how transaction throughput can be increased, we give some insights

into the implementation of a local transaction manager. Figure 7 shows a local transac-

tion manager with its corresponding S3 bucket. We implemented the transaction manager

multi-threaded. We start exactly one validation/persist thread in order to serialize update

operations and an arbitrary amount of reading threads, which are only allowed to read from

the fragment cache. (In order to allow for real parallel reading, the number of read threads

should follow the number of assigned CPU cores.) This implementation allows to serve a

lot of client read requests in parallel.

The fragment cache is limited. Hence, it is possible that a cache resident fragment has

to be replaced by another fragment that is immediately needed. In the literature, several

page replacement strategies usable for our case are described. Thus, we do not consider

fragment replacement any further. However, one problem remains with respect to fragment

replacement. Assume a worst-case scenario where a fragment is updated and written to the

corresponding S3 bucket. Right after this, it is replaced in cache by a different fragment

and then immediately requested again and, thus, read from S3. As already said, Amazon S3

provides no strict consistency. So, if a fragment is written and read immediately thereafter,

it is possible that an older version is retrieved. In order to prevent this, we make use of

319

the entire versioning feature S3 provides. An Amazon S3 put operation returns the version

ID of the written object. We just store the returned version ID in the local transaction

manager. This ID is updated every time a put of the considered fragment is executed.

When the fragment is read, this version ID is passed to the Amazon S3 get operation. If the

requested version is already available, it is returned. Otherwise, the transaction manager

waits for some milliseconds and tries retrieving the fragment again.

8 Recovery

Concerning recovery we have to distinguish between transaction and system recovery.

Transaction recovery is necessary to guarantee atomicity in case of failures. Aborted trans-

actions have to be rolled back to not have any effect on the persistent storage. In our

approach transaction recovery and synchronization are closely coupled. In case of local

transaction processing the use of our extended BOCC protocol ensures that only commit-

ted changes are stored persistently. Dirty updates are only performed on the client side

during the read phase. Furthermore, cascading aborts are avoided as a transaction may

only depend on previously committed transactions. (A transaction T depends on a trans-

action S if there is a directed conflict (Definition 3.1) from S to T .) For global transactions

the variation of the two phase commit protocol ensures atomicity and durability. In cases

where local or global transactions are aborted during read or validation phase, the affected

transactions can just be aborted, as no changes have been stored persistently. Only the

cases, where local transactions are aborted during the persist phase are a bit more intricate.

However, Amazon S3 provides versioning feature, which is helpful in these situations.

Even if a transaction is aborted after the put operation has been successfully performed,

the previous version can easily be restored. Every put operation produces a new version

of the fragment with a unique version ID. This version can simply be deleted by using

the version ID. Since global transactions are not allowed to access S3 there is no need for

further investigations.

A main problem of the original two phase commit protocol is that a deadlock situation

occurs if the coordinator (global transaction manager) fails. Then, the local transaction

managers are waiting for notifications infinitely. A possible solution is the introduction

of time outs. In our system a global registry is running, which monitors all transaction

managers. This way the registry can inform all affected local transaction managers if the

global transaction manager fails and all local transactions are aborted. If a local transaction

manager fails, the responsible global transaction manager is informed, which then reacts

accordingly.

The base for ensuring system recovery is the global registry, which, as already mentioned,

instantiates, monitors, and restarts virtual machines and transaction managers. In order to

guarantee that the global registry is always available and also for load balancing purposes

we use backup instances of this service. If a virtual machine or a transaction manager

fails, it is detected by the global registry and the affected machines and managers are

restarted. There is only a need for simple recovery steps after a local or global transaction

manager was restarted. All running transactions have been aborted and all changes of

committed transactions are stored in the corresponding S3 bucket. However, there could be

320

uncommitted changes in the bucket, as previously described. They can easily be removed

by using the version IDs. After a local transaction was committed, the produced version ID

is communicated to the global registry (during monitoring). If a local transaction manager

is restarted, the last stored version ID is communicated to the local transaction manager,

which simply retrieves a list of version IDs from the concerned bucket. If the last known

version ID is not the current one in the list, the current version is simply deleted by using its

version ID. Recovery for global transaction managers is much easier. A global transaction

manager retrieves the lists of fragment IDs from its local transaction managers and can

this way assure a proper routing of new client requests.

The versioning feature can also be used to allow undo operations. If a client wants to

restore an old version of a fragment, it just retrieves all versions with a listing command

via the global and/or local transaction manager. Then, it chooses one version and deletes all

other versions. However, the undo feature has to be refined in order to enable for example

access control. We consider this in future work.

9 Evaluation

In this section we evaluate the proposed system with respect to performance, applicability,

scalability, and costs. We measure S3 performance and costs with respect to different frag-

ment sizes in order to show that fragmentation reduces costs and enhances performance.

Furthermore, we determine the local and global transaction throughput in order to show

that the proposed system is applicable to cooperative media production scenarios. Con-

cluding, we give a simple cost formula to helps calculate the overall S3 costs and show

that the proposed system is scalable within Amazon EC2.

In order to determine S3 costs we use prices for the region EU/Ireland from the Amazon

S3 web page:

• StorageCosts = $0.15 for storing 1 GB of data

• GetCosts = $0.01 for 10000 get operations

• PutCosts = $0.01 for 1000 put operations

• DataInCosts and DataOutCosts = $0.15 for transferring 1 GB of data

The versioning feature is charged via storage costs. Every update operation leads to a full

copy of the data item and hence increases storage costs.

Costs and Performance

As mentioned in Section 3.1, there are two possible extreme solutions for storing the tree

data as blob objects – one blob per node or one blob for the whole tree. Here we out-

line how S3 costs and performance evolve between these two extrema and we show that

fragmenting data reduces S3 costs and enhances data processing performance.

In order to measure the results we used an S3 bucket in the region EU/Ireland with the

versioning feature enabled. Versioning is necessary for transaction recovery as described

321

in Section 8. The overall storage costs for a fragment of size FragSize in MB, which is

updated n times in an EU/Ireland bucket with enabled versioning feature, are calculated

as follows: TotalStorageCosts = FragSize ∗ (StorageCosts/1000) ∗ (n + 1). Fur-

thermore, the whole get costs of retrieving all fragments of a tree are: TotalGetCosts =
GetCosts/10000 ∗NumberOfFragments.

For our first measurement we consider a tree with a size of 500 KB. We fragment the

tree step by step and consider get performance (the time needed for retrieving the whole

data tree) and put performance (the time needed for putting a single fragment into the

bucket). The tests were performed on an EC2 instance in region EU/Ireland as well as an

instance in our institute. The results are shown in Figure 8. As expected, put performance

increases with decreasing fragment size as decreasing fragment size avoids transferring

of unchanged parts of the whole tree. The get performance decreases with an increasing

degree of fragmentation. This can be explained by the higher number of get operations

needed to retrieve the whole data tree and the associated higher number of expensive http

requests sent to S3. Overall, results measured in EC2 are better than those measured ex-

ternally. The reason is better infrastructure with less latencies and higher bandwidth.

Next, we measure TotalStorageCosts and TotalGetCosts. Therefore, we, again, con-

sider a tree with a size of 500 KB, which is stepwise fragmented. We assume that always

the whole tree is retrieved from S3 and a single fragment of considered size is updated and

written back to S3 ten times. The results are shown in Figure 9. As expected, the get costs

increase and storage costs decrease with decreasing fragment size as decreasing fragment

size avoids versioning of unchanged parts of the whole tree.

Get Performance Put Performance Get Performance (EC2) Put Performance (EC2)

500.00 250.00 125.00 62.50 31.25 15.62 7.81 3.91 1.95 0.98

Fragment Size [KB]

100

1000

10000

100000

T
im

e
[m

s]

Figure 8: Put and Get Performance

Total Storage Costs Total Get Costs

500.00 250.00 125.00 62.50 31.25 15.62 7.81 3.91 1.95 0.98

Fragment Size [KB]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C
o

st
s

[C
en

t]

Figure 9: Total Storage Costs and Total Get Costs

Transaction Throughput

The goal of this part of the evaluation is to show that using the proposed system architec-

ture and synchronization protocol results in sufficient transaction throughput. Furthermore,

we show that fragmentation has some impact on transaction throughput.

Before presenting experimental results we first introduce the notion of conflict rate. The

conflict rate determines the number of transactions which are conflicting with each other in

the whole transaction set (for details see [GS10]). The set of conflicting transactions is de-

termined based on the validation criterion of our new approach (conflicting UpdateSets).

The tree the transactions are executed on is considered to be unordered.

322

We measure the number of successful committed transactions per minute

(TransactionThroughput = NumOfCommittedTxns/duration, where duration
is the measured time in minutes for executing the whole transaction set) at the local/global

transaction manager site. Thereby, we analyze the following scenarios:

1. Local transaction throughput depending on fragment size with fixed conflict rate of

25%.

2. Global transaction throughput depending on fragment size with fixed conflict rate of

25%.

For our test scenarios we used a simulation where a randomly generated set of transactions

is executed on a randomly generated tree that follows our data model specification of

Section 3.1. The tree is again fragmented step by step.

In test scenarios with local transactions the setup consisted of a local transaction man-

ager upon an S3 bucket in the region EU/Ireland. In order to measure global transaction

throughput the setup consisted of two local transaction managers upon two S3 buckets in

the same region and one global transaction manager. All transaction managers are running

on the same virtual machine. Local transactions consist of a set of read fragment opera-

tions and exactly one update operation. Global transactions consist of exactly two local

transactions. It should be noted that in the local transaction scenario no global transactions

are executed. Furthermore, in the global transaction scenario no local transactions that do

not belong to global transactions are executed. Since duration of the read phase of a trans-

action is unpredictable (because it depends on the working time of an author), we assume a

read phase duration between one and two seconds. Figures 10 and 11 show the measured

results in case of transaction manager deployments in EC2 (region EU/Ireland) as well as

in our institute. In both cases we measured transaction throughput when writing updates to

With Put Without Put With Put (EC2) Without Put (EC2)

500.00 250.00 125.00 62.50 31.25 15.62 7.81 3.91 1.95 0.98

Fragment Size [KB]

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

T
h

ro
u

g
h

p
u

t
[T

x
n

/m
in

]

Figure 10: Local Transaction Throughput

With Put Without Put With Put (EC2) Without Put (EC2)

500.00 250.00 125.00 62.50 31.25 15.62 7.81 3.91 1.95 0.98

Fragment Size [KB]

0

250

500

750

1000

1250

1500

1750

2000

2250

T
h

ro
u

g
h

p
u

t
[T

x
n

/m
in

]

Figure 11: Global Transaction Throughput

S3 and in a second experiment only writing to the fragment cache. Basically, the measured

transaction throughput is sufficient for typical cooperative design environments. However,

write performance of S3, obviously, has a big impact on transaction throughput. In future

work we have to think about sophisticated update caching mechanisms in order to save

put operations. Furthermore, although writing a smaller fragment is faster than writing a

large fragment to S3, transaction throughput slightly decreases with increasing fragmen-

tation degree. We get this effect as with decreasing fragment size update operations affect

323

100,00 50,00 25,00 12,50 6,25 3,12 1,56 0,78 0,39 0,20

Fragment Size [MB]

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

C
o

st
s

[$
]

Figure 12: Total S3 Costs per Month

more fragments. Hence, more fragments have to be written back to S3 and this operation

is heavily influenced by expensive http put requests.

Total S3 Costs

Here, we show that fragmentation reduces total S3 costs. We use the following cost for-

mula in order to calculate costs resulting from external access to S3 (not from EC2):

TotalS3Costs = F ∗ ((n+ 1) ∗ (FragSize ∗ StorageCosts
1000

+ PutCosts
1000

+

FragSize ∗ DataInCosts
1000

) + n ∗ (GetCosts
10000

+ FragSize ∗ DataOutCosts
1000

)) (1)

F is the number of fragments, n is the number of updates, and FragSize is the size of

a fragment in MB. Note that we assume that every update of a fragment leads to a new

version of this fragment. Even if only a small part of the tree data within a fragment is

changed, the whole fragment has to be read and written as one unit, because S3 is used as

a block storage device.

These costs are worst-case costs, because we assume that get operations are always per-

formed on S3. In real scenarios we assume most of the get operations on the cached frag-

ments (local transaction manager). Hence, costs should be much lower.

Figure 12 shows the total S3 costs for one month, assuming a fixed project size of 100

MB and 10000 updates of the project file. The project file is fragmented step by step

and updates are assumed to be distributed equally upon the fragments. This means, if we,

for example, split up a single document into two fragments, n/2 updates are performed

on each fragment. Again, we used a single S3 bucket in the region EU/Ireland with the

versioning feature enabled. As expected, costs for the whole project decrease with an in-

creasing degree of fragmentation. Hence, fragmentation should always be considered in

big projects.

Scalability

Previously, we have shown that global and local transaction throughput is sufficient for

typical design scenarios. For our measurements we used a relatively small test setup. Here,

we want to show that our system model scales with an increasing workload. Therefore, we

assume that the necessary transaction managers are hosted in EC2.

In EC2 it is possible to rent different instances with different memory and cpu equipment.

For example, one can rent a machine with 7 GB RAM and 20 EC2 compute units. One

EC2 compute unit compares to a single 2007 Opteron or Xeon cpu, which is at least a

324

dual core cpu. This means, we can execute at least 40 threads in parallel on one instance.

As already mentioned in Section 4, it is possible to execute several transaction managers

on a single virtual machine. Assuming a local transaction manager consists of one vali-

date/persist thread and three read threads, we can run 10 local transaction managers (with

corresponding S3 buckets) on a single instance. By assuming a local transaction through-

put of 100 committed transactions per minute and local transaction manager, we get a total

local transaction throughput of 1000 committed transactions per minute and instance.

If a bucket becomes a “hot spot”, we can split up the data across other buckets in order

to distribute the load. If this is also not sufficient, fragments could be further decomposed

and distributed across several buckets.

10 Conclusion and Future Work

In this paper, we proposed a system model, which enables strict consistent and coopera-

tive processing of XML data in a distributed environment upon an existing cloud storage

service, namely Amazon S3. We described applicable transaction models for local and

distributed transaction processing, followed by a discussion of appropriate mechanisms

for optimistic transaction synchronization and transaction commit protocols. We proved

that these proposed protocols ensure correctness. Furthermore, we described how strict

consistency can be achieved upon a storage layer that at most provides read-after-write

consistency for put operations of new data. We also considered recovery with respect to

transaction aborts and system failures. A critical part of this paper is the evaluation. We

investigated the impact of S3 performance on our implementation within a real deploy-

ment on S3. We have shown that fragmentation is necessary in order to reduce storage

costs and increase write performance. Furthermore, the evaluation reveals the strong im-

pact of writing to S3 on the transaction throughput. For future work we propose to look for

sophisticated approaches in order to avoid this bottleneck. A possible solution is caching

of write operations. However, appropriate recovery mechanisms are necessary in order to

guarantee durability.

References

[AGLM95] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari. Efficient Opti-
mistic Concurrency Control Using Loosely Synchronized Clocks. In In ACM SIGMOD
International Conference on Management of Data, pages 23–34, 1995.

[AGS08] Marcos Kawazoe Aguilera, Wojciech M. Golab, and Mehul A. Shah. A practical scal-
able distributed B-tree. PVLDB, 1(1):598–609, 2008.

[AMS+09] Marcos Kawazoe Aguilera, Arif Merchant, Mehul A. Shah, Alistair C. Veitch, and
Christos T. Karamanolis. Sinfonia: A new paradigm for building scalable distributed
systems. ACM Trans. Comput. Syst., 27(3), 2009.

[Ber88] A. J. Berkhout. A Holographic Approach to Acoustic Control. In Journal Audio Eng.
Soc., volume 36, pages 977–995. 1988.

[BFG+08] Matthias Brantner, Daniela Florescu, David A. Graf, Donald Kossmann, and Tim
Kraska. Building a database on S3. In SIGMOD Conference, pages 251–264, 2008.

[Bur06] Michael Burrows. The Chubby Lock Service for Loosely-Coupled Distributed Systems.
In OSDI, pages 335–350, 2006.

325

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. ACM Trans. Comput. Syst., 26(2),
2008.

[CRS+08] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.
PNUTS: Yahoo!’s hosted data serving platform. PVLDB, 1(2):1277–1288, 2008.

[DAA10a] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. ElasTraS: An Elastic Transac-
tional Data Store in the Cloud. CoRR, abs/1008.3751, 2010.

[DAA10b] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-Store: a scalable data store
for transactional multi key access in the cloud. In SoCC, pages 163–174, 2010.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. In OSDI’04: Proceedings of the 6th conference on Symposium on Opearting
Systems Design & Implementation, pages 10–10. USENIX Association, 2004.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: amazon’s highly available key-value store. In SOSP, pages
205–220, 2007.

[FGC+97] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Paul Gauthier.
Cluster-Based Scalable Network Services. In SOSP, pages 78–91, 1997.

[GHS09] F. Gropengießer, K. Hose, and K. Sattler. An Extended Transaction Model for Co-
operative Authoring of XML Data. Computer Science - Research and Development,
2009.

[GS10] Francis Gropengießer and Kai-Uwe Sattler. Optimistic Synchronization of Cooperative
XML Authoring Using Tunable Transaction Boundaries. In DBKDA, pages 35–40,
2010.

[HH03] Michael Peter Haustein and Theo Härder. taDOM: A Tailored Synchronization Concept
with Tunable Lock Granularity for the DOM API. In ADBIS, pages 88–102, 2003.

[HS07] Maurice Herlihy and Ye Sun. Distributed transactional memory for metric-space net-
works. Distributed Computing, 20(3):195–208, 2007.

[KKL10] Donald Kossmann, Tim Kraska, and Simon Loesing. An evaluation of alternative ar-
chitectures for transaction processing in the cloud. In SIGMOD Conference, pages
579–590, 2010.

[KR79] H. T. Kung and John T. Robinson. On Optimistic Methods for Concurrency Control. In
VLDB, pages 351–351, 1979.

[Lam02] Leslie Lamport. Paxos Made Simple, Fast, and Byzantine. In OPODIS, pages 7–9,
2002.

[LFWZ09] David B. Lomet, Alan Fekete, Gerhard Weikum, and Michael J. Zwilling. Unbundling
Transaction Services in the Cloud. In CIDR, 2009.

[SSR08] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. Scalaris: reliable transac-
tional p2p key/value store. In Erlang Workshop, pages 41–48, 2008.

[WV01] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency Control and Recovery. Morgan Kaufmann
Publishers, 2001.

[ZR09] Bo Zhang and Binoy Ravindran. Brief Announcement: Relay: A Cache-Coherence
Protocol for Distributed Transactional Memory. In Tarek Abdelzaher, Michel Raynal,
and Nicola Santoro, editors, Principles of Distributed Systems, volume 5923 of Lecture
Notes in Computer Science, pages 48–53. Springer Berlin / Heidelberg, 2009.

326

	Vorwort

	Inhaltsverzeichnis
	Eingeladene Vorträge
	SanssouciDB: An In-Memory Database for Processing Enterprise Workloads
	The Web as the development platform of the future
	The Power of Declarative Languages: From Information Extraction to Machine Learning

	Wissenschaftliches Programm
	Verarbeitung großer Datenmengen
	MapReduce and PACT - Comparing Data Parallel Programming Models
	Parallel Sorted Neighborhood Blocking with MapReduce
	PigSPARQL: Übersetzung von SPARQL nach Pig Latin

	Datenströme
	Koordinierte zyklische Kontext-Aktualisierungen in Datenströmen
	Tracking Hot-k Items over Web 2.0 Streams
	Flexible and Efficient Sensor Data Processing - A Hybrid Approach
	Feature-Based Graph Similarity with Co-Occurence Histograms and the Earth Mover's Distance

	Vorhersagemodelle
	Lightweight Performance Forecasts for Buffer Algorithms
	Offline Design Tuning for Hierarchies of Forecast Models
	Online Hot Spot Prediction in Road Networks

	DB-Implementierung
	Advanced Cardinality Estimation in the XML Query Graph Model
	Efficient In-Memory Indexing with Generalized Prefix Trees
	Stets Wertvollständig! - Snapshot Isolation für das Constraint-basierte Datenbank Caching

	Anfrageverarbeitung
	A generalized join algorithm
	View Maintenance using Partial Deltas
	Cloudy Transactions: Cooperative XML Authoring on Amazon S3

	Informationsextraktion
	Conceptiual Views for Entity-Centric Search: Turning Data into Meaningful Concepts
	A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases
	Efficient Interest Group Discovery in Social Networks using an Integrated Structure/Quality Index
	Filtertechniken für geschützte biometrische Datenbanken

	Benchmarking & Simulation
	Benchmarking Hybrid OLTP&OLAP Database Systems
	Simulating Multi-Tenant OLAP Database Clusters
	SSD != SSD – An Empirical Study to Identify Common Properties and Type-specific Behavior
	HiSim: A Highly Extensible Large-Scale P2P Network Simulator

	Probabilistische und inkonsistente Daten
	Operators for Analyzing and Modifying Probabi listic Data - A Question of Efficiency
	Resolving Temporal Conflicts in Inconsistent RDF Knowledge Bases
	QSQL^p: Eine Erweiterung der probabilistischenMany-World-Semantik umRelevanzwahrscheinlichkeiten

	Maßgeschneiderte DB-Anwendungen
	Generierung maßgeschneiderter Relationenschemata in Softwareproduktlinien mittels Superimposition
	SIMPL – A Framework for Accessing External Data in Simulation Workflows
	Einsatz domänenspezifischer Sprachen zur Migration von
Datenbankanwendungen

	Dissertationspreis
	XML Query Processing in XTC

	Industrieprogramm
	Complex Event Processing und Reporting
	An Integrated Data ManagementApproach to Manage Health Care Data
	Involving Business Users in the Design of Complex Event
Processing Systems
	Fast and Easy Delivery of Data Mining Insights to
Reporting Systems

	Rund um OLAP
	Technical Introduction to the IBM Smart Analytics Optimizer for DB2 for System z
	Architecture of a Highly Scalable Data Warehouse Appliance Integrated to Mainframe Database Systems
	Interactive Predictive Analytics with Columnar Databases

	In-Memory und Cloud
	An In-Memory Database System for Multi-Tenant
Applications
	Available-To-Promise on an In-Memory Column Store
	Cloud Storage: Wie viel Cloud Computing steckt dahinter?

	Panel
	Panel: “One Size Fits All”: An Idea Whose Time Has Come and Gone?

	Demonstrationsprogramm
	Improving Service Discovery through
Enriched Service Descriptions
	StreamCars – DatenstrommanagementbasierteVerarbeitung von Sensordaten im Fahrzeug
	NexusDSEditor — Integrated Tool Support for the DataStream Processing Middleware NexusDS
	AIMS: An SQL-based System for Airspace Monitoring
	PROOF: Produktmonitoring im Web
	ProCEM Software Suite - Integrierte Ablaufsteuerung und -überwachung auf Basis von Open Source Systemen
	Demonstration des Parallel Data Generation Framework
	Measuring Energy Consumption of a Database Cluster
	Snowfall: Hardware Stream Analysis Made Easy
	MOAW: An Agile Visual Modeling and Exploration Tool
for Irregularly Structured Data
	Touch it, Mine it, View it, Shape it
	Metadata-driven Data Migration for SAP Projects

	Ende

